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Abstract. In this article, we give the criteria for approximative compact-
ness of every proximinal convex subset of Musielak–Orlicz–Bochner function
spaces equipped with the Orlicz norm. As a corollary, we give the criteria
for approximative compactness of Musielak–Orlicz–Bochner function spaces
equipped with the Orlicz norm.

1. Introduction and preliminaries

Let X be a Banach space, and let X∗ be the dual space of X. Denote by
B(X) and S(X) the closed unit ball and the unit sphere of X. Let C ⊂ X be a
nonempty subset of X. Then the set-valued mapping PC : X → C

PC(x) =
{
z ∈ C : ‖x− z‖ = dist(x,C) = inf

y∈C
‖x− y‖

}
is called the metric projection operator from X onto C.

A subset C of X is said to be proximinal if PC(x) 6= ∅ for all x ∈ X(see [5]). It
is well known that X is reflexive if and only if each closed convex subset of X is
proximinal (see [5]).

Definition 1.1. A nonempty subset C ofX is said to be approximatively compact
if for any {yn}∞n=1 ⊂ C and any x ∈ X satisfying ‖x− yn‖ → infy∈C ‖x − y‖ as
n → ∞, there exists a subsequence of {yn}∞n=1 converging to an element in C.
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A Banach space X is called approximatively compact if every nonempty closed
convex subset of X is approximatively compact.

Let us present the history of approximative compactness and related notions.
The notion of approximative compactness was introduced by Efimov and Stečkin
in [1] as a property of Banach spaces, which guarantees the existence of the
best approximation element in a nonempty closed convex set C for any x ∈ X.
Ošman [2] established that if X is approximative compact and rotund, then the
projector operator PC is continuous. In 1998, Hudzik and Wang proved that an
Orlicz function space is approximatively compact if and only if it is reflexive
(see [3]). In 2014, Shang and Cui gave a criterion for approximative compactness
of every weakly∗ closed convex set in an Orlicz function space (see [4]). Chen
et al. [5] proved that a Banach space X is approximative compact if and only
if X is reflexive and it has the H-property. In this article, we give the criteria
for approximative compactness of every proximinal convex subset of Musielak–
Orlicz–Bochner function spaces equipped with the Orlicz norm. As a corollary,
we give the criteria for approximative compactness of Musielak–Orlicz function
spaces equipped with the Orlicz norm.

Definition 1.2. A Banach space X is said to have the Radon–Nikodym property
whenever the following holds. If (T,Σ, µ) is a nonatomic measure space and v
is a vector measure on Σ with values in X which is absolutely continuous with
respect to µ and has a bounded variation, then there exists f ∈ L1(X) such that
for any A ∈ Σ,

v(A) =

∫
A

f(t) dt.

Let (T,Σ, µ) be a nonatomic measurable space. Suppose that a function M :
T × R → [0,∞] satisfies the following conditions.

(1) For µ-almost everywhere t ∈ T , M(t, 0) = 0, limu→∞ M(t, u) = ∞ and
M(t, u′) < ∞ for some u′ > 0.

(2) For µ-almost everywhere t ∈ T , M(t, u) is convex on [0,∞) and even on
R with respect to u.

(3) For each u ∈ [0,∞), M(t, u) is a Σ-measurable function of t on T .

Let p(t, u) denote the right derivative of M(t, ·) at u ∈ R+ (where if M(t, u) =
∞, then p(t, u) = ∞), and let q(t, ·) be the generalized inverse function of p(t, ·)
defined on R+ by

q(t, v) := sup
u≥0

{
u ≥ 0 : p(t, u) ≤ v

}
.

Then N(t, v) =
∫ v

0
q(t, s) ds for any v ∈ R, and µ-almost everywhere t ∈ T is

called the Musielak–Orlicz function complementary to M(t, u) in the sense of
Young. It is well known that there holds the Young inequality uv ≤ M(t, u) +
N(t, v) for µ-almost everywhere t ∈ T and all u, v ∈ R. Moreover, uv = M(t, u)+
N(t, u) ⇔ u = q(t, v) or v = q(t, u). Let

e(t) = sup
{
u > 0 : M(t, u) = 0

}
and E(t) = sup

{
u > 0 : M(t, u) < ∞

}
.
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For fixed t ∈ T and v ≥ 0, if there exists ε ∈ (0, 1) such that

M(t, v) =
1

2
M(t, v + ε) +

1

2
M(t, v − ε) < ∞,

then we call v a nonstrictly convex point of M(t, ·). The set of all nonstrictly
convex points of M(t, ·) is denoted by Kt. For a fixed t ∈ T , if Kt = ∅, then we
say that M(t, ·) is strictly convex.

Definition 1.3 (see [6]). We say that M satisfies condition ∆(M ∈ ∆) if
there exist K ≥ 1 and a measureable nonnegative function δ(t) on T such that∫
T
M(t, δ(t)) dt < ∞ and M(t, 2u) ≤ KM(t, u) for almost all t ∈ T and all

u ≥ δ(t).

Moreover, for a given Banach space (X, ‖ · ‖), we denote by XT the set of all
strongly Σ-measurable functions from T to X, and for each u ∈ XT , we define
the modular of u by

ρM(u) =

∫
T

M
(
t,
∥∥u(t)∥∥) dt.

Put

LM(X) =
{
u ∈ XT : ρM(λu) < ∞ for some λ > 0

}
,

EM(X) =
{
u ∈ XT : ρM(λu) < ∞ for all λ > 0

}
.

It is well known that Musielak–Orlicz–Bochner function spaces LM(X) and
EM(X) are Banach spaces if they are equipped with the Luxemburg norm

‖u‖ = inf
{
λ > 0 : ρM

(u
λ

)
≤ 1

}
,

or the Orlicz norm

‖u‖0 = inf
k>0

1

k

[
1 + ρM(ku)

]
.

In particular, LM(R) and L0
M(R) are said to be Musielak–Orlicz function spaces.

Moreover, by [9], we know that ‖u‖ ≤ ‖u‖0 ≤ 2‖u‖. Set

K(u) =
{
k > 0 :

1

k

(
1 + ρM(ku)

)
= ‖u‖0

}
.

In particular, the set K(u) can be empty or nonempty. To show that, we give
some propositions.

Proposition 1.4 (see [7, p. 3]). If limu→∞M(t, u)/u = ∞ µ-almost everywhere
t ∈ T , then K(v) 6= ∅ for any v ∈ L0

M(X).

Proposition 1.5 (see [7, p. 4]). If K(v) = ∅, then ‖v‖0 =
∫
T
A(t) · ‖v(t)‖ dt,

where A(t) = limu→∞M(t, u)/u.
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2. Main results

Theorem 2.1. Suppose that X∗ has the Radon–Nikodym property. Then every
proximinal convex subset of L0

M(X) is approximatively compact if and only if

(a) for any v ∈ L0
M(X) \ {0}, the set K(v) consists of one element from

(0,+∞);
(b) M ∈ ∆;
(c) M(t, u) is strictly convex with respect to u for almost all t ∈ T ;
(d) every proximinal convex subset of X is approximatively compact and X is

round.

In order to prove the theorem, we first give some lemmas.

Lemma 2.2 (see [6, p. 177]). The following are equivalent:

(a) M /∈ ∆;
(b) for each ε ∈ (0, 1), there exists u ∈ LM(X) such that ρM(u) = ε, ‖u‖ = 1,

and ‖u(t)‖ < E(t) µ-almost everywhere on T , where E(t) = sup{u > 0 :
M(t, u) < ∞}.

Lemma 2.3 (see [8, p. 481]). If M ∈ ∆, then any u ∈ L0
M(X) has absolutely

continuous norm.

Lemma 2.4 (see [6, p. 183]). Suppose that M ∈ ∆ and e(t) = 0 µ-almost
everywhere on T . Then

ρM(un) → 0 ⇔ ‖un‖ → 0 and ρM(un) → 1 ⇔ ‖un‖ → 1.

Lemma 2.5. The following are equivalent:

(a) every proximinal convex subset of X is approximatively compact;
(b) if x∗ ∈ S(X∗) is norm attainable and x∗(xn) → 1, where {xn}∞n=1 ⊂ S(X),

then {xn}∞n=1 is relatively compact.

Proof. For the necessary part, it is well known that if x∗ ∈ S(X∗) is norm attain-
able, then Hx∗ = {x ∈ X : x∗(x) = 1} is a proximinal convex subset of X. Then
there exists yn ∈ Hx∗ such that dist(xn, Hx∗) = ‖xn − yn‖. Since

lim
n→∞

‖xn − yn‖ = lim
n→∞

dist(xn, Hx∗) = lim
n→∞

∣∣x∗(x)− x∗(xn)
∣∣ = 0,

we obtain that

dist(0, Hx∗) = 1 = lim
n→∞

‖xn‖ = lim
n→∞

‖yn‖ = lim
n→∞

‖0− yn‖.

This implies that the sequence {yn}∞n=1 is relatively compact. Hence the sequence
{xn}∞n=1 is relatively compact.

For the sufficient part, suppose that A is a proximinal convex subset of X
and that ‖x− yn‖ → dist(0, A) as n → ∞. We will next prove that {yn}∞n=1 is
relatively compact. We may assume without loss of generality that x = 0. Let
r = dist(0, A). Since intB(0, r) ∩ A = ∅, by the separation theorem, there exists
f ∈ S(X∗) such that

sup
{
f(x) : x ∈ B(0, r)

}
= sup

{
f(x) : x ∈ intB(0, r)

}
≤ inf

{
f(x) : x ∈ A

}
,
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where B(0, r) = {x ∈ X : ‖x‖ ≤ r}. Pick y0 ∈ PA(0). Since B(0, r) ∩ A = PA(0),
we have f(y0) = ‖y0‖ = r. Hence

‖y0‖ = f(y0) ≤ f(yn) ≤ ‖0− yn‖ → dist(0, A) = ‖y0‖.
Then f(yn) → ‖y0‖. Therefore, by ‖yn‖ → ‖y0‖ and f(y0) = ‖y0‖, we have

lim
n→∞

f
( yn
‖yn‖

)
= 1 and f

( y0
‖y0‖

)
= 1.

Hence f is norm attainable. This implies that {yn/‖yn‖}∞n=1 is relatively com-
pact. Hence {yn}∞n=1 is also relatively compact. This implies that the set A is
approximatively compact. �

Lemma 2.6. Suppose that every proximinal convex subset of X is approxima-
tively compact. Then, if x∗ ∈ S(X∗) is norm attainable and x∗(xn) → 1, where
{xn}∞n=1 ⊂ S(X), then there exists y ∈ {x ∈ S(X) : x∗(x) = 1} such that

y ∈ {xn}∞n=1.

Proof. By Lemma 2.5, there exists a subsequence {xnk
}∞k=1 of {xn}∞n=1 such that

{xnk
}∞k=1 is a Cauchy sequence. Let xnk

→ y as k → ∞. Then y ∈ {yn}∞n=1.
Moreover, by {xn}∞n=1 ⊂ S(X) and x∗(xn) → 1, we obtain that y ∈ S(X) and
x∗(y) = 1. �

Lemma 2.7. Suppose that every proximinal convex subset of X is approximatively
compact. Then, if x =

∑∞
n=1 tnxn, then the sequence {xn}∞n=1 is relatively compact,

where x ∈ S(X), xn ∈ B(X), tn ∈ (0, 1) for all n ∈ N and
∑∞

n=1 tn = 1.

Proof. Suppose that x =
∑∞

n=1 tnxn, where x ∈ S(X), xn ∈ B(X), tn ∈ (0, 1) for
any n ∈ N , and

∑∞
n=1 tn = 1. Then, by the Hahn–Banach theorem, there exists

f ∈ S(X∗) such that f(x) = 1. Hence

f(x) = f
( ∞∑
n=1

tnxn

)
=

∞∑
n=1

tnf(xn) = 1 ⇒ f(xn) = 1.

This implies that f(xn) = 1 for all n ∈ N . Therefore, by Lemma 2.5, we obtain
that {xn}∞n=1 is relatively compact. �

Lemma 2.8 (see [8, p. 3013]). Suppose that X∗ has the Radon–Nikodym property.
Then (EM(X))∗ = L0

N(X
∗) and (E0

M(X))∗ = LN(X
∗).

Proof of Theorem 2.1. (2) ⇒ (3). We will first prove that condition (a) is true.
Suppose that M /∈ ∆. Then, by Lemma 2.2, there exists u ∈ L0

M(X) such that
ρM(u) < 1/2, ‖u‖ = 1 and ‖u(t)‖ < E(t) µ-almost everywhere on T . Then for
any L > 1, we have ρM(Lu) = ∞. Indeed, suppose that there exists L1 > 1
such that ρM(L1u) < ∞. We know that the function F (k) =

∫
T
M(t, k‖u(t)‖) dt

is continuous on [1, L1]. Then there exists L2 > 1 such that ρM(L2u) = 1. This
implies that ‖u‖ ≤ 1/L2, which contradicts the condition ‖u‖ = 1.

Decompose T into E1 and G1 such that µE1 = µG1. Then, for any L > 1,
we obtain that

∫
E1

M(t, L‖u(t)‖) dt = ∞ or
∫
G1

M(t, L‖u(t)‖) dt = ∞. We may

assume without loss of generality that
∫
E1

M(t, L‖u(t)‖) dt = ∞. Decompose E1

into E2 and G2 such that µE2 = µG2. Then, for any L > 1, we obtain that
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E2

M(t, L‖u(t)‖) dt = ∞ or
∫
G2

M(t, L‖u(t)‖) dt = ∞. We may assume without

loss of generality that
∫
E2

M(t, L‖u(t)‖) dt = ∞. Generally, decompose En into
En+1 and Gn+1 such that µEn+1 = µGn+1. Then, for any L > 1, we obtain
that

∫
En+1

M(t, L‖u(t)‖) dt = ∞ or
∫
Gn+1

M(t, L‖u(t)‖) dt = ∞. We may assume

without loss of generality that
∫
En+1

M(t, L‖u(t)‖) dt = ∞. Hence

E1 ⊃ E2 ⊃ E3 ⊃ · · ·, µEi =
1

2
µEi+1 and ‖uχEi

‖ = 1, i = 1, 2, . . . .

Pick u0 ∈ S(E0
M(X)) such that {t ∈ T : u0(t) 6= 0} ⊂ T\E2. Then, for any ε > 0,

pick k ∈ R+ such that ‖u0‖0 + ε ≥ (1/k)[1 + ρM(ku0)]. Define

un(t) = u0(t) + u(t)χEn(t)

for all n ∈ N . Moreover, we have (1/k)
∫
T
M(t, k‖u(t)‖χEn(t)) dt < ε, when n is

large enough. Hence

‖u0‖0 ≤ ‖un‖0

≤ 1

k

[
1 +

∫
T

M
(
t,
∥∥kun(t)

∥∥) dt]
≤ 1

k

[
1 +

∫
T

M
(
t,
∥∥ku0(t)

∥∥) dt+ ∫
T

M
(
t, k

∥∥u(t)∥∥χEn(t)
)
dt
]

=
1

k

[
1 +

∫
T

M
(
t,
∥∥ku0(t)

∥∥) dt]+ 1

k

∫
T

M
(
t, k

∥∥u(t)∥∥χEn(t)
)
dt

≤ ‖u0‖0 + 2ε.

This implies that ‖un‖0 → ‖u0‖0 = 1. Then, by the Hahn–Banach theorem, there
exists v0 ∈ S(LN(X

∗)) such that (u0, v0) = 1. Noting that {t ∈ T : u0(t) 6=
0} ⊂ T\E2, we have {t ∈ T : v0(t) 6= 0} ⊂ T\E2. Hence, if (u

′
0, v0) = 1, then

{t ∈ T : u′
0(t) 6= 0} ⊂ T\E2, where u′

0 ∈ S(E0
M(X)). Since

0 ≤
∣∣∣∫

T

(
u(t)χEn(t), v0(t)

)
dt
∣∣∣ ≤ [∫

En

M
(
t,
∥∥u(t)∥∥) dt+ ∫

En

N
(
t, v0(t)

)
dt
]
→ 0,

we obtain that∫
T

(
un(t), v0(t)

)
dt =

∫
T

(
u0(t), v0(t)

)
dt+

∫
T

(
u(t)χEn(t), v0(t)

)
dt → 1.

Noting that ‖uχEn‖ = 1 and {t ∈ T : u′
0(t) 6= 0} ⊂ T\E2, we obtain that

‖un − u′
0‖0 ≥ ‖uχEi

‖ = 1, which contradicts Lemma 2.6. Hence M ∈ ∆.
We next prove that (a) and (c) are true. (a1) We will prove that for any

‖u‖0 > ‖e‖0, we have K(u) 6= ∅, where e denotes the function e(t) = sup{u > 0 :
M(t, u) = 0}. Suppose that there exists u ∈ L0

M(X) such that ‖u‖0 > ‖e‖0 and
K(u) = ∅. Then, by Proposition 1.5, we have A(t) < +∞ µ-almost everywhere
on T . Moreover, there exists η1 > η2 > 0 such that µT 0 > 0, where

T 0 =
{
t ∈ T :

∥∥u(t)∥∥ >
∥∥e(t)∥∥, η2 ≤ ∥∥u(t)∥∥ ≤ η1

}
.
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Therefore, by Lemma 2.3 and M ∈ ∆, there exist η > 0, η′ > 0, and η′′ > 0 such
that µT0 > 0 and ‖uχT0‖0 < 1, where

T0 =
{
t ∈ T 0 : M

(
t,
∥∥u(t)∥∥) > η, η′ < A(t) < η′′

}
.

Since K(u) = ∅, by Proposition 1.5, we obtain that ‖u‖0 =
∫
T
A(t)‖u(t)‖ dt.

Decompose T0 into T 1
1 , T

1
2 such that T 1

1 ∩ T 1
2 = ∅, T 1

1 ∪ T 1
2 = T0 and

∫
T1
A(t) ×

‖u(t)‖ dt =
∫
T2
A(t)‖u(t)‖ dt. Decompose T 1

1 into T 2
1 , T

2
2 such that T 2

1 ∩ T 2
2 = ∅,

T 2
1 ∪ T 2

2 = T 1
1 , and

∫
T 2
1
A(t)‖u(t)‖ dt =

∫
T 2
2
A(t)‖u(t)‖ dt. Decompose T 1

2 into T 2
3 ,

T 2
4 such that T 2

3 ∩T 2
4 = ∅, T 2

3 ∪T 2
4 = T 1

2 , and
∫
T 2
3
A(t)‖u(t)‖ dt =

∫
T 2
4
A(t)‖u(t)‖ dt.

Generally, decompose T n−1
i into T n

2i−1, T
n
2i such that

T n
2i−1 ∩ T n

2i = ∅, T n
2i−1 ∪ T n

2i = T n−1
i and∫

Tn
2i−1

A(t)
∥∥u(t)∥∥ dt = ∫

Tn
2i

A(t)
∥∥u(t)∥∥ dt,

where n = 1, 2, . . . , i = 1, 2, . . . , 2n−1. Define

un(t) =



u(t), t ∈ T\T0,

u(t)− 1
2
u(t), t ∈ T n

1 ,

u(t) + 1
2
u(t), t ∈ T n

2 ,

· · · · · ·
u(t)− 1

2
u(t), t ∈ T n

2n−1,

u(t) + 1
2
u(t), t ∈ T n

2n ,

u′
n(t) =



u(t), t ∈ T\T0,

u(t) + 1
2
u(t), t ∈ T n

1 ,

u(t)− 1
2
u(t), t ∈ T n

2 ,

· · · · · ·
u(t) + 1

2
u(t), t ∈ T n

2n−1,

u(t)− 1
2
u(t), t ∈ T n

2n ,

and (
yn(t)

)∞
n=1

=
(
u1(t), u

′
1(t), u2(t), u

′
2(t), . . . , un(t), u

′
n(t), . . .

)
.

Then

‖un‖0 ≤
∫
T

A(t) ·
∥∥un(t)

∥∥ dt
=

∫
T0

A(t)
∥∥u(t)∥∥ dt+ ∫

Tn
1

A(t)
∥∥∥u(t)− 1

2
u(t)

∥∥∥ dt
+

∫
Tn
2

A(t)
∥∥∥u(t) + 1

2
u(t)

∥∥∥ dt
+ · · ·+

∫
Tn
2n−1

A(t) ·
∥∥∥u(t)− 1

2
u(t)

∥∥∥ dt+ ∫
Tn
2n

A(t) ·
∥∥∥u(t) + 1

2
u(t)

∥∥∥ dt
=

∫
T0

A(t)
∥∥u(t)∥∥ dt+ ∫

Tn
1

A(t)
(∥∥u(t)∥∥−

∥∥∥1
2
u(t)

∥∥∥) dt

+

∫
Tn
2

A(t)
(∥∥u(t)∥∥+∥∥∥1

2
u(t)

∥∥∥) dt

+ · · ·+
∫
Tn
2n−1

A(t) ·
∥∥u(t)∥∥+

∥∥∥1
2
u(t)

∥∥∥ dt
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+

∫
Tn
2n

A(t) ·
(∥∥u(t)∥∥+

∥∥∥1
2
u(t)

∥∥∥) dt

=

∫
T

A(t) ·
∥∥u(t)∥∥ dt = ‖u‖0.

Similarly, we obtain that ‖u′
n‖0 ≤ ‖u‖0. Hence ‖yn‖0 ≤ ‖u‖0. This implies that

yn ∈ ‖u‖0B(LM(X)). On the other hand, we have

∞∑
n=1

(1
2
· 1

2n
un(t) +

1

2
· 1

2n
u′
n(t)

)
=

∞∑
n=1

1

2n+1

(
un(t) + u′

n(t)
)
=

∞∑
n=1

2

2n+1
u(t) = u(t)

and
∞∑
n=1

(1
2
· 1

2n
+

1

2
· 1

2n

)
=

∞∑
n=1

( 1

2n

)
= 1.

We next prove that (yn(t))
∞
n=1 is not relatively compact. For clarity, we will divide

the proof into two cases.
Case I. Let k(un − um) = ∅. Then, by Proposition 1.5, we obtain that

‖un − um‖0 =
∫
T

A(t)
∥∥un(t)− um(t)

∥∥ dt = ∫
Tn,m

A(t)
∥∥u(t)∥∥ dt

=
1

2

∫
T0

A(t)
∥∥u(t)∥∥ dt,

where Tn,m = {t ∈ T0 : un(t) 6= um(t)}.
Case II. Let k(un − um) 6= ∅. By the definition of T0, there exists δ > 0

such that µTn,m > δ. Pick kn,m ∈ k(un − um). Then, by ‖uχT0‖0 < 1, we have
‖un − um‖0 < 1. Hence, kn,m > 1, and so

‖un − um‖0 =
1

kn,m

[
1 + ρM

(
kn,m(un − um)

)]
=

1

kn,m

[
1 +

∫
Tn,m

M
(
t, kn,m

∥∥u(t)∥∥) dt]
≥

∫
Tn,m

M(t, kn,m‖u(t)‖)
kn,m

dt ≥
∫
Tn,m

kn,mM(t, ‖u(t)‖)
kn,m

dt

≥
∫
Tn,m

η dt ≥ ηδ.

Therefore, by Cases I and II, we obtain that (yn(t))
∞
n=1 is not relatively compact,

which is a contradiction. Hence, for any ‖u‖0 > ‖e‖0, we have K(u) 6= ∅.
We next prove that (c) is true. (c1) Note that ‖e‖0 ≤ 3/2 for any u ∈

2S(L0
M(X)). Hence K(u) 6= ∅. First, we will prove that for any u ∈ 2S(L0

M(X)),
we have µ{t ∈ T : k‖u(t)‖ ∈ Kt} = 0, where k ∈ K(u). Suppose that there exists
n0 ∈ N such that µG > 0, where

G =
{
t ∈ T : M

(
t, k

∥∥u(t)∥∥)
=

1

2
M

(
t,
(
1 +

1

n0

)
k
∥∥u(t)∥∥)+

1

2
M

(
t,
(
1− 1

n0

)
k
∥∥u(t)∥∥) < ∞

}
.
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It is easy to see that there exist λ > 0 and η > 0 such that µH > 0, where

H =
{
t ∈ G : λ <

∥∥∥ 1

n0

u(t)
∥∥∥ < η,A(t) · 1

n0

∥∥u(t)∥∥ > λ
}
.

Decompose H into E1
1 , E

1
2 such that

E1
1 ∩ E1

2 = ∅, E1
1 ∪ E1

2 = H and∫
E1

1

p
(
t, k

1

n0

∥∥u(t)∥∥) dt =

∫
E1

2

p
(
t, k

1

n0

∥∥u(t)∥∥) dt.

Decompose E1
1 into E2

1 ,E
2
2 such that

E2
1 ∩ E2

2 = ∅, E2
1 ∪ E2

2 = E1
1 and∫

E2
1

p
(
t, k

1

n0

∥∥u(t)∥∥) dt =

∫
E2

2

p
(
t, k

1

n0

∥∥u(t)∥∥) dt.

Decompose E1
2 into E2

3 ,E
2
4 such that

E2
3 ∩ E2

4 = ∅, E2
3 ∪ E2

4 = E1
2 and∫

E2
3

p
(
t, k

1

n0

∥∥u(t)∥∥) dt =

∫
E2

4

p
(
t, k

1

n0

∥∥u(t)∥∥) dt.

Generally, decompose En−1
i into En

2i−1, E
n
2i such that En

2i−1∩En
2i = ∅, En

2i−1∪En
2i =

En−1
i , and ∫

En
2i−1

p
(
t, k

1

n0

∥∥u(t)∥∥) dt =

∫
En

2i

p
(
t, k

1

n0

∥∥u(t)∥∥) dt,

where n = 1, 2, . . . , i = 1, 2, . . . , 2n−1. Define

un(t) =



u(t), t ∈ T\H,

(1− 1
n0
)u(t), t ∈ En

1 ,

(1 + 1
n0
)u(t), t ∈ En

2 ,

. . . · · ·
(1− 1

n0
)u(t), t ∈ En

2n−1,

(1 + 1
n0
)u(t), t ∈ En

2n ,

u′
n(t) =



u(t), t ∈ T\H,

(1 + 1
n0
)u(t), t ∈ En

1 ,

(1− 1
n0
)u(t), t ∈ En

2 ,

· · · · · ·
(1 + 1

n0
)u(t), t ∈ En

2n−1,

(1− 1
n0
)u(t), t ∈ En

2n ,

and (
yn(t)

)∞
n=1

=
(
u1(t), u

′
1(t), u2(t), u

′
2(t), . . . , un(t), u

′
n(t), . . .

)
.

Then

‖un‖0 ≤
1

k

[
1 + ρM(kun) dt

]
=

1

k

[
1 + ρM(ku · χH) + ρM

(
k
(
1− 1

n0

)
u · χEn

1

)
+ ρM

(
k
(
1 +

1

n0

)
u · χEn

2

)
+ · · ·+ ρM

(
k
(
1− 1

n0

)
u · χEn

2n−1

)
+ ρM

(
k
(
1 +

1

n0

)
u · χEn

2n

)]
=

1

k

[
1 + ρM(ku · χH) + ρM(kuχEn

1
)
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−
∫
En

1

p
(
t, k

1

n0

∥∥u(t)∥∥) dt+ ρM(ku · χEn
2
)

+

∫
En

2

p
(
t, k

1

n0

∥∥u(t)∥∥) dt+ · · ·+ ρM(ku · χEn
2n−1

)

−
∫
En

2n−1

p
(
t, k

1

n0

∥∥u(t)∥∥) dt

+ ρM(ku · χEn
2n
) +

∫
En

2n−1

p
(
t, k

1

n0

∥∥u(t)∥∥) dt
]

=
1

k

[
1 + ρM(ku · χH) + ρM(ku · χEn

1
) + ρM(k · uχEn

2
)

+ · · ·+ ρM(k · uχEn
2n−1

) + ρM(k · uχEn
2n
)
]

=
1

k

[
1 + ρM(ku)

]
= ‖u‖0 = 1.

Similarly, ‖u′
n‖0 ≤ 1. Hence ‖yn‖0 ≤ 1 for any n ∈ N . On the other hand, we

have
∞∑
n=1

(1
2
· 1

2n
un(t) +

1

2
· 1

2n
u′
n(t)

)
=

∞∑
n=1

1

2n+1

(
un(t) + u′

n(t)
)
=

∞∑
n=1

2

2n+1
u(t) = u(t)

and
∞∑
n=1

(1
2
· 1

2n
+

1

2
· 1

2n

)
=

∞∑
n=1

( 1

2n

)
= 1.

By absolute continuity of the integral, we can find δ > 0 such that µE < δ implies
that ∫

E

p
(
t,

1

n0

∥∥u(t)∥∥) dt ≤ 1

4

∫
H

p
(
t,

1

n0

∥∥u(t)∥∥) dt and∫
E

A(t)
∥∥u(t)∥∥ dt < 1

4
λδ.

Set Tn,m = {t ∈ H : un(t) 6= um(t)}. Then it is easy to see that µTn,m > δ, where
m 6= n. We may assume without loss of generality that

∫
H
A(t)‖u(t)‖ dt < ∞ or

A(t) = ∞, t ∈ H. We will derive a contradiction for each of the following three
cases.

Case I. LetK(un−um) 6= ∅ and
∫
H
A(t)‖u(t)‖ dt < ∞. Pick kn,m ∈ K(un−um).

Then, by limu→∞ M(t, u)/u = A(t), we have

lim
n→∞

M(t, n‖ 2
n0
u(t)‖)

n‖ 2
n0
u(t)‖

·
∥∥∥ 2

n0

u(t)
∥∥∥ = A(t)

∥∥∥ 2

n0

u(t)
∥∥∥

µ-almost everywhere on H. Therefore, by Egorov’s theorem, there exists β > 0
such that∣∣∣M(t, n‖ 2

n0
u(t)‖)

n‖ 2
n0
u(t)‖

·
∥∥∥ 2

n0

u(t)
∥∥∥− A(t)

∥∥∥ 2

n0

u(t)
∥∥∥∣∣∣ < 1

4µT
λδ, t ∈ H\F
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whenever n > β, where F ⊂ H and µF < δ/4. Hence, if kn,m > β > 0, then∣∣∣M(t, km,n‖ 2
n0
u(t)‖)

km,n‖ 2
n0
u(t)‖

·
∥∥∥ 2

n0

u(t)
∥∥∥− A(t) ·

∥∥∥ 2

n0

u(t)
∥∥∥∣∣∣ < 1

4µT
λδ, t ∈ H\F.

This implies that

‖un − um‖0 =
1

kn,m

[
1 + ρM

(
kn,m(un − um)

)]
≥

∫
Tn,m

M(t, kn,m‖ 2
n0
u(t)‖)

kn,m
dt

≥
∫
Tm,n\F

M(t, km,n‖ 2
n0
u(t)‖)

km,n‖ 2
n0
u(t)‖

∥∥∥ 2

n0

u(t)
∥∥∥ dt

≥
∫
Tm,n\F

[
A(t) ·

∥∥∥ 2

n0

u(t)
∥∥∥− 1

4µT
λδ

]
dt

≥
∫
Tm,n\F

A(t) ·
∥∥∥ 2

n0

u(t)
∥∥∥ dt− ∫

Tm,n\F

1

4µT
λδ dt

≥ 3

4
λδ − 1

4
λδ =

1

2
λδ.

Moreover, if kn,m ≤ β > 0, then ‖un − um‖0 = [1 + ρM(kn,m(un − um))]/kn,m ≥
1/β.

Case II. Let K(un − um) 6= ∅ and A(t) = ∞, t ∈ H. Then, by

H =
∞⋃
n=2

{
t ∈ H :

M(t, nλ)

nλ
≥ 1 >

M(t, (n− 1)λ)

(n− 1)λ

}
∪
{
t ∈ H :

M(t, λ)

λ
≥ 1

}
,

there exists α > 0 such that µL < δ/4, where

L = H\
{
t ∈ H :

M(t, αλ)

αλ
≥ 1

}
.

Hence, if kn,m > α, then

‖un − um‖0 =
1

kn,m

[
1 + ρM

(
kn,m(un − um)

)]
≥

∫
Tn,m

M(t, kn,m‖ 2
n0
u(t)‖)

kn,m
dt

≥
∫
Tm,n\L

M(t, km,n‖ 2
n0
u(t)‖)

km,n‖ 2
n0
u(t)‖

·
∥∥∥ 2

n0

u(t)
∥∥∥ dt ≥ ∫

Tm,n\L
1 · λ dt ≥ 3

4
δλ,

and if kn,m ≤ α, then ‖un − um‖0 = [1 + ρM(kn,m(un − um))]/kn,m ≥ 1/α.
Case III. Let K(un − um) = ∅. Then

‖un − um‖0 =
∫
T

A(t) ·
∥∥un(t)− um(t)

∥∥ dt = ∫
Tn,m

A(t) ·
∥∥∥ 2

n0

u(t)
∥∥∥ dt ≥ λδ.

Therefore, (yn)
∞
n=1 is not relatively compact, which is a contradiction. This implies

that for any u ∈ 2S(L0
M(X)), we obtain that µ{t ∈ T : k‖u(t)‖ ∈ Kt} = 0, where

k ∈ K(u).
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(c2) Pick a dense set {ri}∞i=1 in (0,∞). Then, for each n, i ∈ N , we define
measurable sets

Gi,n =
{
t ∈ T : 2M(t, ri) = M

(
t,
(
1 +

1

n

)
ri

)
+M

(
t,
(
1− 1

n

)
ri

)
< ∞

}
.

Then by the convexity of M(t, u) with respect to u, we have

∞⋃
i=1

∞⋃
n=1

Gi,n = {t ∈ T : Kt 6= ∅}.

Hence, if (c) does not hold, then µGi,n > 0 for some i, n ∈ N . Since

2M(t, ri) = M
(
t,
(
1 +

1

n

)
ri

)
+M

(
t,
(
1− 1

n

)
ri

)
< ∞,

then p(t, ri) < ∞ µ-almost everywhere on Gi,n. Noting that rip(t, ri) = M(t, ri)+
N(t, p(t, ri)), we obtain that N(t, p(t, ri)) < ∞ µ-almost everywhere on Gi,n.
Therefore we can choose B ⊂ Gi,n such that µB > 0 and

∫
B
N(t, p(t, ri)) dt < 1.

Pick v(t) ∈ L0
M(X). Then there exists d > 0 such that dv(t)·χT\B(t) ∈ S(L0

M(X)).
It is easy to see that there exists k0 > 0 such that∫

T\B
N(t, p

(
t, k0

∥∥dv(t)∥∥) dt = ∫
T

N(t, p
(
t, k0

∥∥dv(t) · χT\B(t)
∥∥)) dt ≥ 1.

Since M ∈ ∆, then E(t) = ∞ µ-almost everywhere on T . This implies that
p(t, k0‖dv(t)‖) < ∞ and M(t, k0‖dv(t)‖) < ∞ µ-almost everywhere on T . Hence

N
(
t, p

(
t, k0

∥∥dv(t)∥∥)) = k0
∥∥dv(t)∥∥ · p

(
t, k0

∥∥dv(t)∥∥)−M
(
t, k0

∥∥dv(t)∥∥) < ∞

µ-almost everywhere on T . Therefore, we can choose D ⊂ T \B such that∫
B

N
(
t, p(t, ri)

)
dt+

∫
D

N(t, p
(
t, k0

∥∥dv(t) · χE(t)
∥∥) dt = 1.

Define u(t) = ri ·x ·χB(t)+d ·k0 ·v(t) ·χD(t), where x ∈ S(X). Then ρN(p(u)) = 1.
Let w(t) be a nonnegative real measurable function, and let ρN(w) ≤ 1. Then,
for any k > 0, we have∫

T

∥∥u(t)∥∥ · w(t) dt = 1

k

∫
T

k
∥∥u(t)∥∥ · w(t) dt

≤ 1

k

[∫
T

M
(
t, k

∥∥u(t)∥∥) dt+ ∫
T

N
(
t, w(t)

)
dt
]

≤ 1

k

[∫
T

M
(
t, k

∥∥u(t)∥∥) dt+ 1
]
.

This means that
∫
T
‖u(t)‖ · w(t) dt ≤ infk>0

1
k
[ρM(ku) + 1]. Hence

sup
{∫

T

∥∥u(t)∥∥ · w(t) dt : ρN(w) ≤ 1, w(t) ≥ 0
}
≤ inf

k>0

1

k

[
ρM(ku) + 1

]
.
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Moreover, we have∫
T

∥∥u(t)∥∥ · p
(
t,
∥∥u(t)∥∥) dt = ∫

T

M
(
t,
∥∥u(t)∥∥) dt+ ∫

T

N
(
t, p

(
t,
∥∥u(t)∥∥)) dt

=

∫
T

M
(
t,
∥∥u(t)∥∥) dt+ 1.

This implies that infk>0
1
k
[ρM(ku) + 1] = ρM(u) + 1, that is, ‖u‖0 = ρM(u) + 1.

Hence ∥∥∥∥ u
1
2
‖u‖0

∥∥∥∥0

=
1

1
2
‖u‖0

[
ρM

(
1

2
‖u‖0 · u

1
2
‖u‖0

)
+ 1

]
.

Therefore, by (c1), we obtain that

µ
{
t ∈ T :

1

2
‖u‖0 · ‖u(t)‖1

2
‖u‖0

∈ Kt

}
= µ

{
t ∈ T :

∥∥u(t)∥∥ ∈ Kt

}
= 0,

which is a contradiction. Hence (c) is true.
(a2) Since M(t, u) is strictly convex with respect to u for almost all t ∈ T , then

e(t) = 0 for almost all t ∈ T . Therefore, for any u ∈ L0
M(X)\{0}, we obtain that

K(u) 6= ∅.
(a3) Suppose that there exist k1, k2 ∈ K(u) satisfying k1 6= k2, where u ∈

L0
M\{0}. Define k = k1k2/(k1 + k2). Then

2‖u‖0 = ‖u‖0 + ‖u‖0

=
k1 + k2
k1k2

[
1 +

k2
k1 + k2

ρM(k1u) +
k1

k1 + k2
ρM(k2u)

]
=

k1 + k2
k1k2

[
1 +

k2
k1 + k2

∫
T

M
(
t,
∥∥k1u(t)∥∥) dt

+
k1

k1 + k2

∫
T

M
(
t,
∥∥k2u(t)∥∥) dt]

≥ k1 + k2
k1k2

[
1 +

∫
T

M
(
t,

k2
k1 + k2

∥∥k1u(t)∥∥+
k1

k1 + k2

∥∥k2u(t)∥∥) dt
]

=
k1 + k2
k1k2

[
1 +

∫
T

M
(
t,
∥∥∥ 2k1k2
k1 + k2

u(t)
∥∥∥) dt

]
= 2

1

2k

[
1 + ρM(2ku)

]
≥ 2‖u‖0

= 2.

This implies that

‖u‖0 = 1

2k

[
1 + ρM(2ku)

]
(i.e., 2k ∈ K(u)) and

k2
k1 + k2

M
(
t, k1

∥∥u(t)∥∥)+ k1
k1 + k2

M
(
t, k2

∥∥u(t)∥∥) = M
(
t, 2k

∥∥u(t)∥∥)
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µ-almost everywhere on {t ∈ T : ‖u(t)‖ 6= 0}. Since k1‖u(t)‖ 6= k2‖u(t)‖ on
{t ∈ T : ‖u(t)‖ 6= 0}, then 2k‖u(t)‖ ∈ Kt on {t ∈ T : ‖u(t)‖ 6= 0}, which is a
contradiction. Hence condition (a) is true.

(d1) Suppose that X is not rotund. Then there exist x, y, z ∈ S(X) with
2x = y + z and y 6= z. By the Hahn–Banach theorem, there exists x∗ ∈ S(X∗)
such that x∗(x) = 1. Hence x∗(y) = x∗(z) = x∗(x) = 1. Pick h(t) ∈ S(L0

M(X)).
Then there exists d > 0 such that µD > 0, where D = {t ∈ T : ‖h(t)‖ ≥
d}. Moreover, there exists r > 0 such that µH > 0, where H = {t ∈ D :
M(t, ‖y − z‖) > r}. Put h1(t) = d · x · χH(t). Then it is easy to see that h1(t) ∈
L0
M(X)\{0}. Hence there exists l > 0 such that l · h1(t) ∈ S(L0

M(X)). By the
Hahn–Banach theorem and (E0

M(R))∗ = LN(R), there exists h2(t) ∈ S(LN(R))
such that

∫
T
ld · χH(t) · h2(t) dt = 1.

Decompose H into H1
1 , H

1
2 such that H1

1 ∩H1
2 = ∅, H1

1 ∪H1
2 = H, and µH1

1 =
µH1

2 . Decompose H1
1 into H2

1 , H
2
2 such that H2

1 ∩ H2
2 = ∅, H2

1 ∪ H2
2 = H1

1 , and
µH2

1 = µH2
2 . Decompose H1

2 into H2
3 , H

2
4 such that H2

3 ∩H2
4 = ∅, H2

3 ∪H2
4 = H1

2 ,
and µH2

3 = µH2
4 . Generally, decompose Hn−1

i into Hn
2i−1, H

n
2i such that

Hn
2i−1 ∩Hn

2i = ∅, Hn
2i−1 ∪Hn

2i = Hn−1
i , and

µHn
2i−1 = µHn

2i,

where n = 1, 2, . . . , i = 1, 2, . . . , 2n−1. Set

un(t) =



0, t ∈ T\H,

y, t ∈ Hn
1 ,

z, t ∈ Hn
2 ,

· · · · · ·
y, t ∈ Hn

2n−1,

z, t ∈ Hn
2n ,

u(t) =



0, t ∈ T\H,

y, t ∈ Hn
1 ,

y, t ∈ Hn
2 ,

· · · · · ·
y, t ∈ Hn

2n−1,

y, t ∈ Hn
2n ,

and v(t) = h2(t) ·x∗. Then it is easy to see that ‖un‖ = 1/(ld), ‖u‖ = 1/(ld), and
‖v‖ = 1. Therefore, by x∗(y) = x∗(z) = x∗(x) = 1, we obtain that∫

T

(
un(t) · v(t)

)
dt =

∫
T

χH(t) · h2(t) dt =
1

ld

∫
T

ld · χH(t) · h2(t) dt =
1

ld

and ∫
T

(
u(t) · v(t)

)
dt =

∫
T

χH(t) · h2(t) dt =
1

ld

∫
T

ld · χH(t) · h2(t) dt =
1

ld
.

This implies that (un, v) = 1/(ld) and that v is norm attainable. Since every
proximinal convex subset of L0

M(X) is approximatively compact, by Lemma 2.5,
we obtain that {un}∞n=1 is relatively compact. However, picking kn,m ∈ K(un −
um), if kn,m ≤ 1, then we get

‖un − um‖0 ≥
1

kn,m

[
1 + ρM

(
kn,m(un − um)

)]
≥ 1.
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If kn,m > 1, then

‖un − um‖0 ≥
1

kn,m

[
1 + ρM

(
kn,m(un − um)

)]
≥

∫
Hn,m

M(t, kn,m‖y − z‖)
kn,m

dt

≥
∫
Hn,m

kn,mM(t, ‖y − z‖)
kn,m

dt =

∫
Hn,m

M
(
t, ‖y − z‖

)
dt

≥ r · µHn,m =
1

2
r · µH,

where Hn,m = {t ∈ T : un(t) 6= um(t)}. This means that the sequence {un}∞n=1 is
not relatively compact, which is a contradiction.

(d) Pick h ∈ S(L0
M(X)). Then there exists d > 0 such that µE > 0, where

E = {t ∈ T : ‖h(t)‖ ≥ d}. Put h1(t) = d · x0 · χE(t), where x0 ∈ S(X).
It is easy to see that h1(t) ∈ L0

M(X)\{0}. Hence there exists l > 0 such that
l · h1(t) ∈ S(L0

M(X)). We next prove that X is isometrically embedded into
L0
M(X). We define the operator I: X → L0

M(X) by

I(x) = ld · x · χE(t), x ∈ X.

It is easy to see that I(x0) ∈ S(L0
M(X)). Hence, for any x ∈ X\{0}, we have∥∥I(x)∥∥0

= inf
k>0

1

k

[
1 + ρM

(
k · I(x)

)]
= inf

k>0

1

k

[
1 +

∫
E

M
(
t, k · ld‖x‖

)
dt
]

= inf
k>0

1

k

[
1 +

∫
E

M
(
t, k · ‖x‖ld‖x0‖

)
dt
]
= inf

k>0

1

k

[
1 + ρM

(
k · ‖x‖I(x0)

)]
=

∥∥‖x‖ · I(x0)
∥∥0

= ‖x‖ ·
∥∥I(x0)

∥∥0
= ‖x‖.

This implies that every proximinal convex subset of X is approximatively com-
pact.

For the sufficient part, let un, u ∈ S(L0
M(X)), v ∈ S(LN(X

∗)), (u, v) = 1, and
(un, v) → 1 as n → ∞. Then it is easy to see (un + u, v) → 2 as n → ∞. The
proof requires the consideration of few cases separately.

Case I. Let sup{kn} < ∞, where kn = K(un). Then we may assume without

loss of generality that kn → l. We will prove that ‖un(t)‖
µ−→ ‖u(t)‖ in measure.

Otherwise, we may assume without loss of generality that for each n ∈ N , there
exists En ⊆ T , ε0 > 0, and σ0 > 0 such that µEn ≥ ε0, where

En =
{
t ∈ T :

∣∣∥∥un(t)
∥∥−

∥∥u(t)∥∥∣∣ ≥ σ0

}
.

We define the sets

An =
{
t ∈ T : M

(
t,
∥∥knun(t)

∥∥) > 8

ε0

}
and

B =
{
t ∈ T : M

(
t,
∥∥ku(t)∥∥) > 8

ε0

}
,
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where k ∈ K(u). Then

1 =

∫
T

M
(
t,
∥∥knun(t)

∥∥) dt ≥ ∫
An

M
(
t,
∥∥knun(t)

∥∥) dt ≥ 8

ε0
µAn.

This implies that µAn ≤ ε0/8. Similarly, we have µB ≤ ε0/8. For µ-almost
everywhere t ∈ T , we define a bounded closed set

Ct =
{
(u, v) ∈ R2 : M(t, u) ≤ 8

ε0
,M(t, v) ≤ 8

ε0
, |u− v| ≥ 1

4
σ0

}
in 2-dimensional space. Since Ct is compact, we obtain that for µ-almost every-
where t ∈ T , there exists (ut, vt) ∈ Ct such that

1 >
M(t, ( k

k+l
ut +

l
k+l

vt))
k

k+l
M(t, ut) +

l
k+l

M(t, vt)
≥

M(t, ( k
k+l

u+ l
k+l

v))
k

k+l
M(t, u) + l

k+l
M(t, v)

(2.1)

for any (u, v) ∈ Ct. We define a function

1− δ(t) =
M(t, ( k

k+l
ut +

l
k+l

vt))
k

k+l
M(t, ut) +

l
k+l

M(t, vt)
. (2.2)

Then δ(t) is µ-measurable. In fact, pick a dense set {ri}∞i=1 in [0,∞). We define
a function

1− δri,rj(t) =


M(t,( k

k+l
ri+

l
k+l

rj))
k

k+l
M(t,ri)+

l
k+l

M(t,rj)
, M(t, ri) ≤ 8

ε0
and M(t, rj) ≤ 8

ε0
,

0, M(t, ri) >
8
ε0

or M(t, rj) >
8
ε0
.

By the definition of M(t, u), it is easy to see that 1− δri,rj(t) is µ-measurable and

1− δ(t) ≥ sup
{
1− δri,rj(t) : |ri − rj| ≥

1

4
σ0

}
.

On the other hand, since {ri}∞i=1 is dense in [0,∞), then {(ri, rj)}∞i=1,j=1 is dense in
[0,∞)× [0,∞). By definition of the function 1−δ(t), we obtain that for µ-almost
everywhere t ∈ T and ε > 0, there exists (ri, rj) ∈ Ct such that

1− δ(t)− ε < 1− δri,rj(t) ≤ sup
{
1− δri,rj(t) : |ri − rj| ≥

1

4
σ0

}
µ-almost everywhere on T . Since ε is arbitrary, we have

1− δ(t) ≤ sup
{
1− δri,rj(t) : |ri − rj| ≥

1

4
σ0

}
µ-almost everywhere on T . Then 1 − δ(t) = sup{1 − δri,rj(t) : |ri − rj| ≥ σ0/4}
µ-almost everywhere on T . This implies that δ(t) is µ-measurable. By formulas
(2.1) and (2.2), we have

δ(t) ≤ 1−
M(t, ( k

k+l
u+ l

k+l
v))

k
k+l

M(t, u) + l
k+l

M(t, v)
, u, v ∈ Ct
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for µ-almost everywhere t ∈ T . We know that

T ⊃
∞⋃
n=1

{
t ∈ T :

1

n+ 1
< δ(t) ≤ 1

n

}
.

Since M(t, u) is strictly convex with respect to u for almost all t ∈ T , there exists
2δ0 ∈ (0, 1) such that µG < ε0/16, where

G =
{
t ∈ T : δ(t) ≤ 2δ0

}
.

We have Wn(t)−Qn(t) → 0 µ-almost everywhere on T , where

Wn(t) =
M(t, k

k+kn
‖knun(t)‖+ kn

k+kn
‖ku(t)‖)

k
k+kn

M(t, ‖knun(t)‖) + kn
k+kn

M(t, ‖ku(t)‖)
· χEn\(An∪B)(t),

Qn(t) =
M(t, k

k+l
‖knun(t)‖+ l

k+l
‖ku(t)‖)

k
k+l

M(t, ‖knun(t)‖) + l
k+l

M(t, ‖ku(t)‖)
· χEn\(An∪B)(t).

By Egorov’s theorem, there exists N such that |Wn(t)−Qn(t)| < δ0/4, t ∈ E,
whenever n > N , where E ⊂ T and µ(T \E) < ε0/16. Let En1 = En\(G∪(T\E)).
Hence, if En1\(An ∪B), then

3

2
δ0 = 2δ0 −

1

2
δ0

≤ 1−
M(t, k

k+l
‖knun(t)‖+ l

k+l
‖ku(t)‖)

k
k+l

M(t, ‖knun(t)‖) + l
k+l

M(t, ‖ku(t)‖)
− 1

2
δ0

≤ 1−
M(t, k

k+kn
‖knun(t)‖+ kn

k+kn
‖ku(t)‖)

k
k+kn

M(t, ‖knun(t)‖) + kn
k+kn

M(t, ‖ku(t)‖)
,

when n is large enough. This implies that

M
(
t,

k

k + kn

∥∥knun(t)
∥∥+

kn
k + kn

∥∥ku(t)∥∥) ≤ (1− δ0)
[ k

k + kn
M

(
t,
∥∥knun(t)

∥∥)
+

kn
k + kn

M
(
t,
∥∥ku(t)∥∥)]

on En1 \ (An ∪ Bn). We know that M(t, 1
k+k

σ0) > 0 µ-almost everywhere on T ,

where k = sup{kn}. Since

T ⊃
∞⋃
i=1

{
t ∈ T :

1

i+ 1
< M

(
t,

1

k + k
σ0

)
≤ 1

i

}
,

there exists a > 0 such that µC < ε0/8, where

C =
{
t ∈ T : M

(
t,

1

k + k
σ0

)
≤ a

}
.
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Let Hn = En\(An ∪B ∪G ∪ (T\E)). Then µHn ≥ ε0/4. Hence

‖un‖0 + ‖u‖0 − ‖un + u‖0

≥ 1

kn

[
1 + ρM(knun)

]
+

1

k

[
1 + ρM(ku)

]
− kn + k

knk

(
1 + ρM

( knk

kn + k
(un + u)

))
≥ kn + k

knk

∫
Hn

[ k

kn + k
M

(
t,
∥∥knun(t)

∥∥)+ kn
kn + k

M
(
t,
∥∥ku(t)∥∥)

−M
(
t,
∥∥∥ knk

kn + k

(
un(t) + u(t)

)∥∥∥)] dt
≥ kn + k

knk

∫
Hn

[ k

kn + k
M

(
t,
∥∥knun(t)

∥∥)+ kn
kn + k

M
(
t,
∥∥ku(t)∥∥)

−M
(
t,

k

kn + k

∥∥knun(t)
∥∥+

kn
kn + k

∥∥ku(t)∥∥)] dt
≥ kn + k

knk

∫
Hn

δ0

[ k

kn + k
M

(
t,
∥∥knun(t)

∥∥)+ kn
kn + k

M
(
t,
∥∥ku(t)∥∥)] dt

≥ kn + k

knk

∫
Hn

δ0

[
M

(
t,

k

kn + k

∥∥knun(t)
∥∥+

kn
kn + k

∥∥ku(t)∥∥)] dt
≥ kn + k

knk

∫
Hn

δ0

[
M

(
t,

kkn
kn + k

∣∣∥∥un(t)
∥∥−

∥∥u(t)∥∥∣∣)] dt
≥ kn + k

knk

∫
Hn

δ0

[
M

(
t,

1

k + k
σ0

)]
dt

≥ 2

kk
δ0a ·

1

4
ε0,

when n large enough. By (un + u, v) → 2, we obtain that ‖un + u‖0 → 2. Hence
‖un‖0 + ‖u‖0 − ‖un + u‖0 → 0 as n → ∞, which is a contradiction. Hence
‖un(t)‖→µ ‖u(t)‖ in measure. By the Riesz theorem, there exists a subsequence
{n} of {n} such that ‖un(t)‖ → ‖u(t)‖ µ-almost everywhere on T . Noting that∣∣(un(t), v(t)

)∣∣ ≤ ∥∥un(t)
∥∥ ·

∥∥v(t)∥∥, ∫
T

(
un(t), v(t)

)
dt → 1

and ∫
T

∥∥un(t)
∥∥ ·

∥∥v(t)∥∥ dt ≤‖un‖0 · ‖v‖ ≤ 1,

we obtain that
∫
T
‖un(t)‖ · ‖v(t)‖ dt → 1 and

∫
T
[‖un(t)‖ · ‖v(t)‖ − (un(t),

v(t))] dt → 0, that is,
∫
T
|‖un(t)‖ · ‖v(t)‖− (un(t), v(t))| dt → 0. This implies that

‖un(t)‖ · ‖v(t)‖− (un(t), v(t))→µ 0 in measure. Therefore, by the Riesz theorem,
there exists a subsequence {n} of {n} such that ‖un(t)‖·‖v(t)‖−(un(t), v(t)) → 0
µ-almost everywhere on T . By ‖un(t)‖ → ‖u(t)‖ µ-almost everywhere on T , it
follows that (un(t), v(t)) → ‖u(t)‖ · ‖v(t)‖ µ-almost everywhere on T . We may
assume without loss of generality that( un(t)

‖u(t)‖
,

v(t)

‖v(t)‖

)
→ 1 on

{
t ∈ T :

∥∥u(t)∥∥ ·
∥∥v(t)∥∥ 6= 0

}
.
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Then µT1 = 0, where T1 = {t ∈ T : ‖v(t)‖ = 0} ∩ {t ∈ T : ‖u(t)‖ 6= 0}. In fact, if
µT1 > 0, then

‖u‖0 = 1

k

[
1 + ρM(ku)

]
>

1

k

[
1 + ρM(kuχT\T1)

]
≥ ‖uχT\T1‖0,

where k ∈ K(u). Hence,

1 =

∫
T

(u, v) dt =

∫
T

(uχT\T1 , v) dt ≤ ‖uχT\T1‖0 · ‖v‖ < 1,

which is a contradiction. We may assume without loss of generality that( un(t)

‖u(t)‖
,

v(t)

‖v(t)‖

)
→ 1 on

{
t ∈ T :

∥∥u(t)∥∥ 6= 0
}
.

Noting that ‖un(t)‖ → ‖u(t)‖ µ-almost everywhere on T , we may assume without
loss of generality that (u(t)/‖u(t)‖, v(t)/‖v(t)‖) = 1. Since( u(t)

‖u(t)‖
,

v(t)

‖v(t)‖

)
= 1,

un(t)

‖u(t)‖
→ 1 and

v(t)

‖v(t)‖
∈ S(X∗),

by Lemma 2.5, we obtain that {un(t)/‖u(t)‖}∞n=1 is relatively compact. Since X
is rotund, we obtain that the sequence {un(t)/‖u(t)‖}∞n=1 is convergent. In fact,
suppose that there exists t0 ∈ {t ∈ T : ‖u(t)‖ 6= 0} such that {un(t0)/‖u(t0)‖}∞n=1

is not convergent. Then there exist subsequences {ni} and {nj} of {n} such that

uni
(t0)

‖u(t0)‖
→ x1,

unj
(t0)

‖u(t0)‖
→ x2, and x1 6= x2.

Hence (
x1,

v(t0)

‖v(t0)‖

)
=

(
x2,

v(t0)

‖v(t0)‖

)
.

This implies that x1 = x2, which is a contradiction. Hence there exists x(t) ∈
S(X) such that un(t)/‖u(t)‖ → x(t), t ∈ {t ∈ T : ‖u(t)‖ 6= 0}. Let

u0(t) =

{
‖u(t)‖x(t), t ∈ {t ∈ T : ‖u(t)‖ 6= 0},
0, t ∈ {t ∈ T : ‖u(t)‖ = 0}.

Then it is easy to see that ‖u0‖0 = 1 and un(t) → u0(t) µ-almost everywhere
on T . We next prove that l = h, where h ∈ K(u0) and l = limn→∞ kn. In fact, by
Fatou’s lemma, it follows that

1

h

[
1+ρM(hu0)

]
= ‖u0‖0 = lim

n→∞
‖un‖0 = lim

n→∞

1

kn

[
1+ρM(knun)

]
≥ 1

l

[
1+ρM(lu0)

]
,

so l = h. By the convexity of M , we have

M(t, ‖knun(t)‖) +M(t, ‖hu0(t)‖)
2

−M
(
t,
‖knun(t)− hu0(t)‖

2

)
≥ 0
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for µ-almost everywhere t ∈ T . Moreover, we have ρM(knun) = kn‖un‖0 − 1 →
h‖u0‖0 − 1 = ρM(hu0). Therefore, by Fatou’s lemma, we obtain the following:

ρM(hu0) =

∫
T

lim
n→∞

[M(t, ‖knun(t)‖) +M(t, ‖hu0(t)‖)
2

−M
(
t,
‖knun(t)− hu0(t)‖

2

)]
dt

≤ lim inf
n→∞

∫
T

[M(t, ‖knun(t)‖) +M(t, ‖hu0(t)‖)
2

−M
(
t,
‖knun(t)− hu0(t)‖

2

)]
dt

= ρM(hu0)− lim sup
n→∞

ρM

[1
2
(knun − hu0)

]
.

This implies that ρM(1
2
(knun − hu0)) → 0 as n → ∞. By Lemma 2.4, we obtain

that ‖knun − hu0‖ → 0. Then ‖knun − hu0‖0 ≤ 2‖knun − hu0‖ → 0 as n → ∞.
Using the equalities limn→∞ kn = l = h, we obtain ‖un − u0‖0 → 0 as n → ∞.
So {un}∞n=1 is relatively compact.

Case II. Let sup{kn} = ∞, where kn = K(un). Then we consider the sequence
2u′

n = (un+u) in place of {un}∞n=1, because ‖un − u‖0 → 0 as n → ∞ if and only
if ‖u′

n − u‖0 → 0 as n → ∞. Moreover, we have∥∥∥1
2
(un + u)

∥∥∥0

≤ 1

2

(
‖un‖0 + ‖u‖0

)
for every n ∈ N . Hence lim supn→∞ ‖(un + u)‖0 ≤ 2. Since∫

T

(1
2
(un + u), v

)
dt =

1

2

∫
T

(un, v) dt+
1

2

∫
T

(u, v) dt → 1,

we obtain that lim infn→∞ ‖(un + u)‖0 ≥ 2. This implies that limn→∞ ‖(un +
u)‖0 → 2 as n → ∞. Define wn = (2knk)/(kn + k), where k ∈ K(u). Then the
sequence {wn}∞n=1 is bounded. Moreover,∥∥∥1

2
(un + u)

∥∥∥0

≤ 1

wn

[
1 + ρM

(
wn ·

un + u

2

)]
=

kn + k

2knk

[
1 + ρM

( knk

kn + k
(un + u)

)]
≤ kn + k

2knk

[
1 +

k

kn + k
ρM

(
(knun)

)
+

kn
kn + k

ρM
(
(ku)

)]
≤ 1

2

[ 1

kn

(
1 + ρM(knun)

)
+

1

k

(
1 + ρM(ku)

)]
=

1

2

[
‖un‖0 + ‖u‖0

]
→ 1,

whence it follows that

kn + k

2knk

[
1 + ρM

( 2knk

kn + k
· 1
2
(un + u)

)]
→ 1 as n → ∞.
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By (u, v) = 1 and (un, v) → 1, we have (u′
n, v) → 1. Therefore, we can prove in

the same way as in Case I that ‖u′
n − u‖0 → 0. So {un}∞n=1 is relatively compact.

This completes the proof. �

Corollary 2.9. We have that L0
M(X) is approximatively compact if and only if

(a) for any v ∈ L0
M(X) \ {0}, the set K(v) consists of one element from

(0,+∞);
(b) M ∈ ∆ and N ∈ ∆;
(c) M(t, u) is strictly convex with respect to u for almost all t ∈ T ;
(d) X is approximatively compact and round.
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