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Abstract. We present new results on Kottman’s constant of a Banach space,
showing (i) that every Banach space is isometric to a hyperplane of a Banach
space having Kottman’s constant 2 and (ii) that Kottman’s constant of a
Banach space and of its bidual can be different. We say that a Banach space
is a Diestel space if the infimum of Kottman’s constants of its subspaces is
greater that 1. We show that every Banach space contains a Diestel subspace
and that minimal Banach spaces are Diestel spaces.

1. Introduction

In this article, we continue our study [7] of Kottman’s constant of a Banach
space

K(X) = sup
{
σ > 0 : ∃(xn)n∈N ∈ BX : ∀n 6= m, ‖xn − xm‖ ≥ σ

}
.

Following Kottman [18, Section 3], we also define the isomorphic Kottman’s con-
stant

K̃(X) = inf
{
K(X̃) : X̃ ' X

}
,

where the infimum is taken over all renormings (or isomorphic copies) of X.
In what follows, a subspace means an infinite-dimensional closed subspace and
X̃ ' X means that X and X̃ are isomorphic. For our purposes, it is better to
view an isomorphism like the one above as a renorming of X. A λ-renorming of
(X, ‖ · ‖) means a new norm r(·) on X so that λ−1r(·) ≤ ‖ · ‖ ≤ λr(·). Of course,
every equivalent renorming is a λ-renorming for some λ > 0. We will consider

Copyright 2017 by the Tusi Mathematical Research Group.
Received Dec. 18, 2015; Accepted Jun. 8, 2016.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 46B20; Secondary 46B03, 46B04.
Keywords. Kottman’s constant, Banach space, twisted Hilbert spaces.

348

http://dx.doi.org/10.1215/17358787-0000007X
http://projecteuclid.org/bjma


NEW RESULTS ON KOTTMAN’S CONSTANT 349

the following three groups of problems about K and K̃: Diestel’s problem (see
[10]), 3-space-like problems for K̃ and stability properties of K on hyperplanes,
and the bidual problem (see [7], [8]).

Kottman’s constant was introduced and studied in [18], [19]. It is clear that
K(X) = 0 if and only if X is finite-dimensional; the exact value of Kottman’s con-
stant for different classical Banach spaces has been computed in several papers.
A well-known but highly nontrivial result of Elton and Odell [12] (see also [10])
establishes that K(X) > 1 for every infinite-dimensional Banach space. A pre-
vious combinatorial result of Kottman [18] showed that there always exists in
the unit ball of an infinite-dimensional Banach space a sequence of elements (xn)
such that ‖xn − xm‖ > 1.

2. Diestel’s problem

We do not known whether it is possible to have K̃(X) = 1. If we consider the
constant K̃λ(X) = inf{K(Xr)}, where the infimum is taken over all λ-renormings
of X, a formal application of the Elton–Odell theorem yields this proposition.

Proposition 2.1. For every space X and every λ, we have K̃λ(X) > 1.

Proof. Let rn be a λ-renorming of X for which K(Xrn) ≤ 1 + 1/n. Let U be a
free ultrafilter on N, and renorm X with ‖x‖ = limU rn(x). By the Elton–Odell
theorem, K(X, ‖ · ‖) = 1 + α for some α > 0, and thus let (xk) be a sequence of
norm 1 elements of (X, ‖ · ‖) for which ‖xi − xj‖ ≥ 1 + α/2 when i 6= j. Recall
that limU rn(x) = p means that for all ε > 0, {n : |rn(x) − p| ≤ ε} ∈ U . Thus,
rn(xk) ≤ 1+α/4 for all k in some U ∈ U . Passing to subsequences, diagonalizing
and then relabeling, we can assume that rn(xk) ≤ 1+α/4 for all k ≥ n. Therefore
rn(xi − xj) ≤ (1 + 1/n)(1 + α/4), and thus limU rn(xi − xj) ≤ 1 + α/4, which is
in contradiction with the choice of (xn). �

Following [23, p. 229], we set s(X) = inf{K(Y ) : Y ⊂ X}, and we set its
isomorphic analogue

s̃(X) = inf
{
K̃(Y ) : Y ⊂ X

}
= inf

{
K(Ỹ ) : Ỹ ' Y ⊂ X

}
.

It is also clear that s(X) ≥ s̃(X). In [10, Problems, p. 254], Diestel posed the prob-
lems of characterizing those Banach spaces X for which s(X) > 1 or s̃(X) > 1.
These problems were considered by Prus in [23], where he introduced the fol-
lowing parameter λ(X) for non-Schur spaces with the purpose of obtaining the
estimate λ(X) ≤ s̃(X): if N denotes the set of sequences (xn) of norm 1 elements
of X such that

L(α1, . . . , αm) = lim
n1<···<nm

n1→∞

∥∥∥ m∑
1

αixni

∥∥∥
exists for all scalars α1, . . . , αm, and N1 the subset of weakly null sequences in
N , then

λ(X) = inf
N1

lim sup
m→∞

lim
n1<···<n2m

n1→∞

∥∥∥ 2m∑
1

xni

∥∥∥1/m

.
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We can reformulate this in the language of spreading models. Recall that, given
a sequence (xn) ∈ N , the spreading model µx generated by the sequence x = (xn)
is the completion of the space of finitely supported sequences endowed with the
norm ∥∥∥i=m∑

i=1

αiei

∥∥∥ = L(α1, . . . , αm),

where ei denotes the scalar sequence having only a 1 in position i and 0 elsewhere.
In this language

λ(X) = inf
N1

lim sup
m

∥∥∥ 2m∑
1

en

∥∥∥1/m

,

where the infimum is taken over all spreading models generated by sequences
of N1. Let us introduce a variation of λ(·) able to provide a lower bound for
K̃(X). We set

κ(X) = sup
N1

lim sup
m

∥∥∥ 2m∑
1

en

∥∥∥1/m

.

Let us also consider the parameter b(X) = infN1 ‖e1 − e2‖. The parameters have
certainly been introduced to work on non-Schur spaces (i.e., spaces admitting
weakly null normalized sequences). One the other hand, a Schur space X is hered-
itarily `1, and therefore s̃(X) = 2.

Proposition 2.2. We have b(X) ≤ λ(X) ≤ s̃(X) and λ(X) ≤ κ(X) ≤ K̃(X).

Proof. We show first that κ(X) ≤ K(X). It is easy to observe that K(X) =
supN ‖e1 − e2‖ ≥ supN1

‖e1 − e2‖. Since

‖e1 − e2 + e3 − e4‖ = ‖e1 − e2‖
∥∥∥ e1 − e4
‖e1 − e4‖

− e2 − e3
‖e2 − e3‖

∥∥∥
it follows that

sup
N1

‖e1 − e2 + e3 − e4‖ ≤ K(X)2.

When the starting sequence is weakly null, the spreading model sequence (en)
is unconditional with unconditional constant at most 3 (see [3, Lemma 2]), and
thus

sup
N1

‖e1 + e2 + e3 + e4‖1/2 ≤ 31/2K(X).

Analogously,

sup
N1

∥∥∥ 2m∑
1

en

∥∥∥1/m

≤ 31/mK(X),

from which the estimate κ(X) ≤ K(X) follows. Since κ is invariant under renorm-
ing, we also get κ(X) ≤ K̃(X).

We show now that b(X) ≤ λ(X). For a given ε > 0, let (zn) ∈ N1 be a
sequence producing an almost optimal spreading (bn) in the sense that ‖b1−b2‖ ≤
‖e1 − e2‖ + ε for any other spreading (en) produced by a sequence (xn) ∈ N1.
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We can assume without loss of generality that ‖b1 − b2‖ ≤ ‖e1 − e2‖ to avoid a
cumbersome ε. Since ‖ei − ej‖ = ‖e1 − e2‖, we have

‖e1 − e2 + e3 − e4‖ = ‖e1 − e2‖
∥∥∥ e1 − e4
‖e1 − e4‖

− e2 − e3
‖e2 − e3‖

∥∥∥
≥ ‖b1 − b2‖

∥∥∥ e1 − e4
‖e1 − e4‖

− e2 − e3
‖e2 − e3‖

∥∥∥.
Now let yj =

xj−xj+1

‖xj−xj+1‖ . The sequence (y2n+1) ∈ N1 (or some subsequence)

produces a spreading model (ın), and thus∥∥∥ e1 − e4
‖e1 − e4‖

− e2 − e3
‖e2 − e3‖

∥∥∥ = ‖ı1 − ı2‖ ≥ ‖b1 − b2‖,

which yields ‖e1 − e2 + e3 − e4‖ ≥ ‖b1 − b2‖2. By iteration, we get∥∥∥ 2m∑
n=1

(−1)n+1en

∥∥∥ ≥ ‖b1 − b2‖m,

and hence

lim sup
m→∞

lim
n1<···<n2m

n1→∞

∥∥∥ 2m∑
i=1

(−1)i+1xni

∥∥∥1/m

≥ ‖b1 − b2‖

which immediately yields λ(X) ≥ b(X). The fact that λ(X) ≤ κ(X) is obvious.
Now, if Y ⊂ X, then λ(X) ≤ λ(Y ) while K(Y ) ≤ K(X). Therefore, we have
λ(X) ≤ s(X). Since λ(·) is invariant under renorming (see [23, p. 229]), we get
λ(X) ≤ s̃(X), which is precisely Prus’s result (see [23, Theorem 3]). �

Definition 2.3. A Banach space X will be called a Diestel space if s(X) > 1.

Among other results, Prus shows in [23] that super-reflexive spaces verify
λ(X) > 1, and therefore they are Diestel spaces. From the results of Prus, it
follows that K(`p) = K̃(`p) = s̃(`p) = 21/p for 1 ≤ p < +∞, while clearly

K(c0) = K̃(c0) = s̃(c0) = 2 = K(`1) = K̃(`1) = s̃(`1). So all of them are Diestel
spaces. Let us show that Diestel spaces are ubiquitous, as follows.

Lemma 2.4. Every infinite-dimensional Banach space X contains an infinite-
dimensional subspace X0 so that s̃(X0) = K̃(X0) and also contains an infinite-
dimensional subspace X1 so that s(X1) = K(X1).

Proof. We set the real intervals as

σ(X) =
[
s(X), K(X)

]
⊂ [1, 2],

σ̃(X) =
[
s̃(X), K̃(X)

]
⊂ [1, 2].

When A ⊂ B, then K(A) ≤ K(B) and s(A) ≥ s(B) and thus σ(A) ⊂ σ(B).
Let us now show that also K̃(A) ≤ K̃(B) and s̃(A) ≥ s̃(B) and thus that
σ̃(A) ⊂ σ̃(B). Set the following order on the set S∞(X) of all infinite-dimensional
subspaces of X: A ≤ B if there is a finite-dimensional space F such that (A ∩
B) + F = A. Since K(F ) = 0 for F finite-dimensional, it also holds that A ≤ B
implies that σ(A) ⊂ σ(B). Let us also show that σ̃(A) ⊂ σ̃(B). If A ⊂ B, then
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K(A) ≤ K(B), and if f : B → Bf is an isomorphism, then f(A) = Af ⊂ Bf is an
isomorphic copy of A, and thus s(Af ) ≥ s(Bf ); hence inff{s(Af )} ≥ inff s(B

f ) =
s̃(B). Thus we are done once we show that s̃(A) = inff{s(Af )}; for that, we need
to show that every isomorphism g : A → Ag can be extended to an isomorphism
f : B → Bf . This follows from the existence of the pushout construction (for
detailed information, see [2]). What we need here is to recall that, given g, i, the
pushout space PO provides a commutative diagram

A
i−−−→ B

g

y yg′

Ag −−−→
i′

PO

The space PO is defined as the quotient (Ag ⊕1 B)/C, where C = {(ga,−ia) :
a ∈ A}, and the operators g′, i′ are naturally defined as g′(x) = (x, 0) + C
and i′(y) = (0, y) + C. Since i is the canonical isometric embedding, i′ is also
an isometric embedding; since g is an isomorphism, the operator g′ is also an
isomorphism.

Thus, σ and σ̃ are order-continuous maps from the ordered set (S∞(X),≤) to
the ordered set of all compact subsets of [0, 2] in its natural order given by ⊂.
The set (S(X),≤) is “σ-grounded” (using the term from [4]) in the sense that
every countable chain A1 ≥ A2 ≥ A3 · · · admits a lower bound: take an ∈ An

and set A = [an], which clearly verifies A ≤ An for all n. Thus, by Behrends
[4], there must be a point X0 (resp., X1) where σ̃ (resp., σ) stabilizes; that is,
σ̃(X0) = σ̃(Z) for all Z ≤ X0 (resp., σ(X1) = σ(Z) for all Z ≤ X1).

Get this X0. Thus, for every subspace Y0 ⊂ X0, we have s̃(X0) = s̃(Y0) and
K̃(X0) = K̃(Y0). If s̃(X0) < K̃(X0), then pick ε > 0 so that s̃(X0) + ε <
K̃(X0) − ε, and then pick a subspace Y0 ⊂ X0 and an isomorphism f of Y0 so

that K(Y f
0 ) ≤ s̃(X0) + ε < K̃(X0)− ε. In these conditions,

σ̃(Y0) =
[
s̃(Y0), K̃(Y0)

]
⊂

[
s̃(Y0), K̃(X0)− ε

]
 

[
s̃(X0), K̃(X0)

]
= σ̃(X0)

contrarily to our assumption. Thus, s̃(X0) = K̃(X0). Reasoning as above with
σ(·) and X1, we obtain the proof of the second assertion. �

Since K(X1) > 1, we get the following. (See Problem (3) at the end of this
article.)

Proposition 2.5. Every Banach space contains an infinite-dimensional Diestel
subspace.

Fonf and Zanco showed in [15, Theorem 2.1, Corollary 2.2] that any Kottman
sequence in a Banach space X (i.e., a sequence (xn) so that lim inf ‖xn − xm‖ =
K(X)) must contain a subsequence whose span is infinite-codimensional. In our
case, this means that every Banach space contains infinite-codimensional sub-
spaces having the same Kottman constant as the whole space.

Recall that a Banach space X is considered minimal if every subspace contains
an isomorphic copy of X. It is considered C-minimal if every closed subspace
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contains a C-isomorphic copy of X. Ferenczi and Rosendal show in [14] that
minimal implies C-minimal for some C > 1. We have the following.

Proposition 2.6. A minimal space is a Diestel space.

Proof. Let X be minimal. Hence, it must contain a (minimal) subspace X0 for
which

σ̃(X) = σ̃(X0) =
{
K̃(X0)

}
=

{
K̃(X)

}
.

Since minimal means C-minimal for some C, only C-renormings have to be con-
sidered; hence, by Proposition 2.1, it holds that s̃(X) = K̃(X) > 1. �

3. Kottman’s constant of twisted Hilbert spaces

A twisted sum of two Banach spaces Y and Z is a Banach space X such that it
admits a subspace Y so that the corresponding quotient X/Y is isomorphic to Z.

In other words, the middle space X in an exact sequence 0 → Y
j→ X

q→ Z → 0
(i.e., a diagram formed by spaces and operators with the additional property
that the kernel of each arrow coincides with the image of the preceding one).
Since Kottman’s constant is an isometric notion, trying to estimate the Kottman
constant of a space X only knowing those of a subspace Y of X and of the
corresponding quotient X/Y is an ill-posed problem. Moreover, recall that every
Banach space, in particular the twisted sum space X, can always be renormed to
have Kottman’s constant 2 (see [18]). This suggests a couple of complementary
approaches, as follows.

Definition 3.1. An exact sequence 0 → Y
j→ X

q→ Z → 0 will be called an
isometric exact sequence if j is an injective isometry and the image by q of the
unit open ball of X is the unit open ball of Z. A renorming r of a twisted sum

space X will be called an exact renorming if 0 → Y
j→ (X, r)

q→ Z → 0 is an
isometric exact sequence.

Recall that a Banach space is called a twisted Hilbert space if there is an isomet-
ric exact sequence 0 → `2 → X → `2 → 0. A twisted Hilbert space is regarded as
trivial if it is isomorphic to a Hilbert space. The most important twisted Hilbert
space is known as the Kalton–Peck Z2 space. Let us briefly recall its construction.
With the aid of the so-called z-linear map Ω : `2 → `2 defined on the finitely
supported sequences as

Ω(x) = x log
‖x‖2
|x|

(with the meaning that Ω(x)(n) = x(n) log ‖x‖2
|x(n)| and the understanding that

log 0 = 0), we get the quasinorm ‖(y, z)‖Ω = ‖y − Ω(z)‖ + ‖z‖ on `2 × `2.
This quasinorm is actually equivalent to the norm having as unit ball the closed
convex hull of the points (y, 0) with ‖y‖ = 1 and (Ωz, z) with ‖z‖ = 1. This is the
Kalton–Peck twisted Hilbert space Z2 [16]. We have the following proposition.

Proposition 3.2.

(1) There is an exact renorming r of Z2 for which K([Z2, r]) >
√
2.
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(2) There is a nontrivial twisted Hilbert space E2 for which K(E2) =
√
2.

(3) There is an isometric sequence 0 → `2 → `R2 → `2 → 0 in which
K(`R2 ) = 2.

Proof. The associated exact sequence 0 → `2 → Z2 → `2 → 0 has the embedding
y → (y, 0) and the quotient map (y, z) → z. The quasinorm ‖·‖Ω is exact although
the norm having unit ball B may be not be exact. To make y → (y, 0) an isometric
embedding, we need to replace Ω by Z−1

0 Ω, where Z0 = sup{‖
∑

Ω(zi)‖} and
where the supremum is taken over all finite sets z1, . . . , zn so that

∑
zi = 0 and∑

‖zi‖ ≤ 1. The norm ‖ · ‖c, whose unit ball is the closed convex hull Bc of
the points (y, 0) with ‖y‖ = 1 and (Z−1

0 Ωz, z) with ‖z‖ = 1, yields an exact
renorming of Z2: indeed, that BY ⊂ Bc is in the definition; now let ‖(y, 0)‖c ≤ 1,
which means that

y =
∑
i

θiyi +
∑
j

θjZ
−1
0 Ωzj,

0 =
∑
i

θjzj.

Thus, ‖
∑

i θiyi +
∑

j θjZ
−1
0 Ωzj‖ ≤

∑
i θi +

∑
j θj = 1.

Let us now show that Kottman’s constant of Z2 renormed with ‖ · ‖c is strictly
greater than

√
2. We will do this by showing that the sequence points (0, en) ∈ Bc

verify infn,m ‖(0, en)− (0, em)‖ >
√
2. That (0, en) ∈ Bc is clear, since Ω(en) = 0.

Fix n,m, and assume that ‖(0, en−em))‖ = ‖(0, en)− (0, em)‖ =
√
2. This means

that there is a convex combination
∑

i θi +
∑

j θj = 1 and points ‖yi‖ = 1 in `2
and ‖zi‖ = 1 in `2 such that

0 =
√
2
(∑

i

θiyi +
∑
j

θjZ
−1
0 Ωzj

)
,

en − em =
√
2
∑
j

θjzj.

Since ‖en − em‖ =
√
2 and all points in the unit sphere of `2 are extreme points,

necessarily
∑

j θj = 1 and all zj are just
√
2
−1
(en− em). Therefore,

∑
i θi = 0 and

consequently

0 =
√
2
(∑

j

θjZ
−1
0 Ωzj

)
= Z−1

0 Ω(en − em),

which is false. That infn,m ‖(0, en) − (0, em)‖ >
√
2 is a consequence of the fact

that Ω is symmetric, in the sense that, given any isometry σ̂ of `2 induced by a
permutation σ of N, we have Ω(eσ(n) − eσ(m)) = σ̂Ω(en − em); this means that
‖(0, en − em)‖ = ‖e1 − e2‖ for all n,m.

The second assertion is a consequence of the Enflo–Lindenstrauss–Pisier con-
struction of a twisted sum E of Hilbert spaces (see [13]) having the form E =
`2(Wn), where Wn are finite-dimensional spaces, plus the estimate [7]

K
(
λ(Xn)

)
= max

{
K(λ), K(Xn)

}
for a λ-vector sum of spaces Xn when λ has an unconditional basis.
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The third assertion is a consequence of our Theorem 4.2 below, and more
precisely, of the Naidu–Sastry construction in [22] of a renorming N of `2 × R
having Kottman’s constant 2 and such that N|`2 = ‖ · ‖2. This yields an isometric
exact sequence 0 → `2 → (`2 ⊕N R) → R → 0 and therefore 0 → `2(`2) →
`2(`2 ⊕N R) → `2(R) → 0 or else 0 → `2 → (`2 ⊕N R) ⊕2 `2 → R ⊕2 `2 → 0 to
yield the desired exact renorming. �

Kalton showed in [17, Proposition 5.8] (see also [7, Proposition 4.1]) that K(X)
is the infimum of the λ such that every norm 1 operator (equivalently, every Lips-
chitz map with Lipschitz constant 1) defined on a subspace of X with values on c0
can be extended to the whole X with norm λ (resp., with Lipschitz constant λ).
Therefore, there are norm 1 c0-valued operators on some subspace of Z2 that
cannot be extended to the whole space with norm

√
2. Of course, by Sobczyk’s

theorem all such operators can be extended with norm 2. Moreover, Kalton shows
in [17, Theorem 7.12] that all C[0, 1]-valued operators defined on subspaces of Z2

can be extended to the whole Z2.

4. Kottman’s constant on hyperplanes

The behavior of Kottman’s constant on hyperplanes is an intriguing topic. In
[7, Lemma 1.2] (see also [9, Claim 4.4]), the following appears.

Lemma 4.1. If E is a c-complemented finite-codimensional subspace of X, then
K(E) ≥ K(X)/c.

Thus, Kottman’s constant of a Banach space and those of its 1-complemented
hyperplanes coincide. Brown in [6, Theorem 1.3] claims a (wrong) proof for the
fact that the Kottman’s constant of a Banach space and all its hyperplanes must
coincide. This is, however, wrong, since Naidu and Sastry show in [22] that there
is a norm N on `2 ⊕ R that induces the original norm on `2 for which K(`2 ⊕N
R) = 2. A refinement of their proof shows the following.

Theorem 4.2. Every Banach space is isometric to a hyperplane of a Banach
space with Kottman’s constant 2.

Proof. Recall the well-known fact [11, Lemma 3.4] that it is possible to choose
in the unit ball of X an infinite set {x1, . . . , xn, . . .} such that we then have
K(X)− ε ≤ ‖xi − xj‖ ≤ K(X) + ε for every pair i, j ∈ N (i 6= j). Set in X ⊕ R
the norm r whose unit ball is the absolutely convex hull B of{

(x, 0) : ‖x‖ ≤ 1
}
∪
{
(µxn, 1)

}
∪ (0, 1),

where µ = 2max ‖xn − xm‖−1. The key point is to show that if BX denotes the
unit ball of X (seen as the canonical copy X × 0), then B ∩X = BX . After that,
it is clear that K((X ⊕ R, r)) = 2, since for i 6= j we have

r
(
(µxi, 1)− (µxj, 1)

)
= r

((
µ(xi − xj), 0

))
=

∥∥µ(xi − xj)
∥∥

≥ 2

max ‖xn − xm‖
(
K(X)− ε

)
≥ 2

K(X)− ε

K(X) + ε
.
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Thus let (x, 0) ∈ B ∩X be a convex combination

(x, 0) =
∑
a∈A

θa(pa, 0) +
∑
b∈B

θb(µxb, 1) + δ(0, 1),

where A ∪B is finite and
∑

i∈A∪B |θi|+ |δ| = 1. Then, we get the two conditions

x =
∑
a∈A

θapa + µ
∑
b∈B

θbxb,

0 =
∑
b∈B

θb + δ,

and we have

‖x‖ =
∥∥∥∑
a∈A

θapa + µ
∑
b∈B

θbxb

∥∥∥
≤

∑
a∈A

|θa|+ µ
∥∥∥∑
b∈B

θbxb

∥∥∥.
Since |δ| = |

∑
b∈B θb|, we have

∑
b∈B |θb|+ |

∑
b∈B θb| = 1−

∑
a∈A |θa|. Let us call

c = 1−
∑

a∈A |θa|. We need to estimate

sup∑
n |θn|+|

∑
n θn|=c

∥∥∥µ∑
n

θnxn

∥∥∥ = c sup∑
n |θn|+|

∑
n θn|=1

∥∥∥µ∑
n

θnxn

∥∥∥. (4.1)

One can assume without loss of generalization that
∑

θn = 0. Otherwise, let
s =

∑
θn and m = s/M , where M is now the number of elements θn, and replace

θn by θn−m. Clearly,
∑

θn−m = 0 and
∑

|θn−m|+|
∑

(θn−m)| =
∑

|θn−m| ≤∑
|θn|+ |s| ≤ 1. Moreover,∥∥∥∑(θn −m)xn

∥∥∥ =
∥∥∥∑ θnxn +m

∑
xn

∥∥∥
=

∥∥∥∑ θnxn

∥∥∥.
Let us show an auxiliary result, as follows.

Claim. Let (θn)1≤n≤N be a finite set of scalars so that
∑

n |θn| = 1 and
∑

n θn = 0,
and let (xn)1≤n≤N be elements of a Banach space. Then∥∥∥∑ θnxn

∥∥∥ ≤ 1

2
max ‖xn − xm‖.

Proof. It is obviously enough to make the proof when all the coefficients θn are
rationals. So let θn = an/bn. Reduced to common denominators, we have θn =

kn/d; since 1 =
∑N |θn| =

∑N |kn|/d, we have
∑

|kn| = d. Let A(1), . . . , A(N)
be the associated partition of {1, . . . , d} with cardinal A(j) = |kj| such that θn =∑

i∈A(n)(εi/d) with εi = ±1. Replace theN original x′
ns by new d elements yi = xn

when i ∈ A(n). Since
∑N

n=1 θnxn =
∑d

i=1(εi/d)yi, we get
∑

i=1 n
d(εi/d) = 0,
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which also means that
∑d

i=1 εi = 0 or, which is the same, that there are d/2
positive ε, which we will call εi, and d/2 negative ε, which that we will call ε′i:∥∥∥∑ θnxn

∥∥∥ =
∥∥∥ d∑

i

εi
d
yi

∥∥∥
=

∥∥∥ d/2∑
i

εi
d
yi −

d/2∑
i

|ε′i|
d

yi

∥∥∥
≤ 1

2
max
n,m

‖yn − ym‖.

Therefore, for every ε, we have∑
A

|θa|+ µ
∥∥∥∑

B

θbxb

∥∥∥ =
∑
A

|θa|+ µc sup∑
n |θn|+|

∑
n θn|=1

∥∥∥∑
n

θnxn

∥∥∥
≤

∑
A

|θa|+ µc
1

2
max ‖xn − xm‖

=
∑
A

|θa|+ c

= 1.

Thus, B ∩X = BX . �

Corollary 4.3. A Banach space X is 1-complemented in X ⊕r R if and only if
K(X) = 2.

Proof. The only “if” part is a consequence of Lemma 4.1: a Banach space and
its 1-complemented hyperplanes have the same Kottman’s constant. As for the if
part, we will show that the operator (x, t) → x has norm 1: just pick (x, t) in the
unit ball of r, which means that

(x, t) =
∑
A

θa(pa, 0) +
∑
B

θb(µxb, 1) + δ(0, 1),

where A ∪B is finite and
∑

i∈A∪B |θi|+ |δ| = 1. Therefore, we have

x =
∑
A

θapa + µ
∑
B

θbxb.

Since K(X) = 2, we have µ = 2/(KX) = 1, and therefore

‖x‖ =
∥∥∥∑

A

θapa +
∑
B

θbxb

∥∥∥ ≤
∑
A

|θa|+
∑
B

|θb| ≤ 1.
�

5. Kottman’s constant on biduals

Now, we solve one of the main problems left open in [7] and [8]: Does K(X) =
K(X∗∗) always hold? The corresponding question for Whitley constant T (·) (see
[24]) was negatively solved in [1] showing that T (C[0, 1]) 6= T (C[0, 1]∗∗). We show
now that K(Jp(`

n
1 )) < K(Jp(`

n
1 )

∗∗) for certain James-like spaces introduced by
Bellenot in [5].
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Let us denote by `n1 the subspace of `1 generated by {e1, . . . , en}, and we denote
by Qn : `1 → `n1 the natural projection. For 1 < p < ∞, we define

Jp(`
n
1 ) :=

{
(xn) : xn ∈ `n1 , ‖xn‖1 → 0 and

∥∥(xn)
∥∥
Jp

< ∞
}
,

where∥∥(xn)
∥∥
Jp

:= sup
{( k∑

i=1

‖xni+1
− xni

‖p1
)1/p

: k ∈ N, n1 < n2 < · · · < nk+1

}
.

For each k ∈ N, we will identify `k1 with the subspace of all (xn) ∈ Jp(`
n
1 ) with

xn = 0 for n 6= k.

Proposition 5.1. Let 1 < p < ∞. Then (Jp(`
n
1 ), ‖(xn)‖Jp), is a Banach space,

and the quotient Jp(`
n
1 )

∗∗/Jp(`
n
1 ) is isomorphic to `1.

Proof. The proof of the first part is a standard argument. Moreover, as in the
case of James’ space [21, Example 1.d.2], it is easy to check that the sequence of
subspaces (`k1)k∈N is a shrinking decomposition of Jp(`

n
1 ). Thus the arguments in

the proof of [21, Proposition 1.b.2] show that

Jp(`
n
1 )

∗∗ =
{
(xn) : xn ∈ `n1 and

∥∥(xn)
∥∥
Jp

< ∞
}
.

Let (xn) ∈ Jp(`
n
1 )

∗∗. From ‖(xn)‖Jp < ∞ it follows that (xn) is a convergent
sequence in `1. Therefore, there is a linear bounded operator U : Jp(`

n
1 )

∗∗ → `1
given by U((xn)) = limn xn for which ker(U) = Jp(`

n
1 ). Moreover, U is surjective

because for each x ∈ `1 we have (Qn(x)) ∈ Jp(`
n
1 )

∗∗ and limnQn(x) = x. �

Corollary 5.2. Let 1 < p < ∞. Then K(Jp(`
n
1 )

∗∗) = 2.

Proof. The previous result implies that Jp(`
n
1 )

∗∗ contains a subspace isomorphic
to `1. So it is enough to observe that K(`1) = 2 and that every space isomorphic
to `1 contains almost isometric copies of `1. �

The proof of the next result was inspired by the proof of [20, Theorem 2] for
the James’ spaces Jp, but it is technically more complicated. Therefore, we give
a detailed proof.

We denote by en,i (i = 1, . . . , n) the ith unit vector of `n1 as a subspace of
Jp(`

n
1 ). Moreover, Pm is the norm 1 projection on Jp(`

n
1 ) defined as Pm((xn)) =

(x1, . . . , xm, 0, 0, . . .), and we will say that Rm = I − Pm, where I is the identity
operator. Note that ‖Rm(x)‖Jp → 0 as m → ∞ for every x ∈ Jp(`

n
1 ).

Proposition 5.3. Let 1 < p < ∞. Then K(Jp(`
n
1 )) = (1 + 2p−1)1/p.

Proof. From ‖em,1‖Jp = 21/p and ‖em,1 − en,1‖Jp = (1 + 2p + 1)1/p for 1 < m < n,

we get K(Jp(`
n
1 )) ≥ (1 + 2p−1)1/p.

To prove the converse inequality, let (xk)k∈N be a sequence in the unit ball
of Jp(`

n
1 ) with xk = (xk

n)n∈N. Since the quotient Jp(`
n
1 )

∗∗/Jp(`
n
1 ) is separable,

Jp(`
n
1 ) contains no copies of `1. So passing to a subsequence, we can assume that

(xk)k∈N is weakly Cauchy; hence, (xk
n)k∈N is convergent in `n1 for each n. We set

xn = limk→∞ xk
n ∈ `n1 and x = (xn). Note that x ∈ Jp(`

n
1 )

∗∗ because it is the
weak∗-limit of (xk)k∈N. Thus, as we observed in the proof of Proposition 5.1,
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the sequence (xn) is convergent to some ω ∈ `1. We set α = (Qn(ω)). Clearly,
x− α = (xn −Qn(ω)) ∈ Jp(`

n
1 ).

We fix a number ε > 0 with 0 < ε < 1, and we take m0 ∈ N such that∥∥Rm0(x− α)
∥∥
Jp

< ε/7 and
∥∥Qm0(ω)− ω

∥∥
1
< ε/7.

In the proof of [20, Theorem 2] for Jp, the sequence (αn) is constant. This is
not true in our case, but we have chosen m0 so that∥∥Qm0(ω)− ω

∥∥
1
=

∞∑
n=m0

|ωn+1| =
∞∑

n=m0

‖αn+1 − αn‖1 < ε/7.

So, if we consider the vector β = (βn) given by βn = αn for n ≤ m0 and
βn = αm0 for n > m0, then β ∈ Jp(`

n
1 )

∗∗ and

‖α− β‖Jp ≤
∞∑

n=m0

‖αn+1 − αn‖1 < ε/7.

Since (xk) is weak∗-convergent to x and the projections Pm are finite rank
operators, we can find k1 such that ‖P ∗∗

m0
(xk1−x)‖Jp < ε/7 and ‖Pm0(x

k−xl)‖Jp <
ε/7 for k, l ≥ k1. Now we pick m1 > m0 such that ‖Rm1(x

k1)‖ < ε/7, and we
choose k2 > k1 such that ‖P ∗∗

m1
(xk2 − x)‖Jp < ε/7. Next, we pick m2 > m1 such

that ‖Rm2(x
k2)‖ < ε/7, and we choose k3 > k1 such that ‖P ∗∗

m2
(xk3 −x)‖Jp < ε/7.

In this way we obtain (mi) and (xki) such that each of the terms Pm0(x
ki−xkj),

P ∗∗
mi−1

(xki − x), and Rmi
(xki) has norm smaller than ε/7. Let us set

ui = Pm0x
k1 + P ∗∗

mi−1
R∗∗

m0
β + Pmi

Rmi−1
xki

for i > 1 in N. Since xki = Pm0x
ki +Pmi−1

Rm0x
ki +Pmi

Rmi−1
xki +Rmi

xki , we get

‖xki − ui‖Jp ≤
∥∥Pm0(x

ki − xk1)
∥∥
Jp

+
∥∥P ∗∗

mi−1
R∗∗

m0
(xki − β)

∥∥
Jp

+ ‖Rmi
xki‖Jp

< 2(ε/7) +
∥∥P ∗∗

mi−1
R∗∗

m0
(xki − β)

∥∥
Jp
.

Since P ∗∗
mi−1

R∗∗
m0

= Rm0P
∗∗
mi−1

and ‖Rm0‖ ≤ 2, we have∥∥P ∗∗
mi−1

R∗∗
m0

(xki − β)
∥∥
Jp

≤ ‖Rm0‖
∥∥P ∗∗

mi−1
(xki − x)

∥∥
Jp

+ ‖Pmi−1
‖
∥∥Rm0(x− α)

∥∥
Jp

+ ‖Pmi−1
‖‖Rm0‖

∥∥(α− β)
∥∥
Jp

≤ 5(ε/7),

and thus we get ‖xki − ui‖Jp < ε.
Now we set w = u3 − u2 and we write u2 = (u2

n) and u3 = (u3
n). Note that

w = (wn) with wn = 0 for n ≤ m1 and m3 < n, wn = αm0 −xk2
n for m1 < n ≤ m2,

and wn = xk3
n for m2 < n ≤ m3. We choose n1 < · · · < nk+1 such that

(1− ε)p‖w‖pJp ≤
k∑

i=1

‖wni+1
− wni

‖p1.
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Clearly, we can assume that n1 = m1 and that nl−1 ≤ m2 < nl for some l with
1 < l ≤ k+1. Assuming that, and since wj = αm0 −u2

j for m1 < j ≤ m2, we have

l−1∑
i=1

‖wni+1
− wni

‖p1 + ‖u2
nl−1

‖p1 ≤ ‖u2‖pJp ≤ (1 + ε)p.

Similarly, since wj = u3
j for m2 < j, we have

k∑
i=l+1

‖wni+1
− wni

‖p1 + ‖αm0 − u3
nl
‖p1 ≤ ‖u3‖pJp ≤ (1 + ε)p.

Therefore, (1− ε)p‖w‖pJp is smaller than

2(1 + ε)p − ‖u2
nl−1

‖p1 − ‖αm0 − u3
nl
‖p1 +

∥∥u3
nl
− (αm0 − u2

nl−1
)
∥∥p

1
.

Now taking into account the classical inequality (x + y)p ≤ 2p−1(xp + yp) for
x, y ≥ 0, we get

21−p
∥∥u3

nl
− (αm0 − u2

nl−1
)
∥∥p

1
≤ 21−p

(
‖u2

nl−1
‖1 + ‖αm0 − u3

nl
‖1
)p

≤ ‖u2
nl−1

‖p1 + ‖αm0 − u3
nl
‖p1.

Hence

(1− ε)p‖w‖pJp ≤ 2(1 + ε)p + (1− 21−p)
∥∥u3

nl
− (αm0 − u2

nl−1
)
∥∥p

1
.

As in the proof of [20, Theorem 2], with arguments similar to the previous
ones, we get ∥∥u3

nl
− (αm0 − u2

nl−1
)
∥∥p

1
≤ 2p−1(1 + ε)p,

and hence

(1− ε)p‖w‖pJp ≤ (1 + ε)p(1 + 2p−1).

Since ‖xk3 −xk2‖Jp ≤ ‖w‖Jp +2ε, we get K(Jp(`
n
1 )) ≤ (1+2p−1)1/p, and the proof

is complete. �

6. Open problems

A few problems have appeared in the course of our work that remain open.
Regarding Diestel spaces:

(1) We do not know if there is an analogue for the Elton–Odell theorem in the
context of the isomorphic Kottman’s constant (i.e., whether K̃(X) > 1
for every infinite-dimensional Banach space). The estimate κ(X) ≤ K̃(X)
easily provides examples of spaces such that K̃(X) > 1; for example,
spaces containing a subspace Y admitting a noncompact operator Y → `p
for some p, `2(`

n
1 ), and so forth.

(2) Analogously to Diestel spaces, a Banach space X can be defined as a
D̃iestel space if s̃(X) > 1. It is clear that a Banach space isomorphic to a
D̃iestel space is itself a D̃iestel space. We do not know, however, if Diestel
and D̃iestel spaces coincide, or even if s̃(X) = s(X). From the results of
Prus [23], it follows that super-reflexive spaces are D̃iestel spaces.
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(3) If K̃(X) > 1 held for every infinite-dimensional Banach space, then Propo-
sition 2.5 could be proved for the isomorphic Kottman’s constant; that is,
Every infinite-dimensional Banach space contains an infinite-dimensional
D̃iestel subspace.

Regarding twisted sum spaces:

(1) It will be interesting to know whether the following 3-space result for
the isomorphic Kottman’s constant holds. Show that for any given exact
sequence 0 → Y → X → Z → 0, we have

K̃(X) = max
{
K̃(Y ), K̃(Z)

}
.

(2) The case of twisted Hilbert spaces is especially interesting. Is it true that
K̃(X) =

√
2 for every twisted Hilbert space X?
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13. P. Enflo, J. Lindenstrauss, and G. Pisier, On the “three-space” problem for Hilbert spaces,
Math. Scand. 36 (1975), 199–210. Zbl 0314.46015. MR0383047. 354

14. V. Ferenczi and C. Rosendal, Banach spaces without minimal subspaces, J. Funct. Anal.
257 (2009), 149–193. Zbl 1181.46004. MR2523338. DOI 10.1016/j.jfa.2009.01.028. 353

15. V. P. Fonf and C. Zanco, Almost overcomplete and almost overtotal sequences in Banach
spaces, J. Math. Anal. Appl. 420 (2014), 94–101. Zbl 1310.46015. MR3229811. DOI
10.1016/j.jmaa.2014.05.045. 352

16. N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three-space problem,
Trans. Amer. Math. Soc. 255 (1979), 1–30. Zbl 0424.46004. MR0542869. DOI 10.2307/
1998164. 353

17. N. J. Kalton, Extending Lipschitz maps into C(K)-spaces, Israel J. Math. 162 (2007),
275–315. Zbl 1148.46045. MR2365864. DOI 10.1007/s11856-007-0099-2. 355

18. C. A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150
(1970), 565–576. Zbl 0208.37503. MR0265918. DOI 10.2307/1995538. 348, 349, 353

19. C. A. Kottman, Subsets of the unit ball that are separated by more than one. Studia Math.
53 (1975), no. 1, 15–27. Zbl 0266.46014. MR0377477. 349

20. A. Kryczka and S. Prus, Separated sequences in nonreflexive Banach spaces, Proc. Amer.
Math. Soc. 129 (2001), no. 1, 155–163. Zbl 0981.46012. MR1695123. DOI 10.1090/
S0002-9939-00-05495-2. 358, 359, 360

21. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I: Sequence Spaces. Ergeb. Math.
Grenzgeb. 92, Springer, Berlin, 1977. Zbl 0362.46013. MR0500056. 358

22. S. V. R. Naidu and K. P. R. Sastry, Convexity conditions in normed linear spaces,
J. Reine Angew. Math. 297 (1978), 35–53. Zbl 0364.46009. MR0493265. DOI 10.1515/
crll.1978.297.35. 355

23. S. Prus, Constructing separated sequences in Banach spaces, Proc. Amer. Math. Soc. 138
(2010), no. 1, 225–234. Zbl 1191.46015. MR2550187. DOI 10.1090/S0002-9939-09-10024-2.
349, 351, 360

24. R. Whitley, The size of the unit sphere. Canad. J. Math. 20 (1968), 450–455.
Zbl 0153.44203. MR0228997. DOI 10.4153/CJM-1968-041-1. 357
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