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Abstract. We continue the study begun by the third author of C∗-Segal
algebra-valued function algebras with an emphasis on the order structure. Our
main result is a characterization theorem for C∗-Segal algebra-valued func-
tion algebras with an order unitization. As an intermediate step, we establish
a function algebraic description of the multiplier module of arbitrary Segal
algebra-valued function algebras. We also consider the Gelfand representation
of these algebras in the commutative case.

Introduction

The concept of a Segal algebra originated in the work of Reiter on subalge-
bras of the L1-algebra of a locally compact group (see [18]). It was generalized to
arbitrary Banach algebras by Burnham in [7]. A C∗-Segal algebra is a Banach alge-
bra which is a dense (not necessarily self-adjoint) ideal in a C∗-algebra. Despite
many important examples in analysis, such as the Schatten classes, for instance,
little has been known about the general structure and properties of C∗-Segal
algebras. In particular, most results have relied on the additional assumption of
an approximate identity. The multiplier algebra and the bidual of self-adjoint
C∗-Segal algebras were described in [2] and [11], and the form of the closed ideals
of C∗-Segal algebras with an approximate identity was given in [5].
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Recently, a new approach to Segal algebras was introduced in [4] and [12], which
allows a more detailed study of their structure and properties, particularly in the
absence of an approximate identity (see [4] for the commutative case and [12] for
the noncommutative case). The main new tools used in these papers are the notion
of the “approximate ideal” and the theory of multiplier modules. The primary
motivation of the present investigation was to gain a better understanding of the
order structure of (not necessarily closed) ideals of C∗-algebras. Indeed, the main
results of [4] and [12] are structure theorems for self-adjoint C∗-Segal algebras with
an order unit whose norm coincides with the order-unit norm on the self-adjoint
part. These results were extended in [13] to C∗-Segal algebras with an order
unitization (i.e., to which an order unit can be added in a structure-preserving
way).

In this article, we continue the work begun in [15] on C∗-Segal algebra-valued
function algebras with an emphasis on the order structure. Our main result is a
characterization theorem for C∗-Segal algebra-valued function algebras with an
order unitization. Together with results of [13], this yields a structure theorem
for these algebras. As an intermediate step, we establish a function algebraic
description of the multiplier module of arbitrary Segal algebra-valued function
algebras. This extends and improves previous results by Akemann, Pedersen,
and Tomiyama [1] and by Candeal Haro and Lai [8]. We also discuss Gelfand
representation of these algebras in the commutative case. Here, an important role
is played by certain weighted-function algebras introduced by Nachbin in [16].

This paper is organized as follows. In Section 1, we review some facts about
C∗-Segal algebra-valued function algebras and state our main results, Theo-
rems 1.12 and 1.21. In Section 2, we give the proofs of these theorems. In Section 3,
we consider Gelfand representation of commutative C∗-Segal algebra-valued func-
tion algebras.

1. Preliminaries and statements of the main results

In this section, we review some facts about C∗-Segal algebra-valued function
algebras and state our main results, Theorems 1.12 and 1.21.

Notation. Throughout this article, let A be a Banach algebra with norm ‖ · ‖A.
For a bimodule D over A, we denote by annA(D) its annihilator in A; that is,

annA(D) := {a ∈ A : a · x = x · a = 0 for all x ∈ D}.

The bimodule D is called faithful if annA(D) = {0}. Similarly, an ideal of A is
considered faithful if it is faithful when viewed as a bimodule over A. For any
two ideals I and J of A, we write IJ := {xy : x ∈ I and y ∈ J}. For any two
Banach spaces E and F , we denote by L(E,F ) the Banach space of all bounded
linear mappings from E into F . The equivalence of two norms ‖ · ‖ and ‖ · ‖′ on
a vector space is denoted by ‖ · ‖ ∼ ‖ · ‖′. For any topological space Y , we denote
by C(Y ) the set of all continuous complex-valued functions on Y . The subsets
of C(Y ) consisting of all bounded and vanishing-at-infinity functions are denoted
by Cb(Y ) and C0(Y ), respectively.
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1.1. Vector-valued function algebras. Throughout this paper, let X be a
locally compact Hausdorff space. We define

Cb(X,A) :=
{
f : X → A : f is continuous and t 7→

∥∥f(t)∥∥
A
∈ Cb(X)

}
and

C0(X,A) :=
{
f : X → A : f is continuous and t 7→

∥∥f(t)∥∥
A
∈ C0(X)

}
.

These sets are Banach algebras under pointwise operations and the supremum
norm

‖f‖A∞ := sup
t∈X

∥∥f(t)∥∥
A
.

Moreover, if A is a C∗-algebra, then so are Cb(X,A) and C0(X,A) with involution
f 7→ f ∗ given by f ∗(t) := f(t)∗ for all t ∈ X. For any φ ∈ C(X) and any a ∈ A,
we denote

φ⊗ a : X → A; t 7→ φ(t)a (t ∈ X).

The linear span of the set {φ ⊗ a : φ ∈ C0(X) and a ∈ A} is a dense subspace
of C0(X,A). (For a standard reference on vector-valued function algebras, we
refer to [17].)

1.2. C∗-Segal algebras. Let B be a Banach algebra with norm ‖ · ‖B. Recall
that A is said to be a Segal algebra in B if it is a dense ideal of B and there exists
a constant l > 0 such that ‖a‖B ≤ l‖a‖A for all a ∈ A. The following standard
result of Barnes is recorded for completeness.

Lemma 1.1. Let B be a Banach algebra containing A as a Segal algebra. Then
A is a Banach B-bimodule; that is, there exists a positive constant l such that

‖ax‖A ≤ l‖a‖A‖x‖B and ‖xa‖A ≤ l‖a‖A‖x‖B
for all a ∈ A and all x ∈ B.

Proof. For the proof, see [5, Theorem 2.3]. �

The following class of Segal algebras concerns our main interest in this paper.

Definition 1.2. By a C∗-Segal algebra, we understand a Banach algebra contained
as a Segal algebra in a C∗-algebra. We call a C∗-Segal algebra self-adjoint if it is
closed under the involution of the surrounding C∗-algebra.

The following property of C0(X,A) will be used in the rest of this article
without further reference.

Proposition 1.3. The following conditions are equivalent for a Banach alge-
bra B:

(a) A is a Segal algebra in B,
(b) C0(X,A) is a Segal algebra in C0(X,B).

In particular, C0(X,A) is a C∗-Segal algebra whenever A is a C∗-Segal algebra.

Proof. For the proof, see [15, Theorem 3.8]. �
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1.3. Approximate identities of C∗-Segal algebras. Let B be a Banach alge-
bra with norm ‖ · ‖B. Recall that an approximate identity for B is a net {eα}α∈Ω
in B such that ‖xeα − x‖B → 0 and ‖eαx− x‖B → 0 for every x ∈ B; it is called
bounded if there exists a constant l > 0 with ‖eα‖B ≤ l for all α ∈ Ω.

Definition 1.4. Let A be a Segal algebra in a C∗-algebra C. The approximate ideal
of A is the set

EA := span‖·‖A{ab : a, b ∈ A};
this is a Banach subalgebra of A which is contained as a Segal algebra in C.

Remark 1.5. Strictly speaking, this is not the definition of the approximate ideal
originally given in [4] and [12], but it coincides with the original one in [12,
Lemmas 2.9, 2.16].

The above terminology is motivated by the lemma below.

Lemma 1.6. Let A be a Segal algebra in a C∗-algebra C. Then

(i) EA is a closed faithful ideal of A,
(ii) EA has an approximate identity,
(iii) EA = AC = CA.

Moreover, every closed ideal of A with an approximate identity is contained in EA.

Proof. For the proof, see [12, Proposition 2.10, Lemma 2.16]. �

The following characterization of the existence of approximate identities for
C0(X,A) is one of the main results of [15].

Proposition 1.7. Let A be a Segal algebra in a C∗-algebra C. The following
conditions are equivalent:

(a) A has an approximate identity,
(b) C0(X,A) has an approximate identity.

Moreover, the approximate ideal of C0(X,A) satisfies EC0(X,A) = C0(X,EA).

Proof. For the proof, see [15, Theorem 4.8]. �

1.4. Multipliers of C∗-Segal algebras. Let B be a Banach algebra with zero
annihilator. Recall that a double centralizer of B is a pair (ml,mr) of linear
mappings from B into B satisfying the condition

xml(y) = mr(x)y

for all x, y ∈ B. The set M(B) of all double centralizers of B is a unital Banach
subalgebra of L(B)⊕∞L(B)op. Moreover, B is canonically embedded as a faithful
ideal into M(B) by x 7→ (lx, rx), where

lx(y) := xy and rx(y) := yx

for all y ∈ B. Under this identification—which we will always make—every double
centralizer (ml,mr) of B is given by a unique element m inM(B) as a multiplier ;
that is,

ml(x) = mx and mr(x) = xm

for all x ∈ B. The Banach algebra M(B) is called the multiplier algebra of B.
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Definition 1.8. Let A be a Segal algebra in a C∗-algebra C. The multiplier module
of A is the set

MC(A) :=
{
(ml,mr) ∈M(C) : ml(C) ⊆ A and mr(C) ⊆ A

}
;

this is a Banach subalgebra of L(C,A) ⊕∞ L(C,A)op which is contained as a

Segal algebra in MC(A)
‖·‖M(C)

.

Remark 1.9. Strictly speaking, the operator norm on L(C,A) has to be multiplied
by a constant l satisfying ‖a‖C ≤ l‖a‖A for all a ∈ A in order to obtain an algebra
norm on L(C,A).

The above terminology is motivated by the lemma below.

Lemma 1.10. Let A be a Segal algebra in a C∗-algebra C. Then

(i) MC(A) is a faithful Banach C-bimodule,
(ii) MC(A) contains EA as a closed faithful ideal,
(iii) MC(A) satisfies EA =MC(A)C = CMC(A).

Moreover, if V is a faithful C-bimodule containing EA such that EA = V · C =
C ·V , then there exists a unique C-bimodule homomorphism from V into MC(A)
which is the identity on EA.

Proof. For the proof, see [12, Proposition 2.21]. �

The strict topology on MC(A) is defined by the seminorms

m 7→ ‖mc‖A + ‖cm‖A (c ∈ C).

The next lemma collects some basic properties of the strict topology for later use.

Lemma 1.11. Let A be a Segal algebra in a C∗-algebra C. Then MC(A) equipped
with the strict topology is a complete locally convex vector space such that the
multiplication and the module operations (viewed as mappings of MC(A)×C and
C ×MC(A) into A) are jointly continuous on norm-bounded subsets.

Proof. These assertions follow from [20, Theorem 3.5] and standard computations.
�

The following function algebraic description of the multiplier module of
C0(X,A) is the first main result of this article.

Theorem 1.12. Let A be a Segal algebra in a C∗-algebra C. Then, up to an
isometric algebra and order isomorphism, we have

MC0(X,C)

(
C0(X,A)

)
= Cs,b

(
X,MC(A)

)
,

where Cs,b(X,MC(A)) denotes the C
∗-Segal algebra of all strictly continuous and

norm-bounded functions from X into MC(A).

Remark 1.13. In fact, as will become clear from the proof, this result (except for
the order-theoretic part) holds for all Banach algebras which are Segal algebras
in a Banach algebra with a zero annihilator.
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Remark 1.14. As mentioned in the Introduction, several authors have considered
the question of representing multipliers of algebras of continuous vector-valued
functions by vector-valued functions:

• Akemann, Pedersen, and Tomiyama [1, Theorem 3.3] obtained the pre-
ceding theorem in the special case of C∗-algebras.

• Candeal Haro and Lai [8, Theorem 2] obtained a theorem similar to The-
orem 1.12 in the setting of faithful Banach modules over a commutative
Banach algebra.

Moreover, recently Khan and Alsulami [14, Theorem 16] addressed this question
for certain topological modules over a commutative Banach algebra.

1.5. Order-unit C∗-Segal algebras. Let A be a Segal algebra in a C∗-algebra
C. The positive cone of A is defined by

A+ := Asa ∩ C+,

where Asa denotes the real vector space of self-adjoint elements of A. Then Asa

becomes a partially ordered vector space when equipped with the relation

a ≤ b if b− a ∈ A+ (a, b ∈ Asa).

An element u ∈ A+ is called an order unit for A if each a ∈ Asa satisfies the
relation −lu ≤ a ≤ lu for some scalar l > 0. Clearly, an order-unit u for a
self-adjoint A is strictly positive in the sense that τ(u) > 0 for every nonzero
positive linear functional τ on A.

Example 1.15. Let v : X → R be an upper semicontinuous real-valued function
on X such that v(t) ≥ 1 for all t ∈ X. We define

Cv
b (X) :=

{
f ∈ C(X) : vf is bounded on X

}
and

Cv
0 (X) :=

{
f ∈ C(X) : vf vanishes at infinity on X

}
.

These sets are C∗-Segal algebras under pointwise operations and the norm

‖f‖v := sup
t∈X

v(t)
∣∣f(t)∣∣.

In fact, they are examples of the so-called Nachbin algebras (see [3], [6], [16], for
instance). Clearly, the function 1

v
serves as an order unit for Cv

b (X) whenever v
is continuous on X.

The following special C∗-Segal algebras relate to our focus here.

Definition 1.16. By an order-unit C∗-Segal algebra, we understand a pair (A, u),
where A is a self-adjoint C∗-Segal algebra and u is an order unit for A such that

‖a‖A = ‖a‖u := inf{l > 0 : −lu ≤ a ≤ lu}

for all a ∈ Asa.

The following structure theorem for order-unit C∗-Segal algebras is the main
result of [12].
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Theorem 1.17. Let A be a Segal algebra in a C∗-algebra C. The following con-
ditions are equivalent for a strictly positive element u of A:

(a) (A, u) is an order-unit C∗-Segal algebra,
(b) there exists a self-adjoint C-subbimodule D of M(C) containing C and

1M(C) such that A = u
1
2Du

1
2 and ‖u 1

2 du
1
2‖A = ‖d‖M(C) for all d ∈ Dsa.

In particular, EA = u
1
2Cu

1
2 = uC = Cu and MC(A) = u

1
2M(C)u

1
2 = uM(C) =

M(C)u whenever (A, u) is an order unit C∗-Segal algebra.

Proof. For the proof, see [12, Theorem 3.12, Corollary 3.14]. �

The following enlargement of the class of order-unit C∗-Segal algebras will be
useful in our study of the order structure of C0(X,A).

Definition 1.18. Let A be a C∗-Segal algebra. By an order unitization for A, we
mean a triplet (B, u, λ), where

(i) (B, u) is an order-unit C∗-Segal algebra,
(ii) λ : A→ B is a topological algebra and order isomorphism onto its image,
(iii) the image of A under λ is a faithful ideal of B.

In what follows, we will without loss of generality (see [13, Remark 2.18]) drop
the notation λ; in other words, we will identify A and λ(A).

The next two theorems are taken from [13], to which we refer for a detailed
treatment of C∗-Segal algebras with an order unitization.

Theorem 1.19. Let A be a Segal algebra in a C∗-algebra C with an order uni-
tization. Then there exist a closed C-subbimodule D of M(C) containing C and

an order-unit u for MC(A) such that A = u
1
2Du

1
2 and ‖u 1

2 du
1
2‖u = ‖d‖M(C) for

all d ∈ Dsa. Moreover, EA = u
1
2Cu

1
2 = uC = Cu and MC(A) = u

1
2M(C)u

1
2 =

uM(C) =M(C)u.

Theorem 1.20 (Universal property of the multiplier module). Let A be a
C∗-Segal algebra. Suppose that A has an order unitization (B, u). Then there
exist a unique topological algebra and order isomorphism φ from B onto its
image in MC(A) which is the identity on A and a positive constant k such that
(MC(A), kφ(u)) is an order unitization for A.

Proof. For the proof, see [13, Theorems 2.15, 2.20, 2.21]. �

The following characterization of the existence of order unitizations for
C0(X,A) is the second main result of this paper.

Theorem 1.21. Let A be a Segal algebra in a C∗-algebra C. The following con-
ditions are equivalent:

(a) A has an order unitization,
(b) C0(X,A) has an order unitization.

Moreover, if C0(X,A) has an order unitization, then Cs,b(X,MC(A)) is the max-
imal order unitization for C0(X,A) in the sense of Theorem 1.20.
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Remark 1.22. This equivalence does not hold in the smaller class of order-unit
C∗-Segal algebras, as the example C0(X,C) = C0(X) with X noncompact triv-
ially shows.

Remark 1.23. Theorems 1.19 and 1.21 together immediately yield a structure
theorem for C0(X,A) with A a C∗-Segal algebra having an order unitization.

2. Proofs of the main results

In this section, we give the proofs of the main results, Theorems 1.12 and 1.21,
starting with the following natural result.

Proposition 2.1. Let A be a Segal algebra in a C∗-algebra C. Then
Cs,b(X,MC(A)) is a C∗-Segal algebra under pointwise operations and the supre-
mum norm.

For the proof of this result, we need some further facts about the multiplier
module.

Lemma 2.2. Let A be a Segal algebra in a C∗-algebra C. Then MC(A) is a
Banach M(C)-bimodule under the multiplication mappings

(m,n) 7→ mn and (n,m) 7→ nm

of MC(A) × M(C) and M(C) × MC(A) into MC(A). Moreover, the module
operations are jointly strictly continuous on norm-bounded subsets of MC(A)
and M(C).

Proof. Clearly, the norm ‖ · ‖MC(A) dominates the norm ‖ · ‖M(C) on MC(A). Note
also that, by Lemmas 1.6(iii) and 1.10(iii), we have

CMC(A)M(C) = ACM(C) = EA =MC(A)C =MC(A)M(C)C

and

CM(C)MC(A) = CMC(A) = EA =M(C)CA =M(C)MC(A)C

so that MC(A) is an ideal of M(C). Combining these two facts with [5, Theo-
rem 2.3], we obtain the Banach M(C)-bimodule property of MC(A).

Consider next norm-bounded nets {mµ}µ∈Λ and {nν}ν∈Γ in MC(A) and M(C)
with mµ → m and nν → n strictly in MC(A) and M(C), respectively. By the
above reasoning, for each c ∈ C there exist m′ ∈ MC(A) and n′ ∈ M(C) such
that

cm = m′c1 and nc = c2n
′

for some c1, c2 ∈ C. Applying the Banach M(C)-bimodule property of MC(A) to

cmn− cmµnν = m′(c1n− c1nν) + (cm− cmµ)nν

and

mnc−mµnνc = (mc2 −mµc2)n
′ +mµ(nc− nνc),
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and taking into account parts (ii) and (iii) of Lemma 1.10 (which, in particular,
imply that the norms ‖ · ‖A and ‖ · ‖MC(A) are equivalent when restricted to EA),
we find that

‖cmn− cmµnν‖A ≤ ‖m′‖MC(A)‖c1n− c1nν‖C + l‖cm− cmµ‖A‖nν‖M(C)

and

‖mnc−mµnνc‖A ≤ l‖mc2 −mµc2‖A‖n′‖M(C) + ‖mµ‖MC(A)‖nc− nνc‖C

for some constant l > 0. Consequently, mµnν → mn, and similarly, nνmµ →
nm strictly in MC(A). This establishes the joint strict continuity of the module
operations on norm-bounded subsets of MC(A) and M(C). �

Proof of Proposition 2.1. Lemmas 1.11 and 2.2, together with a standard
completeness argument and the fact that Cs,b(X,M(C)) is a C∗-algebra (see
[1, Lemma 3.2]), imply that Cs,b(X,MC(A)) is a Banach algebra which is con-
tained as a C∗-Segal algebra in the closed ideal of Cs,b(X,M(C)) given by

Cs,b(X,MC(A))
‖·‖M(C)

∞
. �

The result in the lemma below was obtained by Candeal Haro and Lai.

Lemma 2.3. Let E be a Banach space. Suppose that T : C0(X) → C0(X,E) is
a bounded C0(X)-module homomorphism. Then there exists h ∈ Cb(X,E) with
‖h‖E∞ = ‖T‖op such that T (φ) = φh for all φ ∈ C0(X).

Proof. For the proof, see [8, Proposition 1]. �

We are now ready to prove Theorems 1.12 and 1.21.

Proof of Theorem 1.12. Let f ∈ Cs,b(X,MC(A)). In view of Lemmas 1.10(iii)
and 1.11, we can define linear mappings lf , rf : C0(X,C) → C0(X,A) by setting

lf (h) := fh and rf (h) := hf
(
h ∈ C0(X,C)

)
.

Clearly, (lf , rf ) is a double centralizer of C0(X,C); thus there exists a unique
mf ∈MC0(X,C)(C0(X,A)) satisfying

lf (h) = mfh and rf (h) = hmf

for all h ∈ C0(X,C). By means of this, we can define an algebra homomorphism

π : Cs,b

(
X,MC(A)

)
→MC0(X,C)

(
C0(X,A)

)
; f 7→ mf .

Indeed, let f, g ∈ Cs,b(X,MC(A)). Then, for all h ∈ C0(X,C), we have

π(fg)h = fgh = π(f)(gh) = π(f)π(g)h

so that π(fg) = π(f)π(g) by Lemma 1.10(i). The linearity of π is shown in a
similar way.
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For the order isomorphism property of π, let f ∈ Cs,b(X,MC(A)). Then, invok-
ing Lemma 1.10(iii) and recalling that a multiplier n of C is positive if and only
if c∗nc belongs to C+ for each c ∈ C, we conclude that

f ∈ Cs,b

(
X,MC(A)

)
+

⇐⇒ f(t) ∈MC(A)+ for all t ∈ X

⇐⇒ c∗f(t)c ∈ A+ for all c ∈ C and all t ∈ X

⇐⇒ h(t)∗f(t)h(t) ∈ A+ for all h ∈ C0(X,C) and all t ∈ X

⇐⇒ h∗fh ∈ C0(X,A)+ for all h ∈ C0(X,C)

⇐⇒ h∗π(f)h ∈ C0(X,A)+ for all h ∈ C0(X,C)

⇐⇒ π(f) ∈MC0(X,C)

(
C0(X,A)

)
+
,

as desired.
For the isometric property of π, let f ∈ Cs,b(X,MC(A)). Then, for each t ∈ X,

we have {
h(t) : h ∈ C0(X,C), ‖h‖C∞ ≤ 1

}
=

{
c ∈ C : ‖c‖C ≤ 1

}
,

whence∥∥π(f)∥∥
op(l)

= sup
‖h‖C∞≤1

∥∥π(f)h∥∥A

∞ = sup
‖h‖C∞≤1

‖fh‖A∞ = sup
‖h‖C∞≤1

sup
t∈X

∥∥f(t)h(t)∥∥
A

= sup
t∈X

sup
‖h‖C∞≤1

∥∥f(t)h(t)∥∥
A
= sup

t∈X
sup

‖c‖C≤1

∥∥f(t)c∥∥
A
= sup

t∈X

∥∥f(t)∥∥
op(l)

and∥∥π(f)∥∥
op(r)

= sup
‖h‖C∞≤1

∥∥hπ(f)∥∥A

∞ = sup
‖h‖C∞≤1

‖hf‖A∞ = sup
‖h‖C∞≤1

sup
t∈X

∥∥h(t)f(t)∥∥
A

= sup
t∈X

sup
‖h‖C∞≤1

∥∥h(t)f(t)∥∥
A
= sup

t∈X
sup

‖c‖C≤1

∥∥cf(t)∥∥
A
= sup

t∈X

∥∥f(t)∥∥
op(r)

.

Consequently,∥∥π(f)∥∥ = max
{∥∥π(f)∥∥

op(l)
,
∥∥π(f)∥∥

op(r)

}
= max

{
sup
t∈X

∥∥f(t)∥∥
op(l)

, sup
t∈X

∥∥f(t)∥∥
op(r)

}
= sup

t∈X
max

{∥∥f(t)∥∥
op(l)

,
∥∥f(t)∥∥

op(r)

}
= sup

t∈X

∥∥f(t)∥∥
MC(A)

= ‖f‖MC(A)
∞ ,

as desired.
For the surjectivity of π, let m ∈ MC0(X,C)(C0(X,A)). Then, for each c ∈ C,

we can define linear mappings T c
l , T

c
r : C0(X) → C0(X,A) by setting

T c
l (φ) := m(φ⊗ c) and T c

r (φ) := (φ⊗ c)m
(
φ ∈ C0(X)

)
.

Clearly, the operator norms of T c
l and T c

r are bounded above by ‖m‖‖c‖C . Further,
since for every pair φ, ψ ∈ C0(X) and for all h ∈ C0(X,C) we have

h
(
m(φψ ⊗ c)

)
= (hm)(φψ ⊗ c) = φ(hm)(ψ ⊗ c) = h

(
φ
(
m(ψ ⊗ c)

))
and (

(φψ ⊗ c)m
)
h = (φψ ⊗ c)(mh) = φ(ψ ⊗ c)(mh) =

(
φ
(
(ψ ⊗ c)m

))
h,
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it follows from Lemma 1.10(i) that T c
l and T c

r are C0(X)-module homomorphisms.
Thus, applying Lemma 2.3, we can find hcl , h

c
r ∈ Cb(X,A) with

‖hcl‖A∞ = ‖T c
l ‖op and ‖hcr‖A∞ = ‖T c

r ‖op

such that

T c
l (φ) = φhcl and T c

r (φ) = φhcr

for all φ ∈ C0(X). On the basis of these considerations, we obtain strong opera-
tor continuous mappings sl, sr : X → L(C,A) by setting

sl(t)(c) := hcl (t) and sr(t)(c) := hcr(t) (t ∈ X, c ∈ C).

For t ∈ X, choose φt ∈ C0(X) with φt(t) = 1. Then, for every pair c, d ∈ C, we
have

csl(t)(d) = chdl (t) = cT d
l (φt)(t) = (φt ⊗ c)(t)

(
m(φt ⊗ d)

)
(t)

=
(
(φt ⊗ c)m

)
(t)(φt ⊗ d)(t) = T c

r (φt)(t)d = hcr(t)d = sr(t)(c)d,

whence there exists a unique mt ∈MC(A) satisfying

sl(t)(c) = mtc and sr(t)(c) = cmt

for all c ∈ C. Consequently, we can define a strictly continuous mapping

f : X →MC(A); t 7→ mt (t ∈ X).

Moreover, since for all t ∈ X we have∥∥f(t)∥∥
op(l)

=
∥∥sl(t)∥∥op

≤ sup
‖c‖C≤1

‖hcl‖A∞ = sup
‖c‖C≤1

‖T c
l ‖op ≤ sup

‖c‖C≤1

‖m‖‖c‖C = ‖m‖

and∥∥f(t)∥∥
op(r)

=
∥∥sr(t)∥∥op

≤ sup
‖c‖C≤1

‖hcr‖A∞ = sup
‖c‖C≤1

‖T c
r ‖op ≤ sup

‖c‖C≤1

‖m‖‖c‖C = ‖m‖,

it follows that the supremum norm of f is bounded above by ‖m‖, and hence f
belongs to Cs,b(X,MC(A)). Take φ ∈ C0(X), and take c ∈ C. Then, for all t ∈ X,
we have(

π(f)(φ⊗ c)
)
(t) =

(
f(φ⊗ c)

)
(t) = f(t)φ(t)c = mtφ(t)c

= φ(t)sl(t)(c) = φ(t)hcl (t) = T c
l (φ)(t) =

(
m(φ⊗ c)

)
(t)

so that π(f) = m by Lemma 1.10(i) and the density of the linear span of the set
{ψ ⊗ d : ψ ∈ C0(X) and d ∈ C} in C0(X,C).

With these considerations, the proof of the theorem is complete. �

Proof of Theorem 1.21. Theorems 1.12 and 1.20 allow us to reduce the proof to
showing that the following two statements are equivalent:

(a) MC(A) is an order unitization for A,
(b) Cs,b(X,MC(A)) is an order unitization for C0(X,A).
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Note also that MC(A) is self-adjoint if and only if Cs,b(X,MC(A)) is self-adjoint
because the involution on every self-adjoint C∗-Segal algebra is continuous (see
[19, Chapter IV, Theorem 4.1.15]).

(a) =⇒ (b): Suppose that (MC(A), u) is an order unitization for A. Then, for
all f ∈ Cs,b(X,MC(A))sa, we have

‖f‖MC(A)
∞ = sup

t∈X

∥∥f(t)∥∥
MC(A)

= sup
t∈X

∥∥f(t)∥∥
u

= inf
{
l > 0 : −lu ≤ f(t) ≤ lu for all t ∈ X

}
= inf

{
l > 0 : −l(1⊗ u) ≤ f ≤ l(1⊗ u)

}
= ‖f‖1⊗u

so that (Cs,b(X,MC(A)), 1⊗u) is an order-unit C∗-Segal algebra. Moreover, since
for each f ∈ C0(X,A) we have

‖f‖A∞ = sup
t∈X

∥∥f(t)∥∥
A
∼ sup

t∈X

∥∥f(t)∥∥
MC(A)

= ‖f‖MC(A)
∞ ,

it follows that C0(X,A) is closed in Cs,b(X,MC(A)). Finally, the fact that
C0(X,A) is a faithful ideal of Cs,b(X,MC(A)) is standard. The proof is now
complete.

(b) =⇒ (a): Suppose that (Cs,b(X,MC(A)), f) is an order unitization for
C0(X,A). Then, for all t ∈ X, we have

1⊗ f(t) ∈ Cs,b

(
X,MC(A)

)
+
,

whence

1⊗ f(t) ≤
∥∥1⊗ f(t)

∥∥
f
f =

∥∥1⊗ f(t)
∥∥MC(A)

∞ f

=
∥∥f(t)∥∥

MC(A)
f ≤ ‖f‖MC(A)

∞ f

= ‖f‖ff = f.

Consequently, for every pair t, s ∈ X, we have

f(t) =
(
1⊗ f(t)

)
(s) ≤ f(s) =

(
1⊗ f(s)

)
(t) ≤ f(t),

which implies that the function f is constant on X. Let us denote this constant
by u. Then, for all m ∈MC(A)sa, we have

‖m‖MC(A) = ‖1⊗m‖MC(A)
∞ = ‖1⊗m‖f = inf{l > 0 : −lf ≤ 1⊗m ≤ lf}

= inf{l > 0 : −lu ≤ m ≤ lu}
= ‖m‖u

so that (MC(A), u) is an order-unit C∗-Segal algebra. Moreover, since for each
a ∈ A and for all φ ∈ C0(X) with ‖φ‖∞ = 1 we have

‖a‖A = ‖φ⊗ a‖A∞ ∼ ‖φ⊗ a‖MC(A)
∞ = ‖a‖MC(A),

it follows that A is closed in MC(A). Finally, the fact that A is a faithful ideal
of MC(A) is standard. The proof is now complete. �
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3. Gelfand representation of C0(X,A)

In this section, we consider functional representation of commutative C∗-Segal
algebra-valued function algebras. Our approach is the one introduced in [4, Sec-
tion 4]. For the remainder of this article, we assume that the Banach algebra A
is commutative.

Notation. For the Banach algebra A, we denote by ∆(A) its Gelfand space. For
a ∈ A, we denote by â its Gelfand transform. By the Gelfand transformation
on A, we mean the mapping a 7→ â from A onto the Gelfand transform algebra

of A denoted by Â. Recall that ∆(A) is a locally compact Hausdorff space and

that Â is a subalgebra of C0(∆(A)).
Let us now consider the Banach algebra C0(X,A). Here and throughout, we

identify the Gelfand space of C0(X,A) with the Cartesian product of X and ∆(A)
via the inverse of the canonical homeomorphism

X ×∆(A) 3 (t, τ) 7→ δt,τ ∈ ∆
(
C0(X,A)

)
,

where δt,τ (f) := τ(f(t)) for all f ∈ C0(X,A) (see, e.g., [10, Theorem 4]). Following
[9], we define a mapping v̂ : X ×∆(A) → R by setting

v̂(t, τ) :=
1

‖δt,τ‖
(
(t, τ) ∈ X ×∆(A)

)
,

where ‖δt,τ‖ denotes the dual norm of δt,τ . The next lemma collects some elemen-
tary properties of this mapping.

Lemma 3.1. The mapping v̂ is upper semicontinuous on X ×∆(A) with

v̂(t, τ) =
1

‖τ‖
≥ 1

for all (t, τ) ∈ X ×∆(A).

Proof. Let (t, τ) ∈ X ×∆(A). Since{
f(t) : f ∈ C0(X,A), ‖f‖A∞ ≤ 1

}
=

{
a ∈ A : ‖a‖A ≤ 1

}
,

we obtain

‖δt,τ‖ = sup
‖f‖A∞≤1

∣∣δt,τ (f)∣∣ = sup
‖f‖A∞≤1

∣∣τ(f(t))∣∣ = sup
‖a‖A≤1

∣∣τ(a)∣∣ = ‖τ‖,

and hence v̂(t, τ) = 1/‖τ‖ as desired. The other assertions follow from
[4, Lemma 4.2]. �

With this result in hand, we can represent the Banach algebra C0(X,A) by
means of the Nachbin algebras introduced in Example 1.15. Clearly, for every
pair (t, τ) ∈ X ×∆(A), we have

v̂(t, τ) = sup
{
l > 0 : l

∣∣f̂(t, τ)∣∣ ≤ ‖f‖A∞ for all f ∈ C0(X,A)
}
.

Therefore, besides being a subalgebra of C0(X ×∆(A)), C0(X,A)̂ is also a sub-
algebra of C v̂

b (X ×∆(A)). Moreover, since each f ∈ C0(X,A) satisfies

‖f̂‖∞ ≤ ‖f̂‖v̂ ≤ ‖f‖A∞,
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the Gelfand transformation is a contractive algebra homomorphism from C0(X,A)
into C v̂

b (X ×∆(A)). Our interest here is in the isometric case.

Definition 3.2. The Banach algebra A is called a weighted uniform algebra if

‖a‖A = sup
τ∈∆(A)

1

‖τ‖
∣∣â(τ)∣∣

for all a ∈ A.

The importance of weighted uniform algebras in the study of commutative
C∗-Segal algebras with an order unitization is explained by the next theorem.

Theorem 3.3. Let A be a C∗-Segal algebra. Then A has an order unitization if
and only if A is a weighted uniform algebra with τ 7→ ‖τ‖ continuous on ∆(A).

Proof. This is immediate from [4, Lemma 5.4, Theorems 5.7 and 5.24]. �

The next result together with Lemma 3.1 and Theorem 3.3 yields a simple proof
for commutative C∗-Segal algebras of the equivalence obtained in Theorem 1.21.

Proposition 3.4. The following conditions are equivalent for the Banach alge-
bra A:

(a) A is a weighted uniform algebra,
(b) C0(X,A) is a weighted uniform algebra.

Proof. Suppose that A is a weighted uniform algebra. Then, for all f ∈ C0(X,A),
we have

‖f̂‖v̂ = sup
(t,τ)∈X×∆(A)

v̂(t, τ)
∣∣f̂(t, τ)∣∣ = sup

(t,τ)∈X×∆(A)

1

‖δt,τ‖
∣∣f̂(δt,τ )∣∣

= sup
(t,τ)∈X×∆(A)

1

‖τ‖
∣∣f̂(t)(τ)∣∣ = sup

t∈X

∥∥f(t)∥∥
A
= ‖f‖A∞,

whence C0(X,A) is a weighted uniform algebra. The converse implication is estab-
lished similarly by considering the supremum norm of φ⊗ a with φ ∈ C0(X) and
a ∈ A. �

The following theorem is the vector-valued counterpart of the main result of [4].

Theorem 3.5. Let A be a C∗-Segal algebra with an order unitization. Then, up
to an isometric algebra and order isomorphism, we have

EC0(X,A) = C v̂
0

(
X ×∆(A)

)
and MC0(X,C)

(
C0(X,A)

)
= C v̂

b

(
X ×∆(A)

)
.

Moreover, C0(X,A) is, isometrically, algebra- and order-isomorphic to a closed
subalgebra of C v̂

b (X ×∆(A)).

Proof. This is a direct consequence of Theorem 3.3 and Proposition 3.4, together
with [4, Corollaries 4.18, 4.24]. �
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