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Abstract. This article deals with trigonometric functional equations on
hypergroups. We describe the general continuous solution of sine and cosine
addition formulas and a so-called sine-cosine functional equation on a locally
compact hypergroup in terms of exponential functions, sine functions, and
second-order generalized moment functions.

1. Introduction

In this paper, C denotes the set of complex numbers. A hypergroup is a locally
compact Hausdorff space K equipped with an involution and a convolution oper-
ation defined on the space of all bounded complex regular measures on K. (For
the formal definition, historical background, and some basic facts about hyper-
groups, see [1], [4], [5], [10].) In the present article, K denotes a locally compact
hypergroup with identity element e, involution ∨, and convolution ∗. In fact,
the quadruple (K, e, ∨, ∗) is what, for all intents and purposes, we should call a
“hypergroup,” but for the sake of simplicity we will reserve the term for K.

The idea of investigating functional equations on hypergroups relies on using a
generalized translation structure defined by the convolution of measures instead
of using a classical group operation. For any elements x, y in K, we consider the
point masses δx and δy, which are probability measures on K. For a continuous
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function h : K → C, the symbol h(x ∗ y) is defined in the following way:

h(x ∗ y) :=
∫
K

h(t) d(δx ∗ δy)(t),

whenever x, y are in K. The continuity assumption guarantees the existence of
the integral with respect to the compactly supported measure δx∗δy. The detailed
study of functional equations on hypergroups started with the [14] and [15], and
a comprehensive monograph on the subject is [20]. (For further results and refer-
ences on this topic, see [12], [13], [17], [21], and [22]; for similar trigonometric-type
functional equations, see [2], [3], [8], [9], [16], [18].)

In the following we study the sine functional equation

f(x ∗ y) = f(x)g(y) + f(y)g(x), (1.1)

the cosine functional equation

g(x ∗ y) = g(x)g(y)− f(x)f(y), (1.2)

and the sine-cosine functional equation

f(x ∗ y) = f(x)g(y) + f(y)g(x) + h(x)h(y) (1.3)

on an arbitrary hypergroup K. In these three equations we will always assume
that f, g, h : K → C are continuous functions.

We note that these equations are fundamental in the theory of functional equa-
tions. Clearly, equation (1.3) is a common generalization of the sine equation (1.1)
and the cosine equation (1.2). In [24] the authors solve equations (1.1) and (1.2)
under the assumption that the functions f, g are continuous bounded functions
(see [24, Corollaries 26.1, 26.2]). In this article, we do not impose any condition on
the unknown functions except continuity, which is always satisfied if we consider
the discrete topology on K. Our method, which is completely different from that
of [24], is based on Cauchy differences in the case of the sine equation, on modi-
fied Cauchy differences in the case of the cosine equation, and on the exponential
matrix equation in the case of the sine-cosine equation. We note that in different
particular cases of (1.3), we obtain important functional equations; for example,
if in (1.3) we have g = 1 and h = 0, then f is an additive function, that is,

f(x ∗ y) = f(x) + f(y);

if we have g = f and h = if , then f is an exponential, that is,

f(x ∗ y) = f(x)f(y).

We emphasize that in the above equations, the expressions on the left-hand sides
are integrals with respect to compactly support measures. In fact, those equations
are integral equations.

We will see that in the case of the sine equation (1.1), the situation is very
sophisticated if g = m is an exponential. In the group case, exponentials are
never zero, and hence we can divide by m and deduce immediately that f has the
form f = a·m, where a is additive. It turns out that on a hypergroup the solutions
f of (1.1) with an exponential g = m produce a new basic function class, which
cannot be described directly using exponentials and additive functions. This is
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a new feature provided by the delicate structure of hypergroups and it seems
reasonable to introduce the following definition: if K is a hypergroup and m is an
exponential on K, then the function f : K → C will be called an m-sine function,
if it satisfies

f(x ∗ y) = f(x)m(y) + f(y)m(x)

for each x, y in K. We call f a sine function if it is an m-sine function for some
exponential m (see [6] and [23]). We note that, in [24], bounded functions with
this property are said to be associated with m. Obviously, we have f(e) = 0 for
every sine function f . Additive functions on K are exactly the 1-sine functions. If
K = G is a group, then for a given exponentialm them-sine functions are exactly
the functions of the form f = a ·m, where a is additive. But this is not the case
on hypergroups. For instance, let K be the polynomial hypergroup generated by
the sequence of polynomials (Pn)n∈N (see [1]). It is known that all exponential
functions on K have the form n 7→ Pn(λ) with some complex number λ, and
all additive functions have the form n 7→ cP ′

n(0) with some complex number c.
Further, if we define

f(n) = P ′
n(λ), m(n) = Pn(λ)

for each n in N with some complex number λ, then it is easy to check that the
following equation holds for each m,n in N:

f(n ∗ k) = f(n)m(k) + f(k)m(n);

that is, f is an m-sine function. On the other hand, it is easy to see that it does
not have the form n 7→ cP ′

n(0)Pn(λ) for any complex c.
We will see that we have to face a similar problem in case of the functional

equation (1.3) if g = m is an exponential. As a motivation, we present the fol-
lowing result which follows from [20, Theorem 2.5].

Theorem 1.1. Let K be the polynomial hypergroup associated with the sequence
of polynomials (Pn)n∈N, let g = m : K → C be an exponential, and let h : K → C
be an m-sine function. Then the functions f, g, h satisfy (1.3) if and only if

f(n) = cP ′
n(λ) +

d2

2
P ′′
n (λ), h(n) = dP ′

n(λ)

holds for each n in N, where λ, c, d are complex numbers with m(n) = Pn(λ).

In fact, the cited theorem is about the general description of generalized
moment function sequences on polynomial hypergroups. This result shows that
in the case of equation (1.3), the general solution includes functions which cannot
be expressed in terms of exponential and additive functions, even on commutative
hypergroups. We recall that the sequence ϕ : K → C of continuous functions is
called a generalized moment function sequence of order N if

ϕk(x ∗ y) =
k∑

j=0

(
k

j

)
ϕj(x)ϕk−j(y)
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holds for each x, y in K and for k = 0, 1, . . . , N (see [20]). In particular, in any
generalized moment function sequence, ϕ0 is an exponential and ϕ1 is a ϕ0-sine
function. The function ϕk is said to be a generalized moment function of order
k associated to the exponential ϕ0. Using this terminology, we can say that if in
(1.3) the function g is an exponential and h is a g-sine function, then g,

√
2h/2, f

form a generalized moment function sequence of order 2. No further informa-
tion can be expected unless we specialize the hypergroup K. Consequently, it
seems to be reasonable to consider generalized moment functions as basic func-
tions on hypergroups, and we should accept those functions as fundamental as
exponentials and additive functions—which are special generalized moment func-
tions, as well. Another motivation to include these functions as basic functions is
their close connection with exponential monomials on commutative hypergroups,
which serve as basic building blocks of spectral synthesis.

In the rest of the current article, we will describe the general continuous solu-
tion of the functional equations (1.1), (1.2), and (1.3) in terms of exponential
functions, sine functions, and second-order generalized moment functions. The
methods we use can be applied in wide classes of functional equations; in particu-
lar, the method used for (1.3) can be extended for more general Levi-Civitá-type
functional equations. We will discuss these problems elsewhere.

2. Sine functional equations on hypergroups

In this section, we describe the nonzero solutions of the sine functional equation
(1.1) on hypergroups.

Theorem 2.1. Let K be a hypergroup, and let f, g : K → C be continuous
functions satisfying (1.1) for each x, y in K. If f, g are nonidentically zero, then
there exists a complex number c 6= 0 and there are continuous exponentials M,N :
K → C such that we have one the following possibilities:

(i) g(x) =M(x), and f is an M-sine function.
(ii)

f(x) =
1

2c
M(x), g(x) =

1

2
M(x)

for each x in K;
(iii)

f(x) =
1

2c

[
M(x)−N(x)

]
, g(x) =

1

2

[
M(x) +N(x)

]
for each x in K.

If f is zero, then g is arbitrary, and if g is zero, then f is zero. Conversely,
the functions f, g given above are continuous solutions of (1.1) for every nonzero
complex number c and continuous complex exponentials M,N .

Proof. Clearly, we may suppose that f and g are nonidentically zero. As the case
(i) obviously describes a possible solution, hence we will suppose that g is not an
exponential. Suppose first that g(e) 6= 1. By substitution y = e into (1.1), we get

f(x)
(
1− g(e)

)
= f(e)g(x);
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that is, f(x) = 1
c
g(x) with some complex number c 6= 0. It follows from (1.1) that

2g(x ∗ y) = 2g(x)2g(y)

and hence g = 1
2
m and f = 1

2c
m, where m is an exponential, which is given in

(ii) with M = m.
Now we assume that g(e) = 1. By substituting y = e into (1.1), we get

f(x) = f(x)g(e) + f(e)g(x) = f(x) + f(e)g(x),

which implies that f(e)g(x) = 0, and hence that f(e) = 0.
We introduce the Cauchy difference: for each x, y in K we define

F (x, y) = f(x ∗ y)− f(x)− f(y)

which can be written as

F (x, y) = f(x)
[
g(y)− 1

]
+ f(y)

[
g(x)− 1

]
.

Obviously, F satisfies

F (x, y) + F (x ∗ y, z) = F (x, y ∗ z) + F (y, z)

for each x, y, z in K, by the associativity of the hypergroup operation. After
substitution and simplification we get the equation

f(z)
[
g(x ∗ y)− g(x)g(y)

]
= f(x)

[
g(y ∗ z)− g(y)g(z)

]
for each x, y, z in K. We let Γ(x, y) = g(x ∗ y)− g(x)g(y) for each x, y in K the
modified Cauchy difference, then we have the identity

f(x)Γ(y, z) = f(z)Γ(x, y)

for each x, y, z in K. Putting x for z, y for x and z for y, we have

f(y)Γ(z, x) = f(x)Γ(y, z),

which yields

f(z)Γ(x, y) = f(y)Γ(z, x).

Then we can write

f(z)2Γ(x, y) = f(z)f(y)Γ(z, x) = f(y)f(z)Γ(z, x) = f(y)f(x)Γ(z, z);

so, choosing z0 with f(z0) 6= 0, we obtain

g(x ∗ y)− g(x)g(y) = Γ(x, y) =
Γ(z0, z0)

f(z0)2
f(x)f(y).

With the notation Γ(z0,z0)
f(z0)2

= −d2 we infer that

g(x ∗ y) = g(x)g(y)− df(x)df(y),

or, writing h = df , we obtain (1.2) for g and h. Here d 6= 0, as otherwise g is an
exponential and we have (i).
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Then we multiply (1.1) by d and we have the system for the pair g, h:

h(x ∗ y) = h(x)g(y) + h(y)g(x),

g(x ∗ y) = g(x)g(y)− h(x)h(y)

for each x, y in K. For each x in K, let

M(x) = g(x) + ih(x) and N(x) = g(x)− ih(x).

We have for each x, y in K

M(x ∗ y) = g(x ∗ y) + ih(x ∗ y) = g(x)g(y)− h(x)h(y) + ig(x)h(y) + ig(y)h(x)

=
(
g(x) + ih(x)

)(
g(y) + ih(y)

)
=M(x)M(y)

and

N(x ∗ y) = g(x ∗ y)− ih(x ∗ y) = g(x)g(y)− h(x)h(y)− ig(x)h(y)− ig(y)h(x)

=
(
g(x)− ih(x)

)(
g(y)− ih(y)

)
= N(x)N(y).

This means that M,N : K → C are exponentials. On the other hand, we have

g =
1

2
(M +N), h =

1

2i
(M −N).

It follows f = 1
2di

(M −N), and we have (iii) with c = di.
The converse statement can be verified easily by direct computation. �

3. Cosine functional equations on hypergroups

In this section we describe the nonzero solutions of the cosine functional equa-
tion (1.2) on hypergroups.

Theorem 3.1. Let K be a hypergroup, and let f, g : K → C be continuous
functions satisfying (1.2) for each x, y in K. If f and g are nonidentically zero,
then there exist complex numbers c 6= ±1 and d 6= 0, and there are continuous
exponentials M,N : K → C such that we have one of the following possibilities:

(i)

f(x) =
c

1− c2
M(x), g(x) =

1

1− c2
M(x)

for each x in K;
(ii) f is an M-sine function, and g(x) =M(x)± f(x) for each x in K;
(iii)

f(x) = ± 1

2di

[
M(x)−N(x)

]
, g(x) = ±±di− λ

2di
M(x)± ±di+ λ

2di
N(x)

for each x in K, where λ2 = 1− d2, and we choose + or − at each place
in the same way.

If f is zero, then g is an arbitrary exponential. If g is zero, then f is zero.
Conversely, the functions f, g given above are continuous solutions of equation
(1.2) for any nonzero complex numbers c, d, c 6= ±1 and continuous complex
exponentials M,N .
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Proof. Clearly, we may suppose that f and g are nonidentically zero. Then g is not
an exponential. Substituting y = e in (1.2) we have g(x)(1− g(e)) = −f(x)f(e),
hence if g(e) 6= 1, then g(x) = 1

c
f(x) with some complex number c 6= 0. We also

have c 6= ±1, otherwise g = ±f , and substituting into (1.2) gives f = g = 0. It
follows from (1.2) that

1− c2

c
f(x ∗ y) = 1− c2

c
f(x)

1− c2

c
f(y)

which implies thatf(x) = c
1−c2

m(x) and that g(x) = 1
1−c2

m(x) with some expo-
nential m, which is (i) with M = m.

Now we assume g(e) = 1, and in this case (1.2) implies that f(e) = 0. We
define a modified Cauchy difference G(x, y) = g(x ∗ y) − g(x)g(y) such that we
have

g(z)G(x, y) +G(x ∗ y, z) = G(x, y ∗ z) + g(x)G(y, z)

for each x, y, z in K. Then, by (1.2) G(x, y) = −f(x)f(y), and it follows that

f(x)
[
f(y ∗ z)− f(y)g(z)

]
= f(z)

[
f(x ∗ y)− g(x)f(y)

]
. (3.1)

As f 6= 0, this implies that

f(x ∗ y) = f(x)ϕ(y) + f(y)g(x)

with some continuous function ϕ : K → C. Substituting into (3.1), we obtain

f(x)f(z)
[
ϕ(y)− g(y)

]
= f(y)f(z)

[
ϕ(x)− g(x)

]
for each x, y, z in K. As f 6= 0 this implies that

ϕ(x) = g(x) + 2λf(x)

with some complex number λ. If λ = 0, then we have ϕ = g, and the pair f, g
satisfies the sine equation (1.1). Case (i) in Theorem 2.1 cannot occur. Case (ii)
in Theorem 2.1 gives c = ±i, which is included in (i) above with c = ±i. Finally,
case (iii) in Theorem 2.1 gives c = ±i which is included in case (i) above with
c = ±i.

Now we assume that λ 6= 0, then we have

f(x ∗ y) = f(x)g(y) + 2λf(x)f(y) + f(y)g(x).

We introduce the function

h(x) = g(x) + λf(x),

then a simple calculation shows that

f(x ∗ y) = f(x)h(y) + f(y)h(x) (3.2)

and

h(x ∗ y) = h(x)h(y)− (1− λ2)f(x)f(y). (3.3)

Equation (3.2) shows that f and h satisfy the sine equation (1.1), and hence we
have the description of the solutions, we just have to extract the solutions of
(1.2). But we also have to consider equation (3.3) which depends on λ. If λ2 = 1,
then h = m is an exponential and f is an m-sine function. In this case we have
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g = m± f and substitution into (1.2) gives that this is a solution indeed, which
is covered by case (ii) above.

Finally we suppose that λ2 6= 1. We take d 6= 0 with d2 = 1− λ2, then we have
by (3.3)

h(x ∗ y) = h(x)h(y)− df(x)df(y)

and, multiplying (3.2) by d gives

df(x ∗ y) = df(x)h(y) + df(y)h(x)

for each x, y in K. This means that the pair df, h satisfies the sine and the cosine
functional equations simultaneously, and in this case h is not an exponential,
hence we have to consider cases (ii) and (iii) only, in Theorem 2.1. In case (ii) we
get c = ±i and, by the definition of h

f(x) = ± 1

2di
M(x), g(x) + λf(x) =

1

2
M(x)

which implies that f and g are constant multiples of each other, hence we have
case (i) above. In case (iii) of Theorem 2.1 we obtain

f(x) =
1

2cd

[
M(x)−N(x)

]
, g(x) =

cd− λ

2cd
M(x) +

cd+ λ

2cd
N(x).

Substituting into (1.2) gives c = ±i, and we have

f(x) = ± 1

2di

[
M(x)−N(x)

]
, g(x) = ±±di− λ

2di
M(x)± ±di+ λ

2di
N(x),

where d2 = 1− λ2, and we choose + or − at each place in the same way, as it is
given in case (iii) above. The converse statement can be verified easily by direct
computation. �

Using results concerning the form of exponentials on some particular hyper-
groups discussed in [20], one can obtain explicit forms of sine functions on certain
hypergroups.

4. Sine-cosine functional equations on hypergroups

In this section, we will first consider the matrix equation

L(x ∗ y) = L(x)L(y) = L(y)L(x) (4.1)

on the hypergroup K, where L : K → L(Cn) is a continuous mapping and the
equation is supposed to hold for each x, y in K. Here L(Cn) denotes the space
of all linear operators on Cn, which is identified with the space of all n × n
complex matrices. This equation has been studied on Abelian groups, even on
commutative semigroups (see, e.g. [19] and further references given therein). In
those cases the assumption on the commuting property of the matrices L(x) is
unnecessary. Here we will not assume the commutativity of the semigroup K,
just the property of L that its values form a commuting family. We will apply
our results on the equations in the previous paragraphs.

We will use the following result (see [7, Chapter IV], [11]).
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Theorem 4.1. Let S be a family of commuting linear operators in L(Cn). Then
Cn decomposes into a direct sum of linear subspaces Xj such that each Xj is a
minimal invariant subspace under the operators in S. Further, Cn has a basis in
which every operator in S is represented by an upper triangular matrix.

In other words, there exist positive integers k, n1, n2, . . . , nk with the property
n1+n2+ · · ·+nk = n, and there exists a regular matrix C such that every matrix
L in S has the form

L = C−1 diag{L1, L2, . . . , Lk}C,

where Lj is upper triangular for j = 1, 2, . . . , k. Here diag{L1, L2, . . . , Lk} denotes
the block matrix with blocks L1, L2, . . . , Lk along the main diagonal, and all
diagonal elements of the block Lj are the same. Using this result we have the
following theorem.

Theorem 4.2. Let K be a hypergroup and let L : K → L(Cn) be a continuous
mapping satisfying (4.1) for each x, h in K. Then there exist positive integers
k, n1, n2, . . . , nk with the property n1 + n2 + · · · + nk = n, and there exists a
regular matrix C such that

L(x) = C−1 diag
{
L1(x), L2(x), . . . , Lk(x)

}
C (4.2)

for each x in K, where Lj : K → L(Cnj) is upper triangular, all diagonal elements
of it are the same, and satisfies (4.1) for each x, y in K and for every j =
1, 2, . . . , l.

Now we apply this theorem for the sine-cosine functional equation:

f(x ∗ y) = f(x)g(y) + f(y)g(x) + h(x)h(y),

where f, g, h : K → C are continuous functions and the equation holds for each
x, y in K.

Theorem 4.3. Let f, g, h satisfy (1.3), with f, h are linearly dependent. If f 6= 0
then we have one of the following cases

(i) There is an exponential M : K → C and a complex number λ such that f
is an M-sine function, h = λf and g =M − 1

2
λ2f .

(ii) There is an exponential M : K → C and complex numbers c, λ with c 6= 0

such that f = 1
2c
M , g = 2c−λ2

4c
M , and h = λ

2c
M .

(iii) There are exponentials M,N : K → C and complex numbers c, λ with

c 6= 0 such that f = 1
2c
[M − N ], g = (1

2
− λ2

4c
)M + (1

2
+ λ2

4c
)N , and

h = λ
2c
[M −N ].

If f = 0, then h = 0 and g is arbitrary.

Proof. Obviously, we may suppose that f 6= 0. Let h = λf , then we have λ 6= 0
and

f(x ∗ y) = f(x)k(y) + f(y)k(x)

for each x, y in K, where k = g + 1
2
λ2f . This is the sine equation (1.1) for f, k

and we extract the solutions of (1.3) form Theorem 2.1 as given above. �
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Lemma 4.4. Let f, g, h satisfy (1.3), with f, h are linearly independent. Then
we have that f, g, h are constant on the set {x ∗ y, y ∗x} for each x, y in K and f
is constant on the set {x ∗ y ∗ z, y ∗ x ∗ z, x ∗ z ∗ y} for each x, y, z in K. If f, g, h
are linearly independent, then this latter holds for g, h, too.

Proof. We denote τuf(x) = f(x∗u) for each u, x inK. Obviously f(x∗y) = f(y∗x)
for each x, y in K. By repeating the calculation in [3, pp. 267–268], we obtain the
same for the functions g, h. Now we have from (1.3)

f(x ∗ y ∗ z) = f(x)g(y ∗ z) + f(y ∗ z)g(x) + h(x)h(y ∗ z)
= f(x)g(z ∗ y) + f(z ∗ y)g(x) + h(x)h(z ∗ y) = f(x ∗ z ∗ y)

and

f(x ∗ y ∗ z) = f(z ∗ x ∗ y) = f(z ∗ y ∗ x) = f(y ∗ x ∗ z),

which proves our statement for f . It follows that the translate τuf has the same
property for each u in K. If the functions f, g, h are linearly independent, then
the functions g, h are in the linear space spanned by the translates τuf of f , hence
they satisfy the same property. �

Theorem 4.5. Let K be a hypergroup and let f, g, h : K → C be linearly inde-
pendent continuous functions satisfying the sine-cosine functional equation (1.3).
Then we have one of the following cases:

(i) There exist exponential functions M1,M2,M3 : K → C and complex num-
bers αi, βi, γi for i = 1, 2, 3 such that

f(x) = α1M1(x) + β1M2(x) + γ1M3(x),

g(x) = α2M1(x) + β2M2(x) + γ2M3(x),

h(x) = α3M1(x) + β3M2(x) + γ3M3(x)

holds for each x in K, further we haveα1 α2 α3

β1 β2 β3
γ1 γ2 γ3

 ·

α2 β2 γ2
α1 β1 γ1
α3 β3 γ3

 =

α1 0 0
0 β1 0
0 0 γ1

 .
(ii) There exist exponential functions M1,M2 : K → C, an M1-sine function

S1 : K → C and complex numbers αi, βi, γi for i = 1, 2, 3 such that

f(x) = α1M1(x) + β1S1(x) + γ1M2(x),

g(x) = α2M1(x) + β2S1(x) + γ2M2(x),

h(x) = α3M1(x) + β3S1(x) + γ3M2(x)

holds for each x in K, further we haveα1 α2 α3

β1 β2 β3
γ1 γ2 γ3

 ·

α2 β2 γ2
α1 β1 γ1
α3 β3 γ3

 =

α1 β1 0
β1 0 0
0 0 γ1

 .



818 Ż. FECHNER and L. SZÉKELYHIDI

(iii) There exists an exponential function M : K → C, an M-sine function S :
K → C and a function T : K → C such that M,S, T form a generalized
moment sequence of order 2, and complex numbers αi, βi, γi for i = 1, 2, 3
such that

f(x) = α1M(x) + β1S(x) + γ1T (x),

g(x) = α2M(x) + β2S(x) + γ2T (x),

h(x) = α3M(x) + β3S(x) + γ3T (x)

holds for each x in K, further we haveα1 α2 α3

β1 β2 β3
γ1 γ2 γ3

 ·

α2 β2 γ2
α1 β1 γ1
α3 β3 γ3

 =

α1 β1 γ1
β1 2γ2 0
γ1 0 0

 .
Proof. By the linear independence of the functions f, g, h there exist elements
y1, y2, y3 in K such that the matrixg(y1) f(y1) h(y1)

g(y2) f(y2) h(y2)
g(y3) f(y3) h(y3)


is regular. We introduce the notation

U(x) =

g(x ∗ y1) f(x ∗ y1) h(x ∗ y1)
g(x ∗ y2) f(x ∗ y2) h(x ∗ y2)
g(x ∗ y3) f(x ∗ y3) h(x ∗ y3)

 ,
further

f̃(x) =

f(x ∗ y1)f(x ∗ y2)
f(x ∗ y3)

 and ϕ̃(x) =

f(x)g(x)
h(x)


for each x in K. Using this notation we have, by equation (1.3),

f̃(x ∗ y) = U(y)ϕ̃(x)

for each x, y in K. We let V (y) = U(e)−1U(y), then U(e)−1f̃(x) = ϕ̃(x), hence

ϕ̃(x ∗ y) = V (y)ϕ̃(x)

holds for each x, y in K. From this relation we have two different expressions for
ϕ̃(x ∗ y ∗ z) which are equal, by associativity, and we infer

V (y ∗ z)ϕ̃(x) = V (y)V (z)ϕ̃(x)

for each x, y, z in K. By the linear independence of f, g, h the vectors ϕ̃(x) span
Cn and we conclude

V (y ∗ z) = V (y)V (z)

for each y, z in K. On the other hand, the entries of V (y ∗ z) are constant on the
set {y ∗ z, z ∗ y} for each y, z in K, by Lemma 4.4. It follows that the family of
matrices V (y) for y in K is commuting and we can apply Theorem 4.2. For the
decomposition of C3 into invariant subspaces we have three possibilities.
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In the first case, C3 decomposes into the sum of three one dimensional invariant
subspaces, in which case the decomposition of V (x) corresponding to (4.2) gives
the following:

V (x) = C−1 diag
{
M1(x),M2(x),M3(x)

}
C,

where the 1× 1 matrices M1,M2,M3 satisfy (4.1), that is, they are exponentials.
In this case, in view of the definition of V , we have case (i) in the statement of the
theorem. The given relation between the constants αi, βi, γi can be obtained by
simple substitution, using the linear independence of the functions M1,M2,M3.

In the second case, C3 decomposes into the sum of a two dimensional and
a one dimensional invariant subspace, in which case the decomposition of V (x)
corresponding to (4.2) gives the following:

V (x) = C−1 diag
{
W (x),M2(x)

}
C,

where W : K → L(C2) is a solution of (4.1) and W (x) is upper triangular for
each x in K, further M2 : K → C is an exponential. Writing

W (x) =

[
W11(x) W12(x)

0 W22(x)

]
with W11 = W22 =M1, an exponential, by (4.1); further

W12(x ∗ y) =M1(x)W12(y) +M1(y)W12(x);

that is, W12 = S1 is an M1-sine function, and we have case (ii) above. Again,
the given relation between the constants αi, βi, γi can be obtained by simple
substitution, using the linear independence of the functions M1, S1,M2.

Finally, in the third case there is no nonzero proper invariant subspace in C3,
hence V (x) has the form

V (x) = C−1F (x)C,

where F : K → L(C3) satisfies equation (4.1), and F (x) is upper triangular for
each x in K. We write

F (x) =

ϕ0(x) ϕ1(x) ϕ2(x)
0 ψ0(x) ψ1(x)
0 0 χ0(x)

 ,
where ϕ0 = ψ0 = χ0 =M is an exponential, and from (4.1) we infer that

ϕ1(x ∗ y) =M(x)ϕ1(y) +M(y)ϕ1(x),

ψ1(x ∗ y) =M(x)ψ1(y) +M(y)ψ1(x),

ϕ2(x ∗ y) =M(x)ϕ2(y) + ϕ1(x)ψ1(y) + ϕ2(x)M(y).

It follows that ϕ1(x)ψ1(y) = ϕ1(y)ψ1(x) holds for each x, y in K. If ϕ1 6= 0 and
ψ1 6= 0, then there is a nonzero complex number λ such that

ϕ1(x) = λ
√
2S(x), ψ1(x) =

√
2S(x), ϕ2(x) = λT (x),

where M,S, T is a generalized moment function sequence of order 2. In this case
f, g, h are linear combinations ofM,S, T and, by substitution, we obtain case (iii)
above.
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If ϕ1 = 0, or ψ1 = 0, then ϕ1, ψ1, ϕ2 are M -sine functions corresponding to the
exponential M = ϕ0. As at most two of the three functions ϕ1, ψ1, ϕ2 are linearly
independent, hence in this case we have

f(x) = α1M(x) + β1S1(x) + γ1S2(x),

g(x) = α2M(x) + β2S1(x) + γ2S2(x),

h(x) = α3M(x) + β3S1(x) + γ3S2(x),

where S1, S2 are M -sine functions. Substitution into (1.3) gives the following
condition for the constants:α1 α2 α3

β1 β2 β3
γ1 γ2 γ3

 ·

α2 β2 γ2
α1 β1 γ1
α3 β3 γ3

 =

α1 β1 γ2
β1 0 0
γ1 0 0

 .
As the matrix on the right hand side has determinant zero, it follows that f, g, h
are linearly independent, which is not the case, by assumption. The proof is
complete. �

Theorem 4.6. Let K be a hypergroup and let f, g, h : K → C be continuous
functions satisfying the sine-cosine functional equation (1.3). Suppose that f, h
are linearly independent and f, g, h are linearly dependent. Then we have one of
the following cases:

(i) There exist exponential functions M1,M2 : K → C and complex numbers
α, β, αi, βi, for i = 1, 2 such that

f(x) = α1M1(x) + β1M2(x),

g(x) = (αα1 + βα2)M1(x) + (αβ1 + ββ2)M2(x),

h(x) = α2M1(x) + β2M2(x)

holds for each x in K, further we have[
α1 α2

β1 β2

]
·
[
2α β
β 1

]
·
[
α1 β1
α2 β2

]
=

[
α1 0
0 β1

]
.

(ii) There exists an exponential function M : K → C, an M-sine function
S : K → C and complex numbers α, β, αi, βi, γi for i = 1, 2 such that

f(x) = α1M(x) + β1S(x),

g(x) = (αα1 + βα2)M(x) + (αβ1 + ββ2)S(x),

h(x) = α2M(x) + β2S(x)

holds for each x in K, further we have[
α1 α2

β1 β2

]
·
[
2α β
β 1

]
·
[
α1 β1
α2 β2

]
=

[
α1 β1
β1 0

]
.

Proof. As f and h are linearly independent we have, by Lemma 4.4, that f, g, h
are constant on the set {x ∗ y, y ∗ x} for each x, y in K and f is constant on the
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set {x ∗ y ∗ z, y ∗ x ∗ z, x ∗ z ∗ y} for each x, y, z in K. We let g = αf + βh with
some complex numbers α, β. Substituting into (1.3) we have

f(x ∗ y) = 2αf(x)f(y) + β
[
f(x)h(y) + f(y)h(x)

]
+ h(x)h(y) (4.3)

for each x, y in K. Using associativity we can write f(x ∗ y ∗ z) in two different
ways, and after substituting f(x ∗ y) and f(y ∗ z) from (4.3) we have

f(x)
[
(β2 − 2α)h(y)h(z)− βh(y ∗ z)

]
+ h(x)

[
(2α− β2)h(y)f(z)− h(y ∗ z)

]
= −

[
βf(z) + h(z)

]
h(x ∗ y) (4.4)

for each x, y, z in K. As f and h are linearly independent, hence there is a z in
K such that βf(z) + h(z) 6= 0, and we have

h(x ∗ y) = f(x)k(y) + h(x)l(y) (4.5)

with some continuous functions k, l : K → C for each x, y in K. Substituting into
(4.4) and using the linear independence of f and h again we obtain that

k(y) = af(y) + bh(y), l(y) = cf(y) + dh(y)

holds for each y in K with some complex numbers a, b, c, d. Then we have from
(4.5)

h(x ∗ y) = af(x)f(y) + ch(x)f(y) + bf(x)h(y) + dh(x)h(y).

As h(x ∗ y) = h(y ∗ x) this implies b = c, hence we conclude

h(x ∗ y) = af(x)f(y) + b
[
h(x)f(y) + f(x)h(y)

]
+ dh(x)h(y)

for each x, y in K. Then it follows

h(x ∗ y ∗ z) = af(x)f(y ∗ z) + b
[
h(x)f(y ∗ z) + f(x)h(y ∗ z)

]
+ dh(x)h(y ∗ z)

= af(x)f(z ∗ y) + b
[
h(x)f(z ∗ y) + f(x)h(z ∗ y)

]
+ dh(x)h(z ∗ y)

= h(x ∗ z ∗ y)
and

h(x ∗ y ∗ z) = h(z ∗ x ∗ y) = h(z ∗ y ∗ x) = h(y ∗ x ∗ z),
that is, h is constant on the set {x ∗ y ∗ z, x ∗ z ∗ y, y ∗ x ∗ z}, as well. Further, we
have the functional equation

f(x ∗ y) = f(x)
[
2αf(y) + βh(y)

]
+ h(x)

[
βf(y) + h(y)

]
(4.6)

for each x, y in K. First we assume that the functions

k(y) = 2αf(y) + βh(y), l(y) = βf(y) + h(y)

are linearly independent. In this case we can follow the ideas in the proof of
Theorem 4.5. Indeed, we choose elements y1, y2 in K such that the matrix[

k(y1) l(y1)
k(y2) l(y2)

]
is regular. We introduce the notation

U(x) =

[
k(x ∗ y1) l(x ∗ y1)
k(x ∗ y2) l(x ∗ y2)

]
,
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further

f̃(x) =

[
f(x ∗ y1)
f(x ∗ y2)

]
and ϕ̃(x) =

[
f(x)
h(x)

]
for each x in K.

Then, exactly in the same manner as we did in the proof of Theorem 4.5, we
infer that the matrix function V : K → L(C2) given by V (y) = U(e)−1U(y)
satisfies the equation

V (y ∗ z) = V (y)V (z) = V (z)V (y)

for each y, z in K. As the matrices V (y) commute for y in K, we can apply
Theorem 4.2 about the decomposition of C2 into the direct sum of invariant
subspaces. Here we have two possibilities.

In the first case C2 decomposes into the sum of two one dimensional invariant
subspaces, in which case the decomposition of V (x) corresponding to (4.2) gives
the following:

V (x) = C−1 diag
{
M1(x),M2(x)

}
C,

where the 1 × 1 matrices M1,M2 satisfy (4.1), that is, they are exponentials. In
this case, in view of the definition of V , we have case (i) in the statement of the
theorem. The given relation between the constants α, β, αi, βi can be obtained
by simple substitution into (1.3), using the linear independence of the functions
M1,M2.

In the second case, C2 has no proper invariant subspace in C2, hence V (x) has
the form

V (x) = C−1F (x)C,

where F : K → L(C2) satisfies equation (4.1), and F (x) is upper triangular with
equal diagonal elements for each x in K. We write

F (x) =

[
ϕ0(x) ϕ1(x)
0 ψ0(x)

]
,

where ϕ0 = ψ0 = M is an exponential, and from (4.1) we infer that ϕ1 = S is
an M -sine function. In this case, in view of the definition of V , we have case (ii)
in the statement of the theorem. Again, the given relation between the constants
α, β, αi, βi can be obtained by simple substitution into (1.3), using the linear
independence of the functions M,S.

There is one case left: this is when the functions 2αf + βh and βf + h in (4.6)
are linearly dependent. That means l(x) = λk(x) holds for each x in K with some
complex number λ. Then we have

f(x ∗ y) = f(x)k(y) + λh(x)k(y) =
(
f(x) + λh(x)

)
k(y)

for each x, y in K. In this case f, f + λh, k satisfy a Pexider equation, which
implies that they are all multiples of a single exponential. As f, h are linearly
independent, this cannot happen. The proof is complete. �

We can summarize the above result with the assertion that—apart from trivial
cases—our theorems describe all continuous solutions of the sine-cosine functional
equation (1.3) on any hypergroup.
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20. L. Székelyhidi, Functional Equations on Hypergroups, World Scientific, London, 2013.
Zbl 1270.39016. MR2978690. DOI 10.1142/8481. 809, 810, 811, 815
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