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Abstract. Let X be a completely regular Hausdorff space, let D be a cover
of X, and let π : E → X be a bundle of Banach spaces (algebras). Let Γ(π) be
the space of sections of π, and let Γb(π,D) be the subspace of Γ(π) consisting
of sections which are bounded on each D ∈ D. We study the subspace (ideal)
and quotient structures of some spaces of vector-valued functions which arise
from endowing Γb(π,D) with the cover-strict topology.

1. Introduction

The present article investigates the ideal and quotient structures of certain
algebras of vector-valued functions. By using the theory of bundles of topological
vector spaces, our results extend to more general algebras many of the results to
be found in [1] and [3] regarding the structure of some ideals and quotients of
C(X), where X is a completely regular Hausdorff space.

We will be concerned with certain subspaces and quotients of Γ(π), the space
of sections of the bundle of Banach spaces (i.e., Banach bundle) π : E → X, and
in particular, we will investigate such structures when π : E → X is a bundle of
Banach algebras (i.e., Banach algebra bundle). (For details of the development
of such bundles, and of bundles of topological vector spaces in general, we refer
the reader to [5]; further elaboration can be found in [10], [12], [6], and [7].) The
essentials are the following (they can be found, e.g., in [7]), but we repeat them
here for convenience. Our paper is also related to the theory of approximation
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in upper semicontinuous function spaces (see, e.g., [15] and [9] and, even earlier,
[13], along with their references).

We will, unless otherwise noted, let X be a completely regular Hausdorff space.
The scalar space, either R or C, will be denoted by K. As usual, a K-valued func-
tion f on X is said to vanish at infinity if for each ε > 0 there exists compact
K ⊂ X such that |f(x)| < ε whenever x /∈ K. We denote by S+

0 (X) the set of non-
negative upper semicontinuous functions (weights) on X which vanish at infinity.
If g is any function defined on X, and if C ⊂ X, we let gC be the restriction of g
to C. If G is a collection of functions on X, then GC = {gC : g ∈ G}.

Consider now the following situation. Let {Ex : x ∈ X} be a collection of
Banach spaces over K, indexed by X, let the total space E =

⋃•{Ex : x ∈ X}
be their disjoint union, and let π : E → X be the natural projection. As usual,
Cb(X) will denote the space of K-valued bounded and continuous functions on X.
We let S be a vector space of choice functions σ : X → E (i.e., σ(x) ∈ Ex for
each x ∈ X) such that the following conditions hold:

(C1) for each x ∈ X, φx(S) = {σ(x) : σ ∈ S} = Ex (in this case, S is said to
be full ; φx is the evaluation map at x);

(C2) S is a Cb(X)-module;
(C3) for each σ ∈ S, the numerical function x 7→ ‖σ(x)‖ is upper semicontinu-

ous and bounded on X;
(C4) S is closed in the supremum-norm topology, ‖σ‖ = supx∈X ‖σ(x)‖; and
(C5) for each x ∈ X, the relative topology on Ex ⊂ E is its norm topology.

Under these conditions, there is a topology on E (the bundle topology) which
makes S a subspace of the space Γ(π) of all sections (“section” here is equivalent to
“continuous choice function”) τ : X → E . In this bundle topology, a neighborhood
of z ∈ Ex ⊂ E is given by tubes of the form

T = T (U, z, ε) =
{
z′ ∈ E : π(z′) ∈ U and

∥∥σ(π(z′))− z′
∥∥ < ε

}
,

where U ⊂ X is a neighborhood of x, σ ∈ Γ(π) with σ(π(z)) = z, and ε > 0.
Especially, if S satisfies these conditions, it is a subspace of Γb(π), the space of
bounded sections of the bundle π : E → X (or π, if there can be no confusion).
Then the addition map from E ∨ E to E , (z, z′) 7→ z + z′, is continuous, where
E ∨E = {(z, z′) ∈ E×E : π(z) = π(z′)} is the fibered product of E with itself, and
the multiplication map Cb(X)×Γb(π) → Γ(π), (f, σ) 7→ fσ, is jointly continuous
when both Cb(X) and Γb(π) are given their supremum-norms, with Γb(π) then
being a Banach space.

If each fiber Ex is a Banach algebra and if S is an algebra, then π is a bundle
of Banach algebras. In this case, multiplication from E ∨ E to E , (z, z′) 7→ zz′,
is also continuous, Γb(π) is a Banach algebra, and Γ(π) is an algebra (evidently,
commutative if and only if each fiber Ex is commutative). Call π : E → X a line
bundle if each fiber Ex = K.

The intuitive notion in effect here is that if π : E → X is a Banach bundle
and if σ ∈ Γ(π), then we can think of σ(x) as moving continuously through the
various spaces Ex as x moves continuously through X. We also note here that,
as in [6] and [7], many of the following results or their analogues would also hold
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in the context of bundles of locally convex vector spaces (resp., locally convex
algebras). We have chosen to restrict ourselves to Banach bundles as a ground
case in order to keep notational complexity to a minimum.

2. The cover-strict topology on a section space

The subspaces (subalgebras) of C(X) whose ideal and quotient structures are
studied in [1] and [3] have topologies that are determined by certain seminorms.
Noting that C(X) is (to within topological and algebraic isomorphism) the section
space of the trivial bundle π1 : E1 =

⋃•
x∈X K → X, where E1 is homeomorphic to

K ×X in its product topology, we adapt the C(X)-situation from those papers
to the case of certain subspaces of Γ(π) for the Banach bundle π : E → X.

Lemma 2.1. Let D ⊂ X, and let v ∈ S+
0 (D). Let v′ : X → R be the extension of

v defined by v′(x) = v(x) if x ∈ D, and by v′(x) = 0 if x /∈ D. Then v′ ∈ S+
0 (X).

Proof. Let ε > 0 be given. Then there exists K ⊂ D, compact in the relative
topology of D, such that v(x) = v′(x) < ε for x ∈ D \K. But since K is compact
in D, it is also compact (and closed) in X, and it is then evident that v′(x) < ε
for x ∈ X \K. Thus, v′ disappears at infinity on X. Now, given that ε > 0, choose
K ⊂ D as above. If x ∈ X \K, then X \K is an open neighborhood of x such
that v′(y) < ε for each y ∈ X \K. If x ∈ D with v(x) = v′(x) < ε, then there is
an open neighborhood x ∈ U ⊂ X such that if y ∈ U ∩D, then v(y) = v′(y) < ε.
On the other hand, if y ∈ U ∩ (X \D), then v′(y) = 0 < ε, so that in any event
v′(y) < ε if y ∈ U . Thus, v′ ∈ S+

0 (X). �

Let π : E → X be a bundle of Banach spaces, and let D be a cover of X. Set

Γb(π,D) =
{
σ ∈ Γ(π) : σ is bounded on each D ∈ D

}
.

(Hence, for σ ∈ Γb(π), σD : D → ED is continuous, where ED =
⋃•{Ex : x ∈ D}.)

Note that for any cover D, we have

Γb(π) ⊂ Γb(π,D) ⊂ Γ(π).

For each σ ∈ Γb(π,D), D ∈ D, and vD ∈ S+
0 (D) the numerical function

x 7→ v′D(x)‖σ(x)‖ is in S+
0 (X). Set

pD,v′D
(σ) = sup

x∈X

{
v′D(x)

∥∥σ(x)∥∥} = sup
x∈D

{
vD(x)

∥∥σ(x)∥∥} = sup
x∈X

pxD,v′D
(σ) < ∞,

where we denote pxD,v′D
(σ) = v′D(x)‖σ(x)‖. Then, as D ∈ D and vD ∈ S+

0 (D)

vary, the pD,v′D
form a collection of seminorms on Γb(π,D) satisfying conditions

analogous to (C1)–(C4) above:

(C1′) for each x ∈ X, we have φx(Γb(π,D)) = {σ(x) : σ ∈ S} = Ex;
(C2′) Γb(π,D) is a Cb(X)-module;
(C3′) for each σ ∈ Γb(π,D), D ∈ D, and vD ∈ S+

0 (D) the numerical function
x 7→ v′D(x)‖σ(x)‖ is in S+

0 (X);
(C4′) Γb(π,D) is closed in the seminorm topology generated by the pD,v′D

, as

D ∈ D and vD ∈ S+
0 (D) vary; and
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(C5′) the topology induced on Ex by the pxD,v′D
(D ∈ D, vD ∈ S+

0 (D)) is equiv-

alent to the original norm topology.

The seminorms pD,v′D
generate a locally convex topology on Γb(π,D) as D ∈ D,

vD ∈ S+
0 (D), and ε > 0 vary and, should π be a bundle of Banach algebras, then

that topology is a locally multiplicatively convex topology on Γb(π,D) (see [7] for
a similar situation and the calculation). In any event, sets of the form

N(σ, pD,v′D
, ε) =

{
τ ∈ Γb(π,D) : pD,v′D

(σ − τ) < ε
}

then form a subbasis around σ ∈ Γb(π,D). It can also be easily checked that
the multiplication (f, σ) 7→ fσ is jointly continuous from Cb(X) × Γb(π,D) to
Γb(π,D), so that Γb(π,D) is a topological Cb(X)-module.

The seminorms pD,v′D
also determine a topology on the fibered space E . Here,

a subbasic neighborhood around z ∈ Ex ⊂ E is given by tubes of the form

T (U, σ, pD,v′D
, ε) =

{
z′ ∈ E : p

π(z′)
D,vD′

(
σ
(
π(z′)

)
− z′

)
< ε and π(z′) ∈ U ∩D

}
,

where U is an X-open neighborhood of x ∈ D ∈ D, vD ∈ S+
0 (D), ε > 0, and

σ ∈ Γb(π,D) is any element such that σ(x) = z.
Checking the claims about (C1′)–(C5′), we see that (C1′) is satisfied because

Γ(π) is full; (C2′) is self-evident; and (C5′) obtains because the pxD,v′D
(σ) are simply

scalar multiples of ‖σ(x)‖. Claim (C3′) follows because x 7→ ‖σ(x)‖ is upper
semicontinuous on X and bounded on each D ∈ D. As for (C4′), let σ ∈ Γ(π) be
the limit in the topology determined by W = {pD,v′D

: D ∈ D, vD ∈ S+
0 (D)} of a

net (σλ) ⊂ Γb(π,D), and let D ∈ D. For each x ∈ D,χx ∈ S+
0 (D), where χx is

the characteristic function of the singleton set {x}. Given that ε > 0, then, we
see that eventually σλ ∈ N(σ,D, χx, ε), and equivalently that ‖σλ(x)−σ(x)‖ < ε,
so that (σλ) converges pointwise on D. Since (σλ) does converge, it is eventually
bounded in the topology determined by W, so that there exists m such that, for
our given D ∈ D and arbitrary v ∈ S+

0 (D), we eventually have pD,v′D
(σλ) ≤ m.

Setting vD = χx for x ∈ D, this forces ‖σλ(x)‖ ≤ m for all x ∈ D if λ is large
enough. But σ is the pointwise limit of uniformly bounded functions on D, and
hence σ is itself bounded on D. Thus, σ ∈ Γb(π,D).

We regard the topology on Γb(π,D) determined by W the cover-strict topol-
ogy determined by D, and we denote it by tβ,D. If Γ(π) “is” C(X) in the sense
mentioned above, then tβ,D is the D-strict topology on C(X,D) as defined in [1]
and [3]; we have thus modified that definition so as to extend our possibilities to
space of vector-valued functions more general than C(X).

A few examples may help to clarify the situation. Let π : E → X be a bundle
of Banach spaces.

Example 2.2.

(2.2.1) If D = {X}, then tβ,D = tβ, the strict topology on Γb(π). This situation
was studied in [6] and [7].

(2.2.2) If D is the collection of singleton subsets of X, then tβ,D = tp, the topology
of pointwise convergence.
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(2.2.3) If D is the collection K of compact subsets of X, then tβ,D = tκ, the
topology of compact convergence on Γ(π).

Denoting by tu the uniform topology on Γb(π) generated by the seminorms
p(σ) = supx∈X{‖σ(x)‖}, we see that on Γb(π) we have tp ≺ tβ,D ≺ tβ ≺ tu, where
t1 ≺ t2 denotes that convergence with respect to t2 implies convergence with
respect to t1.

It now follows from [5, Proposition 5.11] that there is a bundle ρ : F → X
of topological vector spaces Fx such that Γb(π,D) is algebraically and topolog-
ically isomorphic to a closed subspace of Γ(ρ), and such that Fx ' Ex for all
x ∈ X. Moreover, if K ⊂ D ∈ D is D-compact (and hence X-compact), we have
[Γb(π,D)]K = Γ(ρK), where ρK : FK =

⋃•{Fx : x ∈ K} → K is the restriction
bundle of ρ to K. Thus every section of the restriction bundle ρK can be regarded
as the restriction to K of an element of Γb(π,D) (see [5, Theorem 5.9]). We use
this identification of Γb(π,D) with a space of sections in the following.

We first provide some completeness results for Γb(π,D) in its cover-strict topol-
ogy.

Definition 2.3. Let X be as usually given, and let D be a cover of X. Say that D
is sufficiently open if, given x ∈ X, there exists D ∈ D and an X-neighborhood
U of x such that x ∈ U ⊂ D. Call D sufficiently locally compact if, given x ∈ X,
there exists D ∈ D and an X-neighborhood U of x such that U is D-compact
(and hence X-compact) and x ∈ U ⊂ D. Especially, open covers are sufficiently
open, and locally compact covers are sufficiently locally compact.

Proposition 2.4. Suppose that D is a sufficiently locally compact cover of X.
Let π : E → X be a Banach bundle. Then Γb(π,D) is tβ,D-complete.

Proof. Let (σλ) be a tβ,D-Cauchy net in Γb(π,D). Then, given ε > 0, D ∈ D, and
vD ∈ S+

0 (D), there exists λ0 such that if λ, λ′ ≥ λ0 then pD,v′D
(σλ − σλ′) < ε. In

particular, for x ∈ D and vD = χx, the characteristic function of {x}, it follows
that χx(x)‖σλ(x) − σλ′(x)‖ = ‖σλ(x) − σλ′(x)‖ < ε eventually, so that (σλ(x))
is Cauchy in Ex, and hence convergent in Ex, for each x ∈ D. Define σ to be
the pointwise limit of the σλ(x) for x ∈ D. We first claim that σ is bounded
on D. If not, then there exists vD ∈ S+

0 (D) and a sequence (xn) ⊂ D such that
v′D(xn)‖σ(xn)‖ = pxn

D,v′D
(σ(xn)) > 2n. On the other hand, there exists λ0 such that

if λ, λ′ ≥ λ0, then pD,v′D
(σλ−σλ′) < n; in particular, pxn

D,v′D
(σλ(xn)−σλ0(xn)) < n

for all n. Then limλ p
xn

D,v′D
(σλ(xn)−σλ0(xn)) = pxn

D,v′D
(σ(xn)−σλ0(xn)) ≤ n. Thus,

pxn

D,v′D
(σλ0(xn)) > n, which is a contradiction because σλ0 ∈ Γb(π,D) and hence is

bounded on D.
Thus, the net (σλ) has a pointwise limit σ defined on all of X, and σ is bounded

on each D ∈ D. We claim that σ is continuous on X. Let x ∈ X. Since D is
sufficiently locally compact, there exist D ∈ D and X-compact neighborhood U
of x such that x ∈ U ⊂ D. By hypothesis, there exists a D-compact neighborhood
U of x such that x ∈ U ⊂ D. Then χU ∈ S+

0 (X), and so there exists λ0 such that
if λ, λ′ ≥ λ0, then

pD,χU
(σλ − σλ′) = sup

x∈D

∥∥σλ(x)− σλ′(x)
∥∥ = sup

x∈U

∥∥σλ(x)− σλ′(x)
∥∥ < ε;
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in other words, (σλ) is norm-uniformly Cauchy on U , and thus converges uni-
formly to σU , the restriction of σ to U . But by [5, Theorem 5.9], σU is a section
in Γ(πU), so that σU and hence σ are both continuous at x. �

Proposition 2.5. Suppose that X is first countable, and let D be a sufficiently
open cover of X. Let π : E → X be a Banach bundle. Then Γb(π,D) is tβ,D-
complete.

Proof. Again, let (σλ) be a tβ,D-Cauchy sequence in Γb(π,D). As above, the point-
wise limit σ is bounded on each D ∈ D. We claim that σ is continuous on all
of X. If not, suppose that σ is discontinuous at x ∈ X, and choose D ∈ D
and an X-open U such that x ∈ U ⊂ D. From the definition of continuity,
then, there exist ε > 0, vD ∈ S+

0 (D), and τ ∈ Γb(π,D) with τ(x) = σ(x),
and a sequence of distinct points (xn) ⊂ U ⊂ D such that xn → x but such
that for no n do we have σ(xn) ∈ T = T (U, τ, v′D, ε) = {z′ ∈ E : π(z′) ∈ U and
v′D(x)‖σ(x)−τ(x)‖ = pxn

D,v′D
(σ(xn)−τ(xn)) < ε}. That is, pxn

D,v′D
(σ(xn)−τ(xn)) ≥ ε

for all n, but xn → x.
Now, let a = χB, the characteristic function of the compact set B = {xn : n ∈

N} ∪ {x} ⊂ D. Then a ∈ S+
0 (D). Since (σλ) is tβ,D-Cauchy, it follows that there

exists λ0 such that for λ, λ′ ≥ λ0 we have pD,a′(σλ − σλ′) < ε/2, and hence that
supy∈B{a(y)‖σλ(y) − σλ0(y)‖ = supy∈B{‖σλ(y) − σλ0(y)‖ < ε/2. Passing to the
limit in λ, we have supy∈B{‖σ(y)−σλ0(y)‖ ≤ ε/2. Thus, pxn

D,a′(σλ0(xn)− τ(xn)) >
ε/2 for all n. But σλ0 ∈ Γb(π,D) ⊂ Γ(π), and xn → x, so that σλ0(xn) ∈
T (U, τ, v′D, ε/2) eventually; this is a contradiction, since pxn

D,a′(σλ0(xn)− τ(xn)) >
ε/2 implies that σλ0(xn) /∈ T (U, τ, v′D, ε/2). �

We can also obtain a Stone–Weierstrass result for Γb(π,D).

Theorem 2.6. Let π : E →X be as generally given, and let M ⊂ Γb(π,D) be a
fiberwise dense Cb(X)-module (i.e., Mx = {σ(x) : σ ∈ Γb(π)} is dense in Ex for
each x ∈ X). Then M is tβ,D-dense in Γb(π,D).

Proof. Let ε > 0, and suppose that Dk ∈ D, vk ∈ S+
0 (Dk) for k = 1, . . . , n. Then

N =
{
σ ∈ Γb(π,D) : pDk,v

′
k
(σ) = sup

x∈Dk

vk(x)
∥∥σ(x)∥∥

= sup
x∈X

v′k(x)
∥∥σ(x)∥∥ < ε for k = 1, . . . , n

}
is a tβ,D-basic neighborhood of 0 ∈ Γb(π,D). Let τ ∈ Γb(π,D); the goal is to find
σ ∈ M such that σ − τ ∈ N.

For each k = 1, . . . , n there is a Dk-compact set Kk, which is hence X-compact,
such that v′k(x)‖τ(x)‖ < ε if x ∈ X \Kk. Letting K = K1∪· · ·∪Kn, we then have
v′k(x)‖τ(x)‖ < ε for each k = 1, . . . , n whenever x /∈ K. Since K is compact, we
can apply the Stone–Weierstrass theorem of [5, Corollary 4.3] and the isometric
isomorphism Γ(πK) ' [Γ(π)]K to MK in order to assert the existence of σ ∈ Γ(π)
such that

sup
x∈K

∥∥σK(x)− τK(x)
∥∥ = sup

x∈K

∥∥σ(x)− τ(x)
∥∥ < ε′ := ε/

(
2max

{
‖vk‖

})
.
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Now, choose an open neighborhood U of K such that ‖σ(y) − τ(y)‖ < ε′

if y ∈ U ; that X is completely regular then allows us to choose a continuous
f : X → [0, 1] such that f(K) = 1 and f(X \U) = 0. Then fσ ∈ M , and we have

(1) v′k(y)‖σ(y)− τ(y)‖ = v′k(y)‖(fσ)(y)− τ(y)‖ < ε for all y ∈ K;
(2) if y ∈ U \K, then

v′k(y)
∥∥(fσ)(y)− τ(y)

∥∥ = v′k(y)
∥∥(fσ)(y)− (fτ)(y)

∥∥+ v′k(y)(1− f)(y)
∥∥τ(y)∥∥

≤ ε/2 + ε/2 = ε;

and

(3) if y /∈ U and k = 1, . . . , n, then

v′k(y)
∥∥(fσ)(y)− τ(y)

∥∥ ≤ v′k(y)
∥∥(fσ)(y)− (fτ)(y)

∥∥+ v′k(y)(1− f)(y)
∥∥τ(y)∥∥

= v′k(y)(1− f)(y)
∥∥τ(y)∥∥

≤ v′k(y)
∥∥τ(y)∥∥

< ε,

so that fσ − τ ∈ N . �

The reader may wish to compare these bundle-oriented Stone–Weierstrass and
completeness results with those of [2], [1], and [3], which are obtained for certain
subspaces of C(X).

3. Ideal structure in Γb(π,D)

In this section, unless otherwise specified, we suppose that π : E → X is a
bundle of Banach algebras, and we examine the ideal structure of Γb(π,D) in
the cover-strict topology tβ,D. Because of the ubiquity of compact sets in the
definition of tβ,D, it turns out that this ideal structure is similar to that of Γb(π)
in its β (strict) topology, which was studied in [7].

Lemma 3.1. Let π : E → X be a bundle of Banach algebras, and let J ⊂ Γ(π)
be an ideal which is also a C(X)-module. Let K ⊂ X be compact. Then JK =
{σK : σ ∈ J} is an ideal in [Γ(π)]K, which is also a C(K)-module.

Proof. Evidently JK is an ideal. Now, let f ∈ C(K), σ ∈ [Γ(π)]K . Then there
exist f ∗ ∈ Cb(X) ⊂ C(X) and σ∗ ∈ J such that f = (f ∗)K and σ = (σ∗)K .
We therefore have fσ = (f ∗)K(σ

∗)K = (f ∗σ∗)K ∈ [Γ(π)]K , since J is a C(X)-
module. �

(We note that the hypotheses of this lemma, and other results below, beg the
question as to when an ideal might be a submodule. We address this later in the
present section.)

We first establish a relationship between tβ,D-closed subspaces in Γb(π,D) and
closed subspaces in the fibers Ex.

Proposition 3.2. Let π : E → X be a bundle of Banach spaces, and let J ⊂
Γb(π,D) be a tβ,D-closed subspace which is also a Cb(X)-module. Set (Jx)

x =
{σ ∈ Γb(π,D): σ ∈ Jx}. Then (Jx)

x is a tβ,D-closed submodule in Γb(π,D), and
J =

⋂
x∈X(Jx)

x.
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Proof. Let x ∈ X. Noting that Jx is a subspace in Ex, it is then easy to see
that (Jx)

x is a submodule of Γb(π,D). Now, suppose that σ ∈ Γb(π,D) is in the
tβ,D-closure of (Jx)

x. Then for each D ∈ D (with x ∈ D), vD ∈ S+
0 (D), and ε > 0,

there exists τ ∈ (Jx)
x such that pD,v′D

(σ − τ) < ε. In particular, if x ∈ D, then
we have pxD,v′D

(σ − τ) = v′(x)‖σ(x) − τ(x)‖ < ε, and since the pxD,v′D
generate

the (norm) topology on Ex, this gives us σ(x) ∈ Jx or σ ∈ (Jx)
x. If x /∈ D, then

v′D(x) = 0, so that pxD,v′D
(σ − τ) = 0 < ε.

Set J ′ =
⋂

x∈X(Jx)
x. Evidently, J ⊂ (Jx)

x for each x ∈ X, so that J ⊂ J ′. It is
evident that J ′ is a tβ,D-closed submodule of Γb(π,D); we claim that J ′ ⊂ J .

Let σ ∈ J ′, and let N be a tβ,D-basic neighborhood of σ. We will show that
J ∩ N 6= ∅, so that σ ∈ J = J . Given σ ∈ J ′, therefore, let ε > 0, Dk ∈ D,
and vk = vDk

∈ S+
0 (Dk) for k = 1, . . . , n. We may take N to be of the form

N = {τ ∈ Γb(π,D) : pDk,v
′
k
(σ − τ) < ε, k = 1, . . . , n}.

As in the proof of the Stone–Weierstrass result above (Theorem 2.6), there
exists a compact K ⊂ X such that vk(y)‖σ(y)‖ < ε whenever y ∈ X \ K
for each k = 1, . . . , n. For each x ∈ K, since σ(x) ∈ Jx, there exists τx ∈ J
such that v′k(x)‖σ(x) − τx(x)‖ < ε′ = ε/2, for k = 1, . . . , n. And, by the upper
semicontinuity of the function y 7→ v′k(y)‖σ(y) − τx(y)‖, there exists for each
x ∈ K a neighborhood Ux of x such that v′k(y)‖σ(y) − τx(y)‖ < ε′ for each
k = 1, . . . , n and y ∈ K. Choose xj, j = 1, . . . ,m such that the Uj = Uxj

,
j = 1, . . . ,m form a finite subcover of compact K. From [4, Lemma 1], we can
choose continuous functions fj : X → [0, 1], j = 1, . . . ,m such that the following
hold:

(1)
∑

j fj(y) = 1 for y ∈ K;

(2) fj is supported on Uj for each j = 1, . . . ,m; and
(3)

∑
j fj(y) ≤ 1 for each y ∈ X.

Then, as in the proof of Proposition 7 of [7], we set τ =
∑

j fjτxj
. Noting that J

is a Cb(X)-submodule of Γb(π,D), we also have τ ∈ J . For y ∈ X, we have the
following three possibilities.

(1) If y ∈ K, then for any k = 1, . . . , n we have

v′k(y)
∥∥σ(y)− τ(y)

∥∥ = v′k(y)
∥∥∥∑

j

fj(y)
(
σ(y)− τxj

(y)
)∥∥∥

≤ v′k(y)
∑

j s.t. y∈Uj

fj(y)
∥∥σ(y)− τxj

(y)
∥∥

< ε′ < ε.

(2) If y ∈
⋃m

j=1 Uj \K, then for any k = 1, . . . , n we have

η = v′k(y)
∥∥σ(y)− τ(y)

∥∥
= v′k(y)

∥∥∥[∑
j

fj(y)
(
σ(y)− τxj

(y)
)]

−
(
1−

∑
j

fj(y)
)
σ(y)

∥∥∥
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≤ v′k(y)
∑
j

fj(y)
∥∥σ(y)− τxj

(y)
∥∥+ v′k(y)

(
1−

∑
j

fj(y)
)∥∥σ(y)∥∥

< ε′ + ε′ = ε

(because y ∈ Uj for some j, but y /∈ K, and 0 ≤
∑

j fj(y) ≤ 1).

(3) If y ∈ X \
⋃m

j=1 Uj, then for each k = 1, . . . , n we have

v′k(y)
∥∥σ(y)− τ(y)

∥∥ = v′k(y)
∥∥∥∑

j

fj(y)
(
σ(y)− τxj

(y)
)∥∥∥ = 0,

because y is not in the support of any of the fj.
Thus, for all y ∈ X, and for each k = 1, . . . , n, we have v′k(y)‖σ(y)− τ(y)‖ < ε,

so that τ ∈ N , which, remember, is a tβ,D-basic neighborhood of σ. Hence σ ∈ J ,
so that J ′ ⊂ J = J . �

Corollary 3.3. Let π : E → X be a bundle of Banach algebras, and let J ⊂
Γb(π,D) be a tβ,D-closed ideal which is also a Cb(X)-module. Set (Jx)

x = {σ ∈
Γb(π,D): σ ∈ Jx}. Then (Jx)

x is a tβ,D-closed ideal in Γb(π,D), and J =⋂
x∈X(Jx)

x.

Corollary 3.4. Let π : E → X be a bundle of commutative Banach algebras, and
let D be a cover of X. Suppose that J ⊂ Γb(π,D) is a tβ,D-closed proper ideal

which is also a Cb(X)-submodule. Then there exists x ∈ X such that Jx = φx(J)
is a closed proper ideal in Ex.

Proof. Suppose that Jx = Ex for all x ∈ X. Then (Jx)
x = (Ex)

x = Γb(π,D) for
each x ∈ X, and so J =

⋂
x∈X(Jx)

x = Γb(π,D). Hence, if J ⊂ Γb(π,D) is to be

a closed proper ideal, there must be some x ∈ X such that Jx ⊂ Ex is a closed
proper ideal. �

Proposition 3.5. Suppose that H : Γb(π,D) → K is a tβ,D-continuous nontrivial
multiplicative homomorphism, and set J = kerH. Then there exists x ∈ X such
that Jx is a proper ideal in Ex.

Proof. By the preceding, it suffices to show that J is a Cb(X)-module. If not,
there exists σ ∈ J and f ∈ Cb(X) such that fσ /∈ J . But f(fσ)σ = f 2σ2 ∈ J , so
that H(f 2σ2) = H((fσ)2) = [H(fσ)]2 = 0, a contradiction to fσ /∈ J . �

Proposition 3.6. Suppose that π : E → X is a bundle of commutative Banach
algebras with maximal ideal spaces ∆(Ex). Let H ∈ ∆ = ∆(Γb(π,D)), the space of
nontrivial tβ,D-continuous homomorphisms from Γb(π,D) to K. Then there exist
unique x ∈ X and h ∈ ∆(Ex) such that H = h ◦ φx.

Proof. Let H ∈ ∆, and let J = kerH. Choose x ∈ Jx such that Jx is a closed
proper ideal of Ex. Then

Ex

Jx
6= 0. Now, φx : Γb(π,D) → Ex maps J into Jx, so

that there is a unique linear map φ′
x : Γb(π,D)

J
→ Ex

Jx
which makes this diagram

commute:
Γb(π,D) φx

−→ Ex

q ↓ ↓ qx

Γb(π,D)
J

−→
φ′
x

Ex

Jx
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(Here, q and qx are the quotient maps.) Since φx : Γb(π,D) → Ex is surjective

so is φ′
x. But

Γb(π,D)
J

is 1-dimensional because J is the kernel of a multiplicative

homomorphism. Since φ′
x is surjective, this forces Ex

Jx
to be 1-dimensional, in par-

ticular making Jx a closed maximal ideal in the topological algebra Ex, and hence
the kernel of some h ∈ ∆(Ex); that is, Jx = kerh. Then h ◦ φx : Γb(π,D) → K
is a continuous nontrivial algebra homomorphism (because evaluation is contin-
uous; see [5, Corollary 2.7]). If σ ∈ J , then σ(x) ∈ Jx ⊂ Jx, so (h ◦ φx)(σ) = 0,
and thus J = kerH ⊂ ker(h ◦ φx). But kerH and ker(h ◦ φx) are both closed
maximal ideals, and so kerH = ker(h ◦ φx). Finally, since H and h ◦ φx are both
multiplicative, we have H = h ◦ φx. �

Note that these are the same results, and proofs, as in [7, Propositions 3, 4].

Corollary 3.7. Under the situation as described in Proposition 3.6, we may
identify ∆(Γb(π,D)) as a point set with the disjoint union

⋃•{∆(Ex) : x ∈ X}.

Proof. From the preceding results, the map µ : ∆(Γb(π,D)) →
⋃•{∆(Ex) : x ∈

X}, given by µ(H) = h ∈ ∆(Ex) if H = h ◦ φx, is a bijection. �

We now show that we have a spectral synthesis-like property in Γb(π,D).

Theorem 3.8. Let J ⊂ Γb(π,D) be a tβ,D-closed ideal which is also a Cb(X)-
module. If Ex satisfies spectral synthesis for each x ∈ X, then J is the intersection
of all tβ,D-closed maximal ideals in Γb(π,D) which contain it.

Proof. We can essentially repeat the proof of [7, Proposition 9]. To begin, set
P = {x ∈ X : Jx is a proper ideal in Ex}. Note in general that for H ∈ ∆ =
∆(Γb(π,D)), with H = h ◦ φx for h ∈ ∆(Ex) and x ∈ P , we have the following:
J ⊂ kerH, if and only if Jx ⊂ kerh, if and only if Jx ⊂ kerh, if and only if
(Jx)

x ⊂ ker(h ◦ φx). But when x ∈ P , then Jx ⊂ Ex is a proper ideal, and so we
have Jx =

⋂
{ker(h ◦ φx) : h ∈ ∆(Ex) and Jx ⊂ kerh}. Hence, for x ∈ P we have

Jx =
⋂{

ker(h ◦ φx) : h ∈ ∆(Ex) and Jx ⊂ kerh
}

=
⋂{

kerH : H = h ◦ φx ∈ ∆
(
Γb(π,D)

)
and Jx ⊂ kerh

}
.

Finally,

J =
⋂
x∈X

(Jx)
x =

⋂
x∈P

(Jx)
x

=
⋂
x∈P

{
kerH : H = h ◦ φx ∈ ∆

(
Γb(π,D)

)
and Jx ⊂ kerh

}
=

⋂
x∈X

{
kerH : H = h ◦ φx ∈ ∆

(
Γb(π,D)

)
and Jx ⊂ kerh

}
.

�

The converse to the preceding is also true.

Proposition 3.9. Suppose that for each tβ,D-closed proper ideal and C(X)-
submodule J of Γb(π,D), J is the intersection of all tβ,D-closed maximal ideals
which contain it. Then for each x ∈ X, Ex satisfies spectral synthesis.
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Proof. Fix x ∈ X, and let I ⊂ Ex be a (norm-)closed proper ideal. Then Ix =
{σ ∈ Γb(π,D) : σ(x) ∈ I} is evidently a proper ideal in Γb(π,D), which from the
proof of Proposition 3.2 above is also tβ,D-closed; it is also easily checked that
Ix is a C(X)-submodule of Γb(π,D). Observe that if x, y ∈ X with x 6= y, then
(Ix)y = φy(Ix) = Ey; for if t ∈ Ey and if σ ∈ Γb(π,D) is such that σ(y) = t, then
for any f ∈ Cb(X) such that f(y) = 1 and f(x) = 0 we have (fσ)(y) = t and
(fσ)(x) = 0 ∈ Ex, so that fσ ∈ Ix.

Hence,

Ix =
⋂
y∈X

{
ker(h ◦ φy) : h ∈ ∆(Ey) and Ix ⊂ ker(h ◦ φy)

}
=

⋂{
ker(h ◦ φx) : h ∈ ∆(Ex) and Ix ⊂ ker(h ◦ φx)

}
,

so that

I = (Ix)x =
⋂{

kerh : h ∈ ∆(Ex) and I ⊂ kerh
}
. �

The results and their proofs above are analogous to results in [7], which addresses
the case of section spaces with their strict topologies. Unlike in [1], we are unable
because of our more general situation to assume a Stone–Weierstrass property to
arrive at a short proof identifying the closed maximal ideals. Note also that by
[1, Theorem 4.4] for each tβ,D-closed ideal I ⊂ Cb(X,D) there is a corresponding
closed zero set Z(I) ⊂ X such that Z(I) = {x ∈ X : f(x) = 0 for all f ∈ I},
and the converse also holds. This correspondence does not hold once we leave the
situation of 1-dimensional fibers and continuous K-valued functions. Moreover,
such a hope is vain even in the situation where the original bundle π : E → X is
a continuously normed (i.e., x 7→ ‖σ(x)‖ is continuous for each σ ∈ Γ(π)) bundle
of Banach algebras. This is so even though it is easy to check in this continuously
normed situation that for any closed C ⊂ X the set I = {σ ∈ Γb(π) : σC = 0}
is a norm-closed ideal, and conversely that for each norm-closed ideal I, the set
C = {x ∈ X : σ(x) = 0 for all σ ∈ I} is closed. (See Proposition 4.3 and
Corollary 4.4.)

Example 3.10.

(3.10.1) Let X = [0, 1], and consider C(X,K2), identified as the section space of
the trivial bundle π2 : E2 =

⋃•
x∈X K2 → X, where E2 is homeomorphic to

K2 ×X in its product topology. Writing σ(x) = (σ1(x), σ2(x)), we have
J = {σ ∈ C(X,K2) : σ1(x) = 0} and I = {σ ∈ C(X,K2) : σ2(x) = 0}
as distinct closed ideals and C(X)-submodules of C(X,K2), but Z(I) =
Z(J) = ∅.

(3.10.2) Let X = [0, 1], and let π0 : E0 =
⋃•

x∈X K → X be the “spiky” bundle,
whose section space Γ(π0) can be identified with c0(X) (see [10]). Let
M = {f ∈ Γ(π) : f(x) = 0 for x irrational} ⊂ Γ(π); evidently, M is a
closed C(X)-submodule and ideal in Γ(π). If we endow Γ(π) with the tβ,D
topology arising from D = {X}, then tβ,D = tβ, the strict topology on
Γ(π). But from [6, Corollary 4], when X is compact, tβ = tu, the (norm)
uniform topology on Γ(π). Then Z(M) = X \Q.
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In the preceding, a common premise is that we deal with subspaces (ideals) of
Γb(π,D) which are Cb(X)-modules. When is this premise guaranteed to obtain?
We provide a sufficient condition in the case of bundles of Banach algebras. The
key definition and the results are couched in terms of left approximate identities,
but the right- and two-sided versions may be easily imagined.

Proposition 3.11. Let π : E → X be a bundle of Banach algebras, and sup-
pose that J ⊂ Γb(π,D) is a tβ,D-closed ideal. Suppose that Γb(π,D) has a left
approximate identity (σλ) in the tβ,D topology. Then J is also a Cb(X)-module.

Proof. Let τ ∈ J and f ∈ Cb(X). Noting that σλτ ∈ J and that fσλ ∈ Γb(π,D), it
follows that in the tβ,D-topology we have fτ = limλ f(σλτ) = limλ(fσλ)τ ∈ J . �

Then when is Γb(π,D) guaranteed to have a left approximate identity for the
tβ,D topology?

Definition 3.12 (see [8, Definition 2.1]). Suppose that {Ax : x ∈ X} is a col-
lection of Banach algebras. Say that {Ax : x ∈ X} has uniformly bounded left
approximate identities if (1) for each x ∈ X, Ax has a bounded left approxi-
mate identity {aλx : λx ∈ Λx} with ‖aλx‖ ≤ mx < ∞ for all λx ∈ Λx, and (2)
m = supx∈X mx < ∞.

Proposition 3.13. Let π : E → X be a bundle of Banach algebras, and let D be
a cover of X. Suppose also that for each D ∈ D, the fibers Ex(x ∈ D) have uni-
formly bounded left approximate identities. Then Γb(π,D) has a left approximate
identity.

Proof. Let F ⊂ Γb(π,D) be a finite set, let ε > 0, and let Dk ∈ D, vk ∈ S+
0 (Dk),

for k = 1, . . . , n. Then N = {τ ∈ Γb(π,D) : ρDkv
′
k
(τ) < ε for k = 1, . . . , n} is a

basic tβ,D-neighborhood of 0 ∈ Γb(π,D).
For each σ ∈ F we may choose compact Kσ ⊂ X such that for each k =

1, . . . , n we have v′k(x)‖σ(x)‖ < ε/3 whenever x ∈ X \Kσ. It is then clear that
v′k(x)‖σ(x)‖ < ε/3 for all k = 1, . . . , n and for all σ ∈ F whenever x ∈ X \ K,
where K =

⋃
{Kσ : σ ∈ F}; note that K is also compact.

Consider the Banach algebra Γ(πK) ' [Γ(π)]K consisting of all restrictions
to K of sections in Γ(π). From [8], because the left approximate identities in
{Ex : x ∈ K} are uniformly bounded, Γ(πK) itself has a (norm) bounded left
approximate identity. Thus, we can choose τ ∈ Γ(π) such that vk(x)‖(τKσK −
σK)(x)‖ = vk(x)‖(τσ − σ)(x)‖ < ε/3 for each σ ∈ F , k = 1, . . . , n and each
x ∈ K. From the upper semicontinuity of the seminorms y 7→ v′k(y)‖σ(y)‖, there
exists an X-open neighborhood U of K such that v′k(x)‖(τσ − σ)(x)‖ < ε/3 for
all σ ∈ F and x ∈ U , and we may also choose f ∈ Cb(X), f : X → [0, 1] such
that f(K) = 1 and f(X \ U) = 0. Let τ ′ = fτ . We then check that for each
k = 1, . . . , n and for each σ ∈ F we have

(1) vk(x)‖(τ ′σ − σ)(x)‖ = v′k(x)‖(τ ′σ − σ)(x)‖ < ε/3 if x ∈ K;
(2) v′k(x)‖(τ ′σ − σ)(x)‖ = 0 if x ∈ X \ U ; and
(3) if x ∈ U \K, then
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v′k(x)
∥∥(τ ′σ − σ)(x)

∥∥ = v′k(x)
∥∥(fτσ − σ)(x)

∥∥
= v′k(x)

∥∥[(fτσ − fσ) + (1− f)σ
]
(x)

∥∥
≤ v′k(x)

∥∥(fτσ − fσ)(x)
∥∥+ v′k(x)(1− f)(x)

∥∥σ(x)∥∥
< 2ε/3.

Thus, for each σ ∈ F and k = 1, . . . , n, we have ρDk,vk(τ
′σ − σ) < ε; that is,

τ ′σ − σ ∈ N .
Thus, Γb(π,D) under the tβ,D-topology satisfies the conditions of [14, Proposi-

tions 3.1, 3.2] and hence has a left approximate identity. �

4. Quotients of Γb(π,D)

We now examine the nature of quotients of Γb(π,D). In this section, we will
assume that π : E → X is a bundle of Banach algebras and that tβ,D-closed ideals
in Γb(π,D) are also Cb(X)-submodules. From the previous section, it is clear that
this will certainly be the case if Γb(π,D) has a tβ,D-approximate identity of some
sort.

Let D be a cover of X. Suppose that I is a tβ,D-closed ideal. Then, from [5,
Proposition 9.1], we have I = {σ ∈ Γb(π,D) : σ(x) ∈ Ix for all x ∈ X} (where,
as before, Ix = {σ(x) : σ ∈ I}). We examine the quotient algebra Γb(π,D)/I.

Consider the set G =
⋃•{Ex

Ix
: x ∈ X}. For σ ∈ Γb(π,D), we define the choice

function σ̂ : X → G by σ̂(x) = σ(x) + Ix; it is clear that for f ∈ C(X), we

have f̂σ = f · σ̂. Since I =
⋂

x∈X(Ix)
x, the map σ 7→ σ̂ defines an injective

C(X)-homomorphism from Γb(π,D)
I

to the space of choice functions from X to G.
It is also clear that, for D ∈ D and v ∈ S+

0 (D), we have

pD,v′D
(σ) = sup

x∈X
v′D(x)

∥∥σ(x)∥∥ ≥ sup
x∈X

v′D(x)
∥∥σ(x) + Ix

∥∥ def
= p̂D,v′D

(σ̂),

so that the collection of seminorms {p̂D,v′ : D ∈ D, v ∈ S+
0 (D)} defines a topology

t̂β,D on the image in that space of choice functions of Γb(π,D)
I

under .̂
Moreover, let ε > 0, D ∈ D, and let vD ∈ S+

0 (D). Suppose that p̂xD,v′(σ̂(x)) =

v′(x)‖σ(x) + Ix‖ < ε. Then there exists z ∈ Ix and τ ∈ I such that z = τ(x) and
such that

v′D(x)
∥∥σ(x) + τ(x)

∥∥ < ε.

By the upper semicontinuity of the functions involved, there exists a neighborhood
U of x such that, if y ∈ U , then

v′D(y)
∥∥σ(y) + τ(y)

∥∥ < ε.

Then clearly

v′D(y)
∥∥σ(y) + Iy

∥∥ < ε;

that is, the map y 7→ v′(y)‖σ(y) + Iy‖ is upper semicontinuous for each σ ∈
Γb(π,D). This leads to the following proposition.
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Proposition 4.1. Suppose that π : E → X is a bundle of Banach algebras, that
D is a cover of X, and that I is a tβ,D-closed ideal of Γb(π,D). Then there is a
bundle πI : G → X with fibers Gx = Ex

Ix
such that for each σ ∈ Γb(π,D) we have

σ̂ ∈ Γb(πI ,D). The map ̂ : Γb(π,D)
I

→ Γb(πI ,D), σ + I 7→ [x 7→ σ̂(x) = σ(x) + Ix]

is an injective and continuous Cb(X)-homomorphism whose image is t̂β,D-dense
in Γb(πI ,D).

Proof. All but the density claim have been noted. For that, we need only observe
that by our original assumption, Γ(π) is full, so that Γb(π,D) is also full. Thus,
if z + Ix ∈ Gx = Ex

Ix
, then we can choose σ ∈ Γb(π,D) such that σ(x) = z, which

yields σ̂(x) = σ(x)+Ix = z+Ix. Now, apply Theorem 2.6 (Stone–Weierstrass). �

We can actually do a little better if the original bundle π : E → X is continu-
ously normed. If this is the case, then for σ ∈ Γ(π), the set {x ∈ X : σ(x) = 0} is
closed, and hence Z(I) = {x ∈ X : σ(x) = 0 for each σ ∈ I} is also closed in X.
Let C = Z(I). We can then form the cover DC = D ∩ C = {D ∩ C : D ∈ D}
of C, and the restriction bundle πC : EC =

⋃•
x∈C Ex → C; this is a full bundle,

and [Γ(π)]C ⊂ Γ(πC). We can then consider the space of sections Γb(πC ,DC) and
topologize it in the usual fashion by using the seminorms pD∩C,v′D∩C

, as D ∈ D
and v ∈ S+

0 (D) vary. Moreover, as noted in [3], we have [S+
0 (X)]C = S+

0 (C); that
is, each upper semicontinuous function on C which disappears at infinity (on C)
is the restriction to C of such a function defined on all of X. Consider then the
bundle πC : EC → C, and topologize Γb(πC ,DC) using the seminorms pD∩C,v′D∩C

.
(Note that we may have only [Γb(π,D)]C being a subspace of Γb(πC ,DC).) Given

I ⊂ Γb(π,D), we then consider the map T : Γb(π,D)
I

→ Γb(πC ,DC) defined by

T (σ + I) = σC , where
Γb(π,D)

I
is given its quotient topology t̂β,D determined by

the p̂D,v′D
(where p̂D,v′D

(σ + I) = infτ∈I pD,v′D
(σ + τ)), and where Γb(πC ,DC) is

given the topology determined by the seminorms pD∩C,v′D∩C
.

Theorem 4.2. Suppose that π : E → X is a continuously normed bundle of
Banach algebras, D a cover of X, and I a tβ,D-closed ideal of Γb(π,D). Let C =

Z(I). Then the map T : Γb(π,D)
I

→ Γb(πC ,DC), σ + I 7→ σC, is a topological
isomorphism onto its image in Γb(πC ,DC).

Proof. We alter the method of [3, Proposition 3.1] only slightly. Note that T is
easily seen to be injective. Then for σ ∈ Γb(π,D), τ ∈ I, D ∈ D, and v ∈ S+

0 (D),
we have

pD∩C,v′D∩C
(σC) = sup

x∈D∩C
v′D∩C(x)

∥∥σ(x)∥∥
= sup

x∈D∩C
v′D∩C(x)

∥∥σ(x) + τ(x)
∥∥

≤ sup
x∈D

v′D(x)
∥∥σ(x) + τ(x)

∥∥
= pD,v′D

(σ + τ),

since τ(x) = 0 on C. Hence pD∩C,v′D∩C
(σ) ≤ p̂D,v′D

(σ), and T is continuous.
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Now, given σ ∈ Γb(π,D), D ∈ D, v ∈ S+
0 (D), and ε > 0, set Kε = {x ∈

D : v′D(x)‖σ(x)‖ ≥ pD∩C,v′D∩C
(σ) + ε}. Then, from the fact that the map x 7→

v′D(x)‖σ(x)‖ is in S+
0 (D), it follows that Kε is compact (in D and hence in X);

we also have Kε ∩C = ∅. Choose f ∈ C(X), f : X → [0, 1] such that f(Kε) = 1
and f(C) = 0, and set τ = −fσ. Then

p̂D,v′D
(σ + I) ≤ pD,v′D

(σ + τ)

= sup
x∈X

v′D(x)
∥∥σ(x)− f(x)σ(x)

∥∥
= sup

x∈X\Kε

v′D(x)(1− f)(x)
∥∥σ(x)∥∥

= sup
x∈D\Kε

v′D(x)(1− f)(x)
∥∥σ(x)∥∥

≤ pD∩C,v′D∩C
(σC) + ε.

Since ε > 0 is arbitrary, we have

p̂D,v′D
(σ + I) ≤ pD∩C,v′D∩C

(σC),

so that T−1 is continuous. �

In our present situation, dealing with bundles of topological vector spaces deriv-
ing originally from Banach bundles, we do not obtain the full strength of [3,
Proposition 3.1], simply because, as seen in Example 3.10, we do not have the
correspondence between closed sets in X and zero sets of ideals I in Γb(π,D).
However, if we have continuous line bundles, so that every fiber is K, we do obtain
that correspondence between tβ,D-closed submodules in Γb(π,D) and closed sets
in X.

Proposition 4.3. Let π : E → X be a continuously normed bundle with constant
fiber K, and let D be a cover of X. Then there is a one-to-one correspondence
between closed sets in X and tβ,D-closed submodules of Γb(π,D); namely, if C ⊂ X
is closed, then there is a unique tβ,D-closed submodule M of Γb(π,D) such that C
is the zero set of M .

Proof. Evidently, if M is any submodule of Γb(π,D), its zero set Z(M) is closed
in X, since the norm function is continuous. Now, let C ⊂ X be closed, and
let M = {σ ∈ Γb(π,D) : σC = 0}. It is clear that M is a C(X)-submodule of
Γb(π,D); consider its tβ,D-closure L = M . Then Z(L) ⊂ Z(M), and since any
net (σλ) ⊂ M which tβ,D-converges to σ ∈ L also converges pointwise, we have
Z(M) ⊂ Z(L). Thus, there is a closed submodule whose zero set is C. Suppose
now that M and L are two tβ,D-closed submodules such that Z(M) = Z(L).
By Corollary 3.3 above, we have M =

⋂
x∈X(Mx)

x and L =
⋂

x∈X(Lx)
x. But

since Z(M) = Z(L), and since for any x ∈ X we have either Mx = K = Lx or
Mx = {0} = Lx, this forces L = M . �

Corollary 4.4. Assume the conditions of Proposition 4.3, and suppose also that
Γ(π) is an algebra. Then there is a one-to-one correspondence between tβ,D-closed
ideals of Γb(π,D) and the closed sets of X.
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Proof. Let I ⊂ Γb(π,D) be a tβ,D-closed ideal. Writing I =
⋂

x∈X(Ix)
x as in

Proposition 3.2, we see that I is the intersection of tβ,D-closed submodules, and
hence a tβ,D-closed submodule, with zero set C = Z(I). On the other hand, if
C ⊂ X is closed, then I = {σ ∈ Γb(π,D) : σC = 0} is a Γb(π,D)-submodule, and
C = Z(I). �
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