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Abstract. In this article, we show that there exist a function g ∈ L1[0, 1] and
a weight function 0 < µ(x) ≤ 1 so that g is universal for each class Lp

µ[0, 1],
p ≥ 1, with respect to signs-subseries of its Fourier–Walsh series.

1. Introduction and preliminaries

Let |E| be the Lebesgue measure of a measurable set E ⊆ [0, 1], let χE(x) be
its characteristic function, let Lp(E) (p > 0) be the class of all those measur-
able functions on E that satisfy the condition

∫
E
|f(x)|p dx < +∞, let Lp

µ[0, 1]
(weighted space) be the class of all those measurable functions on [0, 1] that satisfy

the condition
∫ 1

0
|f(x)|pµ(x) dx < +∞, where 0 < µ(x) ≤ 1 is a weight function

(known as the Muckenhoupt Ap class ; see, e.g., [4], [21]–[23]), and let {ϕk} be a
complete orthonormal system in L2[0, 1].

Definition 1.1. Let 0 < µ(x) ≤ 1 be a measurable function on the set [0, 1].
We say that a function g ∈ L1[0, 1] is universal for a class Lp

µ[0, 1] with respect
to signs-subseries of its Fourier series by the system {ϕk}, if for each function
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f ∈ Lp
µ[0, 1] one can choose numbers δk = ±1, 0 so that the series

∞∑
k=0

δkck(g)ϕk(x) with ck(g) =

∫ 1

0

g(x)ϕk(x) dx,

converges to f in Lp
µ[0, 1] metric; that is,

lim
m→∞

∫ 1

0

∣∣∣ m∑
k=0

δkck(g)ϕk(x)− f(x)
∣∣∣pµ(x) dx = 0.

Let us recall the definition of the Walsh orthonormal system {Wn(x)}∞n=0. Func-
tions of the Walsh system are defined by means of Rademacher’s functions

Rn(x) = sign(sin 2nπx), x ∈ [0, 1], n = 1, 2, . . . ,

in the following way (see [6]): W0(x) ≡ 1 and for n ≥ 1,

Wn(x) =

p∏
i=1

Rki+1(x),

where n = 2k1 + 2k2 + · · · + 2kp (k1 > k2 > · · · > kp). In the present paper, we
prove the following theorem for the Walsh system.

Theorem 1.2. There exist a function g ∈ L1[0, 1] and a weight function 0 <
µ(x) ≤ 1 so that g is universal for each class Lp

µ[0, 1], p ≥ 1, with respect to
signs-subseries of its Fourier–Walsh series.

Moreover, it will be shown that the measure of the set on which µ(x) = 1 can
be made arbitrarily close to 1, and the function g ∈ L1[0, 1] can be chosen to have
strictly decreasing Fourier–Walsh coefficients and converging to it by the L1[0, 1]
norm Fourier–Walsh series.

Remark 1.3. In the proved theorem, the weight function µ(x) cannot be made
equal to 1 everywhere in [0, 1]. Moreover, there does not exist a universal function
g ∈ L1[0, 1] (defined above) for any class Lp[0, 1], p ≥ 1.

It can be easily shown that the assumption of existence of such a universal
function simply leads to a contradiction. Indeed, if that assumption were true,
then for the function k0ck0(g)Wk0(x), where k0 > 1 is any natural number with
condition ck0(g) 6= 0, one could find numbers δk = ±1, 0 so that

lim
m→∞

∫ 1

0

∣∣∣ m∑
k=0

δkck(g)Wk(x)− k0ck0(g)Wk0(x)
∣∣∣p dx = 0.

Hence, we would simply get a contradiction: δk0 = k0 > 1.
The existence of functions, which are universal in different senses, have been

considered by mathematicians since the beginning of the twentieth century. The
first type of universal function was considered by Birkhoff [1] in 1929. He proved
that there exists an entire function g(z) which is universal with respect to trans-
lations; that is, for every entire function f(z) and for each number r > 0,
there exists a growing sequence of natural numbers {nk}∞k=1 so that the sequence
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{g(z + nk)}∞k=1 uniformly converges to f(z) on |z| ≤ r. In 1952, MacLane [16]
proved a similar result for another type of universality, namely, that there exists
an entire function g(z) which is universal with respect to derivatives; that is, for
every entire function f(z) and for each number r > 0, there exists a growing
sequence of natural numbers {nk}∞k=1 so that the sequence {g(nk)(z)}∞k=1 uni-
formly converges to f(z) on |z| ≤ r. Furthermore, in 1975, Voronin [26] proved
the universality theorem for the Riemann zeta function ζ(s), which states that any
nonvanishing analytic function can be approximated uniformly by certain purely
imaginary shifts of the zeta function in the critical strip; namely, if 0 < r < 1

4
and

g(s) is a nonvanishing continuous function on the disk |s| ≤ r, that is, analytic in
the interior, then for any ε > 0, there exists such a positive real number τ such
that

max
|s|≤r

∣∣g(s)− ζ(s+ 3/4 + iτ)
∣∣ < ε.

In 1987, Grosse-Erdmann [13] proved the existence of infinitely differentiable
functions with universal Taylor expansion, namely, that there exists a function
g ∈ C∞(R) with g(0) = 0 such that, for every function f ∈ C(R) with f(0) = 0
and for each number r > 0, there exists a growing sequence of natural numbers
{nk}∞k=1 so that the sequence

Snk
(g, 0) =

nk∑
m=1

g(m)(0)

m!
xm

uniformly converges to f(x) on |x| ≤ r.
The first-named author and Sargsyan [11], [12] studied the existence of uni-

versal functions for classes Lp[0, 1], p ∈ (0, 1), with respect to signs-subseries of
Fourier–Walsh series and signs of Fourier–Walsh coefficients. In particular, it was
shown in [11] that for each number p ∈ (0, 1) one can construct a function from
L1[0, 1] with convergent in L1[0, 1] Fourier–Walsh series having decreasing coeffi-
cients, which is universal for the class Lp[0, 1] with respect to signs-subseries of
Fourier–Walsh series.

Note that the definition of function universality which we gave above could
have been framed correspondingly in terms of Fourier series universality. The
topic of the existence of universal series (in the common sense, e.g., with respect to
rearrangements, partial series, signs of coefficients) in various classical orthogonal
systems was also investigated extensively. The most general results were obtained
by Menshov [17], Talaljan [24], Ulyanov [25], and their colleagues (see [2], [3], [5],
[7]–[10], [14], [15], [19], [20]).

The following questions, which arise in regard to the result of the present article,
have yet to be answered.

Question 1.4. Is Theorem 1.2 true for other orthonormal systems (e.g., trigono-
metric system, Franklin system, etc.)?

Question 1.5. Is it possible to achieve universality with respect to signs of Fourier–
Walsh coefficients (i.e., exclude zero values from the sequence δk) in Theorem 1.2?
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2. Main lemmas

Let us start from known properties of the Walsh system, which will be used
during the proofs. It is known (see [6]) that for each natural number m,

2m−1∑
k=0

Wk(x) =

{
2m, when x ∈ [0, 2−m),

0, when x ∈ (2−m, 1],
(2.1)

and, consequently,

2m+1−1∑
k=2m

Wk(x) =


2m, when x ∈ [0, 2−m−1),

−2m, when x ∈ (2−m−1, 2−m),

0, when x ∈ (2−m, 1].

Thus, for each p > 0 we have∫ 1

0

∣∣∣2m+1−1∑
k=2m

Wk(x)
∣∣∣p dx = 2m(p−1). (2.2)

Let

‖ · ‖Lp(E) =
(∫

E

| · |p dx
) 1

p
and ‖ · ‖Lp

µ[0,1] =
(∫ 1

0

| · |pµ(x) dx
) 1

p

(where p ≥ 1, E ⊆ [0, 1], and 0 < µ(x) ≤ 1) be the norms of spaces Lp(E) and
Lp
µ[0, 1], respectively. Obviously, for any natural number M ∈ [2m, 2m+1) and real

numbers {ak}2
m+1−1

k=2m we have∥∥∥ M∑
k=2m

akWk

∥∥∥
L1[0,1]

≤
∥∥∥2m+1−1∑

k=2m

akWk

∥∥∥
L2[0,1]

. (2.3)

Note also that the basicity of the Walsh system in spaces Lp[0, 1], p > 1,
provides the existence of a constant Cp > 0, so that for each function f ∈ Lp[0, 1]
the following inequality holds:∥∥Sk(f)

∥∥
Lp[0,1]

≤ Cp‖f‖Lp[0,1], ∀k ∈ N, (2.4)

where {Sk(f)} are partial sums of its expansion by the Walsh system (see [6]).
In this article we use the following lemma, which was proved in [18, Lemma 3].

Lemma 2.1. For each dyadic interval ∆ = [ i
2K

, i+1
2K

], 0 ≤ i < 2K, K ∈ N, and
for every natural number M > K such that M−K

2
is a whole number, there exists

a polynomial in the Walsh system

H(x) =
2M+1−1∑
k=2M

akWk(x),

so that

(1) |ak| = 2−
M+K

2 , when 2M ≤ k < 2M+1,
(2) H(x) = −1, if x ∈ E1, |E1| = 1

2
|∆|,

(3) H(x) = 1, if x ∈ E2, |E2| = 1
2
|∆|,
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(4) H(x) = 0, if x /∈ ∆,

where E1 and E2 are finite unions of dyadic intervals.

One of the main building blocks in the proof of Theorem 1.2 is Lemma 2.3,
which is proved with the help of Lemma 2.2.

Lemma 2.2. Let p > 1, let n0 be some natural number, and let ∆ ⊂ [0, 1] be
a dyadic interval. Then for any numbers 0 < ε < 1, l 6= 0, and natural number
q there exist a measurable set Eq ⊂ ∆ with measure |Eq| = (1 − 2−q)|∆| and
polynomials

Pq(x) =
2nq−1∑
k=2n0

akWk(x) and Hq(x) =
2nq−1∑
k=2n0

δkakWk(x), δk = ±1, 0,

in the Walsh system, so that Hq(x) = 0 outside ∆,

(1) 0 < ak+1 ≤ ak < ε when k ∈ [2n0 , 2nq − 1),

(2) ‖lχ∆ −Hq‖Lp(Eq) = 0,

(3) max
2n0≤M<2nq

∥∥∥ M∑
k=2n0

δkakWk

∥∥∥
Lp[0,1]

< 2qC|l||∆|
1
p ,

where C is a constant defined by the space Lp[0, 1], and

(4) max
2n0≤M<2nq

∥∥∥ M∑
k=2n0

akWk

∥∥∥
L1[0,1]

< ε.

Proof. The proof is performed using mathematical induction with respect to the
number q. Let ∆ = [ i

2K
, i+1
2K

] ⊂ [0, 1], 0 ≤ i < 2K , K ∈ N. Choosing a natural
number K1 > K such that

|l|2−
K1+1

2 <
ε

2
, (2.5)

we present the interval ∆ in the form of a union of disjoint dyadic intervals

∆ =

N1⋃
i=1

∆
(1)
i

with measure |∆(1)
i | = 2−K1−1, i = 1, N1. Obviously, N1 = 2K1−K+1.

By denoting K
(1)
0 ≡ n0 − 1, for each natural number i ∈ [1, N1] we choose a

natural number K
(1)
i > K

(1)
i−1 (K

(1)
1 > K1) such that the following conditions take

place:

(a)
K

(1)
i −K1−1

2
is a whole number,

(b) (K
(1)
i −K

(1)
i−1)|l|2−

K
(1)
i

+K1+1

2 < ε
4N1

,

(c) 2|l|2−
K

(1)
i

+1

2 < ε
2
.
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It immediately follows from (2.5) that

|l|2−
K

(1)
1 +K1+1

2 < ε. (2.6)

By successively applying Lemma 2.1 to each dyadic interval ∆
(1)
i (i = 1, N1)

and corresponding number K
(1)
i , we can find polynomials in the Walsh system

H
(1)

i (x) =
2K

(1)
i

+1−1∑
k=2K

(1)
i

ākWk(x), i = 1, N1 (2.7)

such that

|āk| = |l|2−
K

(1)
i

+K1+1

2 , when k ∈ [2K
(1)
i , 2K

(1)
i +1), (2.8)

H
(1)

i (x) =


−l, for x ∈ Ẽi

(1)
⊂ ∆

(1)
i , |Ẽi

(1)
| = 1

2
|∆(1)

i |,

l, for x ∈ ˜̃
Ei

(1)

⊂ ∆
(1)
i , |˜̃Ei

(1)

| = 1
2
|∆(1)

i |,
0, for x /∈ ∆

(1)
i .

(2.9)

Hence, by denoting

H1(x) =

N1∑
i=1

H
(1)

i (x), (2.10)

we get

H1(x) =


−l, for x ∈ Ẽ1 ⊂ ∆, |Ẽ1| = |∆|

2
,

l, for x ∈ ∆ \ Ẽ1,

0, for x /∈ ∆.

(2.11)

As the polynomial H
(1)

i (x) is a linear combination of Walsh functions from the

K
(1)
i group, it is clear that the set Ẽ1 can be presented as a union of a certain

number N2 of disjoint dyadic intervals

Ẽ1 =

N2⋃
i=1

∆
(2)
i

with measure |∆(2)
i | = 2−K

(1)
N1

−1, i = 1, N2.
By defining

E1 = ∆ \ Ẽ1 (2.12)

and 
āk = |l|2−

K
(1)
i

+K1+1

2 , when k ∈ [2K
(1)
i−1+1, 2K

(1)
i ), i ∈ [1, N1],

δ̄k =

{
0, when k ∈ [2K

(1)
i−1+1, 2K

(1)
i ),

1, when k ∈ [2K
(1)
i , 2K

(1)
i +1),

i ∈ [1, N1],

ak = |āk|, δk = δ̄k · āk
|āk|

, when k ∈ [2n0 , 2K
(1)
N1

+1),

(2.13)
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let us verify that the set E1 and polynomials

P1(x) =
2
K

(1)
N1

+1
−1∑

k=2n0

akWk(x) and H1(x) =
2
K

(1)
N1

+1
−1∑

k=2n0

δkakWk(x), δk = ±1, 0,

satisfy all statements of Lemma 2.2 for q = 1. Indeed, by using (2.11) and (2.12)
we obtain |E1| = (1−2−1)|∆|. Statement (1) follows from (2.6), (2.8), (2.13), and

from the monotonicity of numbers K
(1)
i (i = 1, N1). Statement (2) immediately

follows from (2.11) and (2.12). To prove statements (3) and (4), we present the

natural number M ∈ [2n0 , 2K
(1)
N1

+1) in the form M = 2n̄ + s, s ∈ [0, 2n̄), where

n̄ ∈ (K
(1)
m−1, K

(1)
m ] for somem ∈ [1, N1]. Since intervals ∆

(1)
i (i = 1, N1) are disjoint,

by using (2.4), (2.7), and (2.9)–(2.13) we have

∥∥∥ M∑
k=2n0

δkakWk

∥∥∥
Lp[0,1]

≤
∥∥∥m−1∑

i=1

H
(1)

i

∥∥∥
Lp[0,1]

+
∥∥∥2n̄+s∑
k=2n̄

δkakWk

∥∥∥
Lp[0,1]

≤ ‖H1‖Lp[0,1] + Cp‖H
(1)

m ‖Lp[0,1]

=
(
|l|p|E1|+ |l|p|Ẽ1|

) 1
p + Cp|l||∆(1)

m |
1
p < 2C|l||∆|

1
p ,

where C = Cp + 1.

Furthermore, for each natural number n ∈ [n0, K
(1)
N1

] we denote bn = ak, k ∈
[2n, 2n+1) (coefficients ak of Walsh functions from nth group are equal in H1(x)).
Taking into account (2.2), (2.3), (2.5), (2.8), (2.13), and condition (b) for numbers

K
(1)
i (i = 1, N1), we get

K
(1)
N1∑

n=n0

bn =

N1∑
i=1

K
(1)
i∑

n=K
(1)
i−1+1

bn =

N1∑
i=1

(K
(1)
i −K

(1)
i−1)|l|2−

K
(1)
i

+K1+1

2 <
ε

4
,

∥∥∥ M∑
k=2n0

akWk

∥∥∥
L1[0,1]

≤
n̄−1∑
n=n0

bn +
∥∥∥2n̄+s∑
k=2n̄

akWk

∥∥∥
L1[0,1]

≤
K

(1)
N1∑

n=n0

bn +
∥∥∥2n̄+1−1∑

k=2n̄

bn̄Wk

∥∥∥
L2[0,1]

<
ε

4
+ |l|2−

K
(1)
m +K1+1

2 2
n̄
2 < ε,

which proves Lemma 2.2(4).
Assume that for q > 1 the natural numbers

K
(1)
1 < · · · < K

(1)
N1

< · · · < K
(q−1)
1 < · · · < K

(q−1)
Nq−1

,

sets

Ẽq−1 ⊂ ∆ and Eq−1 = ∆ \ Ẽq−1, (2.14)
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and polynomials

Pq−1(x) =
2
K

(q−1)
Nq−1

+1
−1∑

k=2n0

akWk(x),

Hq−1(x) =
2
K

(q−1)
Nq−1

+1
−1∑

k=2n0

δkakWk(x), δk = ±1, 0

are already chosen to satisfy the conditions

(a′)
K

(ν)
i −K

(ν−1)
Nν−1

−1

2
is a whole number (K

(0)
N0

≡ K1),

(b′) (K
(ν)
i −K

(ν)
i−1)2

(ν−1)|l|2−
K

(ν)
i

+K
(ν−1)
Nν−1

+1

2 < ε
2ν+1Nν

,

(c′) 2ν |l|2−
K

(ν)
i

+1

2 < ε
2
,

ak = 2ν−1|l|2−
K

(ν)
i

+K
(ν−1)
Nν−1

+1

2 for k ∈ [2K
(ν)
i−1+1, 2K

(ν)
i +1), (2.15)

K
(ν)
0 ≡

{
K

(ν−1)
Nν−1

, if ν > 1,

n0 − 1, if ν = 1,

for any natural numbers i ∈ [1, Nν ] and ν ∈ [1, q − 1]. Besides,

K
(q−1)
Nq−1∑

n=n0

bn <

q−1∑
k=1

ε

2k+1
, where bn ≡ ak, k ∈ [2n, 2n+1), (2.16)

Hq−1(x) =


−(2q−1 − 1)l, for x ∈ Ẽq−1,

l, for x ∈ Eq−1,

0, for x /∈ ∆,

(2.17)

|Ẽq−1| = 2−q+1|∆| and |Eq−1| = (1− 2−q+1)|∆|, (2.18)

and the set Ẽq−1 can be presented as a union of a certain number Nq of
disjoint dyadic intervals

Ẽq−1 =

Nq⋃
i=1

∆
(q)
i (2.19)

with measure |∆(q)
i | = 2

−K
(q−1)
Nq−1

−1
, i = 1, Nq.

For each natural number i ∈ [1, Nq] we choose a natural number K
(q)
i > K

(q)
i−1

(K
(q)
0 ≡ K

(q−1)
Nq−1

) such that the following conditions hold:

(a′′)
K

(q)
i −K

(q−1)
Nq−1

−1

2
is a whole number,

(b′′) (K
(q)
i −K

(q)
i−1)2

(q−1)|l|2−
K

(q)
i

+K
(q−1)
Nq−1

+1

2 < ε
2q+1Nq

,



112 M. GRIGORYAN, T. GRIGORYAN, and A. SARGSYAN

(c′′) 2q|l|2−
K

(q)
i

+1

2 < ε
2
.

By successive applications of Lemma 2.1, for each interval ∆
(q)
i ⊂ Ẽq−1 (i =

1, Nq) and corresponding number K
(q)
i , we can find polynomials in the Walsh

system

H
(q)

i (x) =
2K

(q)
i

+1−1∑
k=2K

(q)
i

ākWk(x), i = 1, Nq, (2.20)

such that

|āk| = 2q−1|l|2−
K

(q)
i

+K
(q−1)
Nq−1

+1

2 , when k ∈ [2K
(q)
i , 2K

(q)
i +1), (2.21)

H
(q)

i (x) =


−2q−1l, for x ∈ Ẽi

(q)
⊂ ∆

(q)
i , |Ẽi

(q)
| = 1

2
|∆(q)

i |,

2q−1l, for x ∈ ˜̃
Ei

(q)

⊂ ∆
(q)
i , |˜̃Ei

(q)

| = 1
2
|∆(q)

i |,
0, for x /∈ ∆

(q)
i .

(2.22)

Hence, by denoting

Hq(x) = Hq−1(x) +

Nq∑
i=1

H
(q)

i (x) (2.23)

and taking into account (2.17) and (2.19), we obtain

Hq(x) =


−(2q − 1)l, for x ∈ Ẽq ⊂ Ẽq−1, |Ẽq| = |∆|

2q
,

l, for x ∈ ∆ \ Ẽq,

0, for x /∈ ∆.

(2.24)

Now, let us define a set

Eq = ∆ \ Ẽq (as in (2.14)) (2.25)

and numbers
āk = 2q−1|l|2−

K
(q)
i

+K
(q−1)
Nq−1

+1

2 , when k ∈ [2K
(q)
i−1+1, 2K

(q)
i ),

δ̄k =

{
0, when k ∈ [2K

(q)
i−1+1, 2K

(q)
i ),

1, when k ∈ [2K
(q)
i , 2K

(q)
i +1),

i ∈ [1, Nq],

ak = |āk|, δk = δ̄k · āk
|āk|

, when k ∈ [2n0 , 2
K

(q)
Nq

+1
),

(2.26)

and verify that the set Eq and polynomials

Pq(x) =
2nq−1∑
k=2n0

akWk(x),

Hq(x) =
2nq−1∑
k=2n0

δkakWk(x), δk = ±1, 0,
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where nq ≡ K
(q)
Nq

+1, satisfy all statements of Lemma 2.2. Indeed, from (2.24) and

(2.25) it follows that |Eq| = (1−2−q)|∆|. Statement (1) follows from (2.6), (2.15),

(2.21), (2.26), and from the monotonicity of numbers K
(ν)
i , i ∈ [1, Nν ], ν ∈ [1, q].

Statement (2) immediately follows from (2.24) and (2.25). To prove statements
(3) and (4), we present the natural number M ∈ [2n0 , 2nq) in the form M = 2n̄+s,

s ∈ [0, 2n̄). Let us consider only the case when n̄ ∈ (K
(q−1)
Nq−1

, K
(q)
Nq

], since all other

cases are under consideration in previous steps of induction. Let n̄ ∈ (K
(q)
m−1, K

(q)
m ]

for some m ∈ [1, Nq]. From (2.4), (2.17)–(2.20), (2.22), and (2.26) we have

∥∥∥ M∑
k=2n0

δkakWk

∥∥∥
Lp[0,1]

≤
∥∥∥Hq−1 +

m−1∑
i=1

H
(q)

i

∥∥∥
Lp[0,1]

+
∥∥∥2n̄+s∑
k=2n̄

δkakWk

∥∥∥
Lp[0,1]

≤ ‖Hq‖Lp[0,1] + Cp‖H
(q)

m ‖Lp[0,1]

<
(
|l|p|Eq|+ 2pq|l|p|Ẽq|

) 1
p + Cp2

q−1|l||∆(q)
m |

1
p < 2qC|l||∆|

1
p

(C = Cp + 1), which proves statement (3).

Furthermore, for each natural number n ∈ [n0, K
(q)
Nq

] as in (2.15), we denote

bn ≡ ak, when k ∈ [2n, 2n+1).

Taking into account (2.2), (2.3), (2.16), (2.21), (2.26), condition (c′) for number

K
(q−1)
Nq−1

, and condition (b′′) for numbers K
(q)
i (i = 1, Nq), we get

∥∥∥ M∑
k=2n0

akWk

∥∥∥
L1[0,1]

≤
n̄−1∑
n=n0

bn +
∥∥∥2n̄+s∑
k=2n̄

akWk

∥∥∥
L1[0,1]

≤
K

(q−1)
Nq−1∑

n=n0

bn +

Nq∑
i=1

K
(q)
i∑

n=K
(q)
i−1+1

bn +
∥∥∥2n̄+1−1∑

k=2n̄

bn̄Wk

∥∥∥
L2[0,1]

≤
q−1∑
k=1

ε

2k+1
+

Nq∑
i=1

(K
(q)
i −K

(q)
i−1)2

q−1|l|2−
K

(q)
i

+K
(q−1)
Nq−1

+1

2

+ 2q−1|l|2−
K

(q)
m +K

(q−1)
Nq−1

+1

2 2
n̄
2 < ε,

which proves statement (4).
Lemma 2.2 is proved. �

Lemma 2.3. Let numbers p0 > 1, n0 ∈ N, 0 < ε < 1, and polynomial f(x) 6≡ 0 in
the Walsh system be given. Then one can find a measurable set Eε with measure
|Eε| > 1− ε and polynomials

P (x) =
2n−1∑
k=2n0

akWk(x) and H(x) =
2n−1∑
k=2n0

δkakWk(x), δk = ±1, 0,
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in the Walsh system which satisfy the following conditions:

(1) 0 < ak+1 < ak < ε, k ∈ [2n0 , 2n − 1),

(2)
∥∥f(x)−H

∥∥
Lp0 (Eε)

< ε,

(3) max
2n0≤M<2n

∥∥∥ M∑
k=2n0

δkakWk

∥∥∥
Lp(F )

<
∥∥f∥∥

Lp(F )
+ ε

for any measurable set F ⊆ Eε and p ∈ [1, p0], and

(4) max
2n0≤M<2n

∥∥∥ M∑
k=2n0

akWk

∥∥∥
L1[0,1]

< ε.

Proof. We choose a natural number q so that

2−q < ε, (2.27)

and we present the function f(x) in the form

f(x) =

ν0∑
j=1

ljχ∆j
(x),

where lj 6= 0, j = 1, ν0, and {∆j}ν0j=1 are disjoint dyadic subintervals of the section
[0, 1]. Without loss of generality we can assume that all these intervals have the
same length and are small enough to provide the condition

max
1≤j≤ν0

{
2qC|lj||∆j|

1
p
}
<

ε

2
, (2.28)

where C is the positive constant of Lemma 2.2(3).
Applying Lemma 2.2 to each dyadic interval ∆j, j = 1, ν0, and taking into

account (2.27) and (2.28), we can find sets E
(j)
q ⊂ ∆j with measure

|E(j)
q | = (1− 2−q)|∆j| > (1− ε)|∆j| (2.29)

and polynomials

P̄ (j)
q (x) =

2nj−1∑
k=2nj−1

ā
(j)
k Wk(x),

H̄(j)
q (x) =

2nj−1∑
k=2nj−1

δ
(j)
k ā

(j)
k Wk(x), δ

(j)
k = ±1, 0,

in the Walsh system, so that H̄
(j)
q (x) = 0 outside ∆j,{

0 < ā
(1)
k+1 ≤ ā

(1)
k < ε

2
, for all k ∈ [2n0 , 2n1 − 1),

0 < ā
(j)
k+1 ≤ ā

(j)
k < ā

(j−1)

2nj−1−1
, for all k ∈ [2nj−1 , 2nj − 1), j > 1,

(2.30)

‖ljχ∆j
− H̄(j)

q ‖
Lp0 (E

(j)
q )

= 0, (2.31)
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max
2nj−1≤M<2nj

∥∥∥ M∑
k=2nj−1

δ
(j)
k ā

(j)
k Wk

∥∥∥
Lp0 [0,1]

< 2qC|lj||∆j|
1
p0 <

ε

2
, (2.32)

max
2nj−1≤M<2nj

∥∥∥ M∑
k=2nj−1

ā
(j)
k Wk

∥∥∥
L1[0,1]

<
ε

2j+1
. (2.33)

We define a set

Eε =

ν0⋃
j=1

E(j)
q ∪

(
[0, 1]/

ν0⋃
j=1

∆j

)
(2.34)

and polynomials

P̄ (x) =

ν0∑
j=1

P̄ (j)
q (x) =

2nν0−1∑
k=2n0

ākWk(x),

H̄(x) =

ν0∑
j=1

H̄(j)
q (x) =

2nν0−1∑
k=2n0

δkākWk(x),

where āk = ā
(j)
k and δk = δ

(j)
k when k ∈ [2nj−1 , 2nj). Note that H̄

(j)
q = 0 on the set

[0, 1]/
⋃ν0

j=1∆j (in case it is not empty) for any j ∈ [1, ν0].

From (2.29)–(2.31) and (2.34) it follows that

|Eε| > 1− ε,

0 < āk+1 ≤ āk <
ε

2
, when k ∈ [2n0 , 2nν0 − 1), (2.35)

‖f − H̄‖Lp0 (Eε) ≤
ν0∑
j=1

‖ljχ∆j
− H̄(j)

q ‖
Lp0 (E

(j)
q )

= 0. (2.36)

Furthermore, letM be a natural number from [2n0 , 2nν0 ). ThenM ∈ [2nm−1 , 2nm)
for some m ∈ [1, ν0]. Taking into account (2.31), (2.32), and (2.34), for any
measurable set F ⊆ Eε and p ∈ [1, p0] we have

∥∥∥ M∑
k=2n0

δkākWk

∥∥∥
Lp(F )

≤
∥∥∥m−1∑

j=1

H̄(j)
q

∥∥∥
Lp(F )

+
∥∥∥ M∑
k=2nm−1

δ
(m)
k a

(m)
k Wk

∥∥∥
Lp(F )

≤
m−1∑
j=1

‖ljχ∆j
− H̄(j)

q ‖
Lp0 (E

(j)
q )

+
∥∥∥m−1∑

j=1

ljχ∆j

∥∥∥
Lp(F )

+
∥∥∥ M∑
k=2nm−1

δ
(m)
k a

(m)
k Wk

∥∥∥
Lp0 [0,1]

< ‖f‖Lp(F ) +
ε

2
(2.37)
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and, by using (2.33), we obtain∥∥∥ M∑
k=2n0

ākWk

∥∥∥
L1[0,1]

≤
ν0∑
j=1

max
2nj−1≤N<2nj

∥∥∥ N∑
k=2nj−1

ā
(j)
k Wk

∥∥∥
L1[0,1]

<
ε

2
. (2.38)

Hence, polynomials P̄ (x) and H̄(x) satisfy all statements of Lemma 2.3 except
for (1). To have strict inequalities between coefficients, we choose such a natural
number N0 that

2−N0 <
ε

2
(2.39)

and define polynomials

P (x) =
2nν0−1∑
k=2n0

akWk(x) and H(x) =
2nν0−1∑
k=2n0

δkakWk(x),

where

ak = āk + 2−(N0+k). (2.40)

It is not hard to verify that polynomials P (x) and H(x) satisfy all statements
of Lemma 2.3. Indeed, statement (1) immediately follows from (2.35), (2.39),
and (2.40). Furthermore, considering (2.36)–(2.40) for each natural number M ∈
[2n0 , 2nν0 ), measurable set F ⊆ Eε, and p ∈ [1, p0] we get

‖f −H‖Lp0 (Eε) ≤ ‖f − H̄‖Lp0 (Eε) +
∥∥∥2nν0−1∑

k=2n0

δk2
−(N0+k)Wk

∥∥∥
Lp0 [0,1]

≤
2nν0−1∑
k=2n0

‖δk2−(N0+k)Wk‖Lp0 [0,1] < 2−N0 < ε,

∥∥∥ M∑
k=2n0

δkakWk

∥∥∥
Lp(F )

≤
∥∥∥ M∑
k=2n0

δkākWk

∥∥∥
Lp(F )

+
∥∥∥ M∑
k=2n0

δk2
−(N0+k)Wk

∥∥∥
Lp[0,1]

≤ ‖f‖Lp(F ) +
ε

2
+

M∑
k=2n0

‖δk2−(N0+k)Wk‖Lp[0,1]

< ‖f‖Lp(F ) +
ε

2
+ 2−N0 < ‖f‖Lp(F ) + ε

and ∥∥∥ M∑
k=2n0

akWk

∥∥∥
L1[0,1]

≤
∥∥∥ M∑
k=2n0

ākWk

∥∥∥
L1[0,1]

+
M∑

k=2n0

‖2−(N0+k)‖L1[0,1]

<
ε

2
+ 2−N0 < ε.

Lemma 2.3 is proved. �

Now with the help of Lemma 2.3 we will prove the main lemma of the article,
which will be used in the proof of the main theorem.
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Lemma 2.4. For any δ ∈ (0, 1) there exists a weight function 0 < µ(x) ≤ 1, with
|{x ∈ [0, 1];µ(x) = 1}| > 1−δ, so that for any numbers p0 > 1, n0 ∈ N, ε ∈ (0, 1),
and polynomial f(x) 6≡ 0 in the Walsh system, one can find polynomials in the
Walsh system

P (x) =
2n−1∑
k=2n0

akWk(x) and H(x) =
2n−1∑
k=2n0

δkakWk(x), δk = ±1, 0,

satisfying the following conditions:

(1) 0 < ak+1 < ak < ε, k ∈ [2n0 , 2n − 1),

(2) ‖f −H‖Lp0
µ [0,1] < ε,

(3) max
2n0≤M<2n

∥∥∥ M∑
k=2n0

δkakWk

∥∥∥
Lp
µ[0,1]

< 2‖f‖Lp
µ[0,1] + ε, ∀p ∈ [1, p0],

(4) max
2n0≤M<2n

∥∥∥ M∑
k=2n0

akWk

∥∥∥
L1[0,1]

< ε.

Proof. Let pm ↗ +∞, δ ∈ (0, 1), and N0 = 1, and let {fm(x)}∞m=1, x ∈ [0, 1], be
a sequence of all polynomials in the Walsh system with rational coefficients. By
successive applications of Lemma 2.3, it is possible to find sets Em ⊂ [0, 1] and
polynomials in the Walsh system of the form

Pm(x) =
2Nm−1∑

k=2Nm−1

a
(m)
k Wk(x), (2.41)

Hm(x) =
2Nm−1∑

k=2Nm−1

δ
(m)
k a

(m)
k Wk(x), δ

(m)
k = ±1, 0, (2.42)

which satisfy the following conditions for any natural number m:

|Em| > 1− 1

2m+1
, (2.43)

0 < a
(m)
k+1 < a

(m)
k <

1

4Nm−1
, k ∈ [2Nm−1 , 2Nm − 1), (2.44)

‖fm −Hm‖Lpm (Em) <
1

2m+2
, and (2.45)

for any measurable set F ⊆ Em and p ∈ [1, pm] we have

max
2Nm−1≤M<2Nm

∥∥∥ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk

∥∥∥
Lp(F )

< ‖fm‖Lp(F ) +
1

2m+2
, (2.46)

and

max
2Nm−1≤M<2Nm

∥∥∥ M∑
k=2Nm−1

a
(m)
k Wk

∥∥∥
L1[0,1]

<
1

2m+2
. (2.47)
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We set 
Ωn =

⋂+∞
m=nEm, n ∈ N,

E = Ωñ =
⋂+∞

m=ñEm, ñ = [log1/2 δ] + 1,

B = Ωñ ∪ (
⋃+∞

n=ñ+1Ωn \ Ωn−1).

(2.48)

It is clear (see (2.43) and (2.48)) that

|B| = 1, |E| > 1− δ.

We define a function µ(x) in the following way:

µ(x) =

{
1, x ∈ E ∪ ([0, 1] \B),

µn, x ∈ Ωn \ Ωn−1, n ≥ ñ+ 1,
(2.49)

where

µn =
1

2pn(n+2)
·
[ n∏
m=1

hm

]−1

, (2.50)

hm = max
1≤p≤pm

{
1 +

∫ 1

0

∣∣fm(x)∣∣p dx
+ max

2Nm−1≤M<2Nm

∫ 1

0

∣∣∣ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk(x)

∣∣∣p dx}.
It follows from (2.48)–(2.50) that for all m ≥ ñ,∫

[0,1]\Ωm

∣∣Hm(x)
∣∣pmµ(x) dx =

+∞∑
n=m+1

(∫
Ωn\Ωn−1

∣∣Hm(x)
∣∣pmµn dx

)
<

∞∑
n=m+1

1

2pn(n+2)hm

(∫ 1

0

∣∣Hm(x)
∣∣pm dx

)
<

1

2pm(m+2)
. (2.51)

In a similar way, for all m ≥ ñ, M ∈ [2Nm−1 , 2Nm), and p ∈ [1, pm] we have∫
[0,1]\Ωm

∣∣fm(x)∣∣pmµ(x) dx <
1

2pm(m+2)
(2.52)

and ∫
[0,1]\Ωm

∣∣∣ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk(x)

∣∣∣pµ(x) dx <
1

2p(m+2)
. (2.53)

Since Ωm ⊂ Em, by using conditions (2.45), (2.48)–(2.52), and Jensen’s inequal-
ity, for all m ≥ ñ we obtain∫ 1

0

∣∣fm(x)−Hm(x)
∣∣pmµ(x) dx

=

∫
Ωm

∣∣fm(x)−Hm(x)
∣∣pmµ(x) dx
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+

∫
[0,1]\Ωm

∣∣fm(x)−Hm(x)
∣∣pmµ(x) dx

<
1

2pm(m+2)
+ 2 · 2pm 1

2pm(m+2)
<

1

2pm(m−1)

or

‖fm −Hm‖Lpm
µ [0,1] <

1

2m−1
. (2.54)

Furthermore, taking relations (2.46), (2.48)–(2.50), (2.53), and Jensen’s inequal-
ity into account for all M ∈ [2Nm−1 , 2Nm), p ∈ [1, pm], and m ≥ ñ+ 1 we get∫ 1

0

∣∣∣ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk(x)

∣∣∣pµ(x) dx
=

∫
Ωm

∣∣∣ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk(x)

∣∣∣pµ(x) dx
+

∫
[0,1]\Ωm

∣∣∣ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk(x)

∣∣∣pµ(x) dx
<

∫
Ωñ

∣∣∣ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk(x)

∣∣∣pµ(x) dx
+

m∑
n=ñ+1

µn ·
∫
Ωn\Ωn−1

∣∣∣ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk(x)

∣∣∣p dx+
1

2p(m+2)

<
(
‖fm‖Lp(Ωñ) +

1

2m+2

)p

+
m∑

n=ñ+1

µn

(
‖fm‖Lp(Ωn\Ωn−1) +

1

2m+2

)p

+
1

2p(m+2)

≤ 2p
(∫

Ωñ

∣∣fm(x)∣∣p dx+
m∑

n=ñ+1

∫
Ωn\Ωn−1

∣∣fm(x)∣∣p · µn dx
)

+
1

2p(m+2)

(
2p + 2p ·

m∑
n=ñ+1

µn + 1
)
< 2p‖fm‖pLp

µ[0,1]
+

1

2p(m−1)

or ∥∥∥ M∑
k=2Nm−1

δ
(m)
k a

(m)
k Wk

∥∥∥
Lp
µ[0,1]

< 2‖fm‖Lp
µ[0,1] +

1

2m−1
. (2.55)

Let n0 ∈ N and ε ∈ (0, 1) be arbitrarily given. From the sequence {fm(x)}∞m=1

we choose such a function fm0(x) that

m0 > max
{
ñ, log2

8

ε

}
, pm0 > p0, 2

Nm0−1 > 2n0 , (2.56)

‖f − fm0‖Lp0 [0,1] <
ε

4
, (2.57)
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and for k ∈ [2n0 , 2Nm0 ) set

ak =

{
a
(m0)

2
Nm0−1

+ 1
2k+m0

, when k ∈ [2n0 , 2Nm0−1),

a
(m0)
k , when k ∈ [2Nm0−1 , 2Nm0 ),

(2.58)

δk =

{
0, when k ∈ [2n0 , 2Nm0−1),

δ
(m0)
k = ±1, 0, when k ∈ [2Nm0−1 , 2Nm0 ),

(2.59)

and

P (x) =
2Nm0−1∑
k=2n0

akWk(x) =
2
Nm0−1−1∑
k=2n0

akWk(x) + Pm0(x),

H(x) =
2Nm0−1∑
k=2n0

δkakWk(x) = Hm0(x).

Now it is not hard to verify that the function µ(x) and polynomials P (x)
and H(x) satisfy all the requirements of Lemma 2.4. Indeed, statements (1)–(3)
immediately follow from (2.44) and (2.54)–(2.59). Furthermore, by using (2.47)
and (2.56)–(2.58) we obtain

max
2n0≤M<2Nm0

∥∥∥ M∑
k=2n0

akWk

∥∥∥
L1[0,1]

≤ max
2n0≤M1<2

Nm0−1

∥∥∥ M1∑
k=2n0

akWk

∥∥∥
L1[0,1]

+ max
2
Nm0−1≤M2<2Nm0

∥∥∥ M2∑
k=2

Nm0−1

a
(m0)
k Wk

∥∥∥
L1[0,1]

< max
2n0≤M1<2

Nm0−1

∥∥∥ M1∑
k=2n0

akWk

∥∥∥
L1[0,1]

+
ε

2
.

Let M1 be an arbitrary natural number in [2n0 , 2Nm0−1). Then M1 ∈ [2n1 , 2n1+1)
for some n1 ∈ [n0, Nm0−1) and, considering (2.1), we have∥∥∥ M1∑

k=2n0

akWk

∥∥∥
L1[0,1]

< a
(m0)

2
Nm0−1

·
∥∥∥2n1−1∑
k=2n0

Wk

∥∥∥
L1[0,1]

+ a
(m0)

2
Nm0−1

· 2n1

+

M1∑
k=2n0

1

2k+m0
<

ε

2
,

which proves statement (4).
Lemma 2.4 is proved. �

3. Proof of theorem 1.2

Let δ ∈ (0, 1), pm ↗ +∞, and let {fm(x)}∞m=1, x ∈ [0, 1], be a sequence
of all polynomials in the Walsh system with rational coefficients. By virtue of
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Lemma 2.4, there exist a weight function 0 < µ(x) ≤ 1 with |{x ∈ [0, 1], µ(x) =
1}| > 1− δ and polynomials

Pm(x) =

Nm−1∑
k=Nm−1

a
(m)
k Wk(x), (3.1)

Hm(x) =
Nm−1∑

k=Nm−1

δ
(m)
k a

(m)
k Wk(x), δ

(m)
k = ±1, 0, (3.2)

in the Walsh system which satisfy the following conditions for any natural number
m: {

0 < a
(1)
k+1 < a

(1)
k ,

0 < a
(m)
k+1 < a

(m)
k < min{2−m, a

(m−1)
Nm−1−1} for m > 1,

(3.3)

when k ∈ [Nm−1, Nm − 1),

‖fm −Hm‖Lpm
µ [0,1] < 2−m−1, (3.4)

max
Nm−1≤M<Nm

∥∥∥ M∑
k=Nm−1

δ
(m)
k a

(m)
k Wk

∥∥∥
Lp
µ[0,1]

< 2‖fm‖Lp
µ[0,1] + 2−m, (3.5)

for any p ∈ [1, pm], and

max
Nm−1≤M<Nm

∥∥∥ M∑
k=Nm−1

a
(m)
k Wk

∥∥∥
L1[0,1]

< 2−m−1. (3.6)

From (3.1) and (3.6) it immediately follows that∥∥∥ ∞∑
m=1

Pm

∥∥∥
L1[0,1]

≤
∞∑

m=1

‖Pm‖L1[0,1] < +∞. (3.7)

By denoting

P0(x) =

N0−1∑
k=0

akWk(x), (3.8)

where coefficients ak, k ∈ [0, N0), are arbitrary monotonically decreasing positive

numbers with aN0−1 > a
(1)
N0
, we define a function g(x) and a series

∑∞
k=0 akWk(x)

as follows:

g(x) =
∞∑

m=0

Pm(x), (3.9)

ak = a
(m)
k , when k ∈ [Nm−1, Nm),m ∈ N, (3.10)

and ak are coefficients in P0(x) (see (3.8)), when k ∈ [0, N0). By using (3.3) and
(3.6)–(3.10) we conclude that the series

∑∞
k=0 akWk(x) converges to g ∈ L1[0, 1]

in L1[0, 1] metric, and ak =
∫ 1

0
g(t)Wk(t) dt ↘ 0.
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Let p ≥ 1, and let f ∈ Lp
µ(0, 1). We choose such a polynomial fν1(x) from the

sequence {fm(x)}∞m=1 such that

‖f − fν1‖Lp
µ[0,1] < 2−2 and pν1 > p. (3.11)

By denoting

δk =

{
δ
(ν1)
k = ±1, 0, when k ∈ [Nν1−1, Nν1),

0, when k ∈ [0, Nν1−1),

and taking into account (3.2), (3.4), (3.5), and (3.11), we have

∥∥∥f −
Nν1−1∑
k=0

δkakWk

∥∥∥
Lp
µ[0,1]

≤ ‖f − fν1‖Lp
µ[0,1] + ‖fν1 −Hν1‖Lpν1

µ [0,1]

< 2−2 + 2−ν1−1 < 2−1

and

max
Nν1−1≤M<Nν1

∥∥∥ M∑
k=Nν1−1

δkakWk

∥∥∥
Lp
µ[0,1]

< 2‖fν1‖Lp
µ[0,1] + 2−ν1 .

Assume that for q > 1 numbers ν1 < ν2 < · · · < νq−1 and {δk = ±1, 0}Nνq−1−1

k=0

are already chosen, so that for each natural number j ∈ [1, q − 1] the following
conditions hold:

δk =

{
δ
(νj)
k = ±1, 0, when k ∈ [Nνj−1, Nνj),

0, when k /∈
⋃q−1

j=1[Nνj−1, Nνj),∥∥∥f −
Nνj−1∑
k=0

δkakWk

∥∥∥
Lp
µ[0,1]

< 2−j, (3.12)

max
Nνj−1≤M<Nνj

∥∥∥ M∑
k=Nνj−1

δkakWk

∥∥∥
Lp
µ[0,1]

< 2‖fνj‖Lp
µ[0,1] + 2−νj .

We choose a function fνq(x) from the sequence {fm(x)}∞m=1 with νq > νq−1 so
that ∥∥∥f −

Nνq−1−1∑
k=0

δkakWk(x)− fνq

∥∥∥
Lp
µ[0,1]

< 2−q−1, (3.13)

and we define

δk =

{
δ
(νq)
k = ±1, 0, when k ∈ [Nνq−1, Nνq),

0, when k /∈
⋃q

j=1[Nνj−1, Nνj).
(3.14)
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Taking into account (3.2), (3.4), (3.13), and (3.14), we get∥∥∥f −
Nνq−1∑
k=0

δkakWk

∥∥∥
Lp
µ[0,1]

≤
∥∥∥f −

Nνq−1−1∑
k=0

δkakWk − fνq

∥∥∥
Lp
µ[0,1]

+ ‖fνq −Hνq‖Lpνq
µ [0,1]

< 2−q−1 + 2−νq−1 < 2−q. (3.15)

Furthermore, from (3.12) and (3.13) we have

‖fνq‖Lp
µ[0,1] <

∥∥∥f −
Nνq−1−1∑

k=0

δkakWk − fνq

∥∥∥
Lp
µ[0,1]

+
∥∥∥f −

Nνq−1−1∑
k=0

δkakWk

∥∥∥
Lp
µ[0,1]

< 2−q−1 + 2−q+1 < 2−q+2.

Thus, from (3.5) and (3.14) it follows that for each natural number M ∈ [Nνq−1,
Nνq), ∥∥∥ M∑

k=Nνq−1

δkakWk

∥∥∥
Lp
µ[0,1]

< 2‖fνq‖Lp
µ[0,1] + 2−νq < 2−q+4. (3.16)

By induction, we easily determine a growing sequence of indexes {νq}+∞
q=1 and

numbers {δk = ±1, 0}+∞
k=0 so that conditions (3.14)–(3.16) hold for any q ∈ N.

Hence, we obtain a series

+∞∑
k=0

δkakWk(x), δk = ±1, 0, (3.17)

which converges to f in Lp
µ[0, 1] metric. Indeed, from (3.15) it follows that the

subsequence {SNνq
(x)}+∞

q=1 of its partial sums

SN(x) ≡
N−1∑
k=0

δkakWk(x), N = 1, 2, . . . ,

converges to f in Lp
µ[0, 1] metric, and (3.16) provides the convergence of the whole

sequence SN(x).
Theorem 1.2 is proved. �
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