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Abstract. We describe the multiplier algebra of the noncommutative
Schwartz space. This multiplier algebra can be seen as the largest ∗-algebra of
unbounded operators on a separable Hilbert space with the classical Schwartz
space of rapidly decreasing functions as the domain. We show in particular
that it is neither a Q-algebra nor m-convex. On the other hand, we prove that
classical tools of functional analysis, for example, the closed graph theorem,
the open mapping theorem, or the uniform boundedness principle, are still
available.

1. Introduction

The aim of this article is to study algebraic and topological properties of some
specific topological algebra with involution, called the multiplier algebra of the
noncommutative Schwartz space and denoted by MS. In particular, we will show
that, in spite of the fact that MS is neither Banach nor metrizable, the closed
graph theorem, open mapping theorem, and uniform boundedness principle work
on this space (see Theorem 4.5). Since it is a locally convex space the Hahn–
Banach theorem obviously holds.

The algebra MS can be described in many ways. For instance, it can be seen
as the “intersection” L(S(R))∩L(S ′(R)), where L(S(R)) (resp., L(S ′(R))) is the
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algebra of continuous linear operators on the well-known Schwartz space S(R)
of smooth rapidly decreasing functions (resp., on the space S ′(R) of tempered
distributions). It appears that we can replace the above function and distribution
spaces with the corresponding sequence spaces. This means that MS is isomor-
phic (as a topological ∗-algebra) to the “intersection” L(s) ∩ L(s′), where s is
the space of rapidly decreasing sequences, s′ is the space of slowly increasing
sequences (see Section 2 for definitions), and L(s), L(s′) are the corresponding
spaces of continuous linear operators. The “intersection”—whatever it is—allows
us to introduce a natural involution, and this is why we consider L(s) ∩ L(s′)
instead of, for example, L(s). The algebra MS also turns out to be the maximal
O∗-algebra with domain s, and thus it can be viewed as the largest algebra of
unbounded operators on `2 with domain s (see the work of Schmüdgen [28] which
deals with O∗-algebras, especially [28, Part I.2]). Moreover, by Proposition 4.3,
our algebra is isomorphic (as a topological ∗-algebra) to the matrix algebra

Λ(A) :=
{
x = (xi,j)i,j∈N ∈ CN2

: ∀N ∈ N0 ∃n ∈ N0 :

sup
i,j∈N

(
|xi,j|max

{iN
jn
,
jN

in

})
<∞

}
.

As the name suggests, MS can be also viewed as the algebra of “multipliers”
for the so-called noncommutative Schwartz space S, also known as the algebra
of smooth operators. The noncommutative Schwartz space is a specific m-convex
Fréchet ∗-algebra isomorphic to several operator algebras naturally appearing in
analysis, for example, to the algebra L(S ′(R),S(R)) of continuous linear operators
from S ′(R) to S(R), to the algebra L(s′, s), or to the algebra

K∞ :=
{
(xi,j)i,j∈N ∈ CN2

: ∀N ∈ N0 sup
i,j∈N

|xi,j|iNjN <∞
}

of rapidly decreasing matrices (see [11, Theorem 1.1] for more representations).
It is also isomorphic—topologically, but not as an algebra—to the Fréchet space
S(R) (which explains its name).

The noncommutative Schwartz space and the space S(R) itself play a role in
a number of fields, for example: structure theory of Fréchet spaces and splitting
of short exact sequences (see [22, Part IV]); K-theory (see [7]); C∗-dynamical
systems (see [15]); cyclic cohomology for crossed products (see [29]); operator
analogues of locally convex spaces (see [14]); and quantum mechanics, where it is
called the space of physical states and its dual is the so-called space of observables
(see [13]). Recently, some progress has been made in the investigation of the non-
commutative Schwartz space. This area includes functional calculus, description
of closed commutative ∗-subalgebras, automatic continuity, amenability proper-
ties, and Grothendieck inequality (see [6], [26] and references therein).

However, the significance of the algebra MS lies not only in the fact that it
is a multiplier algebra of some well-known algebra of operators, but also in its
resemblance to the C∗-algebra B(`2) of bounded operators on `2 in the context
of some class of Fréchet and topological ∗-algebras. This can already be seen
in the very definition of the maximal O∗-algebra on the domain s (which is,
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recall, isomorphic to MS). It is also worth pointing out that S is considered as
a Fréchet analogue of the algebra K(`2) of compact operators on `2 and B(`2) is
the multiplier algebra of K(`2), whereas, as we have already noted, MS is the
multiplier algebra of S—in fact, in order to prove this, we apply methods used in
the case of K(`2) and B(`2) (compare Theorem 3.9 with [5, Proposition 2.5] and
[23, Example 3.1.2]).

Finally, we find it quite interesting to compare some commutative sequence
∗-algebras with the corresponding noncommutative operator ∗-algebras. This is
done by the following diagram with the horizontal continuous embeddings of
algebras:

s � � //
OO

��

`1
� � //

OO

��

`2
� � //

OO

��

c0
� � //

OO

��

`∞
� � //

OO

��

s′OO

��
S � � // N (`2)

� � // HS(`2) � � // K(`2)
� � // B(`2) MS

where N (`2) and HS(`2) are the algebras of nuclear and Hilbert–Schmidt oper-
ators, respectively. The “vertical correspondences” from s up to c0 mean, for
example, that every monotonic sequence of nonnegative numbers belonging to a
commutative algebra from the first row is a sequence of singular numbers of some
operator of its noncommutative analogues. Moreover, algebras from the first row
are embedded in a canonical way, as the algebras of diagonal operators, into the
corresponding algebras from the second row. It will be made clear below that
B(`2) is not embedded in MS and vice versa.

This article is divided into four parts. Section 2 recalls basic notation and prop-
erties of the objects involved. In Section 3, we describe the multiplier algebra of
the noncommutative Schwartz space. Section 4 deals with its topological prop-
erties and, finally, in Section 5 we consider properties of MS as a topological
algebra. (For more information on functional analysis, see [17], [22]; for more on
general Banach algebra theory, see [8]; and for non-Banach operator algebras,
see [28].)

2. Notation and preliminaries

In what follows, we set

N := {1, 2, 3, . . .},
N0 := {0, 1, 2, . . .}.

For locally convex spaces E and F , we denote by L(E,F ) the space of all con-
tinuous linear operators from E to F , and we set L(E) := L(E,E). These spaces
will be considered with the topology τL(E,F ) of uniform convergence on bounded
sets.

By s we denote the space of rapidly decreasing sequences , that is, the Fréchet
space

s :=
{
ξ = (ξj)j∈N ∈ CN : |ξ|n :=

( ∞∑
j=1

|ξj|2j2n
)1/2

<∞ for all n ∈ N0

}
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with the topology given by the system (| · |n)n∈N0 of norms. We will denote by sn
the Hilbert space corresponding to the norm | · |n.

By [22, Proposition 27.13], we may identify the strong dual of s, that is, the
space of all continuous linear functionals on s with the topology of uniform con-
vergence on bounded subsets of s, with the space of slowly increasing sequences

s′ :=
{
ξ = (ξj)j∈N ∈ CN : |ξ|−n :=

( ∞∑
j=1

|ξj|2j−2n
)1/2

<∞ for some n ∈ N0

}
equipped with the inductive limit topology for the sequence (s−n)n∈N0 , where
s−n is the Hilbert space corresponding to the norm | · |−n. In other words, the
locally convex topology on s′ is given by the family {| · |′B}B∈B of norms, |ξ|′B :=
supη∈B |〈η, ξ〉|, where B denotes the class of all bounded subsets of s.

The space L(s′, s), denoted also by S, is a Fréchet space, whose topology is
described by the sequence (‖ · ‖n)n∈N0 of norms,

‖x‖n := sup
{
|xξ|n : ξ ∈ U◦

n

}
,

where U◦
n = {ξ ∈ s′ : |ξ|−n ≤ 1} are polars of the zero neighborhood basis (Un)n∈N0

in s. One can show that S is in fact isomorphic (as a Fréchet space) to the space
s (see [19, Proposition 41.7(5)] and [22, Lemma 31.1]). Since L(s′, s) ↪→ B(`2)
(continuous embedding given by `2 ↪→ s′

x→ s ↪→ `2), we can endow our space
with multiplication, involution, and order structure of the C∗-algebra B(`2). With
these operations L(s′, s) becomes an m-convex Fréchet∗-algebra and is called the
noncommutative Schwartz space or the algebra of smooth operators.

We devote a large part of the present article to considering the spaces L(s),
L(s′) and their “intersection”

L(s) ∩ L(s′) :=
{
x ∈ L(s) : x = x̃ |s for some (and hence unique) x̃ ∈ L(s′)

}
equipped with the topology τL(s)∩L(s′) := τL(s)∩τL(s′); τL(s)∩L(s′) is therefore deter-
mined by the family {qn,B}n∈N0,B∈B of seminorms, where

qn,B(x) := max
{
sup
ξ∈B

|xξ|n, sup
ξ∈U◦

n

|xξ|′B
}

(2.1)

and B is the class of all bounded subsets of s. It is easy to show that L(s) and
L(s′) are topological algebras and, as we will show in Proposition 3.8, the same
is true for L(s) ∩ L(s′).

The spaces L(s) and L(s′) can be seen as the completed tensor products s′ ⊗̂ s
and s⊗̂s′, respectively (see [19, Corollary 43.3(7)]). Since s and s′ are nuclear (see
[22, Proposition 28.16]), the injective and the projective tensor product topolo-
gies coincide (see [17, Theorem 21.2.1]). Consequently (see [17, Theorem 15.4.2
and Corollary 15.5.4]), L(s) and L(s′) admit natural PLS-topologies (see below)
coinciding with τL(s) and τL(s′), that is,

L(s) = proj
N∈N0

ind
n∈N0

L(sn, sN),
(2.2)L(s′) = proj

N∈N0

ind
n∈N0

L(s′N , s′n),
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where sn (resp., s′n) denotes the weighted Hilbert space

sn :=
{
ξ = (ξj)j∈N ∈ CN :

∞∑
j=1

|ξj|2j2n <∞
}
,

s′n :=
{
ξ = (ξj)j∈N ∈ CN :

∞∑
j=1

|ξj|2j−2n <∞
}
.

Remark 2.1. To be precise, the above two representations of L(s) and L(s′)
are not of PLS-type. But this can be easily overcome following the first part
of Remark 4.11.

As for the class of PLS-spaces (the best work for which is [9] and the references
therein), we will need more information. Recall that by a PLB-space we mean a
locally convex space X whose topology is given by

X = proj
N∈N0

ind
n∈N0

XN,n,

where all the XN,n’s are Banach spaces and all the linking maps ιN,n+1
N,n : XN,n ↪→

XN,n+1 are continuous linear inclusions. If all the XN,n’s are Hilbert spaces, then

we call X a PLH-space. If the linking maps (ιN,n+1
N,n )N,n∈N0 are compact (nuclear),

then X is called a PLS-space (PLN-space).
Of particular importance for us will be the so-called Köthe-type PLB-spaces.

Recall that a Köthe PLB-matrix is a matrix C := (cj,N,n)j∈N,N,n∈N0 of nonnegative
scalars satisfying

(i) ∀j ∈ N ∃N ∈ N0 ∀n ∈ N0 : cj,N,n > 0,
(ii) ∀j ∈ N, N, n ∈ N0 : cj,N,n+1 ≤ cj,N,n ≤ cj,N+1,n.

We define

Λp(C) :=
{
x = (xj)j | ∀N ∈ N0 ∃n ∈ N0 : ‖x‖N,n,p < +∞

}
(1 ≤ p <∞),

where

‖x‖N,n,p :=
( ∞∑

j=1

(
|xj|cj,N,n

)p)1/p

.

For p = ∞ we use the respective sup-norms. Then Λp(C) can be identified with
the space projN∈N0

indn∈N0 `
p(cj,N,n), and it is called a Köthe-type PLB-space. If

for all N,n ∈ N0 we have limj
cj,N,n+1

cj,N,n
= 0 (compact linking maps), then Λp(C) is

a PLS-space, and if for all N,n ∈ N0 we have
∑

j
cj,N,n+1

cj,N,n
< ∞ (nuclear linking

maps), then Λp(C) is a PLN-space. If Λp(C) = Λq(C), as sets, for all 1 ≤ p, q ≤ ∞,
then we simply write Λ(C).

For later use, we distinguish specific Köthe PLB-matrices on N×N, defined as
follows:

B = (bij;N,n)i,j∈N,N,n∈N0 , bij;N,n :=
iN

jn
,

B′ = (b′ij;N,n)i,j∈N,N,n∈N0 , b′ij;N,n :=
jN

in

(2.3)
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and

A = (aij;N,n)i,j∈N,N,n∈N0 , aij;N,n := max{bij;N,n, b
′
ij;N,n} = max

{iN
jn
,
jN

in

}
. (2.4)

Proposition 2.2. Let M be any of the Köthe-type PLB-matrices given by (2.3)
or (2.4). Then Λp(M) = Λq(M) topologically, for all 1 ≤ p, q ≤ ∞.

Proof. Since mij;N+2,n = (ij)2mij;N,n+2 for all indices i, j ∈ N, N, n ∈ N0, we have
the inequalities

‖ · ‖N,n,∞ ≤ ‖ · ‖N,n,1 and ‖ · ‖N,n+2,1 ≤ C‖ · ‖N+2,n,∞,

which hold for all N,n ∈ N0 with C =
∑∞

i,j=1(ij)
−2 = π4

36
. �

Using the notion of Köthe-type PLB-spaces, we get from (2.2) and Proposition
2.2 topological isomorphisms

L(s) ∼= Λ(B) and L(s′) ∼= Λ(B′). (2.5)

In both cases, the isomorphism is given by x 7→ (〈xej, ei〉)i,j∈N.

3. Representations of the multiplier algebra

In this section, we want to describe the so-called multiplier algebra of S which
is, in some sense, the largest algebra of operators acting on S. The algebra L(s)∩
L(s′) seems to be a good candidate, because if x ∈ S and y ∈ L(s) ∩ L(s′), then
clearly xy, yx ∈ S. Now, using heuristic arguments, we may show that the algebra
L(s)∩L(s′) is optimal. Assume that y ∈ L(E,F ) for some locally convex spaces
E,F . If xy ∈ S for every x ∈ S, then, in particular, (〈·, ξ〉ξ)y ∈ S for all ξ ∈ s,
and therefore 〈y(η), ξ〉 has to be well defined for every ξ ∈ s and η ∈ s′, which
shows that y : s′ → s′. Similarly, we show that if yx ∈ S for every x ∈ S, then
y : s→ s. Hence, y ∈ L(s) ∩ L(s′).

Another, more abstract approach to multipliers goes through the so-called dou-
ble centralizers (see Definition 3.1) and is due to Johnson [18]. Theorem 3.9 below
shows that this approach leads again to L(s) ∩ L(s′). In Corollary 4.4, we show
that the multiplier algebra of S has other representations—also important in
further investigation.

The theory of double centralizers of C∗-algebras was developed by Busby [5]
(see also [23, pp. 38–39, 81–83]). Our exposition for the noncommutative Schwartz
space will follow that of C∗-algebras.

Definition 3.1. Let A be a ∗-algebra over C. A pair (L,R) of maps from A to A
(neither linearity nor continuity is required) such that xL(y) = R(x)y for x, y ∈ A
is called a double centralizer on A. We denote the set of all double centralizers
on A by DC(A). Furthermore, for a map T : A → A, we define T ∗ : A → A by
T ∗(x) := (T (x∗))∗.

Now, let (L1, R1), (L2, R2) ∈ DC(A), λ ∈ C. We define

(i) (L1, R1) + (L2, R2) := (L1 + L2, R1 +R2),
(ii) λ(L1, R1) := (λL1, λR1),
(iii) (L1, R1) · (L2, R2) := (L1L2, R2R1),
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(iv) (L1, R1)
∗ := (R∗

1, L
∗
1).

A straightforward computation shows that DC(A) with the operations defined
above is a ∗-algebra. The elements of A correspond to the elements of DC(A) via
the map, called the double representation of A (see [18, p. 301]),

% : A→ DC(A), %(x) := (Lx, Rx), (3.1)

where Lx(y) := xy and Rx(y) := yx are the left and right multiplication maps,
respectively. One can easily show that % is a homomorphism of ∗-algebras.

Definition 3.2. Let A be an algebra over C, and let I be an ideal in A.

(i) We say that A is faithful if for every x ∈ A we have: xA = {0} implies
x = 0 and Ax = {0} implies x = 0.

(ii) An ideal I is called essential in A if for every x ∈ A the following impli-
cations hold: if xI = {0}, then x = 0 and if Ix = {0}, then x = 0.

It is well known that every C∗-algebra is an essential ideal in its multiplier
algebra (see [23, p. 82]), so it is faithful (see also [5, Corollary 2.4]). For example,
the C∗-algebra of compact operators on `2 is an essential ideal in L(`2). The
analogue of this result holds for S and L(s) ∩ L(s′).

Proposition 3.3. An algebra S is an essential ideal in L(s)∩L(s′). In particular,
S is faithful.

Proof. Clearly, S is an ideal in L(s) ∩ L(s′). Assume that xz = 0 for all z ∈ S.
Then, in particular, for ξ ∈ s and z := 〈·, ξ〉ξ, we get 〈·, ξ〉x(ξ) = 0. Thus x(ξ) = 0
for all ξ ∈ s; that is, x = 0. This gives xS = {0} ⇒ x = 0. After applying the
involution, we get the implication Sx = {0} ⇒ x = 0. �

The following result can be deduced from [18, Theorems 7, 14]. We present a
more direct proof for the reader’s convenience, following the proof of [5, Proposi-
tion 2.5] (the case of C∗-algebras).

Proposition 3.4. Let A be a faithful m-convex Fréchet algebra, and let (L,R) ∈
DC(A). Then

(i) L and R are linear continuous maps on A,
(ii) L(xy) = L(x)y for every x, y ∈ A,
(iii) R(xy) = xR(y) for every x, y ∈ A.

Proof. (i) Let x, y, z ∈ A, α, β ∈ C. Then

zL(αx+ βy) = R(z)(αx+ βy) = αR(z)x+ βR(z)y = z
(
αL(x) + βL(y)

)
,

and since A is faithful, L(αx+ βy) = αL(x) + βL(y).
Now, let (xj)j∈N ⊂ A, and assume that xj → 0 and L(xj) → y (convergence in

the topology of A). Let (‖ · ‖q)q∈N0 be a fundamental system of submultiplicative
seminorms on A. Then

‖zy‖q ≤
∥∥zy − zL(xj)

∥∥
q
+
∥∥zL(xj)∥∥q

=
∥∥z(y − L(xj)

)∥∥
q
+
∥∥R(z)xj∥∥q

≤ ‖z‖q ·
∥∥y − L(xj)

∥∥
q
+
∥∥R(z)∥∥

q
· ‖xj‖q → 0,



622 T. CIAŚ and K. PISZCZEK

as j → ∞, so ‖zy‖q = 0 for every q ∈ N0, and therefore zy = 0. Hence, by the
assumption on A, y = 0. Now, by the closed graph theorem for Fréchet spaces
(see, e.g., [22, Theorem 24.31]), L is continuous. Analogous arguments work for
the map R.

(ii) Let x, y, z ∈ A. Then

zL(xy) = R(z)xy =
(
R(z)x

)
y =

(
zL(x)

)
y = z

(
L(x)y

)
,

and therefore, L(xy) = L(x)y.
(iii) This can be proved analogously as in (ii). �

Now, we need to prove that elements of L(s) ∩ L(s′) can be seen as some
unbounded operators on `2, namely, as the elements of the class

L∗(s) :=
{
x : s→ s : x is linear, s ⊂ D(x∗) and x∗(s) ⊂ s

}
.

Here

D(x∗) :=
{
η ∈ `2 : ∃ζ ∈ `2 ∀ξ ∈ s 〈xξ, η〉 = 〈ξ, ζ〉

}
and x∗η := ζ for η ∈ D(x∗) (one can show that such a vector ζ is unique). This
∗-operation defines a natural involution on L∗(s). The algebra L∗(s) is considered
the maximal O∗-algebra with domain s, and it can be viewed as the largest
∗-algebra of unbounded operators on `2 with domain s (see [28, Section I.2.1] for
details). Let B denote the set of all bounded subsets of s. We endow L∗(s) with
the topology τL∗(s) given by the family {pn,B}n∈N0,B∈B of seminorms,

pn,B(x) := max
{
sup
ξ∈B

|xξ|n, sup
ξ∈B

|x∗ξ|n
}
. (3.2)

It is well known that L∗(s) is a complete locally convex space and a topological
∗-algebra (see [28, Proposition 3.3.15] and Remark 3.5 below).

Remark 3.5. The so-called graph topology on s of the O∗-algebra L∗(s) is given by
the system of seminorms (‖ · ‖a)a∈L∗(s), ‖ξ‖a := ‖aξ‖`2 (see [28, Definition 2.1.1]).
It is easy to see that the usual Fréchet space topology on s is equal to the graph
topology (consider the diagonal map s 3 (ξj)j∈N 7→ (jnξj)j∈N ∈ s, n ∈ N0), and
therefore the topology τL∗(s) on L∗(s) coincides with the topology τ ∗ (see [28, pp.
81–82]) defined by the seminorms {pa,B}a∈L∗(s),B∈B,

pa,B(x) := max
{
sup
ξ∈B

‖axξ‖`2 , sup
ξ∈B

‖ax∗ξ‖`2
}
.

Lemma 3.6. We have L∗(s) ⊂ L(s), and every operator x ∈ L∗(s) can be
extended to an operator x̃ ∈ L(s′). Moreover,

〈x∗η, ξ〉 = 〈η, x̃ξ〉

for all ξ ∈ s′ and η ∈ s.

Proof. Take x ∈ L∗(s). Let (ξj)j∈N ⊂ s, and assume that ξj → 0 and xξj → η as
j → ∞. Then, for every ζ ∈ s, we have

〈xξj, ζ〉 = 〈ξj, x∗ζ〉 → 0
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and, on the other hand,

〈xξj, ζ〉 → 〈η, ζ〉.

Hence, 〈η, ζ〉 = 0 for every ζ ∈ s, and therefore η = 0. By the closed graph
theorem for Fréchet spaces, x : s→ s is continuous, and thus L∗(s) ⊂ L(s).

Fix x ∈ L∗(s), ξ ∈ s′, and define a linear functional φξ : s → C, φξ(η) :=
〈x∗η, ξ〉. From the continuity of x∗ : s → s, it follows that for every q ∈ N0 there
is r ∈ N0 and C > 0 such that |x∗η|q ≤ C|η|r for all η in s. Hence, with the same
quantifiers, we get∣∣φξ(η)

∣∣ = ∣∣〈x∗η, ξ〉∣∣ ≤ |x∗η|q · |ξ|−q ≤ C|η|r · |ξ|−q, (3.3)

and thus φξ is continuous. Consequently, for each ξ ∈ s′ we can find a unique
ζ ∈ s′ such that

〈η, ζ〉 = φξ(η) = 〈x∗η, ξ〉

for all η ∈ s, and we may define x̃ : s′ → s′ by x̃ξ := ζ. Clearly, x̃ is a linear
extension of x, and moreover x̃ is continuous. Indeed, by (3.3), for every q ∈ N0

there is r ∈ N0 and C > 0 such that

|x̃ξ|−r = sup
|η|r≤1

∣∣〈η, x̃ξ〉∣∣ = sup
|η|r≤1

∣∣〈x∗η, ξ〉∣∣ ≤ C|ξ|−q

for all ξ ∈ s′. This shows the continuity of x̃, and the proof is complete. �

The following result follows also from [20, Proposition 2.2].

Proposition 3.7. We have L∗(s) = L(s) ∩ L(s′) as sets.

Proof. The inclusion L∗(s) ⊂ L(s) ∩ L(s′) follows directly from Lemma 3.6.
Let x ∈ L(s) ∩ L(s′). For each η ∈ s, we define a linear functional ψη : s

′ → C,
ψη(ξ) := 〈x̃ξ, η〉, where x̃ : s′ → s′ is the continuous extension of x. By the
continuity of the operator x̃ and the Grothendieck factorization theorem (see [22,
Theorem 24.33]), it follows that for every r ∈ N0 there is q ∈ N0 and C > 0 such
that |x̃ξ|−q ≤ C|ξ|−r for ξ ∈ s′. Hence, for ξ ∈ s′, we have∣∣ψη(ξ)

∣∣ = ∣∣〈x̃ξ, η〉∣∣ ≤ |x̃ξ|−q · |η|q ≤ C|η|q · |ξ|−r.

This shows that ψη is continuous, and therefore there exists ζ ∈ s such that
ψη(·) = 〈·, ζ〉. Consequently, 〈xξ, η〉 = 〈ξ, ζ〉 for ξ ∈ s, hence s ⊂ D(x∗) and
x∗(s) ⊂ s, that is, x ∈ L∗(s). �

If we endow L(s)∩L(s′) with the involution on L∗(s), we obtain the following.

Proposition 3.8. We have L∗(s) = L(s) ∩ L(s′) as locally convex spaces and
∗-algebras. Consequently, L(s) ∩ L(s′) is a complete locally convex space and a
topological ∗-algebra.

Proof. By definition and Proposition 3.7, L∗(s) = L(s) ∩ L(s′) as ∗-algebras. Let
us compare fundamental systems {pn,B}n∈N0,B∈B (3.2) and {qn,B}n∈N0,B∈B (2.1)
of seminorms on L∗(s) and L(s) ∩ L(s′), respectively. Take x ∈ L∗(s) with its
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unique extension x̃ ∈ L(s′). Let B be a bounded subset of s, and let n ∈ N0.
Then, by Lemma 3.6,

sup
η∈B

|x∗η|n = sup
η∈B

sup
ξ∈U◦

n

∣∣〈x∗η, ξ〉∣∣ = sup
η∈B

sup
ξ∈U◦

n

∣∣〈η, x̃ξ〉∣∣ = sup
ξ∈U◦

n

|x̃ξ|′B. (3.4)

This shows that pn,B(x) = qn,B(x). Since L∗(s) is a complete locally convex space
and a topological ∗-algebra (see [28, Proposition 3.3.15] and Remark 3.5), the
result follows. �

By Propositions 3.3 and 3.4, DC(S) ⊂ L(S) × L(S), and thus we may endow
DC(S) with the corresponding subspace topology, denoted by τDC(S). Note that a
typical continuous seminorm of an element (L,R) of L(S)×L(S) is given by the
formula max{supx∈M ‖L(x)‖n, supx∈M ‖R(x)‖n}, whereM is a bounded subset of
S and n ∈ N0.

For u ∈ L(s)∩L(s′), we define the left and right multiplication maps Lu, Ru :
S → S, Lu(x) := ux, Ru(x) := xũ, where ũ : s′ → s′ is the extension of u
according to the definition of L(s) ∩ L(s′). Theorem 3.9 below states that the
double representation (3.1) of S can be extended to an isomorphism of topological
∗-algebras L(s) ∩ L(s′) and DC(S), and thus L(s) ∩ L(s′) can be seen as the
multiplier algebra of S (see [23, Theorem 3.1.8, Example 3.1.2]).

Theorem 3.9. The map %̃ : L(s) ∩ L(s′) → DC(S), u 7→ (Lu, Ru) is an isomor-
phism of locally convex spaces and ∗-algebras. Consequently, DC(S) is a complete
locally convex space and a topological ∗-algebra.

Proof. Throughout the proof, for ξ, η ∈ s, ξ ⊗ η denotes the 1-dimensional
operator 〈·, η〉ξ : s′ → s.

Clearly, for u ∈ L(s) ∩ L(s′), the left and right multiplication maps Lu, Ru :
S → S are well defined. Furthermore, it is easy to see that xLu(y) = Ru(x)y for
x, y ∈ S and u ∈ L(s)∩L(s′). Hence, (Lu, Ru) ∈ DC(S) for every u ∈ L(s)∩L(s′);
that is, %̃ is well defined.

The proof of the fact that %̃ is a ∗-algebra homomorphism is straightforward
and %̃ is injective, because S is an essential ideal in L(s)∩L(s′) (see Proposition
3.3). We will show that %̃ is surjective.

Let (L,R) ∈ DC(S), and fix e ∈ s with ‖e‖`2 = 1. We define a linear continuous
map (use Propositions 3.3 and 3.4) u : s→ s by

uξ := L(ξ ⊗ e)(e).

For ξ, η ∈ s, we have

〈uξ, η〉 =
〈
L(ξ ⊗ e)(e), η

〉
=

〈
L(ξ ⊗ e)(e), (η ⊗ e)(e)

〉
=

〈
(e⊗ η)

[
L(ξ ⊗ e)(e)

]
, e
〉
=

〈[
(e⊗ η)L(ξ ⊗ e)

]
(e), e

〉
=

〈[
R(e⊗ η)(ξ ⊗ e)

]
(e), e

〉
=

〈
R(e⊗ η)

[
(ξ ⊗ e)(e)

]
, e
〉

=
〈
R(e⊗ η)(ξ), e

〉
=

〈
ξ,
(
R(e⊗ η)

)∗
(e)

〉
.

(3.5)

This means that u∗η = (R(e ⊗ η))∗(e) ∈ s for η ∈ s. Hence, s ⊂ D(u∗) and
u∗(s) ⊂ s. Consequently, u ∈ L∗(s), and thus, by Proposition 3.7, u has the
continuous extension ũ : s′ → s′.
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By Propositions 3.3 and 3.4, for ζ ∈ s, we obtain

Lu(ξ ⊗ η)(ζ) = (uξ ⊗ η)(ζ) =
[
L(ξ ⊗ e)(e)⊗ η

]
(ζ)

= 〈ζ, η〉L(ξ ⊗ e)(e) = L(ξ ⊗ e)
(
〈ζ, η〉e

)
= L(ξ ⊗ e)

[
(e⊗ η)(ζ)

]
=

[
L(ξ ⊗ e)(e⊗ η)

]
(ζ)

= L
(
(ξ ⊗ e)(e⊗ η)

)
(ζ) = L(ξ ⊗ η)(ζ),

and hence Lu(ξ ⊗ η) = L(ξ ⊗ η). Since {ξ ⊗ η : ξ, η ∈ s} is linearly dense in S, it
follows that Lu = L. Likewise, (3.5) implies that, for ζ ∈ s,

Ru(ξ ⊗ η)(ζ) =
[
(ξ ⊗ η)ũ

]
(ζ) = 〈uζ, η〉ξ =

〈
R(e⊗ η)(ζ), e

〉
ξ

= (ξ ⊗ e)
(
R(e⊗ η)(ζ)

)
=

[
(ξ ⊗ e)R(e⊗ η)

]
(ζ)

= R
(
(ξ ⊗ e)(e⊗ η)

)
(ζ) = R(ξ ⊗ η)(ζ),

and therefore that Ru = R. Hence, %̃(u) = (Lu, Ru) = (L,R), and thus %̃ is
surjective.

Next, we will prove that %̃ is continuous. Let M be a bounded subset of S, and
let n ∈ N0. Since the involution on S is continuous (see [6, p. 148]), the set M∗

is bounded and there are C > 0, k ≥ n such that ‖y∗‖n ≤ C‖y‖k for all y ∈ S.
Define

B1 :=
{
xξ : x ∈M, ξ ∈ s′, |ξ|−n ≤ 1

}
,

B2 :=
{
x∗ξ : x ∈M, ξ ∈ s′, |ξ|−k ≤ 1

}
.

Then, for all m ≥ k, we have

sup
{
|η|m : η ∈ B1

}
≤ sup

x∈M
‖x‖m <∞,

sup
{
|η|m : η ∈ B2

}
≤ sup

x∈M∗
‖x‖m <∞,

and therefore B1 and B2 are bounded subsets of s. Now,

sup
x∈M

∥∥Lu(x)
∥∥
n
= sup

x∈M
‖ux‖n = sup

x∈M
sup

|ξ|−n≤1

∣∣u(xξ)∣∣
n
= sup

η∈B1

∣∣u(η)∣∣
n
≤ qn,B1(u).

Moreover, by Lemma 3.6, (xũ)∗ = u∗x∗ for x ∈ S and u ∈ L(s)∩L(s′), and thus

sup
x∈M

∥∥Ru(x)
∥∥
n
= sup

x∈M
‖xũ‖n

≤ C sup
x∈M

∥∥(xũ)∗∥∥
k
= C sup

x∈M
‖u∗x∗‖k

= sup
x∈M

sup
|ξ|−k≤1

∣∣u∗(x∗ξ)∣∣
k
= sup

η∈B2

|u∗η|k

≤ pk,B2(u) = qk,B2(u),

where the last identity follows from (3.4). Consequently,

max
{
sup
x∈M

∥∥Lu(x)
∥∥
n
, sup
x∈M

∥∥Ru(x)
∥∥
n

}
≤ max

{
qn,B1(u), qk,B2(u)

}
≤ qk,B1∪B2(u),

and thus %̃ is continuous.
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Finally, we show that the inverse of %̃ is continuous. Let us take a bounded
subset B of s and n ∈ N0. Define

M :=
{
xξ : ξ ∈ B \ {0}

}
∪ {0},

where xξ := ‖ξ‖−1
`2
ξ ⊗ ξ and 0 is the zero operator in S. For all m ∈ N0, we have

sup
x∈M

‖x‖m = sup
ξ∈B\{0}

‖ξ‖−1
`2
|ξ|2m ≤ sup

ξ∈B\{0}
|ξ|2m <∞,

where the first inequality follows from the Cauchy–Schwarz inequality and the last
one is a consequence of the boundedness of the set B. Hence, M is a bounded
subset of S.

Let

B′ :=
{
xξ : x ∈M, ξ ∈ s′, |ξ|−n ≤ 1

}
.

Clearly, 0 ∈ B′. If ξ ∈ B \ {0}, then ξ = xξ(‖ξ‖−1
`2
ξ) and |‖ξ‖−1

`2
ξ|−n ≤ 1,

hence ξ ∈ B′. Consequently, B ⊂ B′. Again by identity (3.4), we get, for all
u ∈ L(s) ∩ L(s′),

qn,B(u) = pn,B(u) = max
{
sup
η∈B

|uη|n, sup
η∈B

|u∗η|n
}

≤ max
{
sup
η∈B′

|uη|n, sup
η∈B′

|u∗η|n
}

= max
{
sup
x∈M

sup
|ξ|−n≤1

∣∣u(xξ)∣∣
n
, sup
x∈M

sup
|ξ|−n≤1

∣∣u∗(xξ)∣∣
n

}
= max

{
sup
x∈M

‖ux‖n, sup
x∈M

‖u∗x∗‖n
}

= max
{
sup
x∈M

‖ux‖n, sup
x∈M

‖xũ‖n
}

= max
{
sup
x∈M

∥∥Lu(x)
∥∥
n
, sup
x∈M

∥∥Ru(x)
∥∥
n

}
,

and therefore %̃−1 is continuous. �

4. Topological properties of the multiplier algebra

We start by showing how the multiplier algebra of S can be realized as a
matrix algebra. Before that we make the following rather easy but very efficient
observation.

Proposition 4.1. The space L(s)∩L(s′) is isomorphic as a locally convex space
to a complemented subspace of L(s)× L(s′).

Proof. We use matrix representations (2.5). If x = (xij)i,j∈N ∈ Λ(B) and y =
(yij)i,j∈N ∈ Λ(B′), then we denote M(x, y) ∈ CN×N,[

M(x, y)
]
ij
:=

{
xij i ≤ j,

yij i > j,

and define a map P : Λ(B)× Λ(B′) → Λ(B)× Λ(B′) by

P (x, y) :=
(
M(x, y),M(x, y)

)
.
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It is easily seen that P is a projection with

imP = ∆
(
Λ(B)× Λ(B′)

)
:=

{
(x, x) ∈ Λ(B)× Λ(B′) : x ∈ Λ(B) ∩ Λ(B′)

}
.

To get continuity, observe first that Λ(B) and Λ(B′) are webbed by [22, Lemma
24.28]. Moreover, L(s) ∼= L(s′) ∼= s⊗ s′ by [19, Corollary 43.3(7)], and therefore
L(s) and L(s′) are ultrabornological by [16, Chapitre II, Proposition 15, Corollaire
2] (see also [21] for a homological proof of this fact). Since Λ(B) ∼= L(s) and
Λ(B′) ∼= L(s′), Λ(B) and Λ(B′) are ultrabornological as well. This implies that
Λ(B)×Λ(B′) is ultrabornological by [27, Chapter II, Section 8.2, Corollary 1] and
has a web by [19, Theorem 35.4(6)]. Continuity of P follows now by the closed
graph theorem (see [22, Theorem 24.31]).

Now, let us consider the map

Φ: L(s)× L(s′) → Λ(B)× Λ(B′), Φ(x, y) :=
(
Φ1(x),Φ2(y)

)
,

where Φ1 : L(s) → Λ(B), Φ1 : L(s′) → Λ(B′) are isomorphisms given by x 7→
(〈xej, ei〉)i,j∈N. Clearly, Φ is an isomorphism of locally convex spaces and

Φ
(
∆
(
L(s)× L(s′)

))
= ∆

(
Λ(B)× Λ(B′)

)
,

where

∆
(
L(s)× L(s′)

)
:=

{
(x, x̃) ∈ L(s)× L(s′) : x ∈ L(s) ∩ L(s′)

}
.

This shows that the map Φ−1PΦ is a continuous projection onto ∆(L(s)×L(s′)).
Finally, by comparing fundamental systems of seminorms on L(s) ∩ L(s′) and
∆(L(s)× L(s′)), we see that the map

Ψ: L(s) ∩ L(s′) → ∆
(
L(s)× L(s′)

)
, Ψ(x) := (x, x̃)

is an isomorphism, and thus L(s)∩L(s′) is isomorphic to ∆(L(s)×L(s′)), a com-
plemented subspace of L(s)× L(s′). �

Corollary 4.2. The space L(s)∩L(s′) is a nuclear, ultrabornological PLS-space.

Proof. The spaces L(s) and L(s′) are nuclear, ultrabornological PLS-spaces, and
so is L(s) × L(s′) as their product (see [22, Proposition 28.7], [24, Corollary
6.2.14]). The desired properties are inherited by complemented subspaces (see
[22, Proposition 28.6], [27, Chapter II, 8.2, Corollary 1], [12, Proposition 1.2]),
and thus, by Proposition 4.1, the proof is complete. �

Let A be as in (2.4), that is,

A := (aij;N,n)i,j∈N,N,n∈N0 , aij;N,n := max
{iN
jn
,
jN

in

}
.

Proposition 4.3. We have L(s) ∩ L(s′) ∼= Λ(A) as topological ∗-algebras.

Proof. The map

T : Λ(A) → L(s) ∩ L(s′),
〈
(Tx)ej, ei

〉
:= xij



628 T. CIAŚ and K. PISZCZEK

is a ∗-algebra isomorphism. To see that it is continuous, observe that the embed-
dings Λ(A) ↪→ L(s) and Λ(A) ↪→ L(s′) are continuous. Continuity of T−1 fol-
lows from the open mapping theorem (see [22, Theorem 24.30]), since Λ(A)—as a
PLS-space—has a web, and L(s)∩L(s′) is ultrabornological by Corollary 4.2. �

Combining Propositions 3.8 and 4.3 and Theorem 3.9, we obtain the following.

Corollary 4.4. We have DC(S) ∼= L∗(s) = L(s) ∩ L(s′) ∼= Λ(A) as topological
∗-algebras.

From now on, byMS we denote any topological ∗-algebra isomorphic to DC(S)
and we call it the multiplier algebra of the noncommutative Schwartz space.

We have just shown thatMS is webbed and ultrabornological. By [30, Theorem
4.2], this last property is equivalent to barrelledness. Therefore, by [22, Theorems
24.30, 24.31] and [24, Proposition 4.1.3], all the classical functional analytic tools
are available for MS. For convenience we state this result separately.

Theorem 4.5. Let X = MS be the multiplier algebra of the noncommutative
Schwartz space, and let E,F,G be locally convex spaces with E webbed and F
ultrabornological. The following hold.

(1) Uniform boundedness principle: every pointwise bounded set B ⊂ L(X,G)
is equicontinuous.

(2) Closed graph theorem: every linear map T : X → E and S : F → X with
closed graph is continuous.

(3) Open mapping theorem: every continuous linear surjection T : E → X and
S : X → F is open.

We will now need a characterization of those Fréchet spaces which are
PLN-spaces. This characterization seems to be known for specialists; however,
we were not able to find any reference to that result. We state it explicitly below
for the reader’s convenience.

Proposition 4.6. A Fréchet space is a PLN-space if and only if it is strongly
nuclear.

Proof. Let X be a strongly nuclear Fréchet space. By [17, Theorem 21.8.8], X is
a topological subspace of (s′)I for a countable set I. Since s′ is an LN-space, the
product (s′)I is a PLN-space. By [12, Proposition 1.2], X is a PLN-space.

Conversely, every PLN-space is a topological subspace of a countable product of
LN-spaces and these are strongly nuclear by [17, Theorem 21.8.6]. Consequently,
by [17, Propositions 21.1.3 and 21.1.5], X is strongly nuclear. �

Corollary 4.7. The multiplier algebra of the noncommutative Schwartz space is
not a PLN-space.

Proof. Suppose that the multiplier algebra is a PLN-space. Then so is s as its
closed subspace. In fact, s is even complemented in Λ(A)—consider the projection
in Λ(A) which cancels all but first row entries. By Proposition 4.6, s is strongly
nuclear which leads to a contradiction by [17, 21.8, Example 3]. �
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The multiplier algebra of the noncommutative Schwartz space satisfies another
useful property. Recall from [4, p. 433] that a PLS-space X is said to have the
dual interpolation estimate for big θ if

∀N ∃M ∀K ∃n ∀m ∃θ0 ∈ (0, 1) ∀θ ≥ θ0 ∃k, C > 0 ∀x′ ∈ X ′
N :

‖x′ ◦ ιMN ‖∗M,m ≤ C
(
‖x′ ◦ ιKN‖∗K,k

)1−θ(‖x′‖∗N,n

)θ
.

If we take θ ≤ θ0, then X has the dual interpolation estimate for small θ,
and if we take θ ∈ (0, 1), then X has the dual interpolation estimate for all θ.
For Köthe-type PLS-spaces Λp(B) it is enough—see the proof of [3, Theorem
4.3]—to check the above condition for evaluation functionals φj(x) := xj, j ∈ N.
Examples of PLS-spaces with this property can be found in [2], [4], and [3].
The dual interpolation estimate plays an important role in partial differential
equations, for example, in the surjectivity of operators, the existence of linear
right inverses, and parameter dependence of solutions (see [10] for more details).

Proposition 4.8. The multiplier algebra MS has the dual interpolation estimate
for big θ but not for small θ.

Proof. For any N ∈ N0, take M := N +1 and for any K ∈ N0, take θ0 ∈ (0, 1) so
that

(1− θ0)K +Nθ0 ≤M.

In a similar fashion, for n = 1, any m ∈ N0, and θ ≥ θ0, take k ∈ N0 so that

(1− θ)k + nθ ≥ m.

Then (with all the quantifiers in front)(jK
ik

)1−θ(jN
in

)θ

≤ C
jM

im
.

Exchanging indices i, j in the above inequality, we obtain by (2.4)

(aij;K,k)
1−θ(aij:N,n)

θ ≤ Caij;M,m.

Since MS ∼= Λ(A), the dual interpolation estimate for big θ follows. If it had
the condition for small θ, then, by [2, Propositions 5.3(b) and 5.4(b)] and [22,
Corollary 29.22], the space s of rapidly decreasing sequences would be a Banach
space, which is a contradiction. �

Remark 4.9. The above result together with [4, Proposition 1.1, Corollary 1.2(c)]
gives another proof of the fact that the multiplier algebra of the noncommutative
Schwartz space is ultrabornological.

We end this section with a technical lemma which characterizes when an arbi-
trary PLB-space is already a PLS-space; the proof uses interpolation theory and
follows the idea of [25, Lemma 7]. As a consequence (see Remark 4.11(ii)), we
obtain another proof of the fact that MS is a PLS-space.

Lemma 4.10. Let X := projM∈N indm∈NXM,m be a PLB-space. The following
conditions are equivalent:

(i) X is a PLS-space,
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(ii) ∀M ∃L := LM ∀l ∃m := ml : XL,l ↪→ XM,m is a compact inclusion.

Proof. We only need to show the implication (ii)⇒(i). There is no loss of gen-
erality in assuming that LM = M + 1 and ml = l. Consider the commutative
diagram

X2,1 X1,1

X2,2 X1,2

ι21

j1

j2

κ21

where the inclusions ι21, κ
2
1 are the respective linking maps and the inclusions j1, j2

are compact. Applying the real interpolation method with parameters θ1, 1 (0 <
θ1 < 1) to the Banach couples Y1 := (X2,1, X1,1), Y2 := (X2,2, X1,2), we obtain, by
[1, Theorem 3.11.8], a continuous map

Jθ1,1(Y1) → Jθ1,1(Y2)

between the interpolation spaces Jθ1,1(Y1) and Jθ1,1(Y2). By [1, Corollary 3.8.2],
we get for 0 < θ1 < θ2 < 1 the compact inclusion

Jθ1,1(Y2) ↪→ Jθ2,1(Y2),

and therefore the map

j21 : Jθ1,1(Y1) → Jθ2,1(Y2)

is also compact. We apply the same procedure to the commutative diagram

X2,2 X1,2

X2,3 X1,3

ι32

j2

j3

κ32

and obtain a compact operator

j32 : Jθ2,1(Y2) → Jθ3,1(Y3),

where Y3 := (X2,3, X1,3) and θ2 < θ3 < 1. Proceeding this way we obtain a count-
able inductive system (jn+1

n : Jθn,1(Yn) → Y1), where Y1 :=
⋃

n j
n+1
n (Jθn,1(Yn)).

Let us observe that the inductive topology of this system exists. Indeed, let x ∈ Y1
be a nonzero element. Since Y1 ⊂ X1 = indnX1,n, there exists, by [22, Lemma
24.6], a linear functional φ ∈ (indnX1,n)

∗ such that φ(x) 6= 0 and φ◦κn ∈ X ′
1,n for

all n ∈ N (by (κn : X1,n → X1) we denote the embedding spectrum of X1). Recall
that we distinguish here the space of linear functionals—denoted by (·)∗—and
the space of continuous linear functionals—denoted by (·)′. Therefore, φ ∈ Y ∗

1 .
Furthermore, for every n ∈ N we have the commutative diagram
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Jθn,1(Yn) X1,n K

Jθn+1,1(Yn+1) X1,n+1 K

jn+1
n

φ ◦ κn

φ ◦ κn+1

∼=

and therefore φ ◦ jn+1
n ∈ Jθn,1(Yn)

′ for every n ∈ N. Again, by [22, Lemma 24.6],
this implies that the inductive topology of (jn+1

n : Jθn,1(Yn) → Y1) exists. Now, by
[22, Lemma 24.34], we conclude that (jn+1

n : Jθn,1(Yn) → Y1) is an LB-space and
that compactness of the linking maps (jn+1

n )n implies that it is even an LS-space.
It follows that we have continuous linear maps

X2 → Y1 → X1. (4.1)

Indeed, since for every n ∈ N,Jθn,1(Yn) is an interpolation space for the couple
Yn = (X2,n, X1,n) with the compact inclusion jn : X2,n ↪→ X1,n, we get compact
inclusions

X2,n ↪→ Jθn,1(Yn) ↪→ X1,n

(observe that we lose injectivity in (4.1) because the linking maps (jn+1
n )n are

not, in general, injective). The above argument works for all LB-spaces XM and
XM+1; therefore

X = proj
M∈N

YM ,

where all the YM ’s are LS-spaces. Consequently, X is a PLS-space. �

Remark 4.11. Here we give two new proofs of the fact that MS is a PLS-space.
By Propositions 2.2 and 4.3, we may use the topological ∗-algebra isomorphism
MS ∼= Λ(A) (recall that the PLB-matrix A is given by (2.4)).

(i) We do a slight perturbation ofA. LetD := (dij,N,n)i,j∈N,N,n∈N0 be a 4-indexed
Köthe PLB-matrix given by

dij;N,n := max
i,j∈N

{jN+ 1
n

in
,
iN+ 1

n

jn

}
.

One can easily show that for all i, j ∈ N, N, n ∈ N0 we have

aij;N,n ≤ dij;N,n ≤ aij;N+1,n.

This implies the topological isomorphism MS ∼= Λ(D). Since

dij;N,n

dij;N,n+1

= min{i, j}max{i, j}
1

n(n+1) ,

we get that for all N,n ∈ N0

lim
i,j→+∞

dij;N,n+1

dij;N,n

= 0.

Consequently, Λ(D), and therefore also MS, is a PLS-space.
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(ii) Since
aij,N,n+2

aij,N+2,n
= (ij)−2 for all i, j, N, n, the inclusion map

`2
(
(aij,N+2,n)i,j∈N

)
↪→ `2

(
(aij,N,n+2)i,j∈N

)
is compact. By Lemma 4.10, the result follows.

5. Algebraic properties of the multiplier algebra

We say that a subalgebra B of an algebra A is spectral invariant in A if, for
every x ∈ B, x is invertible in A if and only if it is invertible in B. We show that
MS contains a spectral invariant copy of the algebra s′, which implies that it is
neither a Q-algebra nor m-convex.

Proposition 5.1. Let A be a Köthe PLB-matrix given by (2.4), and let ∆(A) be
the algebra of all diagonal matrices belonging to Λ(A). Then

(i) ∆(A) is a complemented subspace of Λ(A),
(ii) ∆(A) is a closed commutative ∗-subalgebra of Λ(A),
(iii) ∆(A) ∼= s′ as topological ∗-algebras,
(iv) ∆(A) is spectral invariant in Λ(A).

Proof. (i) Define π : Λ(A) → Λ(A) by

πx :=
∞∑
j=1

ejjxejj,

where (eij)i,j∈N is a sequence of matrix units. Clearly, π is a projection. Note that
continuity of a linear operator T on Λ(A) follows from the condition

∀N ∃M ∀m ∃n,C > 0 ∀x ∈ Λ(A) ‖Tx‖N,n ≤ C‖x‖M,m.

But

‖πx‖N,n =
∞∑
j=1

|xjj|ajj,N,n ≤
∞∑

i,j=1

|xij|aij,N,n = ‖x‖N,n,

so π is continuous, and thus ∆(A) is complemented in Λ(A).
(ii) It is clear that ∆(A) is a commutative ∗-subalgebra of Λ(A), and by (i) it

is closed in Λ(A).
(iii) Since

∆(A) =
{
x ∈ CN×N : xij = 0 for i 6= j and ∀N ∃n

∞∑
j=1

|xjj|jN−n <∞
}

=
{
x ∈ CN×N : xij = 0 for i 6= j and (xjj)j∈N ∈ s′

}
,

the operator

φ : s′ → ∆(A), φξ :=
∞∑
j=1

ξjejj

is a ∗-algebra isomorphism. Moreover, for all N,n ∈ N0 and all ξ ∈ s′, we have

‖φξ‖N,n =
∞∑
j=1

|ξj|jN−n.
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Now, by Cauchy–Schwarz, we get

|ξ|−m ≤
∞∑
j=1

|ξj|j−m ≤ π√
6
|ξ|−m+1

for all m ∈ N0. Therefore φ is an isomorphism of locally convex spaces. Conse-
quently, ∆(A) ∼= s′ as topological ∗-algebras.

(iv) Let us take x ∈ ∆(A) which is invertible in Λ(A), and let y be its inverse.
Then

∞∑
k=1

xikykj = xiiyij =

{
1 for i = j,

0 otherwise.

Consequently, xii 6= 0, and thus yij = 0 for i 6= j. This shows that y ∈ ∆(A), and
the proof is complete. �

Proposition 5.2. The following statements hold:

(i) MS is not a Q-algebra,
(ii) MS is not m-convex.

Proof. By Proposition 5.1, MS contains a closed, spectral invariant ∗-subalgebra
M isomorphic to s′.

(i) Let F,G be the sets of invertible elements inM and ML(s′, s), respectively.
Then F = G∩M . This shows that G is not open, because otherwise F would be
open, which contradicts [4, Theorem 2.8]. Hence, ML(s′, s) is not a Q-algebra.

(ii) Suppose that there is a basis V of zero neighborhoods in ML(s′, s) such
that V 2 ⊆ V for all V ∈ V . Then {V ∩M}V ∈V is a basis of zero neighborhoods
in M and

(V ∩M)2 ⊆ V 2 ∩M ⊆ V ∩M,

soM ism-convex, which is a contradiction (again apply [4, Theorem 2.8]). Hence,
ML(s′, s) is not m-convex. �
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2. J. Bonet and P. Domański, Parameter dependence of solutions of differential equations on
spaces of distributions and the splitting of short exact sequences, J. Funct. Anal. 230 (2006),
no. 2, 329–381. Zbl 1094.46006. MR2186216. DOI 10.1016/j.jfa.2005.06.007. 629
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