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ABSTRACT. In this article we present applications of Hardy-type and refined
Hardy-type inequalities for a generalized fractional integral operator involving
the Mittag-LefHler function in its kernel and for the Hilfer fractional derivative
using convex and monotone convex functions.

1. INTRODUCTION

Let (21,1, 1) and (39, Q9, o) be measure spaces with positive o-finite mea-
sures. Let U(f, k) denote the class of functions g : 2; — R with the representation

o) = [ Ko 0050 dpatt)
2
and let A be an integral operator defined by

fw) = = s | K )0) i), (1)

where k : {2y x {3 — R is measurable and a nonnegative kernel, f : {25 — R, is a
measurable function, and

0< K(z):= / k(x,t)dus(t), =€ Q. (1.2)
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The Hardy integral inequality is one of the most important inequalities in anal-
ysis. It has many applications; the most useful one is to stable degenerate sta-
tionary waves (see [12]). These considerations have led various researchers in the
field of integral inequalities to explore certain extensions and generalizations by
involving fractional calculus operators. Adeleke, Cizmesija, Oguntuase, Persson,
Pokaz, Kruli¢, and Pecarié¢ in [1] and [3] have added a lot in this regard. In recent
papers, Igbal et al. in [9] and [10] investigated certain applications of Hardy-
type and refined Hardy-type inequalities involving Saigo, Riemann—Liouville, and
Erdélyi—Kober fractional integral operators. But we give such types of inequal-
ities for more general fractional integral and derivative operators using convex
and monotone convex functions. Let us first recall the following basic definitions.

The first definition is presented in [15].

Definition 1.1. Let I be an interval in R. A function ® : I — R is considered to
be convex if

S(Az+ (1 Ny) < A(x) + (1 — \)D(y) (1.3)

for all points z,y € I and all A € [0,1]. The function ® is strictly convex if
inequality (1.3) holds strictly for all distinct points in I and A € (0, 1).

The following definition is characterized by Pecari¢ et al. in [13, p. 9].

Definition 1.2. Let 0 < a < b < oo. By C"[a,b], we denote the space of all
functions on [a, b] which have continuous derivatives up to order n, and ACla, b]
is the space of all absolutely continuous functions on [a, b]. By AC"[a, b], we denote
the space of all functions f € C" '[a,b] with f®~Y € ACla,b).

The following theorem is given in [13].

Theorem 1.3. Let (21,31, 1) and (g, Xo, p2) be measure spaces with positive
o-finite measures, let u be a weight function on §2q, let k be a nonnegative mea-
surable function on Q1 X s, and let K be defined on 0y by (1.2). Suppose that
K(x) >0 for all x € {4, that the function x — u(m)% is integrable on €y for
each fixed t € Qq, and that v is defined on €y by

o(t) = /Q | u(xﬂ‘;(é;f)) dp () < 00 (1.4)

If ® is a convex function on the interval I C R, then the inequality
| w@e(act@) dinte) < [ wO(70) datt) (15)

holds for all measurable functions f : Q23 — R such that Im f C I, where Ay is
defined by (1.1).

Substituting k(z,t) by k(z,t) fo(t) and f by %, where f; : Q3 = R (i = 1,2) are
measurable functions in Theorem 1.3, we obtain the following result presented in

[7]-
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Theorem 1.4. Let (21, %1, 1) and (Qa, 3o, p2) be measure spaces with o-finite
measures, let u be a weight function on (1, and let k be a nonnegative measurable
function on Qq x Qy. Assume that the function x — u(x) SE;)) is integrable on €y
for each fized t € Qq. Define p on Qs by

pl0) = £:0) | u@% dyna(z) < oo.

If & : I — R is a convex function and i glg ; ﬁg; € I, then the inequality

[ ot (B an < [ son(ED iy

holds for all g; € U(fi, k) (i =1,2) and for all measurable functions f; : Qs — R
(i=1,2).
fi(z)

Remark 1.5. If ® is strictly convex on I and if fQ(i)

is nonconstant, then the
inequality given in (1.6) is strict.

Definition 1.6. Let ® : I — R be a convex function. Then the subdifferential of
® in z is denoted by 0®(z) and is defined as

0®(x) = {y € R: y is the slope of a support line at z}.

The new refined general weighted Hardy-type inequality that has a nonnegative
kernel and that is related to an arbitrary convex function is given in the following
theorem (see [3]).

Theorem 1.7. Let the assumptions of Theorem 1.5 be satisfied. Moreover, if ®
s a convex function on an interval I C R and if p : [ — R is any function such
that o(x) € 0®(x) for all x € Int I, then the inequality

/Q (OB (F(1)) dpa(t) — / w(2)®(Auf (2)) dpn ()
> / | % / K[ 2(70) - #(4uf ()

= le(Aef @) - |£(8) = Anf ()| dpiz(t) dpus ()

holds for all measurable functions f : Qs — R such that f(t) € I for allt € Qs.
If ® is a monotone convex function on an interval I C R, then the inequality

[ e (@) et = [ a4 @) dino)

> | / }ﬁ—(?) / sn(F(£) — Aef () k(2. 1) [0 (F(1)) — @(Arf (2))
~ e (Anf@)] - (F(8) = A ()] dyialt) dpn ()

holds for all measurable functions f : Qo — R such that f(t) € I for all fized
t € Qo, where Ay f is defined by (1.1).
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In the following theorem, we give a refinement of a Hardy-type inequality
obtained by Kaijser et al. in [11].

Theorem 1.8. Let u : (0,b) — R be a weight function such that the functions
T — @ . % are integrable on (t,b) for each fized t € (0,b), and let the function

w: (0,b) = R be defined by

w(t) = t/t ";((i?t)u(x)‘i—x,

z)

where 0 < b < 0o and k : (0,b) x (0,b) — R is a nonnegative measurable function
such that

K(z) :/Omk(x,t)dt>0, z € (0,b).

If ® is a convex function on an interval I C R and if ¢ : I — R is such that
o(x) € 00(x) for all x € Int I, then the inequality

[ wweranG - [

b u(:c) x
> [ 5 | renllo(ro) - o4 @)

~le(Auf(@)] - [70) ~ Aupa)] | at™ (1.7

holds for all measurable functions f : (0,b) — R with values in I, where Agf is
defined by

1 X
K(x)/o ka0 f(#)dt, € (0,b).

If the function ® s concave, then the order of integrals on the left-hand side
of (1.7) is reversed. If ® is monotone convex on the interval I C R, then the
following inequality

Apf(x) =

[ wweanG - [ o)

X

b u(x) (7
- /0 K(m)/o sgn(f(t) — Arf(@))k(z,0)[@(f(1) — 2(Arf(2))
— oAt @)[-(F(8) = Auf (2)] di=—

holds for all measurable functions f : (0,b) — R with values in I.
The next mean value theorem is given in [4].

Theorem 1.9. Let (Qq, %1, p1), (Q2, Xa, p2) be measure spaces with o-finite mea-
sures, and let u : 0 — R be a weight function. Let I be compact interval of R, let
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h e CHI), and let f : Qy — R a measurable function such that Im f C I. Then
there exists n € I such that

[ @h () duat) = | wl@i(Auf@) din(o)

1

1 2(77) [/sz(ﬂf?(t) dpa(t) — /Q u(x)(Akf(x))zdm(x)],
where A, f and v are defined by (1.1) and (1.]), respectively.

2. EXPONENTIAL CONVEXITY

We continue with the definition of an exponentially convex function as origi-
nally given in [2] by Bernstein.

Definition 2.1. A function @ : (a,b) — R is ezponentially convez if it is continuous
and if

D tity®(x;+a;) > 0
ij=1
for all n € N and all sequences (¢,)nen and (z,)nen of real numbers such that

zi+x; € (a,b), 1 <ij<n.
Lemma 2.2. Let s € R, and let the function s : (0,00) — R be defined by

s

ﬁ? S 7é 0717
ps(r) =4 —logz, s=0, (2.1)
rlogz, s=1.

Then @ (x) = x572; that is, ps is a convex function.
The following theorem is presented in [4].

Theorem 2.3. Let the conditions of Theorem 1.3 be satisfied, and let ¢ be
defined by (2.1). Let f be a positive function. Then the function £ : R — [0, 00)
defined by

£(s) :/Q v(t)es (f(1)) duz(t)—/Q u(@)ps (Arf (@) dpn (@)

15 exponentially conver.

Theorem 2.4. Let the conditions of Theorem 1.9 be satisfied. Moreover, let k, he
C*(I) such that h'(z) # 0 for every x € I and

| o@h(r®) duatt) = [ u@h(Anf(@) dpa(o) £ 0.
Qo Q1
Then there exists n € I such that
K'(n) _ Ja, VORC)) dua(t) — Jo, u(@)k(Arf (2)) dpn (@)
W) Jo, vORF()) dus(t) = Jo, u(@)h(Arf (x)) du (x)
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Using Theorem 1.3, and bearing in mind (1.5), we define the following positive
linear functional:

(@) = [ oOB(0) dialt) ~ [ u@@(Af@) din(a). (22

We also define a linear functional by taking the positive difference of the left-hand
side and the right-hand side of the inequality (1.6) given in Theorem 1.4 as

a@) = [ 2p<t><1>(f Y dpatr) - / | u@o (2D ). 29

fa(t) ga(2)

First we give some necessary details about the divided differences. Let I C R
be an interval, and let f : I — R be a function. Then for distinct points z; € I,
1= 0,1, 2, the divided differences of first and second order are defined by

f(zig1) — f(2)

1 =0,1
o o 0=0),

21, 205 f] = [20, 215 f}

22 — 20

[Zi72i+1§f] =

[Zo, Rl 225 f] = (2'4)

The values of the divided differences are independent of the order of points
20, 21, 22 and may be extended to include the cases when some or all points are
equal; that is,

[Zo,Zo;f] = lim [ZO>Zl;f] = f/(Zo)>

Z1—20
provided that f’ exists.
Now passing through the limit z; — 2y and replacing z; by z in (2.4), we have

f(z) = f(20) = (2 — 20) f'(20)

[2072072; f] = lim [2’0721,2; f] — ; B 7é .
2120 (Z _ zo)
provided that f’ exists. Also, passing to the limit z; — z (1 = 0,1,2) in (2.4), we
have
"
(2,2, 2; f] = lim [2q, 21, 295 f] = / (2)7
Zi—Z 2

provided that f” exists. One can observe that, for all zg, 2y € I, [20, 21, f] > 0, if
f is increasing on I, and if, for all zo, 21, 20 € I, [20, 21, 22; f] > 0, then f is convex
on [.

Next, we recall the notion of n-exponential convexity given in [16].

Definition 2.5. For any open interval I of R, the function & : I — R is
n-exponentially convex in the Jensen sense on [ if

Zn: titjé(g—ggj) >0

ij=1
holds for all choices of t; € R, (; € I, 7 =1,...,n. A function ® : [ — R is

n-exponentially convex on [ if it is n-exponentially convex in the Jensen sense
and continuous on /.

The following theorem is given in [8].
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Theorem 2.6. Let I' = {®, : p € J} be a family of functions defined on I
such that the function p «— (29, 21, 22; ®p] is n-exponentially conver in the Jensen
sense on J for every three distinct points zy, 21,22 € I. Let A; (i = 1,2) be linear
functionals defined by (2.2) and (2.3). Then the function p — A;(®,) (i =1,2)
18 n-exponentially convex in the Jensen sense on J if it is continuous on J.

The next section deals with applications of results given in Section 1 for the
generalized fractional integral operator with the Mittag-LefHler function in its
kernel.

3. REFINED HARDY-TYPE INEQUALITIES FOR THE FRACTIONAL INTEGRAL
OPERATOR WITH GENERALIZED MITTAG-LEFFLER
FUNCTION IN ITS KERNEL

In this section, first we give the definition of the Mittag-Leffler function (see
[14]) and the fractional integral operator involving the generalized Mittag-Leffler
function appearing in the kernel (see [19]).

Definition 3.1. Let o, 5,7, € C;min{R(a), R(B), R(7),R(J)} > 0;p,q > 0, and
¢ < Ra + p. Then the generalized Mittag-Lefler function defined in [19] is given
by
EY 6q 2"
CYB,P Z F an + /8 ( )

n=

(3.1)

where (7),, represents the Pochhammer symbol, defined by (), = v(y — 1) X
(y=2) - (y—n+1). The function (3.1) represents all the previous generalizations
of the Mittag-Leffler function by setting the following values.

e p = ¢ = 1-—This reduces to Egg(z) =>> 1“(((JT);5 defined by Salim
n [18].

e § = p = 1-—This represents E]%(2) = >~ %fb -, which was intro-
duced by Shukla and Prajapati in [20]. In [21] Srivastava and Tomovski
investigated the properties of this function and its existence for a wider
set of parameters.

e 0 =p=q=1—The operator (3.1) is defined by Prabhakar in [17] and is

)

denoted as E 5(z) = Y2, p(&iﬁ)%'

e v =0=p=¢q = 1—It reduces to Wiman’s function presented in [23],
and moreover, if § = 1, then the Mittag-Leffler function E,(z) will be the
result.

Definition 3.2. Let «, 3,7, € C;min{R(«a), R(B), R(y),R(§)} > 0;p,q > 0, and
q < Ra+ p. For all g € L(a,b), we introduce an integral operator

(€150 e (@) = /I(:L’—t)ﬁ LB (w(x — 1)) f(¢) dt, (3.2)

which contains the generalized Mittag-Leffler function (3.1) in its kernel; this
operator is investigated and its boundedness is proved under certain conditions.
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Applying Theorem 1.3 for the integral operator given in (3.2), we obtain the
following theorem.

Theorem 3.3. Let o, 3,7,0,p,q be as in Definition 5.2, and let u be a weight
function defined on (a,b). For each fized t € (a,b), define a function ¥ by

10,9 ERPAYY
~(t):/tbu(x) (e 0" Bz — 1)) dr < 0. (3.3)

‘ (v — a) B0, (w(w — a)e)

If ® is a convex function on the interval I € R, then the inequality

b (€150 ar ) (@) b
/au(:c)cb((x_a) Eﬁ”ﬁil (w(x_a>a))dx§/a SOO(f() dt (3.4)

holds true for all measurable functions f € L(a,b) such that Im f C I.

Proof. Applying Theorem 1.3 with Q; = Qy = (a,b), dui(x) = dx, dus(t) = dt,
we get

Fat) = { @ =BG (W= 1)), a<t<a,
k(x,t) = {0’ ret<b (3.5)
(see Lemma 3.2 in [10]), and
Ko = [ =0 By (= o)
= (v —a)’E) Bilp(w(x —a)®).
Then we get inequality (3.4). O

Next, we obtain the fractional inequality for the generalized fractional integral.

Theorem 3.4. Let o, 8,7,0,p,q be as in Definition 5.2, and let u be a weight
function defined on (a,b). For each fized t € (a,b), define a function
x— )P LELY (w(z — 1))
3,
(€0 5 wasf2)(@)

7004

(=)
. ; ; a.B,pw,at f1(t)
If ® : I — R is a convex function and @ w70

b (25 ar F1)(@) - |
/a u(m)@((z(gquﬁh)( ))dxg/a p(t)@(iéii)dt (3.6)

dr < co.

bi0) = £lt) u(z)!

€ I, then the inequality

holds true.

Proof. Applying Theorem 1.4 with Q; = Qs = (a,b), dui(z) = dz, dus(t) =
dt, gi(z) = el o fi(@), ga(x) = bt | o fo(w), and k(w, 1) = (z — )7~ x

E;:g’g,(w(x —t)*), we obtain inequality (3.6). O
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f1

Remark 3.5. If ® is strictly convex on I and 1s nonconstant, then the inequal-

ity given in (3.6) is strict.
The new refined general weighted Hardy-type inequality which has a nonneg-

ative kernel and is related to an arbitrary convex function given in [3] for the
generalized fractional integral (3.2) follows in the next theorem.

Theorem 3.6. Let the assumptions of Theorem 5.5 be satisfied. Moreover, if ®
1s a convez function on an interval I C R and ¢ : I — R is any function such
that p(x) € 0P(x) for all x € Int I, then the inequality

/a bﬁ(t)fb(f(t)) dt — / bU(x)(I>< = gﬁja “ﬁ;_ a)a))

a,B+1,p
’ xx_ B—1 7,9, T — 1)
Z/a (x— a) BT <w<x—a>a>/a< I Badplute =07)

a,B8+1,p

(€150 ar D) (@)
xH@(f(t))_‘I’((x_a) Eﬁvgil (w (x—a)a)>‘
(25 e ) (@)
B )(p<(a:—a)5Eigil (w(x—a)a)>‘
(a pwa+f)(13>
) ‘f(t) - (z — a)BEzﬁj_lp(w(x —a)®

holds for all measurable functions f : Qs — R such that f(t) € I for allt € (a,b).
If ® is a monotone convex function on an interval I C R, then the inequality

/abf;(t)@(f(t))dt—/abU(a:)<D<( (st ) )

r—a)lED Bil (w(x —

dx

‘ dt dz (3.7)

>

/b u(z)
a (z— a)ﬁE%&’q (w(z —a)®)

a,B+1,p

(25 e f)(@)
o

x /afsgn<f(t) TP qu

B+1p(
(e pwa+ ()
X [CI)(f(t)) —c1>( D o ))

(¢ — a) B, (w(e —

(e ’qu(ﬁf)(x)
_M(:p—a) o (w(x—a)a))‘

a,B+1,p

(e aﬁpwa+f)($) ) )ﬂ dtda:’ (3.8)

(z — a)PET2L. (w(z — a)e

| (f(t) - o,B+1,p

holds for all measurable functions f : (a,b) — R such that f(t) € I for all fized
€ (a,b).

) e et o)
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Proof. Applying Theorem 1.7 with ©y = Q3 = (a,b), dui(2) = dx, dus(t) = dt,
and k(x,t) given in (3.5), we get inequalities (3.7) and (3.8). O

The 1-dimensional setting gives refined Hardy- and Pélya—Knopp-type inequal-
ities. In the following theorem, a refinement of a Hardy-type inequality obtained
by Kaijser et al. in [11] is given for the generalized fractional integral operator.

Theorem 3.7. Let o, 3,7,90,p,q be as in Definition 5.2, and let uw be a weight
function defined on (a,b). For each fized t € (a,b), define a function w by

(z = )P EQ gt p(w(z —a)) " x

w(t) _ t/t~b (x )ﬁ 1Egﬁ(;( (:L’ — t)a) u(x dx

If @ is a convex function on an interval I C R and ¢ : I — R is such that
o(x) € 00(x) for all x € Int I, then the inequality

[ vt - [ (e Dy

VEIS (w(z—a))/ @
b u(x) T e b o X
=) <x—a>ﬂEz:2’il,p<w<w—a>a>/a (= gy e =0))

(15 )
<o) o (G o)

B+1p

I 16
_)90<(3;_a : )‘

VB p(w(a = a))

(e agpw(ﬁf)(x)

(z = a) By, (w(x — a)e)

: ’ F(t) - ‘ dtd?m (3.9)

holds for all measurable functions f : (a,b) — R with values in I.

If the function ® is concave, then the order of integrals on the left-hand side
of (3.9) is reversed. If ® is monotone convex on the interval I C R, then the
following inequality

/abw(t)cp(f(t))@_/abu(xm((w_&( “agpa)) dz

t VB p(w(a — a)“)> v

>

/b u(z)
o (xr—a)l EN%a (w(z — a)?)

a,B+1,p
4,
(€0 s watd)(@)

X /j Sgn<f(t) — P (e = a)@))(x —1)P- 1@2‘;( (z —1)%)

a,B+1,p
(e Z%quwf)(x) )
(= a)PEL51, (w(w —a)2)

a,B+1,p

X [CI)(f(t)) —c1>(
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(€150 D))
i e =)

,B8+1.p
(€ agpwaJrf)(x) dz
. (f(t) e a)a)ﬂ dt— (3.10)

holds for all measurable functions f : (a,b) — R with values in I.

Proof. Applying Theorem 1.8 with (0,b) = (a,b), k(z,t) given in (3.5) and

1 @ N
Auf(x) = | =0 B e - o) )
(¢ = a) BTG, (wle — a)*) Ja '
we obtain equalities (3.9) and (3.10). O

Next we give the mean value theorems [4] for the generalized fractional integral
(3.2).

Theorem 3.8. Let the assumptions of Theorem 5.5 be satisfied. Let I be a com-
pact interval of R, let h € C*(I), and let f : (a,b) — R be a measurable function
such that Im f C I. Then there exists n € I such that

/bﬁ(t)ﬁ(ﬂt)) - /bu@)il((x - a; zE%qu;ﬁ{cZEm)— a)a)> dx
a a aB+1,p
_ hﬂém [ / b@(t) F2(t) dt

_/abu<x)<(x—a< “iiusat /) @) a)@{)fd:@, (3.11)

) Eg gil p(w(x -

where U is defined by (3.3).
Proof. Applying Theorem 1.9 with Q; = Qy = (a,b), dus(z) = dz, dus(t) = dt,
and k(x,t) given in (3.5), we get equation (3.11). O

Theorem 3.9. Let the assumptions of Theorem 5.5 be satisfied. Moreover, k, he
C*(I) such that h'"(x) # 0 for every x € I and

/abﬁ(t)ﬁ(f(t)) dt /abu(a:)ﬁ(@ - a§ %22?28— a>a)> dz £ 0.

Then there exists n € I such that

k() Jo DOk (®)) dt = [ u(z)k(

G ()

o,B8,p,w,at

,0,
(e=a)PELYT, pw(z—a)®)

)
(€704 Hx)
)

)d:v

M) SR dt— [ ula)i(

«,8,p,w,at

,0,
(z—a)PE} lerl pw(@—a)®)

)d:v.

We next present the linear functional given in [4] for the integral operator (3.2).
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Theorem 3.10. Let the conditions of Theorem 5.5 be satisfied, and let ps be
defined by (2.1). Let f be a positive function. Then the function £ : R — [0, 00)
defined by

b b 1o
§<s)=/ 5(t)es(f(1)) dt—/ u(x)gpS((m_ag cgypzﬁ{:i;_ a)a)>dx (3.12)

a,f+1,p

15 exponentially conver.

Proof. Applying Theorem 2.3 with Q; = Qy = (a,b), dui(z) = dx, dus(t) = dt,
and k(z,t) given in (3.5), we get the linear functional (3.12). O

Under the assumptions of Theorem 3.3, we define a linear functional by taking
the positive difference of the inequality stated in (3.4) as

b b
gl(cp):/a 5 (f(1)) dt—/a @((x_agﬁzipj“*{iiz)_ a)a))u(:p)dm. (3.13)

a,B+1,p
We also define a linear functional by taking the positive difference of the left-hand
side and right-hand side of the inequality (3.6) given in Theorem 3.4 for integral
operator (3.2) as

gg(q>)_/bﬁ(t)q>(§28)dt—/b (m)‘b(g %?}““*?igxi)dx. (3.14)
@ aﬁpwa+ 2

Theorem 3.11. Let I' = {®, : p € J} be a family of functions defined on I
such that the function p — |29, 21, 22; ®,] is n-exponentially convez in the Jensen
sense on J for every three distinct points zy,z1,29 € I. Let & (i = 1,2) be
linear functionals defined by (5.13) and (5.1]), respectively. Then the function
p— &(P,y) (i =1,2) is n-exponentially conver in the Jensen sense on J. If the
function p — &(®,) is continuous on J, then it is n-exponentially convex on J.

Proof. Applying Theorem 2.6 with €y = Q3 = (a,b), dui(x) = dx, dus(t) = dt,
and k(x,t) = k(z,t), we complete the proof. O

Remark 3.12. In particular, if we choose p = ¢ = 1 and w = 0, then we obtain
Corollary 3 of [9].

4. REFINED HARDY-TYPE INEQUALITIES FOR THE HILFER
FRACTIONAL DERIVATIVE

In this section, we first give the basic definition of the Hilfer fractional deriva-
tive. Then we present refined Hardy-type inequalities for the said derivative. Let
us now recall the definition of the Hilfer fractional derivative which is presented
n [22].

Definition 4.1. Let f € L'[a,b], f x K1_,)a—u € AC'[a,b]. The fractional de-
rivative operator DY} of order 0 < p < 1 and type 0 < v < 1 with respect to
x € [a,b] is defined by

(DEL D)) = T2 (107 () (4.1
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whenever the right-hand side exists. The derivative (4.1) is usually called the
Hilfer fractional derivative.

The more general integral representation of equation (4.1) given in [6] is defined
as follows. Let f € L'(a,b], f * Kq—y)n-p) € AC"[a,b],n —1<p<n,0<v <1,
n € N. Then the following equation holds true:

v v(n— dr 1—v)(n—
(Dl £)() = (L (1" 1 @) ). (42
Especially for v = 0, Dg‘f [ = D!, f is a Riemann-Liouvile fractional derivative
of order y, and for v = 1 it is a Caputo fractional derivative D' f =C D _f of
order p. Applying the properties of the Riemann—Liouvile integral, the relation
(4.2) can be rewritten in the form

(DI f)() = (120 (DI 1700 £ ()
:m / (@ — 1) (DL () d (4.3)

Our first result is an application of Theorem 1.3 given in [13] for the integral
operator (4.3).

Theorem 4.2. Let f € L'[a,b], and let the fractional derivative operator be D%

of ordern—1 < pu <n and type 0 < v < 1, and let u be a weight function defined
on (a,b). Then v is defined by

T — t)u(nf,u)fl

(1‘ — a)”("—ﬂ)

3(t) = v(n — p) /t ul(z) dz < 0. (4.4)

If ® is a convex function on the interval I, then the inequality

[ uwe(ME D )

(x — a)”(”—ﬂ)

< / B (DI £)(8)) dt (4.5)

holds true.

Proof. Applying Theorem 1.3 with y = Qs = (a,b), dui(x) = dz, dus(t) = dt,

] (g— =0 .
M, t) =4 Tommm @ 4SUST (4.6)
0, r<t<hb,
_ (2 — a)" )
K(z) = , 4.7
(z) F(v(n—p)+1) (47)
and 0 as in (4.4), we get inequality (4.5). O

Next, we obtain the fractional inequality for the generalized fractional integral.
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Theorem 4.3. Let fi, fo € L'[a,b], and let the fractional derivative operator be
DYY of ordern —1 < p < n and type 0 < v < 1. Moreover, let u be a weight
function defined on (a,b), and for each fized t € (a,b), define p on (a,b) as

— (DE 0 ) () (x — tyrr=m=1
0= | O o

If & : I — R is a convex function, then the inequality

b my £ (2 b gjl/(n—u) 1
/a u(q,-)@(égz}—i;&i) d < / p(t)@(iggjy(nu)j;igi)dt (49)

holds true for all f; € L'a,b].

P dr < 0. (4.8)

Proof. Applying Theorem 1.4 with Q; = Qy = (a,b), dui(z) = dxv, duy(t) = dt,
and k(x) and p(t) given by (4.6) and (4.8), respectively, we obtain inequality
(4.9). O

g P e

Remark 4.4. If ® is strictly convex on [ an Wm”()

is nonconstant, then
X

the inequality given in (4.9) is strict.

The new refined general weighted Hardy-type inequality which has a nonneg-
ative kernel and is related to an arbitrary convex function given in [3] for the
generalized fractional integral (4.3) follows in the next theorem.

Theorem 4.5. Let the fractional derivative operator DY} be of order n — 1 <
pw < n and type 0 < v < 1, and let u be a weight function defined on (a,b).
Moreover, if ® is a convex function on an interval I C R and ¢ : I — R is any
function such that p(x) € 0P(x) for all x € Int I and v as in (/./), then the
inequality

[ (e ) a- / =)+ VLT gy

(r — a)r(=)
ZV(n—M)/ab u;vu(nu/ vt
(v(n—p) +1)(D4Y )(@)\

(m — Q)V("*H)

< [[e((par () - q><
‘¢<F(( ) + (DG f)(x )>’

(x — a)v(n—n)

I(v(n—p) + )DL f)(2)

. ptv(n—p) _ ay

‘(Da+ H) ( o ay >Hdtd:1: (4.10)
holds for all measurable functions foj”(n*“)f . (a,b) — R such that

(Dgfj(n_”)f)(t) € I for allt € (a,b). If ® is a monotone convexr function on
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an interval I C R, then the inequality

P(v(n —p) + DG (@)
(x — a)v(n=m > da

/abv(t)q)((ngv(n—u)f)(t)) dt — /abu(x)cl><

b
20 [ G
< [ sem((oren o - S DRI e

L(v(n —p) + D(DGY )(:C))
(gj — a)l’(”*#)

x | @((DLr e f) (1) - o

B ’¢<T(V(n —p) + (DY )(x)) ’

(ZL‘ — a)”("‘ﬂ)

I(v(n—p) + (DL f)(2)

(v 2y () o

((Da+ F)t) (& — ) )] dt da:’ (4.11)
holds for all measurable functions ngy(n_“)f : (a,b) — R such that

(DL £Y(4) € T for all fized t € (a,b).
Proof. Applying Theorem 1.7 with Q) = Qy = (a,b), dui(z) = dz, dus(t) = dt,

and k(z,t), K(z) given by (4.6) and (4.7), respectively, we get inequalities (4.10)
and (4.11). O

The 1-dimensional setting gives refined Hardy- and Pélya—Knopp-type inequal-
ities. In the following theorem, a refinement of a Hardy-type inequality obtained
by Kaijser et al. in [11] is given for the generalized fractional derivative opera-
tor.

Theorem 4.6. Let u : (a,b) — R be a weight function, let f € L'la,b], and
let the fractional derivative operator be DY) of order n — 1 < p < n and type
0 <v < 1. Then for each fizred t € (a,b), define w on (a,b) by

x — )Y g
(z — a)"=0) < %0

b
w(t) =v(n— u)t/t u(x)(

where K (z) is given by (4.7) and a > 0.
If ® is a convex function on an interval I C R and ¢ : I — R is such that
o(x) € 0P(x) for all v € Int I, then the inequality

/abwu)@(( DE ) (0) - /awa)@(r(y(n e L

a4+ (.ﬁE — a)’/(”*l‘) xT

>v(n— p) /ab (x_ua—)xz/)(n—u) /ax(x — )rnmm=l
<o (Do ) — o (R DI

(;p — a)V(n_M)
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B ’¢<F(V(n —u) + 1)(DLY )<x)>‘

(q; — a)l’(”—#)

P(v(n —p) + 1D )(I)Hdt@

. ‘(Dé‘jv(n—u)f) (t) — = a)V(n—M)

(4.12)

holds for all measurable functions fory(n_“)f : (a,b) — R with values in I. If
the function ® is concave, then the order of the integrals on the left-hand side
of (4.12) is reversed. If ® is monotone conver on the interval I C R, then the
following inequality

[ sz pw) T
(N0 ) DD N@) da
_/a u(x)CI)( (x —a)r(n=w >_

s ptun [

T — a) v(n—p)

T

I'(v(n —p) + D(DEYf)(2) ()1
G )0

I(v(n—p) + 1)(D5;”f)(x)>
(x — a)V(n—#)

< [ sen((Dar e e -

x |@((Dir e p) (1) - o
T(v(n — ) + )DL f)(a)
N M (:E”— :)im—u) ) ’

P(v(n —p) + 1)(Dgr f)(x)
(x — a)’/("*ﬂ)

(D)) - )] (4.13)

holds for all measurable functions DT f+ (a,b) — R with values in I.

Proof. Applying Theorem 1.8 with (0,b) = (a,b), k(z,t) given by (4.6) and

(A0 f) () = %

X / (x — t)”("_“)_l(ng”(”_“)f)(t) dt, z € (a,b),

we obtain inequalities (4.12) and (4.13). O

Next we give the mean value theorems [4] for the Hilfer fractional deriva-
tive.

Theorem 4.7. Let DIV be the fractional derivative operator of order
n—1<pu<nandtype 0 < v <1, let I be a compact interval of R, let h e
C(I), and let D" M f + (a,b) — R be a measurable function such that
Im Déjf”(”‘“)f C I. Then for the weight function u defined on (a,b) there exists
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n € I such that

/abﬁ(t)ﬁ((ngv(nu)f)(t)) dt — /ju(a:)ﬁ(

=0 [ s o ar

_ /abu(;c)(r(”(” — )+ DDy )(”))2 ] (4.14)

(x — a)'/(n_ﬂ)

I(v(n—p) + 1)(DEf)(2)
(x — a)r(n—m ) du

where v is defined by (4./).

Proof. Applying Theorem 1.9 with Q; = Qy = (a,b), du(v) = dx, dus(t) =
dt, and k(z,t) and K(z) given by (4.6) and (4.7), respectively, we get equation
(4.14). "

Theorem 4.8. Let the fractional derivative operator be DY of order n — 1 <
u<mn and type 0 < v < 1, and let I be a compact interval of R, k,h € C*(I)

such that h"(z) # 0 for every x € I. Moreover, Déffy(n_“)f : (a,b) - Ris a

ptv(n—p

measurable function with Im ) f C I, uis a weight function, v is as in

(4-4), and

= (F(V(n — ) + (DY f)(x)

/ BRI £)(8)) dt — / w(@)h LI )dx #0.

Then there exists n € I such that the following equality holds true:

b _ v(n— b D(v(n—p)+1)(Da7) f)(x)
Ky Sy O@R(DE T ) (1)) dt — [ ule )k () d

W) [T R@R(DE T f) @) de — J) (e de

(x—a)”(”_ﬂ)

The upcoming result represented in [4] is an application for the Hilfer fractional
derivative.

Theorem 4.9. Let the fractional derivative operator be DY of order n — 1 <

pw<mnand type 0 < v < 1, let Déff”("_“)f be a positive function, and let u be
a weight function defined on (a,b), and let v be as in (4.4). Then the function
¢ :R —[0,00) defined by

£(s) = / o(t)s (DI ) (1)) dt
) / ey (CCO VDD

(m — a)”(”—ﬂ)

1s exponentially convew.

Proof. Applying Theorem 2.3 with Q; = Qy = (a,b), dui(z) = dx, duy(t) = dt,
and k(x,t) and K(z) given by (4.6) and (4.7), respectively, we get the linear
functional (4.15). O
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Under the assumptions of Theorem 4.2, we define a linear functional by taking
the positive difference of the inequality stated in (4.5) as

b
G(P) = / @(t)é((ng“W—M) £)(t)) dt
_/”q><F(V(n—u)+1)(Dé‘f )(z)

(Q; — a)l’(”—#)

)u(:v) dx. (4.16)

We also define a linear functional by taking the positive difference of the left-hand
side and right-hand side of the inequality (4.9) given in Theorem 4.3 for the Hilfer
fractional derivative as

o) = | p<t>¢<§g§§§§§g> a- [ u()@(—ﬁgjﬁ;f 3) dr, (417)

where f; € L'[a,b] (i = 1,2).

Theorem 4.10. Let I' = {®, : p € J} be a family of functions defined on I
such that the function p — |29, 21, 22; ®,] is n-exponentially convez in the Jensen
sense on J for every three distinct points zy,z1,29 € I. Let & (i = 1,2) be
linear functionals defined by (4.10) and (4.17), respectively. Then the function
p = &(P,y) (i =1,2) is n-exponentially convex in the Jensen sense on J. If the
function p — &(®,) is continuous on J, then it is n-exponentially convex on J.

Proof. Applying Theorem 2.6 with Q; = Qy = (a,b), dui(z) = dx, dus(t) = dt,
and k(z,t) and K(z) given by (4.6) and (4.7), respectively, we complete the
proof. O

Remark 4.11. Similar Hardy-type inequalities can be obtained by using
Prabhakar-type integral operators introduced in [5].
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