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Abstract. We show that the approximate hyperplane series property (AHSp)
is stable under finite `p-sums (1 ≤ p < ∞). As a consequence, we obtain that
the class of spaces Y such that the pair (`1, Y ) has the Bishop–Phelps–Bollobás
property for operators is stable under finite `p-sums for 1 ≤ p < ∞. We also
deduce that every Banach space of dimension at least 2 can be equivalently
renormed to have the AHSp but to fail Lindenstrauss’ property β. We also show
that every infinite-dimensional Banach space admitting an equivalent strictly
convex norm also admits such an equivalent norm failing the AHSp.

1. Introduction

Our main objectives here are to examine the stability properties of the approx-
imate hyperplane series property (AHSp) and the behavior of this property under
equivalent renormings. This section is devoted to basic definitions and a review of
known results related to the AHSp and to the Bishop–Phelps–Bollobás property.
All Banach spaces throughout this manuscript will be considered real or complex
since all the results and definitions work for both cases.

For a Banach space X, as usual, BX and SX denote the closed unit ball and
the unit sphere of X, respectively. We will write X∗ for the topological dual of X.
By a convex series we mean a series of nonnegative real numbers whose sum is
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equal to 1. The approximate hyperplane series property was originally studied in
2008. The following is an equivalent formulation of this property.

Definition 1.1 ([1, Remark 3.2]). Let X be a Banach space. We say that X
satisfies the AHSp if for every ε > 0 there exist γX(ε) > 0 and ηX(ε) > 0 with
limε→0 γX(ε) = 0 such that, for every sequence {xn} in SX and every convex
series

∑
n αn with ∥∥∥ ∞∑

k=1

αkxk

∥∥∥ > 1− ηX(ε),

there are a subset A ⊆ N with
∑

k∈A αk > 1 − γX(ε), an element x∗ ∈ SX∗ , and
{zk : k ∈ A} ⊆ (x∗)−1(1) ∩BX such that ‖zk − xk‖ < ε for all k ∈ A.

It will be helpful to use the following characterization of the AHSp.

Proposition 1.2. Let X be a Banach space. The following are equivalent.

(a) The space X has the AHSp.
(b) For every ε > 0 there exist γX(ε) > 0 and ηX(ε) > 0 with limε→0 γX(ε) = 0

such that, for every sequence {xn} in BX and every convex series
∑

n αn

with ‖
∑∞

k=1 αkxk‖ > 1−ηX(ε), there are a subset A ⊆ N with
∑

k∈A αk >
1− γX(ε), an element x∗ ∈ SX∗, and {zk : k ∈ A} ⊆ (x∗)−1(1) ∩BX such
that ‖zk − xk‖ < ε for all k ∈ A.

(c) For every 0 < ε < 1 there exists 0 < η < ε such that, for any sequence
{xn} in BX and every convex series

∑
n αn with ‖

∑∞
k=1 αkxk‖ > 1 − η,

there are a subset A ⊂ N with
∑

k∈A αk > 1 − ε, an element x∗ ∈ SX∗,
and {zk : k ∈ A} ⊆ (x∗)−1(1)∩BX such that ‖zk − xk‖ < ε for all k ∈ A.

(d) This is the same as (c) but for any sequence {xn} in SX .

It is known that many Banach spaces have this property.

Theorem 1.3 ([1, Propositions 3.5, 3.6, 3.7]). Let X be a Banach space. Then
X has the AHSp if

(1) X is finite-dimensional,
(2) X = C(K) for some compact Hausdorff topological space K,
(3) X = L1(µ) for some σ-finite measure µ.

Uniformly convex spaces also have the AHSp. From Theorem 1.3 it follows that
the converse does not hold. However, we have the following result.

Theorem 1.4 ([1, Propositions 3.8, 3.9]). Let X be a Banach space. The following
conditions are equivalent:

(1) X is uniformly convex,
(2) X is strictly convex and satisfies the AHSp.

The AHSp was introduced as a useful tool to prove extensions of the Bishop–
Phelps–Bollobás theorem for the Banach space of continuous linear operators
L(X,Y ) between Banach spaces X and Y .

Definition 1.5 ([1, Definition 1.1]). Given two Banach spaces (both real or com-
plex) X and Y , the pair (X,Y ) has the Bishop–Phelps–Bollobás property (BPBp)
for operators if for every ε > 0 there exists 0 < η(ε) < ε such that for any
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S ∈ SL(X,Y ), if x0 ∈ SX is such that ‖S(x0)‖ > 1 − η(ε), then there exist
T ∈ SL(X,Y ) and u0 ∈ SX satisfying the following conditions:∥∥T (u0)

∥∥ = 1, ‖u0 − x0‖ < ε, and ‖T − S‖ < ε.

Roughly speaking, a pair of Banach spaces (X,Y ) has the BPBp for operators
if any pair (T, x0) of an operator T ∈ SL(X,Y ) and x0 ∈ SX such that ‖Tx0‖ is
close to 1 can be approximated by a new pair of elements (S, z) in the product
SL(X,Y ) × SX such that S attains its norm at z. The utility of the two concepts,
AHSp and BPBp, is evident from the following result.

Theorem 1.6 ([1, Theorem 4.1]). Let Y be a Banach space. The following con-
ditions are equivalent:

(1) the pair (`1, Y ) has the BPBp,
(2) Y satisfies the AHSp.

Another related and helpful concept is Lindenstrauss’s property β, which was
introduced in [10] as another means of studying the denseness of norm-attaining
operators. For our purpose, the following definition is worth mentioning.

Definition 1.7 ([10, Proposition 3]). A Banach space Y is said to have property
β (of Lindenstrauss) if there are two sets {yi : i ∈ I} ⊂ SY , {y∗i : i ∈ I} ⊂ SY ∗

and 0 ≤ ρ < 1 such that the following conditions hold:

(1) y∗i (yi) = 1 for every i ∈ I,
(2) |y∗i (yj)| ≤ ρ < 1 for any i, j ∈ I, i 6= j,
(3) ‖y‖ = sup{|y∗i (y)| : i ∈ I} for every y ∈ Y .

Theorem 1.8 ([1, Theorem 2.2]). Let Y be a Banach space. If Y satisfies prop-
erty β of Lindenstrauss, then the pair (X,Y ) has the BPBp for every Banach
space X.

Relying on [13, Theorem 1.8], the following is a consequence of the previous
result.

Corollary 1.9 ([1, Corollary 2.3]). Let X be a Banach space. Then we have the
following.

(1) If X has property β of Lindenstrauss, then X has the AHSp.
(2) There exists an equivalent norm on X that satisfies the AHSp.

We finish this Introduction with an outline of the main results of this note.
In the upcoming section, we prove that the AHSp is stable under finite `p-sums
(1 ≤ p < ∞). As a consequence, we also obtain the following two results. Every
Banach space of dimension at least 2 admits an equivalent norm having the AHSp
but failing property β of Lindenstrauss. Every infinite-dimensional Banach space
admitting a strictly convex equivalent norm also admits such a strictly convex
equivalent norm failing the AHSp.

2. Stability of the approximate hyperplane series property

Our aim is to show that the AHSp is preserved by finite `p-sums. In order to do
this, the first step we take is to show the inheritance of the AHSp to `p-summands
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for 1 ≤ p ≤ ∞. It should be mentioned that the following result is already known
for p = 1 and p = ∞ (see [3, Propositions 2.4 and 2.7] and [1, Theorem 4.1]).

Proposition 2.1. Let X be a Banach space, and let 1 ≤ p < ∞. If X = M ⊕pN
has the AHSp, then both M and N also have it. In this case, with obvious notation,
ηM(ε) can be chosen to equal ηX(ε/2).

Proof. Assume that 1 ≤ p < ∞ and that X = M ⊕p N has the AHSp. Let
0 < ε < 1, {xn} be a sequence in SM , and consider a convex series

∑
n αn

satisfying ∥∥∥ ∞∑
n=1

αnxn

∥∥∥ > 1− ηX

(ε
2

)
.

By hypothesis, there exist A ⊆ N, x∗ ∈ SX∗ , and {zk : k ∈ A} ⊂ (x∗)−1(1) ∩ BX

such that∑
n∈A

αn > 1− ε

2
> 1− ε and ‖zk − xk‖ <

ε

2
for all k ∈ A.

For every k ∈ A, we can write zk = mk+nk, where mk ∈ M and nk ∈ N . Suppose
that mk = 0 for some k ∈ A. Then

21/p = ‖nk − xk‖ = ‖zk − xk‖ <
ε

2
,

which contradicts our assumption on ε. Hence mk 6= 0 for every k ∈ A. Observe
also that for every k ∈ A, we have∥∥∥xk −

mk

‖mk‖

∥∥∥ ≤ ‖xk −mk‖+
∥∥∥mk −

mk

‖mk‖

∥∥∥
≤ ‖xk −mk‖+

∣∣1− ‖mk‖
∣∣

= ‖xk −mk‖+
∣∣‖xk‖ − ‖mk‖

∣∣
≤ 2‖xk −mk‖
≤ 2‖xk − zk‖
< ε.

Recall that X∗ = M∗⊕qN
∗, with q being the conjugate exponent of p. So we can

write x∗ = m∗ + n∗, where m∗ ∈ BM∗ and n∗ ∈ BN∗ . If m∗ = 0, then for every
k ∈ A we have

1 = Re x∗(zk) = Ren∗(nk) ≤ ‖nk‖ < ‖zk‖ = 1,

which is impossible.
Finally, for every k ∈ A we have

1 = Rex∗(zk)

= Rem∗(mk) + Ren∗(nk)

≤ ‖m∗‖‖mk‖+ ‖n∗‖‖nk‖
≤

∥∥(‖m∗‖, ‖n∗‖
)∥∥

q

∥∥(‖mk‖, ‖nk‖
)∥∥

p

= ‖x∗‖‖zk‖
= 1.
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Since ‖m∗‖‖mk‖ > 0 for every k ∈ A, we deduce that m∗(mk) = Rem∗(mk) =
‖m∗‖‖mk‖ for every k ∈ A. Thus, we have proved that M has the AHSp. �

Before approaching the converse to Proposition 2.1, we would like to point out
that the AHSp is not an inherited property, as shown in the next remark.

Remark 2.2. Let X be a nonreflexive, strictly convex Banach space. We know
by Theorem 1.4 that X does not have the AHSp. Now, let Γ be an index set
so that X can be regarded as an isometric subspace of `∞(Γ). Since `∞(Γ) has
property β, it satisfies the AHSp by virtue of [1, Theorems 2.2, 4.1].

It is time now to take care of the converse to Proposition 2.1 for 1 ≤ p < ∞.
Due to the necessity of employing different proofs, we will prove the cases p = 1
and 1 < p < ∞. Let us begin with the case p = 1.

Theorem 2.3. Let X be a Banach space. If X = M ⊕1 N and if M and N both
have the AHSp, then so does X.

Proof. Let us fix 0 < ε < 1. We write ε′ = ε/5. By assumption there is 0 <
η′ < ε′/3 such that condition (c) in Proposition 1.2 is satisfied for M and N

with (ε′, η′), simultaneously. We take η = (η′)2ε′

6(1+ε′+ε′η′)
. In order to prove that X

satisfies the AHSp, we will check that condition (d) in Proposition 1.2 is satisfied
for (ε, η).

Assume that {xn} is a sequence in SX and that
∑

n αn is a convex series such
that ‖

∑∞
n=1 αnxn‖ > 1− η. If P and Q denote the canonical projections from X

onto M and N , respectively, then

1− η <
∥∥∥ ∞∑
n=1

αnxn

∥∥∥
=

∥∥∥ ∞∑
n=1

αnP (xn)
∥∥∥+

∥∥∥ ∞∑
n=1

αnQ(xn)
∥∥∥

≤
∞∑
n=1

αn

∥∥P (xn)
∥∥+

∥∥∥ ∞∑
n=1

αnQ(xn)
∥∥∥

≤
∞∑
n=1

αn

∥∥P (xn)
∥∥+

∞∑
n=1

αn

∥∥Q(xn)
∥∥

=
∞∑
n=1

αn‖xn‖

= 1. (2.1)

As a consequence, we obtain{
‖
∑∞

n=1 αnP (xn)‖ ≥
∑∞

n=1 αn‖P (xn)‖ − η,

‖
∑∞

n=1 αnQ(xn)‖ ≥
∑∞

n=1 αn‖Q(xn)‖ − η.
(2.2)

For simplicity, we will denote rn := ‖P (xn)‖, sn := ‖Q(xn)‖, r :=
∑∞

n=1 αnrn,
and s :=

∑∞
n=1 αnsn. Note that r + s = 1 = rn + sn for every n ∈ N.
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Notice that it is trivially satisfied that

η′ε′

3(1 + ε′ + ε′η′)
<

η′ε′(3(1 + ε′) + 2ε′η′)

(1 + ε′)3(1 + ε′ + ε′η′)
.

So we can choose a real number a such that

η′ε′

3(1 + ε′ + ε′η′)
< a <

η′ε′(3(1 + ε′) + 2ε′η′)

(1 + ε′)3(1 + ε′ + ε′η′)
. (2.3)

In order to prove the result, we will distinguish three cases.
Case 1. Assume that r ≤ a.
Let C = {k ∈ N : rk < ε/5}. Then

ε

5

∑
k∈N\C

αk ≤
∑

k∈N\C

αkrk ≤
∞∑
k=1

αkrk = r ≤ a,

so ∑
k∈N\C

αk ≤
5a

ε
and

∑
k∈C

αk ≥ 1− 5a

ε
. (2.4)

On the other hand, from inequality (2.1) we obtain that

∞∑
k=1

αksk ≥ 1− η −
∞∑
k=1

αkrk ≥ 1− η − a. (2.5)

By combining (2.2) and (2.5) we obtain that∥∥∥ ∞∑
k=1

αkQ(xk)
∥∥∥ ≥

∞∑
k=1

αksk − η ≥ 1− 2η − a.

As a consequence, in view of (2.4) and (2.3) we deduce that∥∥∥∑
k∈C

αkQ(xk)
∥∥∥ ≥ 1− 2η − a−

∑
k∈N\C

αksk

≥ 1− 2η − a−
∑

k∈N\C

αk

≥ 1− 2η − a− 5a

ε
> 1− η′.

Since N has the AHSp, by Proposition 1.2, there is a set D ⊆ C such that∑
k∈D αk > 1− ε′, and there exists {vk : k ∈ D} ⊆ SN so that there is n∗ ∈ SN∗

with n∗(vk) = 1 and ‖vk − Q(xk)‖ < ε′ for all k ∈ D. Since D ⊆ C, for every
k ∈ D, we define mk := rkm0 for an arbitrary m0 ∈ SM . Note that if k ∈ D ⊆ C,
then rk < ε/5 so sk > 1 − ε/5. Take nk = skvk for k ∈ D. Then for k ∈ D, we
have∥∥nk−Q(xk)

∥∥ =
∥∥skvk−Q(xk)

∥∥ ≤ ‖skvk−vk‖+
∥∥vk−Q(xk)

∥∥ ≤ 1−sk+ε′ <
ε

5
+ε′.
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Hence the element yk := mk + nk, for k ∈ D, satisfies ‖yk‖ = rk + sk‖vk‖ =
rk + sk = 1. By the choice of ε′, for all k ∈ D we have

‖yk − xk‖ =
∥∥P (yk − xk)

∥∥+
∥∥Q(yk − xk)

∥∥
=

∥∥mk − P (xk)
∥∥+

∥∥nk −Q(xk)
∥∥

≤ 2rk +
ε

5
+ ε′

< 3
ε

5
+

ε

5
< ε.

If we choose an element m∗ ∈ SM∗ such that m∗(m0) = 1, then m∗(mk) = rk for
all k ∈ D, and the element x∗ = m∗ + n∗ ∈ SX∗ verifies that

x∗(yk) = m∗(rkm0) + n∗(skvk) = rk + sk = ‖xk‖ = 1.

Finally,
∑

k∈D αk > 1− ε′ > 1− ε.
Case 2. Assume that s ≤ a.
If we assume this, then we may proceed analogously to the case 1 since M also

satisfies the AHSp.
Case 3. Assume now that r, s > a.
First, we apply the fact that M has the AHSp. In view of equation (2.2), there

is m∗ ∈ SM∗ such that

Rem∗
( ∞∑

k=1

αkP (xk)
)
=

∥∥∥ ∞∑
k=1

αkP (xk)
∥∥∥ ≥ r − η.

Let A1 := {k ∈ N : rk 6= 0 and let Rem∗(P (xk)
rk

) > 1− η′/2}.
Since

r − η ≤
∑
k∈A1

αk Rem
∗(P (xk)

)
+

∑
k∈N\A1

αk Rem
∗(P (xk)

)
≤

∑
k∈A1

αkrk +
∑

k∈N\A1

αkrk

(
1− η′

2

)
=

∞∑
k=1

αkrk −
η′

2

∑
k∈N\A1

αkrk

= r − η′

2

∑
k∈N\A1

αkrk,

we deduce that η′

2

∑
k∈N\A1

αkrk ≤ η, and in view of (2.3) and the definition of η,

we get
∑

k∈N\A1
αkrk ≤ 2η/η′ < a < r. Hence,

∑
k∈A1

αk ≥
∑

k∈A1
αkrk > 0.

Now we define the sets L1 and C1 as follows:

L1 :=
{
k ∈ N\A1 : rk ≤

ε′

3

}
, C1 :=

{
k ∈ N\A1 : rk >

ε′

3

}
.
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Then
ε′η′

6

∑
k∈C1

αk <
η′

2

∑
k∈C1

αkrk ≤
η′

2

∑
k∈N\A1

αkrk ≤ η,

and so ∑
k∈C1

αk <
6η

η′ε′
. (2.6)

Next, take B1 := A1 ∪ L1. Note that

L1 = {k ∈ N : rk = 0} ∪
{
k ∈ N : rk 6= 0,Rem∗

(P (xk)

rk

)
≤ 1− η′

2
and rk ≤

ε′

3

}
.

From equation (2.6) and the choice of η, we have∑
k∈B1

αk > 1− 6η

η′ε′
> 1− ε′. (2.7)

It is clearly satisfied that∥∥∥∑
k∈A1

αk∑
j∈A1

αj

P (xk)

rk

∥∥∥ ≥ Rem∗
(∑
k∈A1

αk∑
j∈A1

αj

P (xk)

rk

)
≥ 1− η′

2
> 1− η′.

Taking into consideration that M has the AHSp, there is a set E1 ⊆ A1 such that∑
k∈E1

αk > (1− ε′)
∑
k∈A1

αk > 0 (2.8)

and there exist {mk : k ∈ E1} ⊆ SM and m∗
2 ∈ SM∗ with m∗

2(mk) = 1 and

‖mk − P (xk)
rk

‖ < ε′ for all k ∈ E1. In particular, E1 6= ∅, and there is m0 ∈ SM

such that m∗
2(m0) = 1. Let us write D1 = E1 ∪ L1. For every k ∈ D1, since

E1 ⊂ A1 and A1 ∩ L1 = ∅, we can define

uk :=

{
rkm0 if k ∈ L1,

rkmk if k ∈ E1.

Note that

m∗
2(uk) = rk = ‖uk‖ for all k ∈ D1. (2.9)

Also, if k ∈ L1, then ‖uk − P (xk)‖ ≤ 2rk ≤ 2(ε′/3) < ε′, and if k ∈ E1, then
‖uk − P (xk)‖ < rkε

′ ≤ ε′. That is,∥∥uk − P (xk)
∥∥ < ε′ for all k ∈ D1. (2.10)

Notice that from (2.8) we have∑
k∈D1

αk > (1− ε′)
∑
k∈A1

αk +
∑
k∈L1

αk

≥ (1− ε′)
∑
k∈B1

αk

> (1− ε′)2 (by (2.7)). (2.11)
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Next, repeating this argument, equation (2.2) implies that there is n∗ ∈ SN∗

such that

Ren∗
( ∞∑

k=1

αkQ(xk)
)
=

∥∥∥ ∞∑
k=1

αkQ(xk)
∥∥∥ ≥

∞∑
k=1

αksk − η.

Then we can proceed as above, and by using the fact that N has the AHSp,
we deduce that there is a subset D2 ⊂ N, {vk : k ∈ D2} ⊂ N , and an element
n∗
2 ∈ SN∗ satisfying the following conditions:∑

k∈D2

αk > (1− ε′)2, n∗
2(vk) = ‖vk‖ = sk, and∥∥vk −Q(xk)

∥∥ < ε′ for all k ∈ D2.

(2.12)

Let D := D1 ∩D2. By using the choice of ε′, we clearly obtain∑
k∈D

αk ≥
∑
k∈D1

αk −
∑

k∈N\D2

αk

> (1− ε′)2 −
(
1− (1− ε′)2

)
(by (2.11) and (2.12))

= 1− 4ε′ + 2(ε′)2

> 1− ε.

Now, for k ∈ D, let yk := uk + vk ∈ SX . As a consequence of (2.10) and (2.12),
we deduce that

‖yk − xk‖ ≤
∥∥uk − P (xk)

∥∥+
∥∥vk −Q(xk)

∥∥ ≤ 2ε′ < ε.

Finally, in view of (2.9) and (2.12), the element x∗ = m∗
2 + n∗

2 ∈ SX∗ verifies that

x∗(yk) = m∗
2(uk) + n∗

2(vk) = rk + sk = 1 for all k ∈ D.

This completes the proof that the `1 sum of a finite number of spaces having
the AHSp also has the AHSp. �

Before stating and proving the case 1 < p < ∞, we need a couple of elementary
lemmas.

Lemma 2.4. Let a, b, p be nonnegative real numbers such that p ≥ 1 and such

that ap + bp ≤ 1. Let Ma,b := (1− bp)
1
p − a. Then,

xp ≤ p
((
(a+ x)p + bp

) 1
p − (ap + bp)

1
p
)

for all x ∈ [0,Ma,b].

Proof. If a = b = 0, then the above inequality is clearly satisfied. Otherwise define
the function

f : [0,Ma,b] → R

x 7→
(
(a+ x)p + bp

) 1
p − (ap + bp)

1
p − xp

p
.

We deduce the result from the two facts that f(0) = 0 and
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f ′(x) =
(a+ x)p−1

((a+ x)p + bp)
p−1
p

− xp−1 ≥ (a+ x)p−1 − xp−1 ≥ 0

for all x ∈ [0,Ma,b]. �

Since `2p (R2 with the `p-norm) is uniformly convex for 1 < p < ∞, Theorem 1.4
may be applied. Consequently, we have the following.

Lemma 2.5. For 1 < p < ∞, `2p satisfies the following condition. Given any
0 < ε < 1, there is 0 < η < ε such that, for every sequence (rk, sk)k∈N ⊂ S`2p

and

for every convex series
∑

n≥1 αn with∥∥∥ ∞∑
k=1

αk(rk, sk)
∥∥∥
p
> 1− η,

there is a subset A ⊂ N with
∑

k∈A αk > 1 − ε and some element (r, s) ∈ S`2p

satisfying |r − rk| < ε and |s− sk| < ε for every k ∈ A.

Now we take care of the case 1 < p < ∞. Several other stability properties will
be obtained from the following result.

Theorem 2.6. Let X be a Banach space, and let 1 < p < ∞. If X = M ⊕p N
and M and N both have AHSp, then so does X.

Proof. We can clearly assume that M 6= {0} 6= N . For arbitrary ε ∈ (0, 1), fix
any 0 < ε′ < ε/5 and choose η′ so that (d) of Proposition 1.2 applies for both M
and N . Next, let

0 < ε0 < min
{(ε

5

)p+1

,
(η′)p

2p+2p
,
((η′)p

4p

)p+1}
(2.13)

and choose η0 as in Lemma 2.5 for `2p.
We will begin the process of checking that X has the AHSp by applying (d) of

Proposition 1.2. In order to use Proposition 1.2(d) to prove that X has the AHSp,
we will rely on the parameter η0 that was chosen above (note that 0 < η0 < ε0).
So, assume that

∑
n≥1 αn is a convex series and that (xk)k∈N ⊂ SX is a sequence

such that ‖
∑∞

k=1 αkxk‖ > 1− η0.
We will denote by P and Q the canonical projections from X onto M and N ,

respectively. Then we have

1− η0 <
∥∥∥ ∞∑
k=1

αkxk

∥∥∥
=

(∥∥∥ ∞∑
k=1

αkP (xk)
∥∥∥p

+
∥∥∥ ∞∑
k=1

αkQ(xk)
∥∥∥p) 1

p

≤
(( ∞∑

k=1

αk

∥∥P (xk)
∥∥)p

+
( ∞∑

k=1

αk

∥∥Q(xk)
∥∥)p) 1

p

=
∥∥∥ ∞∑
k=1

αk

(∥∥P (xk)
∥∥, ∥∥Q(xk)

∥∥)∥∥∥
p
,
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where the last summation is viewed as an element of `2p. From Lemma 2.5 applied

to the sequence ((‖P (xk)‖, ‖Q(xk)‖))k∈N, we have an element (r, s) ∈ R2 with
rp + sp = 1 and r, s ≥ 0 as well as a subset A ⊂ N with∑

k∈A

αk > 1− ε0 > 0 (2.14)

so that, for all k ∈ A, we have∣∣∥∥P (xk)
∥∥− r

∣∣ < ε0 and
∣∣∥∥Q(xk)

∥∥− s
∣∣ < ε0. (2.15)

Now fix arbitrary elements m0 ∈ SM and n0 ∈ SN , and define the following
sequences:

mk :=


P (xk) if k /∈ A,
rP (xk)
‖P (xk)‖

if k ∈ A and P (xk) 6= 0,

rm0 if k ∈ A and P (xk) = 0

and

nk :=


Q(xk) if k /∈ A,
sQ(xk)
‖Q(xk)‖

if k ∈ A and Q(xk) 6= 0,

sn0 if k ∈ A and Q(xk) = 0.

Next, define yk := mk + nk for all k ∈ N. It is clear that (yk)k∈N ⊂ SX , and in
view of (2.15), we have

‖yk − xk‖ ≤ 2
1
p ε0 < 2ε0 (2.16)

for all k ∈ N. Note that∥∥∥ ∞∑
k=1

αkxk

∥∥∥−
∥∥∥ ∞∑
k=1

αkyk

∥∥∥ ≤
∞∑
k=1

αk‖xk − yk‖ ≤ 2ε0.

By bearing in mind (2.14) and the above chain of inequalities, we have∥∥∥∑
k∈A

αkyk

∥∥∥ >
∥∥∥ ∞∑
k=1

αkyk

∥∥∥− ε0

≥
∥∥∥ ∞∑
k=1

αkxk

∥∥∥− 2ε0 − ε0

> 1− η0 − 3ε0

> 1− 4ε0.

We set βk := αk∑
j∈A αj

for every k ∈ A, so that
∑

k∈A βk is a convex series. The

series
∑

k∈A βkyk satisfies that

1− 4ε0 <
∥∥∥∑
k∈A

αkyk

∥∥∥ =
(∑
k∈A

αk

)∥∥∥∑
k∈A

βkyk

∥∥∥ ≤
∥∥∥∑
k∈A

βkyk

∥∥∥
=

(∥∥∥∑
k∈A

βkmk

∥∥∥p

+
∥∥∥∑
k∈A

βknk

∥∥∥p) 1
p
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≤
((∑

k∈A

βk‖mk‖
)p

+
∥∥∥∑
k∈A

βknk

∥∥∥p) 1
p

≤
(
rp +

∥∥∥∑
k∈A

βknk

∥∥∥p) 1
p

≤ (rp + sp)
1
p = 1.

From the above chain of inequalities, we know that(
rp +

∥∥∥∑
k∈A

βknk

∥∥∥p) 1
p
<

(∥∥∥∑
k∈A

βkmk

∥∥∥p

+
∥∥∥∑
k∈A

βknk

∥∥∥p) 1
p
+ 4ε0, (2.17)

1 = (rp + sp)
1
p <

(
rp +

∥∥∥∑
k∈A

βknk

∥∥∥p) 1
p
+ 4ε0,

and

rp +
∥∥∥∑
k∈A

βknk

∥∥∥p

≤ 1. (2.18)

Now we apply Lemma 2.4 to a := ‖
∑

k∈A βkmk‖ and b := ‖
∑

k∈A βknk‖. Note
that t := r − a ∈ [0,Ma,b], and by virtue of (2.18) we have (a + t)p + bp ≤ 1. By
combining Lemma 2.4 and (2.17), we deduce that(

r −
∥∥∥∑
k∈A

βkmk

∥∥∥)p

= tp ≤ p
((
(a+ t)p + bp

) 1
p − (ap + bp)

1
p
)

= p
((

rp +
∥∥∥∑
k∈A

βknk

∥∥∥p) 1
p

−
(∥∥∥∑

k∈A

βkmk

∥∥∥p

+
∥∥∥∑
k∈A

βknk

∥∥∥p) 1
p
)

< 4pε0.

Hence ∥∥∥∑
k∈A

βkmk

∥∥∥ > r − (4pε0)
1
p . (2.19)

By proceeding in a similar way, we also deduce that∥∥∥∑
k∈A

βknk

∥∥∥ > s− (4pε0)
1
p . (2.20)

Next, we will consider the following three possibilities.

Case (a): r < ε
1

p+1

0 .

In this case s ≥ sp = 1 − rp > 1 − ε
p

p+1

0 > 1/2 since rp + sp = 1. From (2.20)
and (2.13), we have∥∥∥∑

k∈A

βk
nk

s

∥∥∥ > 1− (4pε0)
1
p

s
> 1− 2(4pε0)

1
p > 1− η′.
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By using our hypothesis that N has the AHSp, we know that there exists C ⊂ A,
n∗ ∈ SN∗ (which can be seen as an element of SX∗), and a set {vk : k ∈ C} ⊂ SN

such that ∑
k∈C

βk > 1− ε′,
∥∥∥vk − nk

s

∥∥∥ < ε′ and

n∗(vk) = 1 for all k ∈ C.

(2.21)

Using (2.21) and (2.14) and by our initial choice of constant ε0, we obtain∑
k∈C

αk =
∑
k∈C

βk

∑
k∈A

αk > (1− ε′)(1− ε0) > 1− (ε′ + ε0) > 1− ε.

For every k ∈ C, we have

‖xk − vk‖ ≤ ‖xk − yk‖+ ‖yk − vk‖
≤ 2ε0 + ‖mk‖+ ‖nk − vk‖ (by (2.16))

≤ 2ε0 + r +
∥∥∥nk −

nk

s

∥∥∥+
∥∥∥nk

s
− vk

∥∥∥
< 2ε0 + ε

1
p+1

0 + ε′ + ‖nk‖
∣∣∣1− 1

s

∣∣∣
= 2ε0 + ε

1
p+1

0 + ε′ + 1− s

< 2ε0 + ε
1

p+1

0 + ε′ + ε
1

p+1

0

< ε.

Case (b): s < ε
1

p+1

0 .
We proceed here in the same way as Case (a) above, by using the assumption

that M has the AHSp.

Case (c): ε
1

p+1

0 ≤ r, s.
From (2.19) and (2.13), we deduce that

∥∥∥∑
k∈A

βk
mk

r

∥∥∥ > 1− (4pε0)
1
p

r
≥ 1− (4pε0)

1
p

ε
1

p+1

0

> 1− η′.

Since M has the AHSp, there are B ⊂ A, {uk : k ∈ B} ⊂ SM and m∗ ∈ SM∗

satisfying ∑
k∈B

βk > 1− ε′, m∗(uk) = 1, and∥∥∥uk −
mk

r

∥∥∥ < ε′ for all k ∈ B.

(2.22)

In view of (2.20) and reasoning as before, we deduce that ‖
∑

k∈A βk
nk

s
‖ > 1− η′.

Hence, since N has the AHSp, there are C ⊂ A, {vk : k ∈ C} ⊂ SN and n∗ ∈ SN∗
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satisfying ∑
k∈C

βk > 1− ε′, n∗(vk) = 1 and∥∥∥vk − nk

s

∥∥∥ < ε′ for all k ∈ C.

(2.23)

Taking D := B ∩ C and bearing (2.22) and (2.23) in mind, we see that∑
k∈D

βk ≥
∑
k∈A

βk −
∑

k∈A\B

βk −
∑

k∈A\C

βk = 1−
∑

k∈A\B

βk −
∑

k∈A\C

βk > 1− 2ε′.

Hence by (2.14)∑
k∈D

αk =
∑
k∈D

βk

∑
k∈A

αk > (1− 2ε′)(1− ε0) > 1− (2ε′ + ε0) > 1− ε.

For every k ∈ D, the element ruk + svk ∈ SX verifies that

‖ruk + svk − yk‖ ≤ ‖ruk −mk‖+ ‖svk − nk‖ < rε′ + sε′ ≤ 2ε′,

in accordance with (2.22) and (2.23). Therefore, by taking into consideration
(2.16), for every k ∈ D we have∥∥(ruk + svk)− xk

∥∥ ≤ ‖ruk + svk − yk‖+ ‖yk − xk‖ ≤ 2ε′ + 2ε0 < ε.

Finally, if (α, β) ∈ R2 is the unique element satisfying αq+βq = 1 with αr+βs =
1, then the element αm∗ + βn∗ ∈ SX∗ satisfies

(αm∗ + βn∗)(ruk + svk) = αr + βs = 1,

for every k ∈ D. �

The statement of Theorem 2.6 remains true when p = ∞ due to [3, Proposi-
tion 2.4] and [1, Theorem 4.1]. At the very end of this article, we will argue that
the AHSp is not stable under infinite `p-sums for 1 < p < ∞. (This fact is already
known for infinite c0-sums, `1-sums, and `∞-sums in view of [3, Corollary 4.6]).

We now show how Theorem 2.6 can be used to obtain equivalent renormings
involving the AHSp.

Corollary 2.7. Let X be a Banach space.

(1) If dim(X) > 1, then X can be equivalently renormed to have the AHSp
but not the property β of Lindenstrauss.

(2) If X is infinite-dimensional and admits an equivalent strictly convex norm,
then X admits an equivalent strictly convex renorming that fails the AHSp.

Proof. (1) Let x ∈ SX , and consider any closed subspace M of X such that X =
Kx⊕M (K is the base scalar field). Since every Banach space can be equivalently
renormed to have the AHSp (see Theorem 1.9), we can assume without loss of
generality that M has the ASHp. This means, by Theorem 2.6, that Kx ⊕2 M
has the AHSp. Now, to see that Kx⊕2 M does not verify property β, we observe
two things. By virtue of [12, Proposition 3.3], the unit sphere of a Banach space
having property β has no locally uniformly rotund points. The element x is a
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locally uniformly rotund point of the unit ball of Kx⊕2 M (see, for instance, [2,
Proposition 2.1]).

(2) We will distinguish two cases. If X is super-reflexive, then there exists an
infinite-dimensional closed separable subspace Y of X that is complemented (see
[11, Proposition 1]). Next, Y is reflexive, so Y ∗ is separable too. By [9, Theorem 1],
there exists an equivalent renorming on Y ∗ that is uniformly Gateaux-smooth but
lacks asymptotic normal structure. By [8], we have that this equivalent norm on
Y ∗ is not uniformly Fréchet-smooth. Since Y is reflexive, that equivalent norm on
Y ∗ is a dual norm, whose predual norm on Y is strictly convex but not uniformly
convex. By [1, Proposition 3.9], we have that this equivalent norm on Y fails
to have the AHSp. The complement of Y in X is also reflexive, so it can be
equivalently renormed to be strictly convex (see [5, Proposition VII.2.1]). Finally,
take the `2-sum of Y and its complement with their corresponding new norms
and apply Proposition 2.1.

In the case that X is not super-reflexive, there is no need to renorm because
of [1, Proposition 3.9] and [6]. �

Notice that the class of Banach spaces admitting an equivalent strictly convex
norm is very large. However, there are examples of Banach spaces that do not
belong to this class (see, e.g., [5, Corollary II.7.13]).

Our final purpose is to deduce some stability properties of the BPBp in the
case where the domain space is `1. In order to accomplish this, we introduce the
following notion. Given a real or complex Banach space X, we say that Y has
property PX if the pair (X,Y ) has the BPBp for operators. In view of the stability
result for 1 ≤ p ≤ ∞ (see Theorem 2.3, Theorem 2.6, [3, Proposition 2.4], and
[1, Theorem 4.1]), we obtain the following result.

Corollary 2.8. The property P`1 is stable under finite `p-sums for 1 ≤ p ≤ ∞.

Question 2.9. Given an arbitrary Banach space X, is the property PX stable
under finite `p-sums for 1 ≤ p < ∞?

For p = ∞, the property PX is stable under finite `∞-sums (see [3, Propo-
sition 2.4]). It is also known that in general PX is neither stable under infinite
`p-sums for 1 ≤ p < ∞ in view of the Bishop–Phelps–Bollobás theorem (see [4])
and the counterexample given in [7, Appendix] nor under c0-sums and `∞-sums
(see [3, Corollary 4.4]).
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57838-C2-2-P. Garćıa-Pacheco’s work was partially supported by MINECO/
FEDER (Fondo Europeo de Desarrollo Regional) grant MTM2014-58984-P.

References
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