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Abstract. We present some of the classical inequalities in analysis in the
context of Archimedean (real or complex) vector lattices and f -algebras. In
particular, we prove an identity for sesquilinear maps from the Cartesian
square of a vector space to a geometric mean closed Archimedean vector
lattice, from which a Cauchy–Schwarz inequality follows. A reformulation of
this result for sesquilinear maps with a geometric mean closed semiprime
Archimedean f -algebra as codomain is also given. In addition, a sufficient and
necessary condition for equality is presented. We also prove a Hölder inequal-
ity for weighted geometric mean closed Archimedean Φ-algebras, substantially
improving results by K. Boulabiar and M. A. Toumi. As a consequence, a
Minkowski inequality for weighted geometric mean closed Archimedean
Φ-algebras is obtained.

1. Introduction

Rich connections between the theory of Archimedean vector lattices and the
classical inequalities in analysis, although hitherto little explored, were implied in
[5] and the subsequent developments in [8], [13], [18], and [22]. In particular, [13]
presents a relationship between the Cauchy–Schwarz inequality and the theory
of multilinear maps on vector lattices, built on the analogy between disjointness
in vector lattices and orthogonality in inner-product spaces. The ideas in [13]
led to the construction of powers of vector lattices (see [9], [14]), a theory that
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was recently extended to the complex vector lattice environment in [11]. This
article follows the complex theme of [11] and in fact contains results that are
valid for both real vector lattices and complex vector lattices. We also conjoin the
Cauchy–Schwarz, Hölder, and Minkowski inequalities with the theory of geometric
mean closed Archimedean vector lattices, as found in [2] and [3]. We first discuss
these results more closely.

In [13, Corollary 4], the first author and van Rooij extend the classical Cauchy–
Schwarz inequality as follows. If V is a real vector space and A is an Archimedean
almost f -algebra, then for every bilinear map T : V × V → A such that

(1) T (v, v) ≥ 0 (v ∈ V ) and
(2) T (u, v) = T (v, u) (u, v ∈ V )

we have

T (u, v)2 ≤ T (u, u)T (v, v) (u, v ∈ V ).

This is the classical Cauchy–Schwarz inequality when A = R, which is equivalent
to∣∣T (u, v)∣∣ ≤ (

T (u, u)T (v, v)
)1/2

= 2−1 inf
{
θT (u, u)+θ−1T (v, v) : θ ∈ (0,∞)

}
(i)

for u, v ∈ V .
The proof of [13, Corollary 4] easily adapts to a natural complex analogue for

sesquilinear maps, although the condition for equality in the classical Cauchy–
Schwarz inequality (see, e.g., [15, p. 3]) does not hold in this more general context
(see Example 3.3).

In Theorem 3.1 of this article, we extend both the real and complex ver-
sions of the classical Cauchy–Schwarz inequality by replacing the codomain of
the sesquilinear maps with an Archimedean (real or complex) vector lattice that
is closed under the infimum in (i) above. We also prove a convenient formula for
the difference between the two sides of the Cauchy–Schwarz inequality and use
it to generalize the known condition for equality in the classical case. In Corol-
lary 3.2, we obtain a Cauchy–Schwarz inequality as well as a condition for equality
for sesquilinear maps with values in a semiprime Archimedean f -algebra that is
closed under the infimum in (i).

Theorem 4.7 of this article proves a Hölder inequality for positive linear maps
between Archimedean Φ-algebras that are closed under certain weighted rendi-
tions of (i). Our Hölder inequality generalizes [8, Theorem 5, Corollary 6] and
[22, Theorem 3.12] by (1) weakening the assumption of uniform completeness,
(2) including irrational exponents via explicit formulas without restricting the
codomain to the real numbers, (3) providing a result for several variables, and
(4) enabling the domain and codomain of the positive linear maps in question to
be either both real Φ-algebras or both complex Φ-algebras.

We note that Theorem 4.7 is itself a consequence of Proposition 4.1, which in
turn generalizes a reformulation of the classical Hölder inequality by Maligranda
[20, (HI1)]. Indeed, Proposition 4.1 is a reinterpretation of (HI1) for Archimedean
vector lattices that simultaneously extends (HI1) to several variables. We add that
Kusraev [18, Theorem 4.2] independently developed his own version of (HI1) in the
setting of uniformly complete Archimedean vector lattices. Our Proposition 4.1
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contains [18, Theorem 4.2]. Noting that Proposition 4.1 relies primarily on the
Archimedean vector lattice functional calculus, it (contrary to [18, Theorem 4.2])
depends only on (at most) the countable axiom of choice.

Finally, we employ the Hölder inequality of Theorem 4.7 to prove a Minkowski
inequality in Theorem 5.1.

We proceed with some preliminaries.

2. Preliminaries

We refer the reader to [1], [19], and [23] for any unexplained terminology regard-
ing vector lattices and f -algebras. Throughout, R is used for the real numbers,
C denotes the complex numbers, K stands for either R or C, and the symbol for
the set of strictly positive integers is N.

An Archimedean real vector lattice E is said to be square mean closed (see [3,
p. 482]) if sup{(cos θ)f + (sin θ)g : θ ∈ [0, 2π]} exists in E for every f, g ∈ E, and
in this case we write

f � g = sup
{
(cos θ)f + (sin θ)g : θ ∈ [0, 2π]

}
(f, g ∈ E).

The notion of square mean closedness in vector lattices dates back to a 1973
paper by de Schipper, under the term property (E) (see [17, p. 356]). We adopt
de Schipper’s definition of an Archimedean complex vector lattice but use the
terminology found in [3].

Throughout, V + iV denotes the commonly used vector space complexification
of a real vector space V . An Archimedean complex vector lattice is a complex
vector space of the form E + iE, where E is a square mean closed Archimedean
real vector lattice (see [17, pp. 356–357]).

An Archimedean real vector lattice will also be called an Archimedean vector
lattice over R, and an Archimedean complex vector lattice will additionally be
referred to as an Archimedean vector lattice over C. An Archimedean vector lattice
over K is a vector space that is either an Archimedean vector lattice over R or an
Archimedean vector lattice over C. Equivalently, an Archimedean vector lattice
over K is a vector space over K that is equipped with an Archimedean modulus,
as defined axiomatically by Mittelmeyer and Wolff in [21, Definition 1.1].

Given an Archimedean vector lattice E+iE over C, we write Re(f+ig) = f and
Im(f + ig) = g (f, g ∈ E). For convenience, we write Re(f) = f and Im(f) = 0
(f ∈ E) when E is an Archimedean vector lattice over R. Lemma 1.2, Korollar
1.4, Proposition 1.5, and Satz 2.2 of [21] together imply that the Archimedean
modulus on an Archimedean vector lattice E over K is given by the formula

|f | = sup
{
Re(λf) : λ ∈ K, |λ| = 1

}
(f ∈ E).

In particular, for an Archimedean vector lattice E over R we have |f | = f ∨ (−f)
(f ∈ E), while |f+ ig| = f�g (f, g ∈ E) holds in any Archimedean vector lattice
E + iE over C.

For an Archimedean vector lattice E overK, we define the positive cone E+ of E
by E+ = {f ∈ E : |f | = f}, while the real vector lattice Eρ = {f −g : f, g ∈ E+}
is called the real part of E. With this notation, E = Eρ for every Archimedean
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vector lattice E over R, whereas E = Eρ + iEρ whenever E is an Archimedean
vector lattice over C.

We say that an Archimedean vector lattice E over K is uniformly complete
if Eρ is uniformly complete. Note that every uniformly complete Archimedean
vector lattice over R is square mean closed (see [7, Section 2]).

An Archimedean vector lattice E over R is said to be geometric mean closed
(see [3, p. 486]) if inf{θf + θ−1g : θ ∈ (0,∞)} exists in E for every f, g ∈ E+,
and in this case we write

f � g = 2−1 inf
{
θf + θ−1g : θ ∈ (0,∞)

}
(f, g ∈ E+).

We define an Archimedean vector lattice over K to be geometric mean closed
(resp., square mean closed) if Aρ is geometric mean closed (resp., square mean
closed). Thus every Archimedean vector lattice over C is square mean closed.

We next provide some basic information regarding Archimedean f -algebras
that will be needed throughout this article.

The multiplication on an Archimedean f -algebra A canonically extends to a
multiplication on A + iA. We call an Archimedean vector lattice A over K an
Archimedean f -algebra over K if Aρ is an f -algebra. If in addition A has a mul-
tiplicative identity, then we say that A is an Archimedean Φ-algebra over K.
It was proved in [16, Corollary 10.4] (also see [23, Theorem 142.5]) that every
Archimedean Φ-algebra over R (and therefore every Archimedean Φ-algebra over
K) is semiprime.

Given an Archimedean f -algebra A over K, we call a vector sublattice A0 of A
an f -subalgebra of A if A0 is itself an f -algebra under the multiplication inherited
from A. If A is an Archimedean Φ-algebra over K with multiplicative identity e,
we call a vector sublattice A0 of A a Φ-subalgebra of A if A0 is an f -subalgebra
of A for which e ∈ A0. The smallest f -subalgebra (resp., Φ-subalgebra) of an
Archimedean f -algebra (resp., Φ-algebra) A over K that contains f1, . . . , fn ∈ A
will be called the f -subalgebra of A generated by f1, . . . , fn (resp., Φ-subalgebra
of A generated by f1, . . . , fn).

The multiplication on an Archimedean f -algebra over K will be denoted by
juxtaposition throughout. For Archimedean f -algebras A and B over K, we say
that a map T : A → B is multiplicative if T (ab) = T (a)T (b) (a, b ∈ A).

Let A be an Archimedean f -algebra over K, and let n ∈ N and a ∈ A+. If
there exists a unique element r of A+ such that rn = a, we write r = a1/n and
say that a1/n exists. If A is an Archimedean semiprime f -algebra and a, r ∈ A+

satisfy rn = a, then r = a1/n (see [6, Proposition 2(ii)]). Given m,n ∈ N, we write
am/n = (am)1/n, provided (am)1/n exists.

Every uniformly complete semiprime Archimedean f -algebra A over R is geo-
metric mean closed (see [2, Theorem 2.21]) and

f � g = (fg)1/2 (f, g ∈ A+). (ii)

The formula (ii) also holds in the weaker condition when A is geometric mean
closed. In fact, the proof of (ii) in [2, Theorem 2.21] does not require uniform
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completeness, as illustrated in the next proposition. Since [2] is not widely acces-
sible, we reproduce the proof of [2, Theorem 2.21], while (trivially) extending this
theorem to include complex f -algebras.

Proposition 2.1. Let A be a semiprime Archimedean f -algebra over K. If A is
geometric mean closed, then f � g = (fg)1/2 (f, g ∈ A+).

Proof. Evidently, Aρ is a semiprime Archimedean f -algebra over R. Let f, g ∈ A+,
and let C be the f -subalgebra of Aρ generated by the elements f, g, f�g. Suppose
that φ : C → R is a nonzero multiplicative vector lattice homomorphism. Using
[2, Proposition 2.20] or [12, Corollary 3.13] (first equality), we obtain

φ(f � g) = φ(f)� φ(g) =
(
φ(f)φ(g)

)1/2
=

(
φ(fg)

)1/2
.

Therefore,

φ
(
(f � g)2

)
=

(
φ(f � g)

)2
= φ(fg).

Since the set of all nonzero multiplicative vector lattice homomorphisms from
C into R separates the points of C (see [10, Corollary 2.7]), we therefore have
(f � g)2 = fg. �

We conclude this section with some basic terminology regarding Archimedean
vector lattices over K.

Given an Archimedean vector lattice E over C, we define the complex conjugate

f + ig = f − ig (f, g ∈ Eρ).

Since every Archimedean vector lattice over R canonically embeds into an Archi-
medean vector lattice over C (see [11, Theorem 3.3]), the previous definition
also makes sense in Archimedean vector lattices over R (via such an embed-
ding). If E is an Archimedean vector lattice over K, then the familiar identities
Re(f) = 2−1(f + f̄) and Im(f) = (2i)−1(f − f̄) are valid for every f ∈ E.

Let V be a vector space over K, and suppose that F is an Archimedean vector
lattice over K. A map T : V ×V → F is called positive semidefinite if T (v, v) ≥ 0

for every v ∈ V . If T (u, v) = T (v, u) for each u, v ∈ V , then T is said to be
conjugate symmetric. We say that T is sesquilinear if

(1) T (αu1 + βu2, v) = αT (u1, v) + βT (u2, v) (α, β ∈ K, u1, u2, v ∈ V ), and
(2) T (u, αv1 + βv2) = ᾱT (u, v1) + β̄T (u, v2) (α, β ∈ K, u, v1, v2 ∈ V ).

3. A Cauchy–Schwarz inequality

We prove a Cauchy–Schwarz inequality for sesquilinear maps with a geometric
mean closed Archimedean vector lattice over K as codomain (see Theorem 3.1)
and with a geometric mean closed semiprime Archimedean f -algebra over K as
codomain (see Corollary 3.2). A necessary and sufficient condition for equality in
Theorem 3.1 and Corollary 3.2 is given via an explicit formula for the difference
between the two sides in the Cauchy–Schwarz inequality of Theorem 3.1 men-
tioned above. However, Example 3.3 illustrates that the condition for equality in
the classical Cauchy–Schwarz inequality fails in Theorem 3.1 and Corollary 3.2.

We proceed to the main result of this section.
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Theorem 3.1 (Cauchy–Schwarz inequality). Let V be a vector space over K,
and suppose that F is a geometric mean closed Archimedean vector lattice over
K. If a map T : V × V → F is positive semidefinite, conjugate symmetric, and
sesquilinear, then

(1) inf
z∈K\{0}

{|z|−1T (zu− v, zu− v)} exists in F (u, v ∈ V ),

(2) |T (u, v)| = T (u, u)�T (v, v)−2−1 inf
z∈K\{0}

{|z|−1T (zu−v, zu−v)} (u, v ∈ V ),

(3) |T (u, v)| ≤ T (u, u)� T (v, v) (u, v ∈ V ), and
(4) |T (u, v)| = T (u, u) � T (v, v) if and only if inf

z∈K\{0}
{|z|−1T (zu − v, zu −

v)} = 0.

Proof. Suppose that T : V ×V → F is a positive semidefinite, conjugate symmet-
ric, sesquilinear map. Let u, v ∈ V , and put θ ∈ (0,∞). Using the sesquilinearity
of T and the identity Re(f) = 2−1(f + f̄) for f ∈ F , we obtain

T (θu− v, u− θ−1v) = T (θu, u) + T (v, θ−1v)− T (θu, θ−1v)− T (v, u)

= θT (u, u) + θ−1T (v, v)− 2Re
(
T (u, v)

)
.

Therefore,

Re
(
T (u, v)

)
= 2−1

(
θT (u, u) + θ−1T (v, v)

)
− (2θ)−1T (θu− v, θu− v).

In particular, for every λ ∈ S = {λ ∈ K : |λ| = 1} we have

Re
(
λT (u, v)

)
= Re

(
T (λu, v)

)
= 2−1

(
θT (u, u) + θ−1T (v, v)

)
− (2θ)−1T (θλu− v, θλu− v).

Thus we obtain∣∣T (u, v)∣∣ = sup
λ∈S

{
Re

(
λT (u, v)

)}
= 2−1 sup

λ∈S

{
θT (u, u) + θ−1T (v, v)− θ−1T (θλu− v, θλu− v)

}
= 2−1

(
θT (u, u) + θ−1T (v, v)

)
+ 2−1sup

λ∈S

{
−θ−1T (θλu− v, θλu− v)

}
= 2−1

(
θT (u, u) + θ−1T (v, v)

)
− 2−1 inf

λ∈S

{
θ−1T (θλu− v, θλu− v)

}
.

Hence we obtain

T (u, u)� T (v, v) = inf
θ∈(0,∞)

{∣∣T (u, v)∣∣+ 2−1 inf
λ∈S

{
θ−1T (θλu− v, θλu− v)

}}
=

∣∣T (u, v)∣∣+ 2−1 inf
θ∈(0,∞)

{
inf
λ∈S

{
θ−1T (θλu− v, θλu− v)

}}
=

∣∣T (u, v)∣∣+ 2−1 inf
λ∈S,θ∈(0,∞)

{
θ−1T (θλu− v, θλu− v)

}
=

∣∣T (u, v)∣∣+ 2−1 inf
z∈K\{0}

{
|z|−1T (zu− v, zu− v)

}
.

This proves statements (1) and (2) of this theorem. Statements (3) and (4) imme-
diately follow from statement (2). �

As a consequence of Theorem 3.1 and Proposition 2.1, we obtain the following.
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Corollary 3.2. Let V be a vector space over K, and suppose that A is a geometric
mean closed semiprime Archimedean f -algebra over K. If T : V × V → A is a
positive semidefinite, conjugate symmetric, sesquilinear map, then

(1) inf
z∈K\{0}

{|z|−1T (zu− v, zu− v)} exists in A (u, v ∈ V ),

(2) |T (u, v)|2 = ((T (u, u)T (v, v))1/2 − 2−1 inf
z∈K\{0}

{|z|−1T (zu − v, zu − v)})2

(u, v ∈ V ),
(3) |T (u, v)|2 ≤ T (u, u)T (v, v) (u, v ∈ V ), and
(4) |T (u, v)|2 = T (u, u)T (v, v) if and only if inf

z∈K\{0}
{|z|−1T (zu − v, zu −

v)} = 0.

Proof. Statement (1) follows from Theorem 3.1(1). To prove (2), let T : V×V → A
be a positive semidefinite, conjugate symmetric, sesquilinear map, and also let
u, v ∈ V . From Theorem 3.1(2) and Proposition 2.1, we have∣∣T (u, v)∣∣ = (

T (u, u)T (v, v)
)1/2 − 2−1 inf

z∈K\{0}

{
|z|−1T (zu− v, zu− v)

}
. (iii)

Squaring both sides of (iii) verifies (2) (see [6, Proposition 2(ii)]). As a consequence
of (iii), we obtain ∣∣T (u, v)∣∣ ≤ (

T (u, u)T (v, v)
)1/2

,

and squaring both sides of the above inequality proves (3) (see [6, Proposi-
tion 2(iii)]). To prove (4), note that if infz∈K\{0}{|z|−1T (zu − v, zu − v)} = 0,
then |T (u, v)|2 = T (u, u)T (v, v) by (2). Conversely, if |T (u, v)|2 = T (u, u)T (v, v),
then by [6, Proposition 2(ii)] and Proposition 2.1 we have∣∣T (u, v)∣∣ = (

T (u, u)T (v, v)
)1/2

= T (u, u)� T (v, v).

That infz∈K\{0}{|z|−1T (zu−v, zu−v)} = 0 now follows from Theorem 3.1(4). �

For K = R, Corollary 3.2(3) is contained in [13, Corollary 4]. Similarly, the
given statement is contained in the complex analogue of [13, Corollary 4] (men-
tioned in the Introduction) when K = C. Corollary 3.2(2), however, depends
on the uniqueness of square roots, which implies the semiprime property in
Archimedean almost f -algebras. Indeed, let A be an Archimedean almost
f -algebra, and suppose that a2 = b2 implies a = b(a, b ∈ A+). Let a be a nilpotent
in A. Then a3 = 0 (see [4, Theorem 3.2]), and thus a4 = 0. Using the uniqueness
of square roots twice, we obtain a = 0. Finally, every semiprime almost f -algebra
is automatically an f -algebra (see [4, Theorem 1.11(i)]).

The special case where A = K in the inequality of Corollary 3.2 is the classical
Cauchy–Schwarz inequality. Thus we know in this special case that |T (u, v)|2 =
T (u, u)T (v, v) if and only if there exist α, β ∈ K, not both zero, such that
T (βu + αv, βu + αv) = 0 (see, e.g., [15, p. 3]). This criterion no longer holds
for Theorem 3.1 nor Corollary 3.2.

Example 3.3. Define T : K2 ×K2 → K2 by

T
(
(z1, z2), (w1, w2)

)
= (z1w̄1, z2w̄2)

(
(z1, z2), (w1, w2) ∈ K2

)
.
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Since C2 = R2 + iR2, we see that K2 is a geometric mean closed semiprime
Archimedean f -algebra over K with respect to the coordinatewise vector space
operations, coordinatewise ordering, and coordinatewise multiplication. Also, T
is a positive semidefinite, conjugate symmetric, sesquilinear map. Note that∣∣T((1, 0), (0, 1))∣∣2 = T

(
(1, 0), (1, 0)

)
T
(
(0, 1), (0, 1)

)
.

Suppose that there exist α, β ∈ K, not both zero, for which

T
(
β(1, 0) + α(0, 1), β(1, 0) + α(0, 1)

)
= 0.

Then (|β|2, |α|2) = (0, 0), which is a contradiction.

4. A Hölder inequality

We prove a Hölder inequality for positive linear maps between weighted geo-
metric mean closed Archimedean Φ-algebras over K in this section, extending
[8, Theorem 5, Corollary 6] by Boulabiar and [22, Theorem 3.12] by Toumi. We
begin with some definitions.

Let A be an Archimedean f -algebra over K, and suppose that n ∈ N. As usual,
we write

∏n
k=1 ak = a1 · · · an for a1, . . . , an ∈ A.

For every r1, . . . , rn ∈ (0, 1) such that
∑n

k=1 rk = 1, we define a weighted
geometric mean γr1,...,rn : Rn → R by

γr1,...,rn(x1, . . . , xn) =
n∏

k=1

|xk|rk (x1, . . . , xn ∈ R).

The weighted geometric means are concave on (R+)n as well as continuous and
positively homogeneous on Rn. Moreover, for each r1, . . . , rn ∈ (0, 1) with∑n

k=1 rk = 1, it follows from [12, Lemma 3.6(iii)] that

γr1,...,rn(x1, . . . , xn)

= inf
{ n∑

k=1

rkθkxk : θk ∈ (0,∞),
n∏

k=1

θrkk = 1
}

(x1, . . . , xn ∈ R+).

An Archimedean vector lattice E over K is said to be weighted geometric mean
closed if inf{

∑n
k=1 rkθk|fk| : θk ∈ (0,∞),

∏n
k=1 θ

rk
k = 1} exists in E for every

f1, . . . , fn ∈ E and every r1, . . . , rn ∈ (0, 1) with
∑n

k=1 rk = 1. In this case, we
write

n

4
k=1

(fk, rk) = inf
{ n∑

k=1

rkθk|fk| : θk ∈ (0,∞),
n∏

k=1

θrkk = 1
}

(f1, . . . , fn ∈ E).

Let (X,M, µ) be a measure space, and let p ∈ (1,∞). It follows from [20,
(HI1)] by Maligranda that |f |1/p|g|1−1/p ∈ L1(X,µ) for f, g ∈ L1(X,µ), and∥∥|f |1/p|g|1−1/p

∥∥
1
≤ ‖f‖1/p1 ‖g‖1−1/p

1 .

Following Maligranda’s proof, we redevelop and extend [20, (HI1)] to a multivari-
ate version in the setting of positive operators between vector lattices.
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Proposition 4.1. Let E and F be weighted geometric mean closed Archimedean
vector lattices over K, and suppose that r1, . . . , rn ∈ (0, 1) satisfy

∑n
k=1 rk = 1.

(1) For each positive linear map T : E → F ,

T
( n

4
k=1

(fk, rk)
)
≤

n

4
k=1

(
T
(
|fk|

)
, rk

)
(f1, . . . , fn ∈ E).

(2) If T : E → F is a linear map, then T is a vector lattice homomorphism if
and only if

T
( n

4
k=1

(fk, rk)
)
=

n

4
k=1

(
T (fk), rk

)
(f1, . . . , fn ∈ E).

(3) If G is a (not necessarily weighted geometric mean closed) vector sublat-
tice of E, if T : G → F is a vector lattice homomorphism, and if also
{f1, . . . , fn,4n

k=1(fk, rk)} ⊆ G, then

T
( n

4
k=1

(fk, rk)
)
=

n

4
k=1

(
T (fk), rk

)
.

Proof. (1) Assume that T : E → F is a positive linear map. Let f1, . . . , fn ∈ E,
and suppose that θ1, . . . , θn ∈ (0,∞) are such that

∏n
k=1 θ

rk
k = 1. From the

positivity and linearity of T we have

T
( n

4
k=1

(fk, rk)
)
≤ T

( n∑
k=1

rkθk|fk|
)
=

n∑
k=1

rkθkT
(
|fk|

)
.

Then

T
( n

4
k=1

(fk, rk)
)
≤ inf

{ n∑
k=1

rkθkT
(
|fk|

)
: θk ∈ (0,∞),

n∏
k=1

θrkk = 1
}
.

(2) Suppose that T : E → F is a vector lattice homomorphism. It follows
from [12, Theorem 3.7(2)] that γr1,...,rn(f1, . . . , fn), which is defined via functional
calculus (see [10, Definition 3.1]), exists in E for every f1, . . . , fn ∈ E+ and

γr1,...,rn(f1, . . . , fn) =
n

4
k=1

(fk, rk) (f1, . . . , fn ∈ E+).

It is readily checked using [10, Definition 3.1] and the identity

γr1,...,rn(x1, . . . , xn) = γr1,...,rn
(
|x1|, . . . , |xn|

)
(x1, . . . , xn ∈ R)

that γr1,...,rn(f1, . . . , fn) exists in E for all f1, . . . , fn ∈ E and

γr1,...,rn(f1, . . . , fn) = γr1,...,rn
(
|f1|, . . . , |fn|

)
(f1, . . . , fn ∈ E).

It follows that

γr1,...,rn(f1, . . . , fn) =
n

4
k=1

(fk, rk) (f1, . . . , fn ∈ E).
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By [12, Theorem 3.11] (second equality), we have for all f1, . . . , fn ∈ E,

T
( n

4
k=1

(fk, rk)
)
= T

(
γr1,...,rn(f1, . . . , fn))

= γr1,...,rn
(
T (f1), . . . , T (fn)

)
=

n

4
k=1

(
T (fk), rk

)
.

On the other hand, assume that T : E → F is a linear map and that

T
( n

4
k=1

(fk, rk)
)
=

n

4
k=1

(
T (fk), rk

)
(f1, . . . , fn ∈ E).

From [12, Theorem 3.11], we conclude that

T
(
γr1,...,rn(f1, . . . , fn)

)
= γr1,...,rn

(
T (f1), . . . , T (fn)

)
(f1, . . . , fn ∈ E),

and (since γr1,...,rn(x, . . . , x) = |x| (x ∈ R)) that T is a vector lattice homomor-
phism.

(3) Let G be a vector sublattice of E, and let T : G → F be a vector lattice
homomorphism. Let D be the collection of all weighted geometric means. That
is, let

D =
{
γr1,...,rn : r1, . . . , rn ∈ (0, 1) and

n∑
k=1

rk = 1
}
.

It follows from [12, Theorem 3.7(2)] that F isD-complete (see [12, Definition 3.2]).
By [12, Theorem 3.17], it holds that T uniquely extends to a vector lattice homo-
morphism TD : GD → F , where GD denotes the D-completion of G (see [12,
Definition 3.10]). Note that GD is D-complete by definition. Thus [12, Theo-
rem 3.7(2)] implies that GD is weighted geometric mean closed. An appeal to (2)
now verifies (3). �

Let A be an Archimedean Φ-algebra over K. If A is uniformly complete, then
a1/n exists in A for every a ∈ A+ and every n ∈ N (see [6, Corollary 6]). It follows
that aq exists in A for every a ∈ A+ and every q ∈ Q∩ (0,∞). The assumption of
uniform completeness in [6, Corollary 6] can be weakened, which is the content
of our next lemma.

Lemma 4.2. Let A be a weighted geometric mean closed Archimedean Φ-algebra
over K. Then aq exists in A for all a ∈ A+ and q ∈ Q ∩ (0,∞). Furthermore, if
q1, . . . , qn ∈ Q∩ (0, 1) are such that

∑n
k=1 qk = 1, then for every a1, . . . , an ∈ A+,

n∏
k=1

aqkk =
n

4
k=1

(ak, qk) ∈ A.

Proof. Denote the multiplicative identity of A by e, and let a ∈ A+. In order to
prove that aq is defined in A for every q ∈ Q∩(0,∞), it suffices to verify that a1/n

exists in A for all n ∈ N. To this end, let n ∈ N \ {1}. Let C be the Archimedean
Φ-subalgebra of Aρ generated by the elements a ∈ A+ and

b = inf
{
n−1θ1a+ (1− n−1)θ2e : θ1, θ2 ∈ (0,∞), θ

1/n
1 θ

1−1/n
2 = 1

}
∈ A+.
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Suppose that ω : C → R is a nonzero multiplicative vector lattice homomorphism.
It follows that ω(e) = 1. Using Proposition 4.1(3) (third equality), we obtain

ω(bn) = ω(b)n

=
(
ω
(
inf

{
n−1θ1a+ (1− n−1)θ2e : θ1, θ2 ∈ (0,∞), θ

1/n
1 θ

1−1/n
2 = 1

}))n
=

(
inf

{
n−1θ1ω(a) + (1− n−1)θ2 : θ1, θ2 ∈ (0,∞), θ

1/n
1 θ

1−1/n
2 = 1

})
)n

=
(
γ 1

n
,n−1

n

(
ω(a), 1

))n
=

((
ω(a)

)1/n)n
= ω(a).

Since the set of all nonzero multiplicative vector lattice homomorphisms ω : C →
R separates the points of C (see [10, Corollary 2.7]), we have in Aρ that bn = a.
But then a1/n = b.

Finally, a similar proof verifies that

n∏
k=1

aqkk =
n

4
k=1

(ak, qk)

for every a1, . . . , an ∈ A+ and all q1, . . . , qn ∈ Q ∩ (0, 1) such that
∑n

k=1 qk = 1.
�

We next use the proof of Lemma 4.2 as a guide to define strictly positive irra-
tional powers of positive elements in weighted geometric mean closed Archimedean
Φ-algebras in an intrinsic manner that does not require representation theory
dependent on more than the countable axiom of choice. For r ∈ (0,∞), define

brc = max
{
n ∈ N ∪ {0} : n ≤ r

}
and r̃ = r − brc.

Definition 4.3. Suppose that A is a weighted geometric mean closed Archime-
dean Φ-algebra over K. Let e be the multiplicative identity of A. For a ∈ A+ and
r ∈ (0,∞), define

ar = abrc inf
{
r̃θ1a+ (1− r̃)θ2e : θ1, θ2 ∈ (0,∞), θr̃1θ

1−r̃
2 = 1

}
,

where abrc is taken to equal e in the case where brc = 0.

By Lemma 4.2, the above definition of strictly positive real exponents extends
the natural definition of strictly positive rational exponents previously discussed.
We next give an easy corollary of Proposition 4.1(3).

Corollary 4.4. Let A and B be weighted geometric mean closed Archimedean
Φ-algebras over K with multiplicative identities e and e′, respectively. Suppose
that C is a Φ-subalgebra of A and that T : C → B is a multiplicative vector lattice
homomorphism such that T (e) = e′. Let a ∈ A+ and r ∈ (0,∞). If a, ar ∈ C,
then T (ar) = (T (a))r.

The following lemma verifies some familiar (and needed for Theorems 4.7 and
5.1) arithmetical rules for positive real exponents in weighted geometric mean
closed Archimedean Φ-algebras over K.
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Lemma 4.5. Let p, q ∈ (0,∞), and let A be a weighted geometric mean closed
Archimedean Φ-algebra over K. For each a ∈ A+, the following hold:

(1) (ap)q = apq,
(2) apaq = ap+q.

Proof. We prove (1), leaving the similar proof of (2) to the reader. To this end, let

a ∈ A+. Let C be the real Φ-subalgebra of Aρ generated by a, ap̃, (ap)q̃, and a
∼
pq,

and note that a, ap, (ap)q, apq ∈ C. If ω : C → R is a nonzero multiplicative vector
lattice homomorphism, then ω(e) = 1, where e is the multiplicative identity of A.
Using Corollary 4.4, we obtain

ω
(
(ap)q

)
=

(
ω(ap)

)q
=

(
ω(a)

)pq
= ω(apq).

Since the nonzero multiplicative vector lattice homomorphisms separate the
points of C (see [10, Corollary 2.7]), we conclude that (ap)q = apq. �

In light of Definition 4.3, the second part of Lemma 4.2 can now be improved
to include irrational exponents. The proof of Lemma 4.6 uses real-valued multi-
plicative vector lattice homomorphisms, similar to what is found in the proofs of
Lemmas 4.2 and 4.5. Therefore, the proof is omitted.

Lemma 4.6. Let A be a weighted geometric mean closed Archimedean Φ-algebra
over K. If r1, . . . , rn ∈ (0, 1) are such that

∑n
k=1 rk = 1, then we have, for every

a1, . . . , an ∈ A+,

n∏
k=1

arkk =
n

4
k=1

(ak, rk).

We proceed with the main theorem of this section.

Theorem 4.7 (Hölder inequality). Suppose that p1, . . . , pn ∈ (1,∞) with∑n
k=1 p

−1
k = 1. Assume that A is a weighted geometric mean closed Archimedean

Φ-algebra over K.

(1) If B is also a weighted geometric mean closed Archimedean Φ-algebra over
K and if T : A → B is a positive linear map, then

T
( n∏
k=1

|ak|
)
≤

n∏
k=1

(
T
(
|ak|pk

))1/pk (a1, . . . , an ∈ A).

(2) If B is a weighted geometric mean closed Archimedean vector lattice over
K and if T : A → B is a positive linear map, then

T
( n∏
k=1

|ak|
)
≤

n

4
k=1

(
T
(
|ak|pk

)
, 1/pk

)
(a1, . . . , an ∈ A).

Proof. We only prove (1) since the proof of (2) is similar. To this end, let B be
a weighted geometric mean closed Archimedean Φ-algebra over K, and suppose
that T : A → B is a positive linear map. Using Lemma 4.5(1) (first equality),
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Lemma 4.6 (second equality and last equality), and Proposition 4.1(1) (for the
inequality), we have

T
( n∏
k=1

|ak|
)
= T

( n∏
k=1

(
|ak|pk

)1/pk)
= T

( n

4
k=1

(
|ak|pk , 1/pk

))
≤

n

4
k=1

(
T
(
|ak|pk

)
, 1/pk

)
=

n∏
k=1

(
T
(
|ak|pk

))1/pk .
�

5. A Minkowski inequality

We employ the Hölder inequality in Theorem 4.7(1) to prove a Minkowski
inequality in the setting of Archimedean Φ-algebras over K in this section.

Theorem 5.1 (Minkowski inequality). Let p ∈ (1,∞). Suppose that A and B are
both weighted geometric mean closed Archimedean Φ-algebras over K. For every
positive linear map T : A → B, we have(

T
(∣∣∣ n∑

k=1

ak

∣∣∣p))1/p

≤
n∑

k=1

(
T
(
|ak|p

))1/p
(a1, . . . , an ∈ A).

Proof. We prove the result for n = 2 and we note that the rest of the proof
follows from a standard induction argument. To this end, let T : A → B be a pos-
itive linear map, and assume that a, b ∈ A. Let q ∈ (1,∞) satisfy q−1 + p−1 = 1.
By Lemma 4.5(2) (first equality), Theorem 4.7(1) (second inequality), and
Lemma 4.5(1) (third equality),

T
(
|a+ b|p

)
= T

(
|a+ b|p−1|a+ b|

)
≤ T

(
|a+ b|p−1

(
|a|+ |b|

))
= T

(
|a+ b|p−1|a|

)
+ T

(
|a+ b|p−1|b|

)
≤ T

((
|a+ b|p−1

)q)1/q
T
(
|a|p

)1/p
+ T

((
|a+ b|p−1

)q)1/q
T
(
|b|p

)1/p
= T

(
|a+ b|p

)1/q
T
(
|a|p

)1/p
+ T

(
|a+ b|p

)1/q
T
(
|b|p

)1/p
= T

(
|a+ b|p

)1/q(
T
(
|a|p

)1/p
+ T

(
|b|p

)1/p)
.

Setting f = T (|a+b|p) and g = T (|a|p)1/p+T (|b|p)1/p, we have f ≤ f 1/qg. Next let
C be the Φ-subalgebra of Bρ generated by f, f 1/p, f 1/q, and g. Let ω : C → R be
a nonzero multiplicative vector lattice homomorphism. It follows that ω(e) = 1,
where e is the multiplicative identity of B. Using Corollary 4.4, we have

ω(f) ≤ ω(f 1/qg) = ω(f 1/q)ω(g) = ω(f)1/qω(g).

Thus if ω(f) 6= 0, then ω(f)1/p ≤ ω(g). Of course, ω(f)1/p ≤ ω(g) also holds in
the case that ω(f) = 0, since g ∈ B+. By Corollary 4.4 again, ω(f 1/p) ≤ ω(g).
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Since the collection of all nonzero multiplicative vector lattice homomorphisms
separate the points of C (see [10, Corollary 2.7]), we conclude that f 1/p ≤ g.
Therefore, we obtain

T
(
|a+ b|p

)1/p ≤ T
(
|a|p

)1/p
+ T

(
|b|p

)1/p
. �
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18. A. G. Kusraev, Hölder type inequalities for orthosymmetric bilinear operators, Vladikavkaz.
Mat. Zh. 9 (2007), no. 3, 36–46. Zbl 1324.47035. MR2453480. 191, 192, 193

19. W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces, I, North-Holland, Amsterdam, 1971.
Zbl 0231.46014. MR0511676. 193
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