Banach J. Math. Anal. 11 (2017), no. 1, 72-89
http://dx.doi.org/10.1215/17358787-3750133
ISSN: 1735-8787 (electronic)
http://projecteuclid.org/bjma

DUALITY FOR INCREASING CONVEX FUNCTIONALS WITH COUNTABLY MANY MARGINAL CONSTRAINTS

DANIEL BARTL, ${ }^{1}$ PATRICK CHERIDITO, ${ }^{2}$
MICHAEL KUPPER, ${ }^{1}$ and LUDOVIC TANGPI ${ }^{3}$

Communicated by P. E. T. Jorgensen

Abstract

In this work we derive a convex dual representation for increasing convex functionals on a space of real-valued Borel measurable functions defined on a countable product of metric spaces. Our main assumption is that the functionals fulfill marginal constraints satisfying a certain tightness condition. In the special case where the marginal constraints are given by expectations or maxima of expectations, we obtain linear and sublinear versions of Kantorovich's transport duality and the recently discovered martingale transport duality on products of countably many metric spaces.

1. Introduction

We consider an increasing convex functional $\phi: B_{b} \rightarrow \mathbb{R}$, where B_{b} is the space of all bounded Borel measurable functions $f: X \rightarrow \mathbb{R}$ defined on a countable product of metric spaces $X=\prod_{n} X_{n}$. Under the assumption that there exist certain mappings ϕ_{n} defined on the bounded Borel measurable functions g_{n} : $X_{n} \rightarrow \mathbb{R}_{+}$, such that

$$
\phi(f) \leq \sum_{n} \phi_{n}\left(g_{n}\right) \quad \text { whenever } f(x) \leq \sum_{n} g_{n}\left(x_{n}\right) \text { for all } x \in X,
$$

we show that ϕ can be represented as

$$
\begin{equation*}
\phi(f)=\max _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) \quad \text { for all } f \in C_{b}, \tag{1.1}
\end{equation*}
$$

[^0]Our proofs differ from the standard arguments used in establishing Kantorovich duality and martingale transport duality in that they view the subreplication (or superreplication) problem as the primal problem and they use the Daniell-Stone theorem to deduce that increasing convex functionals on certain function spaces have a max-representation with countably additive measures if they are continuous from above under pointwise decreasing sequences.

The rest of this paper has the following organization. In Section 2, we derive two general representation results for increasing convex functionals satisfying countably many tight marginal constraints. In Section 3, we focus on the special cases where the constraints are linear and sublinear. In Section 4, we derive linear and sublinear versions of Kantorovich's transport duality and the martingale transport duality for countably many marginal constraints.

2. Main Representation Results

Let $\left(X_{n}\right)$ be a countable (finite or countably infinite) family of metric spaces, and consider the product topology on $X=\prod_{n} X_{n}$. Denote by C_{b}, U_{b}, and B_{b} all bounded functions $f: X \rightarrow \mathbb{R}$ that are continuous, upper semicontinuous, or Borel measurable, respectively. Similarly, let $C_{b, n}, U_{b, n}$, and $B_{b, n}$ be all bounded functions $f: X_{n} \rightarrow \mathbb{R}$ that are continuous, upper semicontinuous, or Borel measurable, respectively. By ca^{+}we denote all finite Borel measures on X, and by $c a_{n}^{+}$we denote all finite Borel measures on X_{n}. For a measure $\mu \in c a^{+}$, we denote by μ_{n} the nth marginal distribution; that is, $\mu_{n}:=\mu \circ \pi_{n}^{-1}$, where $\pi_{n}: X \rightarrow X_{n}$ is the projection on the nth coordinate $x \mapsto \pi_{n}(x):=x_{n}$. For a sequence $g_{n} \in B_{b, n}^{+}$, where $B_{b, n}^{+}$is the set of all bounded Borel measurable functions $f: X_{n} \rightarrow \mathbb{R}_{+}$, we define $\oplus g:=\sum_{n} g_{n} \circ \pi_{n}: X \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$. When we write $f_{j} \downarrow f$, we mean that f_{j} is a decreasing sequence of functions that converges pointwise to f.

Our goal in this section is to derive a dual representation for an increasing convex functional $\phi: B_{b} \rightarrow \mathbb{R}$, where by "increasing" we mean that $\phi(f) \geq \phi(g)$ whenever $f \geq g$ and the second inequality is understood pointwise. For every n, let $\phi_{n}: B_{b, n}^{+} \rightarrow \mathbb{R}_{+}$be a mapping satisfying the following tightness condition: for all $m, \varepsilon \in \mathbb{R}_{+} \backslash\{0\}$, there exists a compact set $K_{n} \subseteq X_{n}$ such that

$$
\begin{equation*}
\phi_{n}\left(m 1_{K_{n}^{c}}\right) \leq \varepsilon . \tag{2.1}
\end{equation*}
$$

(In the special case where ϕ_{n} is given by $\phi_{n}(f)=\sup _{\nu \in \mathcal{P}_{n}} \int f d \nu$ for a set of Borel probability measures \mathcal{P}_{n} on X_{n}, (2.1) means that \mathcal{P}_{n} is tight in the standard sense (see, e.g., [5]). A related condition for convex risk measures was introduced in [10].) We use the notation $\langle f, \mu\rangle:=\int f d \mu$, and define the convex conjugate

$$
\phi_{C_{b}}^{*}: c a^{+} \rightarrow \mathbb{R} \cup\{+\infty\} \quad \text { by } \phi_{C_{b}}^{*}(\mu):=\sup _{f \in C_{b}}(\langle f, \mu\rangle-\phi(f)) .
$$

Then the following holds.
Theorem 2.1. Let $\phi: B_{b} \rightarrow \mathbb{R}$ be an increasing convex functional satisfying $\phi(f) \leq \sum_{n} \phi_{n}\left(g_{n}\right)$ for all $f \in B_{b}$ and $g_{n} \in B_{b, n}^{+}$such that $f \leq \oplus g$. Then

$$
\phi(f)=\max _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) \quad \text { for all } f \in C_{b}
$$

Proof. Fix $f \in C_{b}$, and let $\left(f_{j}\right)$ be a sequence in C_{b} such that $f_{j} \downarrow 0$. Since $\alpha \mapsto \phi(\alpha f)$ is a real-valued convex function on \mathbb{R}, it is continuous, and so, for a given constant $\varepsilon>0$, one can choose $\alpha \in(0,1)$ small enough such that

$$
(1-\alpha) \phi\left(\frac{f}{1-\alpha}\right)-\phi(f) \leq \varepsilon
$$

By assumption, there exist compact sets $K_{n} \subseteq X_{n}$ such that $\sum_{n} \phi_{n}\left(g_{n}\right) \leq \varepsilon$, where

$$
g_{n}:=\frac{2}{\alpha}\left\|f_{1}\right\|_{\infty} 1_{K_{n}^{c}}
$$

By Tychonoff's theorem, $K:=\prod_{n} K_{n} \subseteq X$ is compact. Since the function

$$
\tilde{\phi}(\cdot):=\phi(\cdot+f)-\phi(f): B_{b} \rightarrow \mathbb{R}
$$

is convex, one has

$$
\tilde{\phi}\left(f_{j}\right) \leq \frac{\tilde{\phi}\left(2 f_{j} 1_{K}\right)+\tilde{\phi}\left(2 f_{1} 1_{K^{c}}\right)}{2}
$$

By Dini's lemma, $f_{j} \rightarrow 0$ uniformly on the compact K. Then, since $\lim _{\alpha \rightarrow 0} \tilde{\phi}(\alpha 1)=0$, it follows by monotonicity that $\tilde{\phi}\left(2 f_{j} 1_{K}\right) \rightarrow 0$. On the other hand, one obtains from $\frac{2}{\alpha} f_{1} 1_{K^{c}} \leq \oplus g$ that

$$
\phi\left(\frac{2}{\alpha} f_{1} 1_{K^{c}}\right) \leq \sum_{n} \phi_{n}\left(g_{n}\right) \leq \varepsilon,
$$

and therefore that

$$
\tilde{\phi}\left(2 f_{1} 1_{K^{c}}\right) \leq \alpha \phi\left(\frac{2}{\alpha} f_{1} 1_{K^{c}}\right)+(1-\alpha) \phi\left(\frac{f}{1-\alpha}\right)-\phi(f) \leq 2 \varepsilon
$$

This shows $\phi\left(f+f_{j}\right) \downarrow \phi(f)$. By the Hahn-Banach extension theorem, there exists a positive linear functional $\psi: C_{b} \rightarrow \mathbb{R}$ such that

$$
\psi(g) \leq \tilde{\phi}(g)=\phi(f+g)-\phi(f) \quad \text { for all } g \in C_{b}
$$

Since $\psi\left(g_{j}\right) \downarrow 0$ for every sequence $\left(g_{j}\right)$ in C_{b} satisfying $g_{j} \downarrow 0$, one obtains from the Daniell-Stone theorem (see, e.g., [9, Theorem 4.5.2]) that there exists a $\nu \in c a^{+}$ such that $\psi(g)=\langle g, \nu\rangle$ for all $g \in C_{b}$. It follows that $\phi(f)+\phi_{C_{b}}^{*}(\nu) \leq\langle f, \nu\rangle$, which together with $\phi(f) \geq \sup _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right)$ yields

$$
\phi(f)=\max _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) .
$$

The next result gives conditions under which the dual representation of Theorem 2.1 extends to the set of bounded upper semicontinuous functions U_{b}. We call a subset Λ of ca^{+}sequentially compact if every sequence in Λ has a subsequence that converges to some $\mu \in \Lambda$ with respect to the topology $\sigma\left(c a^{+}, C_{b}\right)$.
Theorem 2.2. Let $\phi: B_{b} \rightarrow \mathbb{R}$ be an increasing convex functional satisfying the assumption of Theorem 2.1. Then the lower level sets

$$
\Lambda_{a}:=\left\{\mu \in c a^{+}: \phi_{C_{b}}^{*}(\mu) \leq a\right\}, \quad a \in \mathbb{R}
$$

are sequentially compact, and the following are equivalent:
(i) $\phi(f)=\max _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right)$ for all $f \in U_{b}$,
(ii) $\phi\left(f_{j}\right) \downarrow \phi(f)$ for all $f \in U_{b}$ and every sequence $\left(f_{j}\right)$ in C_{b} satisfying $f_{j} \downarrow f$,
(iii) $\phi(f)=\inf _{g \in C_{b}, g \geq f} \phi(g)$ for all $f \in U_{b}$,
(iv) $\phi_{C_{b}}^{*}(\mu)=\phi_{U_{b}}^{*}(\mu):=\sup _{f \in U_{b}}(\langle f, \mu\rangle-\phi(f))$ for all $\mu \in c a^{+}$.

Proof. It is clear that, for all $a \in \mathbb{R}, \Lambda_{a}$ is $\sigma\left(c a^{+}, C_{b}\right)$-closed. Moreover, for all $\mu \in c a^{+}$,

$$
\phi_{C_{b}}^{*}(\mu) \geq \sup _{x \in \mathbb{R}_{+}}(\langle x 1, \mu\rangle-\phi(x 1))=\gamma(\langle 1, \mu\rangle),
$$

where $\gamma: \mathbb{R}_{+} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the increasing convex function given by

$$
\gamma(y):=\sup _{x \in \mathbb{R}_{+}}(x y-\phi(x 1)) .
$$

Since ϕ is real-valued, γ has the property $\lim _{y \rightarrow+\infty} \gamma(y) / y=+\infty$ from which it follows that the right-continuous inverse $\gamma^{-1}: \mathbb{R} \rightarrow \mathbb{R}_{+}$given by

$$
\gamma^{-1}(x):=\sup \left\{y \in \mathbb{R}_{+}: \gamma(y) \leq x\right\} \quad \text { with } \sup \emptyset:=0
$$

is increasing and satisfies $\lim _{x \rightarrow+\infty} \gamma^{-1}(x) / x=0$. For every $\varepsilon>0$ there exist $m \in$ \mathbb{N} such that $(a+1) / m \leq \varepsilon$ and compact sets $K_{n} \subseteq X_{n}$ so that $\sum_{n} \phi_{n}\left(m 1_{K_{n}^{c}}\right) \leq 1$. Since $m 1_{K^{c}} \leq \oplus g$ for the compact $K:=\prod_{n} K_{n}$ and $g_{n}:=m 1_{K_{n}^{c}}$, one has $\phi\left(m 1_{K^{c}}\right) \leq \sum_{n} \phi_{n}\left(m 1_{K_{n}^{c}}\right) \leq 1$. Moreover, the product topology on X is metrizable, and $m 1_{K^{c}}$ is lower semicontinuous. Therefore, there exists a sequence $\left(g_{j}\right)$ in C_{b} such that $g_{j} \uparrow m 1_{K^{c}}$. Since $\phi\left(g_{j}\right) \leq \phi\left(m 1_{K^{c}}\right) \leq 1$, one has, for all $\mu \in \Lambda_{a}$,

$$
m \mu\left(K^{c}\right)=\sup _{j}\left\langle g_{j}, \mu\right\rangle \leq \sup _{j}\left(\left\langle g_{j}, \mu\right\rangle-\phi\left(g_{j}\right)+1\right) \leq \phi_{C_{b}}^{*}(\mu)+1 \leq a+1
$$

In particular, $\mu\left(K^{c}\right) \leq \varepsilon$, and $\mu(X)=\langle 1, \mu\rangle \leq \gamma^{-1}\left(\phi_{C_{b}}^{*}(\mu)\right) \leq \gamma^{-1}(a)$. Now one obtains from the first half of Prokhorov's theorem (see, e.g., Theorem 5.1 in [5]) that Λ_{a} is sequentially compact.
(i) \Rightarrow (ii): Fix $f \in U_{b}$, and assume that $\left(f_{j}\right)$ is a sequence in C_{b} such that $f_{j} \downarrow f$. If (i) holds, there exists a sequence $\left(\mu_{j}\right)$ in $c a^{+}$such that

$$
\begin{aligned}
\phi\left(f_{j}\right) & =\left\langle f_{j}, \mu_{j}\right\rangle-\phi_{C_{b}}^{*}\left(\mu_{j}\right) \leq\left\|f_{1}\right\|_{\infty}\left\langle 1, \mu_{j}\right\rangle-\phi_{C_{b}}^{*}\left(\mu_{j}\right) \\
& \leq\left\|f_{1}\right\|_{\infty} \gamma^{-1}\left(\phi_{C_{b}}^{*}\left(\mu_{j}\right)\right)-\phi_{C_{b}}^{*}\left(\mu_{j}\right)
\end{aligned}
$$

It follows that $\left(\mu_{j}\right)$ is in Λ_{a} for some $a \in \mathbb{R}$ large enough. Therefore, after possibly passing to a subsequence, μ_{j} converges to a measure $\mu \in \Lambda_{a}$ in $\sigma\left(c a^{+}, C_{b}\right)$. Clearly, $\phi_{C_{b}}^{*}$ is $\sigma\left(c a^{+}, C_{b}\right)$-lower semicontinuous, and so

$$
\phi_{C_{b}}^{*}(\mu) \leq \liminf _{j} \phi_{C_{b}}^{*}\left(\mu_{j}\right) .
$$

Moreover, for every $\varepsilon>0$, there is a k such that $\left\langle f_{k}, \mu\right\rangle \leq\langle f, \mu\rangle+\varepsilon$. Now choose $j \geq k$ such that $\left\langle f_{k}, \mu_{j}\right\rangle \leq\left\langle f_{k}, \mu\right\rangle+\varepsilon$. Then

$$
\left\langle f_{j}, \mu_{j}\right\rangle \leq\left\langle f_{k}, \mu_{j}\right\rangle \leq\left\langle f_{k}, \mu\right\rangle+\varepsilon \leq\langle f, \mu\rangle+2 \varepsilon .
$$

It follows that $\limsup _{j}\left\langle f_{j}, \mu_{j}\right\rangle \leq\langle f, \mu\rangle$, and therefore that

$$
\lim _{j} \phi\left(f_{j}\right)=\lim _{j}\left(\left\langle f_{j}, \mu_{j}\right\rangle-\phi_{C_{b}}^{*}\left(\mu_{j}\right)\right) \leq\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu) \leq \phi(f),
$$

showing that $\phi\left(f_{j}\right) \downarrow \phi(f)$.
(ii) \Rightarrow (iii): This follows from the fact that, for every $f \in U_{b}$, there exists a sequence $\left(f_{j}\right)$ in C_{b} such that $f_{j} \downarrow f$.
(iii) $\Rightarrow(\mathrm{vi})$: It is immediate from the definitions that $\phi_{U_{b}}^{*} \geq \phi_{C_{b}}^{*}$. On the other hand, if (iii) holds, then, for every $f \in U_{b}$, there is a sequence $\left(f_{j}\right)$ in C_{b} such that $f_{j} \geq f$ and $\phi\left(f_{j}\right) \downarrow \phi(f)$. In particular,

$$
\sup _{j}\left(\left\langle f_{j}, \mu\right\rangle-\phi\left(f_{j}\right)\right) \geq\langle f, \mu\rangle-\phi(f)
$$

from which one obtains $\phi_{C_{b}}^{*} \geq \phi_{U_{b}}^{*}$.
(iv) \Rightarrow (i): Fix $f \in U_{b}$. It is a direct consequence of the definition of $\phi_{U_{b}}^{*}$ that

$$
\phi(f) \geq \sup _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{U_{b}}^{*}(\mu)\right)=\sup _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) .
$$

On the other hand, there exists a sequence $\left(f_{j}\right)$ in C_{b} such that $f_{j} \downarrow f$. Since

$$
\left\langle f_{j}, \mu\right\rangle \leq\left\langle f_{1}, \mu\right\rangle \leq\left\|f_{1}\right\|_{\infty}\langle 1, \mu\rangle \leq\left\|f_{1}\right\|_{\infty} \gamma^{-1}\left(\phi_{C_{b}}^{*}(\mu)\right),
$$

it follows from Theorem 2.1 that one can choose $a \in \mathbb{R}$ large enough such that

$$
\phi\left(f_{j}\right)=\left\langle f_{j}, \mu_{j}\right\rangle-\phi_{C_{b}}^{*}\left(\mu_{j}\right)
$$

for a sequence $\left(\mu_{j}\right)$ in the sequentially compact set Λ_{a}. After passing to a subsequence, μ_{j} converges to a μ in $\sigma\left(c a^{+}, C_{b}\right)$. Then it follows as above that

$$
\phi(f) \leq \lim _{j} \phi\left(f_{j}\right)=\lim _{j}\left(\left\langle f_{j}, \mu_{j}\right\rangle-\phi_{C_{b}}^{*}\left(\mu_{j}\right)\right) \leq\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)
$$

from which one obtains $\phi(f)=\max _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right)$.

3. Linear and Sublinear marginal constraints

In this section we assume the X_{n} to be Polish spaces, and we assume the mappings $\phi_{n}: B_{b, n}^{+} \rightarrow \mathbb{R}$ to be of the form

$$
\phi_{n}(g)=\sup _{\nu_{n} \in \mathcal{P}_{n}}\left\langle g, \nu_{n}\right\rangle,
$$

where \mathcal{P}_{n} is a nonempty convex $\sigma\left(c a_{n}^{+}, C_{b, n}\right)$-compact set of Borel probability measures on X_{n}. Then all ϕ_{n} are increasing and sublinear. Moreover, they have the translation property

$$
\phi_{n}(g+m)=\phi_{n}(g)+m, \quad g \in B_{b, n}, m \in \mathbb{R},
$$

and it follows from Prokhorov's theorem that they satisfy the tightness condition (2.1) (see, e.g., [5]). By \mathcal{P} we denote the set of Borel probability measures μ on the product $X=\prod_{n} X_{n}$ whose marginal distributions $\mu_{n}:=\mu \circ \pi_{n}^{-1}$ are in \mathcal{P}_{n} for all n. Under these circumstances the following holds.

Proposition 3.1. Let $\phi: B_{b} \rightarrow \mathbb{R}$ be an increasing convex functional satisfying

$$
\begin{equation*}
\phi(f) \leq m+\sum_{n} \phi_{n}\left(g_{n}\right) \tag{3.1}
\end{equation*}
$$

whenever $f \leq m+\oplus g$ for some $m \in \mathbb{R}$ and $g_{n} \in B_{b, n}^{+}$. Then

$$
\begin{equation*}
\phi(f)=\max _{\mu \in \mathcal{P}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) \quad \text { for all } f \in C_{b} \tag{3.2}
\end{equation*}
$$

If, in addition, $\phi_{C_{b}}^{*}(\mu)=\phi_{U_{b}}^{*}(\mu)$ for all $\mu \in \mathcal{P}$, the representation (3.2) extends to all $f \in U_{b}$.

Proof. One obtains from Theorem 2.1 that

$$
\phi(f)=\max _{\mu \in c a^{+}}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) \quad \text { for all } f \in C_{b}
$$

and Theorem 2.2 implies that the representation holds for all $f \in U_{b}$ if $\phi_{C_{b}}^{*}=\phi_{U_{b}}^{*}$. Therefore, the proposition follows if we can show that $\phi_{C_{b}}^{*}(\mu)=+\infty$ for all $\mu \in c a^{+} \backslash \mathcal{P}$. To do that, fix a $\mu \in c a^{+} \backslash \mathcal{P}$. If it is not a probability measure, then

$$
\phi_{C_{b}}^{*}(\mu) \geq \sup _{m \in \mathbb{R}}(\langle m, \mu\rangle-\phi(m)) \geq \sup _{m \in \mathbb{R}}(\langle m, \mu\rangle-m)=+\infty .
$$

On the other hand, if μ is a probability measure, but does not belong to \mathcal{P}, one obtains from the Hahn-Banach separation theorem that there exist n and $g_{n} \in C_{b, n}$ such that $\left\langle g_{n}, \mu_{n}\right\rangle>\phi_{n}\left(g_{n}\right)$. Moreover, since ϕ_{n} has the translation property, g_{n} can be shifted until it is nonnegative. Then

$$
\phi\left(m g_{n} \circ \pi_{n}\right) \leq \phi_{n}\left(m g_{n}\right)=m \phi_{n}\left(g_{n}\right) \quad \text { for all } m \in \mathbb{R}_{+},
$$

and therefore

$$
\begin{aligned}
\phi_{C_{b}}^{*}(\mu) & \geq \sup _{m \in \mathbb{R}_{+}}\left(\left\langle m g_{n} \circ \pi_{n}, \mu\right\rangle-\phi\left(m g_{n} \circ \pi_{n}\right)\right) \geq \sup _{m \in \mathbb{R}_{+}} m\left(\left\langle g_{n}, \mu_{n}\right\rangle-\phi_{n}\left(g_{n}\right)\right) \\
& =+\infty
\end{aligned}
$$

In the next step we concentrate on the special case where every \mathcal{P}_{n} consists of just one Borel probability measure ν_{n} on X_{n}. Then the mappings ϕ_{n} are of the form $\phi_{n}(g)=\left\langle g, \nu_{n}\right\rangle$. In particular, they are linear, and the representation (3.2) can be extended to unbounded functions f.

Let us denote by $\mathcal{P}(\nu)$ the set of all Borel probabilities on X with marginals $\mu_{n}=\nu_{n}$. Furthermore, let B be the space of all Borel measurable functions $f: X \rightarrow \mathbb{R}$, let U be the subset of upper semicontinuous functions $f: X \rightarrow \mathbb{R}$, and let B_{n}^{+}be the set of all Borel measurable functions $f: X_{n} \rightarrow \mathbb{R}_{+}$. Consider the following sets:

$$
\begin{aligned}
G(\nu) & :=\left\{\oplus g:\left(g_{n}\right) \in \prod_{n} B_{n}^{+} \text {such that } \sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle<+\infty\right\}, \\
B(\nu) & :=\{f \in B:|f| \leq \oplus g \text { for some } \oplus g \in G(\nu)\}, \\
U(\nu) & :=\left\{f \in U: f^{+} \in B_{b} \text { and } f^{-} \in B(\nu)\right\} .
\end{aligned}
$$

Note that $G(\nu)$ is not contained in $B(\nu)$ since a function $\oplus g \in G(\nu)$ can take on the value $+\infty$. But one has $\langle\oplus g, \mu\rangle=\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle<+\infty$ for all $\oplus g \in G(\nu)$ and $\mu \in \mathcal{P}(\nu)$. This shows that $G(\nu)$ is contained in $L^{1}(\mu)$, and every $\oplus g \in G(\nu)$ is finite μ-almost surely.

Proposition 3.2. Let $\phi: B(\nu) \rightarrow \mathbb{R}$ be increasing and convex such that

$$
\begin{equation*}
\phi(f) \leq m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle \tag{3.3}
\end{equation*}
$$

if $f \leq m+\oplus g$ for some $m \in \mathbb{R}$ and $\oplus g \in G(\nu)$. Moreover, assume that

$$
\phi_{C_{b}}^{*}(\mu)=\phi_{U(\nu)}^{*}(\mu):=\sup _{f \in U(\nu)}(\langle f, \mu\rangle-\phi(f)) \quad \text { for all } \mu \in \mathcal{P}(\nu)
$$

Then

$$
\phi(f)=\max _{\mu \in \mathcal{P}(\nu)}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) \quad \text { for all } f \in B(\nu) \cap(U(\nu)+G(\nu))
$$

Proof. By Proposition 3.1, one has

$$
\phi(f)=\max _{\mathcal{P}(\nu)}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) \quad \text { for all } f \in C_{b} .
$$

Furthermore, for given $f \in U(\nu)$, there exists a sequence $\left(f_{j}\right)$ in C_{b} such that $f_{j} \downarrow f$, and it follows as in the proof of (iv) \Rightarrow (i) in Theorem 2.2 that there exists a $\mu \in \mathcal{P}(\nu)$ such that $\phi(f) \leq\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)$. Since, on the other hand,

$$
\phi(f) \geq \sup _{\mu \in \mathcal{P}(\nu)}\left(\langle f, \mu\rangle-\phi_{U(\nu)}^{*}(\mu)\right)=\sup _{\mu \in \mathcal{P}(\nu)}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right),
$$

one obtains

$$
\phi(f)=\max _{\mu \in \mathcal{P}(\nu)}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) .
$$

Next, notice that it follows as in the proof of Theorem 2.1 from the Hahn-Banach extension theorem that

$$
\phi(f)=\max _{\psi \in B^{\prime}(\nu)}\left(\psi(f)-\phi^{*}(\psi)\right) \quad \text { for all } f \in B(\nu)
$$

where $B^{\prime}(\nu)$ is the algebraic dual of $B(\nu)$ and $\phi^{*}(\psi):=\sup _{f \in B(\nu)}(\psi(f)-\phi(f))$, $\psi \in B^{\prime}(\nu)$. For $\psi \in B^{\prime}(\nu)$ with $\phi^{*}(\psi)<+\infty$, one has, for all $\oplus g \in G(\nu) \cap B(\nu)$,

$$
\psi(\oplus g)-\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle \leq \psi(\oplus g)-\phi(\oplus g) \leq \phi^{*}(\psi)<+\infty
$$

and therefore $\psi(\oplus g) \leq \sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle$. On the other hand, if one sets $g_{n}^{N}:=g_{n} \wedge N$ for $n \leq N$ and $g_{n}^{N}:=0$ for $n>N$, then

$$
\psi\left(N^{2}-\oplus g^{N}\right) \leq N^{2}-\sum_{n=1}^{N}\left\langle g_{n} \wedge N, \nu_{n}\right\rangle
$$

from which one obtains

$$
\psi(\oplus g) \geq \lim _{N} \psi\left(\oplus g^{N}\right) \geq \lim _{N} \sum_{n=1}^{N}\left\langle g_{n} \wedge N, \nu_{n}\right\rangle=\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle .
$$

This shows that $\psi(\oplus g)=\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle$ for all $\oplus g \in G(\nu) \cap B(\nu)$, and, as a result,

$$
\phi(f-\oplus g)=\max _{\psi \in B^{\prime}(\nu)}\left(\psi(f-\oplus g)-\phi^{*}(\psi)\right)=\phi(f)-\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle
$$

for all $f \in B(\nu)$ and $\oplus g \in G(\nu)$. Finally, let $f \in B(\nu)$ be of the form $f=\oplus g+h$ for $\oplus g \in G(\nu)$ and $h \in U(\nu)$. Then $f-\oplus g \in U(\nu)$ and $\oplus g \in G(\nu) \cap B(\nu)$. Therefore,

$$
\begin{aligned}
\phi(f)-\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle & =\phi(f-\oplus g)=\max _{\mu \in \mathcal{P}(\nu)}\left(\langle f-\oplus g, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right) \\
& =\max _{\mu \in \mathcal{P}(\nu)}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right)-\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle,
\end{aligned}
$$

and hence, $\phi(f)=\max _{\mu \in \mathcal{P}(\nu)}\left(\langle f, \mu\rangle-\phi_{C_{b}}^{*}(\mu)\right)$.

4. Generalized (martingale) transport Dualities

In this section we derive generalizations of Kantorovich's transport duality and the more recently introduced martingale transport duality.
4.1. Generalized transport dualities. As in Section 3, let X_{n} be Polish spaces. We first study the case where a probability measure ν_{n} is given on each X_{n}. For given $f \in B(\nu)$, consider the minimization problem

$$
\begin{equation*}
\phi(f):=\inf \left\{m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle: m \in \mathbb{R}, \oplus g \in G(\nu) \text { such that } m+\oplus g \geq f\right\} \tag{4.1}
\end{equation*}
$$

Remark 4.1. Up to a different sign, (4.1) can be viewed as a generalized version of the dual of a transport problem. A standard transport problem in the sense of Kantorovich consists in finding a Borel probability measure μ on the product of two metric spaces $X_{1} \times X_{2}$ with given marginals ν_{1} and ν_{2} that minimizes the expectation $\mathbb{E}^{\mu} c$ of a cost function $c: X_{1} \times X_{2} \rightarrow \mathbb{R}$. The (negative of the) dual problem is a minimization problem of the form

$$
\begin{equation*}
\inf \sum_{n=1}^{2}\left\langle g_{n}, \nu_{n}\right\rangle, \tag{4.2}
\end{equation*}
$$

where the infimum is taken over all $g_{n} \in L^{1}\left(\nu_{n}\right)$ such that $\oplus g \geq f:=-c$. To relate (4.1) to (4.2) more closely, note that $\oplus g^{1}-\oplus g^{2}$ is well defined for all $\oplus g^{1} \in G(\nu)$ and $\oplus g^{2} \in G(\nu) \cap B(\nu)$, and so, instead of (4.1), we could have defined $\phi(f)$ equivalently as

$$
\inf \left\{\sum_{n}\left\langle g_{n}^{1}-g_{n}^{2}, \nu_{n}\right\rangle: \begin{array}{l}
\oplus g^{1} \in G(\nu), \oplus g^{2} \in G(\nu) \cap B(\nu) \\
\text { such that } \oplus g^{1}-\oplus g^{2} \geq f
\end{array}\right\}
$$

Indeed, it is clear that the above infimum minorizes $\phi(f)$. On the other hand, since $\lim _{N \rightarrow+\infty} \sum_{n=1}^{N}\left\langle g_{n}^{2} \wedge N, \nu_{n}\right\rangle=\sum_{n}\left\langle g_{n}^{2}, \nu_{n}\right\rangle$, it cannot be strictly smaller.

As a consequence of the results in Section 3, one obtains the following version of Kantorovich's transport duality with countably many marginal distributions.

Corollary 4.2. We have the following:

$$
\begin{equation*}
\phi(f)=\max _{\mu \in \mathcal{P}(\nu)}\langle f, \mu\rangle \quad \text { for all } f \in B(\nu) \cap(U(\nu)+G(\nu)) . \tag{4.3}
\end{equation*}
$$

Proof. Clearly, $\phi(f)<+\infty$ for all $f \in B(\nu)$. On the other hand, since $\mathcal{P}(\nu)$ is nonempty (it contains the product measure $\otimes_{n} \nu_{n}$), one has

$$
m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle \geq \sup _{\mu \in \mathcal{P}(\nu)}\langle f, \mu\rangle>-\infty
$$

for all $m \in \mathbb{R}, \oplus g \in G(\nu)$ and $f \in B(\nu)$ such that $m+\oplus g \geq f$. It follows that $\phi: B(\nu) \rightarrow \mathbb{R}$ is an increasing sublinear functional satisfying

$$
\phi(f) \geq \sup _{\mu \in \mathcal{P}(\nu)}\langle f, \mu\rangle \quad \text { for all } f \in B(\nu) .
$$

In particular, $\phi(0)=0$, and $\phi_{C_{b}}^{*}(\mu)=\phi_{U(\nu)}^{*}(\mu)=0$ for all $\mu \in \mathcal{P}(\nu)$. Therefore, the duality (4.3) follows from Proposition 3.2.

Remark 4.3. If X is a finite product of Polish spaces, it can be shown that

$$
\phi(f)=\sup _{\mu \in \mathcal{P}(\nu)}\langle f, \mu\rangle \quad \text { for all } f \in B_{b}
$$

(see, e.g., [3], [4], [15]). But for countably infinite products, there may arise a duality gap; that is, it may happen that

$$
\phi(f)>\sup _{\mu \in \mathcal{P}(\nu)}\langle f, \mu\rangle \quad \text { for some } f \in B_{b} .
$$

For instance, if X is the product of $X_{n}=\{0,1\}, n \in \mathbb{N}$, and $\nu_{n}=\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$ for all n, then $f:=\lim \inf _{n} \pi_{n}$ belongs to B_{b}, and it follows from Fatou's lemma that

$$
\langle f, \mu\rangle \leq \liminf _{n}\left\langle\pi_{n}, \mu\right\rangle=\frac{1}{2} \quad \text { for all } \mu \in \mathcal{P}(\nu)
$$

On the other hand, assume that $f \leq m+\oplus g$ for some $m \in \mathbb{R}$ and $\oplus g \in G(\nu)$. Since

$$
\frac{1}{2} \sum_{n}\left(g_{n}(0)+g_{n}(1)\right)=\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle<+\infty
$$

one has $\sum_{n} g_{n}\left(x_{n}\right)<+\infty$ for all $x \in X$, and therefore

$$
\inf _{k \in \mathbb{N}} \min _{\left(y_{1}, \ldots, y_{k}\right) \in\{0,1\}^{k}}\left(\sum_{n \leq k} g_{n}\left(y_{n}\right)+\sum_{n>k} g_{n}\left(x_{n}\right)\right)=\sum_{n} \min _{y_{n} \in\{0,1\}} g_{n}\left(y_{n}\right) \leq \sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle .
$$

Consequently,

$$
1=\inf _{k \in \mathbb{N}\left(y_{1}, \ldots, y_{k}\right) \in\{0,1\}^{k}} \min f\left(y_{1}, \ldots, y_{k}, 1,1, \ldots\right) \leq m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle
$$

from which it follows that $\phi(f) \geq 1$.
In the more general case where the $\phi_{n}: B_{b, n} \rightarrow \mathbb{R}$ are sublinear functionals given by

$$
\phi_{n}(g)=\sup _{\nu_{n} \in \mathcal{P}_{n}}\left\langle g, \nu_{n}\right\rangle
$$

for nonempty convex $\sigma\left(c a_{n}^{+}, C_{b, n}\right)$-compact sets of Borel probability measures \mathcal{P}_{n} on X_{n}, we obtain a generalized Kantorovich duality with countably many sets of
marginal distributions. As in Section 3, \mathcal{P} denotes the set of probability distributions such that $\mu_{n} \in \mathcal{P}_{n}$ for all n. Compared to Corollary 4.2, one has to modify the definition of ϕ slightly:

$$
\begin{equation*}
\phi(f):=\inf \left\{m+\sum_{n} \phi_{n}\left(g_{n}\right): m \in \mathbb{R}, g_{n} \in B_{b, n}^{+} \text {such that } m+\oplus g \geq f\right\} \tag{4.4}
\end{equation*}
$$

Then an application of Proposition 3.1 and essentially the same arguments as in the proof of Corollary 4.2 yield the following duality.

Corollary 4.4. We have the following:

$$
\begin{equation*}
\phi(f)=\max _{\mu \in \mathcal{P}}\langle f, \mu\rangle \quad \text { for all } f \in U_{b} . \tag{4.5}
\end{equation*}
$$

Proof. As in the proof of Corollary 4.2, it is easy to see that $\phi: B_{b} \rightarrow \mathbb{R}$ is an increasing sublinear functional such that

$$
\phi(f) \geq \sup _{\mu \in \mathcal{P}}\langle f, \mu\rangle \quad \text { for all } f \in B_{b} .
$$

Since \mathcal{P} is nonempty (it contains all product measures $\otimes_{n} \nu_{n}$ for $\nu_{n} \in \mathcal{P}_{n}$), it follows that $\phi(0)=0$ and $\phi_{C_{b}}^{*}(\mu)=\phi_{U_{b}}^{*}(\mu)=0$ for all $\mu \in \mathcal{P}$. Hence (4.5) follows from Proposition 3.1.
4.2. Generalized martingale transport dualities. Next, we derive linear and sublinear versions of the martingale transport duality with countably many marginal constraints. Let X_{n} be nonempty closed subsets of \mathbb{R}^{d}, and model the discounted prices of d financial assets by $S_{0}:=s_{0} \in \mathbb{R}^{d}$ and $S_{n}(x):=x_{n}$, $x \in X=\prod_{n} X_{n}$. The corresponding filtration is given by $\mathcal{F}_{n}:=\sigma\left(S_{j}: j \leq n\right)$.

We first assume that each space X_{n} carries a single Borel probability measure ν_{n}. Moreover, we suppose that money can be lent and borrowed at the same interest rate, and European options with general discounted payoffs $g_{n} \in B_{n}^{+}$ can be bought at price $\left\langle g_{n}, \nu_{n}\right\rangle$ (we suppose they either exist as structured products or they can be synthesized by investing in more standard options; see, e.g., [6] for the form of ν_{n} if European call options exist with maturity n and all strikes). A function $\oplus g \in G(\nu)$ then corresponds to a static option portfolio costing $\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle$. In addition, the underlying assets can be traded dynamically. The set \mathcal{H} of dynamic trading strategies consists of all finite sequences h_{1}, \ldots, h_{N} such that each h_{n} is an \mathbb{R}^{d}-valued \mathcal{F}_{n-1}-measurable function on X. An $h \in \mathcal{H}$ generates gains of the form

$$
(h \cdot S)_{N}:=\sum_{n=1}^{N} h_{n} \cdot\left(S_{n}-S_{n-1}\right) .
$$

A triple $(m, \oplus g, h) \in \Theta:=\mathbb{R} \times G(\nu) \times \mathcal{H}$ describes a semistatic trading strategy with cost $m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle$ and outcome $m+\oplus g+(h \cdot S)_{N}$.

A strategy $(m, \oplus g, h) \in \Theta$ is said to be a model-independent arbitrage if

$$
m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle \leq 0 \quad \text { and } \quad m+\oplus g+(h \cdot S)_{N}>0
$$

Similarly, we call a strategy $(m, \oplus g, h) \in \Theta$ a uniform arbitrage if

$$
m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle<0 \quad \text { and } \quad m+\oplus g+(h \cdot S)_{N} \geq 0
$$

Consider the superhedging functional

$$
\phi(f):=\inf \left\{m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle: \begin{array}{l}
(m, \oplus g, h) \in \Theta \text { such that } \tag{4.6}\\
m+\oplus g+(h \cdot S)_{N} \geq f
\end{array}\right\}
$$

and denote by $\mathcal{M}(\nu)$ the set of probability measures $\mu \in \mathcal{P}(\nu)$ under which S is a d-dimensional martingale.

Remark 4.5. The static part of a semistatic strategy in Θ consists of a cash position and a portfolio of options with nonnegative payoffs. But one could extend the set of strategies to include portfolios with outcomes $\oplus g^{1}-\oplus g^{2}+(h \cdot S)_{N}$ and prices $\sum_{n}\left\langle g_{n}^{1}-g_{n}^{2}, \nu_{n}\right\rangle$ for $g^{1} \in G(\nu), g^{2} \in G(\nu) \cap B(\nu)$, and $h \in \mathcal{H}$. It follows as in Remark 4.1 that this would not change the superhedging functional (4.6), the definition of a model-independent arbitrage, or the definition of a uniform arbitrage.

The following corollary extends the superhedging duality of [2] to a model with countably many time periods, and contains a model-independent fundamental theorem of asset pricing as a consequence. For $x \in X_{n} \subseteq \mathbb{R}^{d}$, denote by $|x|$ the Euclidean norm of x.

Corollary 4.6. Assume that $\int_{X_{n}}|x| d \nu_{n}(x)<+\infty$ for all n. Then the following are equivalent:
(i) there is no model-independent arbitrage,
(ii) there is no uniform arbitrage,
(iii) $\mathcal{M}(\nu) \neq \emptyset$.

Moreover, if (i)-(iii) hold, then

$$
\begin{equation*}
\phi(f)=\max _{\mu \in \mathcal{M}(\nu)}\langle f, \mu\rangle \quad \text { for all } f \in B(\nu) \cap(U(\nu)+G(\nu)) \tag{4.7}
\end{equation*}
$$

Proof. It is clear that (i) implies (ii) since, for every uniform arbitrage ($m, \oplus g, h$), there exists an $\varepsilon>0$ such that $(m+\varepsilon, \oplus g, h)$ is a model-independent arbitrage.

Furthermore, if (iii) holds, there exists a μ in $\mathcal{M}(\nu)$. Let $(m, \oplus g, h) \in \Theta$ be a strategy such that $m+\oplus g+(h \cdot S)_{N}>0$. Then $\mathbb{E}^{\mu}(h \cdot S)_{N}^{-} \leq m^{+}+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle<$ $+\infty$, and it follows that $(h \cdot S)_{n}, n=1, \ldots, N$, is a martingale under μ (see, e.g., [13]). In particular, $\mathbb{E}^{\mu}(h \cdot S)_{N}=0$, and therefore

$$
m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle=\left\langle m+\oplus g+(h \cdot S)_{N}, \mu\right\rangle>0
$$

So there is no model-independent arbitrage, showing that (i) is satisfied.
Now let us assume (ii). Then $\phi: B(\nu) \rightarrow \mathbb{R} \cup\{-\infty\}$ is an increasing sublinear functional with the property that $\phi(f) \leq m+\sum_{n \geq 1}\left\langle g_{n}, \nu_{n}\right\rangle$ whenever $f \leq m+\oplus g$ for some $m \in \mathbb{R}$ and $\oplus g \in G(\nu)$. If there is no uniform arbitrage, one has
$\phi(0)=0$ from which it follows by subadditivity that $\phi(f)>-\infty$ for all $f \in B(\nu)$. Moreover, if

$$
m+\oplus g+(h \cdot S)_{N} \geq f
$$

for $(m, \oplus g, h) \in \Theta$ and $f \in B(\nu)$, one has. for all $\mu \in \mathcal{M}(\nu)$,

$$
\mathbb{E}^{\mu}(h \cdot S)_{N}^{-} \leq m^{+}+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle+\left\langle f^{-}, \mu\right\rangle<+\infty .
$$

It follows as above that $\mathbb{E}^{\mu}(h \cdot S)_{N}=0$, and therefore $m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle \geq\langle f, \mu\rangle$. This implies that $\phi(f) \geq\langle f, \mu\rangle$, and, consequently, that $\phi_{C_{b}}^{*}(\mu)=\phi_{U(\nu)}^{*}(\mu)=0$ for all $\mu \in \mathcal{M}(\nu)$. Therefore, if we can show that

$$
\begin{equation*}
\phi_{C_{b}}^{*}(\mu)=+\infty \quad \text { for all } \mu \in \mathcal{P}(\nu) \backslash \mathcal{M}(\nu) \tag{4.8}
\end{equation*}
$$

then we obtain from Proposition 3.2 that (4.7) holds, which in turn implies that $\mathcal{M}(\nu)$ cannot be empty.

To show (4.8), let $\mu \in \mathcal{P}(\nu)$. If $\mathbb{E}^{\mu} S_{1}=s_{0}$ and $\mathbb{E}^{\mu}\left[v\left(x_{1}, \ldots, x_{n}\right) \cdot\left(x_{n+1}-x_{n}\right)\right]=0$ for all $n \geq 1$ and every bounded continuous function $v: \prod_{j=1}^{n} X_{j} \rightarrow \mathbb{R}^{d}$, then S is a martingale under μ, and therefore $\mu \in \mathcal{M}(\nu)$. Hence, for $\mu \in \mathcal{P}(\nu) \backslash \mathcal{M}(\nu)$, there must exist a continuous function $f \in B(\nu)$ with $\langle f, \mu\rangle>0$ such that f is either of the form $f(x)=v \cdot\left(x_{1}-s_{0}\right)$ for a vector $v \in \mathbb{R}^{d}$ or $f(x)=v\left(x_{1}, \ldots, x_{n}\right) \cdot\left(x_{n+1}-x_{n}\right)$ for some $n \geq 1$ and a bounded continuous function $v: \prod_{j=1}^{n} X_{j} \rightarrow \mathbb{R}^{d}$. For $k \in \mathbb{N}$, $f^{k}:=f \wedge k$ is bounded above and $f_{k}^{k}:=f^{k} \vee(-k)$ bounded. By monotonicity, then, $\phi\left(f^{k}\right) \leq \phi(f) \leq 0$. Moreover,

$$
f_{k}^{k}(x)=f^{k}(x)+(k+f(x))^{-} \leq f^{k}(x)+w^{k}(x)
$$

where

$$
w^{k}(x):=\left(c\left|x_{n}\right|-k / 2\right)^{+}+\left(c\left|x_{n+1}\right|-k / 2\right)^{+}
$$

and $c \in \mathbb{R}_{+}$is a bound on $|v|$. Since w^{k} is in $G(\nu)$, we have

$$
\phi\left(w^{k}\right) \leq \int_{X_{n}}\left(c\left|x_{n}\right|-k / 2\right)^{+} d \nu_{n}\left(x_{n}\right)+\int_{X_{n+1}}\left(c\left|x_{n+1}\right|-k / 2\right)^{+} d \nu_{n+1}\left(x_{n+1}\right) \rightarrow 0
$$

for $k \rightarrow+\infty$. Thus, for k large enough, one obtains from monotonicity and subadditivity that

$$
\left\langle f_{k}^{k}, \mu\right\rangle-\phi\left(f_{k}^{k}\right) \geq\left\langle f^{k}, \mu\right\rangle-\phi\left(f^{k}\right)-\phi\left(w^{k}\right) \geq\left\langle f^{k}, \mu\right\rangle-\phi\left(w^{k}\right)>0
$$

and, as a result, that $\phi_{C_{b}}^{*}(\mu)=+\infty$.
Now, we extend the setting of Corollary 4.6 by adding friction and incompleteness. To simplify the presentation, we assume that each X_{n} is a nonempty closed subset of \mathbb{R}_{+}^{d}. As above, $S_{0}=s_{0} \in \mathbb{R}_{d}^{+}, S_{n}(x)=x_{n}, x \in X$, and the set of dynamic trading strategies \mathcal{H} is given by all finite sequences h_{1}, \ldots, h_{N} of \mathcal{F}_{n-1}-measurable mappings $h_{n}: X \rightarrow \mathbb{R}^{d}$. But now we assume that dynamic trading incurs proportional transaction costs. If the bid and ask prices of asset i are given by $\left(1-\varepsilon_{i}\right) S_{n}^{i}$ and $\left(1+\varepsilon_{i}\right) S_{n}^{i}$ for a constant $\varepsilon_{i} \geq 0$, a strategy $h \in \mathcal{H}$ leads to an outcome of

$$
h(S):=\sum_{n=1}^{N} \sum_{i=1}^{d} h_{n}^{i}\left(S_{n}^{i}-S_{n-1}^{i}\right)-\varepsilon_{i}\left|h_{n}^{i}-h_{n-1}^{i}\right| S_{n-1}^{i}, \quad \text { where } h_{0}^{i}:=0
$$

(We assume there are no initial asset holdings; consequently, there is a transaction cost at time 0 . On the other hand, asset holdings at time N are valued at $h_{N} \cdot S_{N}$, and do not have to be converted into cash.) Similarly, a European option with payoff $g_{n} \in B_{n}^{+}$at time n is assumed to cost

$$
\phi_{n}\left(g_{n}\right)=\sup _{\nu_{n} \in \mathcal{P}_{n}}\left\langle g_{n}, \nu_{n}\right\rangle,
$$

where \mathcal{P}_{n} is a nonempty convex $\sigma\left(c a_{n}^{+}, C_{b, n}\right)$-compact set of Borel probability measures on X_{n} (nonlinear prices $\phi_{n}\left(g_{n}\right)$ may arise if, e.g., not enough liquidly traded vanilla options exist to exactly replicate the payoffs g_{n}, or there are positive bid-ask spreads in the vanilla options market; see, e.g., [7]). Compared to the frictionless case, we now have to require a little bit more integrability of the option portfolio. As in Section 3, we denote by \mathcal{P} the set of all Borel probability measures μ on $X=\prod_{n} X_{n}$ with marginal distributions in \mathcal{P}_{n}. We introduce the sets

$$
\begin{aligned}
& G(\mathcal{P}):=\left\{\oplus g:\left(g_{n}\right) \in \prod_{n} B_{n}^{+} \text {such that } \sum_{n} \phi_{n}\left(g_{n}\right)<+\infty\right\}, \\
& B(\mathcal{P}):=\{f \in B:|f| \leq \oplus g \text { for some } \oplus g \in G(\mathcal{P})\},
\end{aligned}
$$

and consider option portfolios with payoffs $\oplus g$ for functions $g_{n} \in B_{n}^{+}$such that $\sum_{n} \phi_{n}\left(g_{n}\right)<+\infty$. We still denote the set of corresponding strategies $(m, \oplus g, h)$ by Θ. The corresponding superhedging functional is given by

$$
\phi(f):=\left\{m+\sum_{n} \phi_{n}\left(g_{n}\right): \begin{array}{l}
(m, \oplus g, h) \in \Theta \text { such that } \tag{4.9}\\
m+\oplus g+h(S) \geq f
\end{array}\right\} .
$$

A model-independent arbitrage now consists of a strategy $(m, \oplus g, h) \in \Theta$ such that

$$
m+\sum_{n} \phi_{n}\left(g_{n}\right) \leq 0 \quad \text { and } \quad m+\oplus g+h(S)>0
$$

and a uniform arbitrage of a strategy $(m, \oplus g, h) \in \Theta$ satisfying

$$
m+\sum_{n} \phi_{n}\left(g_{n}\right)<0 \quad \text { and } \quad m+\oplus g+h(S) \geq 0
$$

The set of martingale measures has to be extended to the set $\mathcal{M}(\mathcal{P})$ of all measures $\mu \in \mathcal{P}$ satisfying

$$
\begin{equation*}
\left(1-\varepsilon_{i}\right) S_{n}^{i} \leq \mathbb{E}^{\mu}\left[S_{N}^{i} \mid \mathcal{F}_{n}\right] \leq\left(1+\varepsilon_{i}\right) S_{n}^{i} \quad \text { for all } i, N \text { and } n \leq N \tag{4.10}
\end{equation*}
$$

The following is a variant of Corollary 4.6 with friction and incompleteness. It extends the duality result of [7] to the case of countably many time periods and European options with all maturities.

Corollary 4.7. Assume that $\lim _{k \rightarrow+\infty} \sup _{\nu_{n} \in \mathcal{P}_{n}} \int_{X_{n}}(|x|-k)^{+} d \nu_{n}(x)=0$ for all n. Then the following are equivalent:
(i) there is no model-independent arbitrage,
(ii) there is no uniform arbitrage,
(iii) $\mathcal{M}(\mathcal{P}) \neq \emptyset$.

Moreover, if (i)-(iii) hold, then

$$
\begin{equation*}
\phi(f)=\max _{\mu \in \mathcal{M}(\mathcal{P})}\langle f, \mu\rangle \quad \text { for all } f \in U_{b} . \tag{4.11}
\end{equation*}
$$

Proof. As in the proof of Corollary 4.6, the implication (i) \Rightarrow (ii) is straightforward since the existence of a uniform arbitrage implies the existence of a modelindependent arbitrage.

If (iii) holds, then there exists a μ in $\mathcal{M}(\mathcal{P})$, and so if $(m, \oplus g, h) \in \Theta$ is a strategy with $m+\oplus g+h(S)>0$, then

$$
\mathbb{E}^{\mu} h(S)^{-} \leq m^{+}+\langle\oplus g, \mu\rangle \leq m^{+}+\sum_{n} \phi_{n}\left(g_{n}\right)<+\infty
$$

Moreover, for all i,

$$
\begin{aligned}
& \sum_{n=1}^{N} h_{n}^{i}\left(S_{n}^{i}-S_{n-1}^{i}\right)-\varepsilon_{i}\left|h_{n}^{i}-h_{n-1}^{i}\right| S_{n-1}^{i} \\
& \quad=\sum_{n=1}^{N} \sum_{k=1}^{n}\left(h_{k}^{i}-h_{k-1}^{i}\right)\left(S_{n}^{i}-S_{n-1}^{i}\right)-\varepsilon_{i}\left|h_{n}^{i}-h_{n-1}^{i}\right| S_{n-1}^{i} \\
& \quad=\sum_{k=1}^{N}\left(h_{k}^{i}-h_{k-1}^{i}\right)\left(S_{N}^{i}-S_{k-1}^{i}\right)-\varepsilon_{i}\left|h_{k}^{i}-h_{k-1}^{i}\right| S_{k-1}^{i} .
\end{aligned}
$$

Denote $\tilde{S}_{n}^{i}=\mathbb{E}^{\mu}\left[S_{N}^{i} \mid \mathcal{F}_{n}\right]$ and

$$
Y_{n}=\sum_{k=1}^{n} \sum_{i=1}^{d}\left(h_{k}^{i}-h_{k-1}^{i}\right)\left(\tilde{S}_{n}^{i}-S_{k-1}^{i}\right)-\varepsilon_{i}\left|h_{k}^{i}-h_{k-1}^{i}\right| S_{k-1}^{i} \quad \text { with } Y_{0}=0
$$

Then $Y_{N}=h(S)$, and if the conditional expectation is understood in the general sense of [13], we have

$$
\begin{aligned}
\mathbb{E}^{\mu} & {\left[Y_{n} \mid \mathcal{F}_{n-1}\right]-Y_{n-1} } \\
& =\sum_{i=1}^{d} \mathbb{E}^{\mu}\left[\left(h_{n}^{i}-h_{n-1}^{i}\right)\left(\tilde{S}_{n}^{i}-S_{n-1}^{i}\right)-\varepsilon_{i}\left|h_{n}^{i}-h_{n-1}^{i}\right| S_{n-1}^{i} \mid \mathcal{F}_{n-1}\right] \\
& =\sum_{i=1}^{d}\left(h_{n}^{i}-h_{n-1}^{i}\right)\left(\tilde{S}_{n-1}^{i}-S_{n-1}^{i}\right)-\varepsilon_{i}\left|h_{n}^{i}-h_{n-1}^{i}\right| S_{n-1}^{i} \leq 0 .
\end{aligned}
$$

This shows that Y_{n} is of the form $Y_{n}=M_{n}-A_{n}$, where M_{n} is a generalized μ-martingale starting at 0 , and

$$
A_{n}=\sum_{k=1}^{n} Y_{k-1}-\mathbb{E}^{\mu}\left[Y_{k} \mid \mathcal{F}_{k-1}\right],
$$

a predictable increasing process. Since $\mathbb{E}^{\mu} M_{N}^{-} \leq \mathbb{E}^{\mu} Y_{N}^{-}=\mathbb{E}^{\mu} h(S)^{-}<+\infty$, one obtains from [13] that $\left(M_{n}\right)$ is a true μ-martingale. In particular, $h(S)=M_{N}-A_{N}$
is μ-integrable with $\mathbb{E}^{\mu} h(S) \leq 0$. Therefore,

$$
m+\sum_{n} \phi_{n}\left(g_{n}\right) \geq m+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle \geq \mathbb{E}^{\mu}[m+\oplus g+h(S)]>0,
$$

which shows that $(m, \oplus g, h)$ cannot be a model-independent arbitrage.
Finally, let us assume (ii). Then it follows as in the proof of Corollary 4.2 that ϕ is a real-valued increasing convex functional on $B(\mathcal{P})$ such that $\phi(0)=0$ and $\phi(f) \leq m+\sum_{n} \phi_{n}\left(g_{n}\right)$ whenever $f \leq m+\oplus g$ for some $m \in \mathbb{R}$ and $\oplus g \in G(\mathcal{P})$. Moreover, if

$$
m+\oplus g+h(S) \geq f
$$

for a strategy $(m, \oplus g, h) \in \Theta$ and $f \in B(\mathcal{P})$, one has, for all $\mu \in \mathcal{M}(\mathcal{P})$,

$$
\mathbb{E}^{\mu} h(S)^{-} \leq m^{+}+\sum_{n}\left\langle g_{n}, \nu_{n}\right\rangle+\left\langle f^{-}, \mu\right\rangle \leq m^{+}+\sum_{n} \phi_{n}\left(g_{n}\right)+\left\langle f^{-}, \mu\right\rangle<+\infty .
$$

So it follows as above that $\mathbb{E}^{\mu} h(S) \leq 0$, and therefore $m+\sum_{n} \phi_{n}\left(g_{n}\right) \geq\langle f, \mu\rangle$. This implies that $\phi(f) \geq\langle f, \mu\rangle$, and, consequently, $\phi_{C_{b}}^{*}(\mu)=\phi_{U_{b}}^{*}(\mu)=0$ for all $\mu \in \mathcal{M}(\mathcal{P})$. It remains to show that

$$
\begin{equation*}
\phi_{C_{b}}^{*}(\mu)=+\infty \quad \text { for } \mu \in \mathcal{P} \backslash \mathcal{M}(\mathcal{P}) \tag{4.12}
\end{equation*}
$$

Then Proposition 3.1 implies (4.11) and thereby also (iii).
To show (4.12), fix $\mu \in \mathcal{P}$. If

$$
\left(1-\varepsilon_{i}\right) s_{0}^{i} \leq \mathbb{E}^{\mu} x_{N}^{i} \leq\left(1+\varepsilon_{i}\right) s_{0}^{i}
$$

as well as

$$
\mathbb{E}^{\mu}\left[v\left(x_{1}, \ldots, x_{n}\right)\left(x_{N}^{i}-\left(1+\varepsilon_{i}\right) x_{n}^{i}\right)\right] \leq 0
$$

and

$$
\mathbb{E}^{\mu}\left[v\left(x_{1}, \ldots, x_{n}\right)\left(\left(1-\varepsilon_{i}\right) x_{n}^{i}-x_{N}^{i}\right)\right] \leq 0,
$$

for all $i, N, n \leq N$ and every bounded continuous function $v: \prod_{j=1}^{n} X_{j} \rightarrow \mathbb{R}_{+}$, then

$$
\left(1-\varepsilon_{i}\right) S_{n}^{i} \leq \mathbb{E}^{\mu}\left[S_{N}^{i} \mid \mathcal{F}_{n}\right] \leq\left(1+\varepsilon_{i}\right) S_{n}^{i} \quad \text { for all } i, N, \text { and } n \leq N
$$

Thus, for $\mu \in \mathcal{P} \backslash \mathcal{M}(\mathcal{P})$, there exists an f with $\langle f, \mu\rangle>0$, where f is of the form $f(x)=x_{N}^{i}-\left(1+\varepsilon_{i}\right) s_{0}^{i}, f(x)=\left(1-\varepsilon_{i}\right) s_{0}^{i}-x_{N}^{i}, f(x)=v\left(x_{1}, \ldots, x_{n}\right)\left(x_{N}^{i}-\right.$ $\left.\left(1+\varepsilon_{i}\right) x_{n}^{i}\right)$, or $f(x)=v\left(x_{1}, \ldots, x_{n}\right)\left(\left(1-\varepsilon_{i}\right) x_{n}^{i}-x_{N}^{i}\right)$ for a bounded continuous function $v: \prod_{j=1}^{n} X_{j} \rightarrow \mathbb{R}_{+}$. For $k \in \mathbb{N}$, define $f^{k}:=f \wedge k$ and $f_{k}^{k}:=f^{k} \vee(-k)$. By monotonicity, one has $\phi\left(f^{k}\right) \leq \phi(f) \leq 0$. Moreover,

$$
f_{k}^{k}(x)=f^{k}(x)+(k+f(x))^{-} \leq f^{k}(x)+\left(c\left|x_{n}^{i}\right|-k / 2\right)^{+}+\left(c\left|x_{N}^{i}\right|-k / 2\right)^{+}
$$

for $c \in \mathbb{R}_{+}$large enough. Since $w^{k}(x):=\left(c\left|x_{n}^{i}\right|-k / 2\right)^{+}+\left(c\left|x_{N}^{i}\right|-k / 2\right)^{+}$belongs to $G(\mathcal{P})$, one gets

$$
\phi\left(w^{k}\right) \leq \phi_{n}\left(\left(c\left|x_{n}\right|-k / 2\right)^{+}\right)+\phi_{N}\left(\left(c\left|x_{N}\right|-k / 2\right)^{+}\right) \rightarrow 0 \quad \text { for } k \rightarrow+\infty
$$

by our assumption on \mathcal{P}_{n}. Hence, for k large enough, one has

$$
\left\langle f_{k}^{k}, \mu\right\rangle-\phi\left(f_{k}^{k}\right) \geq\left\langle f^{k}, \mu\right\rangle-\phi\left(f^{k}\right)-\phi\left(w^{k}\right) \geq\left\langle f^{k}, \mu\right\rangle-\phi\left(w^{k}\right)>0
$$

and therefore $\phi_{C_{b}}^{*}(\mu)=+\infty$.
Acknowledgment. Cheridito's work was partially supported by National Science Foundation grant DMS-1515753. Tangpi's work was partially supported by Vienna Science and Technology Fund (WWTF) grant MA 14-008.

References

1. L. Ambrosio and N. Gigli, A user's guide to optimal transport, lecture notes, Univ. of Maryland, College Park, Maryland, 2011. 73
2. M. Beiglböck, P. Henry-Labordère, and F. Penkner, Model-independent bounds for option prices: A mass transport approach, Finance Stoch. 17 (2013), no. 3, 477-501. Zbl 1277.91162. MR3066985. 73, 83
3. M. Beiglböck, C. Leonard, and W. Schachermayer, A general duality theorem for the MongeKantorovich transport problem., Studia Math. 209 (2012), no. 2, 151-167. Zbl 1270.49045. MR2943840. DOI 10.4064/sm209-2-4. 73, 81
4. M. Beiglböck and W. Schachermayer, Duality for Borel measurable cost functions. Trans. Amer. Math. Soc. 363 (2011), no. 8, 4203-4224. Zbl 1228.49046. MR2792985. DOI 10.1090/ S0002-9947-2011-05174-3. 73, 81
5. P. Billingsley, Convergence of Probability Measures, 2nd ed., Wiley Ser. Prob. Stat., Wiley, Chichester, 1999. Zbl 0944.60003. MR1700749. DOI 10.1002/9780470316962. 74, 76, 77
6. D. Breeden and R. Litzenberger, Prices of state-contingent claims implicit in option prices, J. Business 51 (1978), 621-651. 82
7. Y. Dolinsky and H. M. Soner, Robust hedging with proportional transaction costs, Finance Stoch. 18 (2014), no. 2, 327-347. Zbl 1304.91189. MR3177409. DOI 10.1007/ s00780-014-0227-x. 73, 85
8. Y. Dolinsky and H. M. Soner, Martingale optimal transport and robust hedging in continuous time, Probab Theory Related Fields 160 (2014), no. 1-2, 391-427. Zbl 1305.91215. MR3256817. DOI 10.1007/s00440-013-0531-y. 73
9. R. M. Dudley, Real Analysis and Probability, Cambridge Stud. Adv. Math. 74, Cambridge Univ. Press, Cambridge, 2002. Zbl 1023.60001. MR1932358. DOI 10.1017/ CBO9780511755347. 75
10. H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, 3rd ed., Walter de Gruyter, Berlin, 2011. MR2779313. DOI 10.1515/9783110218053. 74
11. A. Galichon, P. Henry-Labordère, and N. Touzi, A stochastic control approach to noarbitrage bounds given marginals, with an application to lookback options, Ann. Appl. Probab. 24 (2014), no. 1, 312-336. Zbl 1285.49012. MR3161649. DOI 10.1214/13-AAP925. 73
12. X. Guo, X. Tan, and N. Touzi. Tightness and duality of martingale transport on the Skorokhod space, preprint, arXiv:1507.01125v2 [math.PR]. 73
13. J. Jacod and A. Shiryaev, Local martingales and the fundamental asset pricing theorems in the discrete-time case, Finance Stoch. 2 (1998), 259-273. Zbl 0903.60036. MR1809522. DOI 10.1007/s007800050040. 83, 86
14. L. V. Kantorovich, On the translocation of masses (in Russian), Dokl. Akad. Nauk. USSR 37 (1942), 199-201; English translation in J. Math. Sci. 133 (2006), no. 4, 1381-1382. Zbl 1082.01007. MR0009619. 73
15. H. G. Kellerer, Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete $\mathbf{6 7}$ (1984), 399-432. Zbl 0535.60002. MR0761565. DOI 10.1007/BF00532047. 73, 81
16. S. T. Rachev and L. Rüschendorf, Mass Transportation Problems, I \& II, Probab. Appl. (N.Y.), Springer, New York, 1998. Zbl 0990.60500. MR1619170. 73
17. C. Villani, Optimal Transport: Old and New, Grundlehren Math. Wiss. 338, Springer, Berlin, 2009. Zbl 1156.53003. MR2459454. DOI 10.1007/978-3-540-71050-9. 73
${ }^{1}$ Department of Mathematics, University of Konstanz, 78464 Konstanz, Germany.
E-mail address: daniel.bartl@uni-konstanz.de; kupper@uni-konstanz.de
${ }^{2}$ Operations Research and Financial Engineering (ORFE), Princeton University, Princeton, NJ 08544, USA.

E-mail address: dito@princeton.edu
${ }^{3}$ Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria.
E-mail address: ludovic.tangpi@univie.ac.at

[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received Oct. 17, 2015; Accepted Feb. 18, 2016.
 2010 Mathematics Subject Classification. Primary 47H07; Secondary 46G12, 91G20.
 Keywords. representation results, increasing convex functionals, transport problem, Kantorovich duality, model-independent finance.

