EQUATIONS FOR FRAME WAVELETS IN $L^{2}\left(\mathbb{R}^{2}\right)$

XINGDE DAI
To Professor Zurui Guo

Communicated by D. Han

Abstract

A finite solution to a system of equations will generate a single function normalized tight frame wavelet (Parseval's frame wavelet) with compact support associated with a 2×2 expansive integral matrix whose determinant is either 2 or -2 in $L^{2}\left(\mathbb{R}^{2}\right)$.

1. Introduction

In this article, \mathbb{R}^{2} will be the 2-dimensional Euclidean space, and \mathbb{C}^{2} will be the 2-dimensional complex Euclidean space. We will use notation $\vec{t}, \vec{s}, \vec{r}, \vec{\xi}, \vec{\eta}$ for vectors in \mathbb{R}^{2} or \mathbb{C}^{2}. We will use the notation $\vec{t}_{1} \circ \vec{t}_{2}$ for the standard inner product of two vectors \vec{t}_{1} and \vec{t}_{2}. For a vector $\vec{\xi}=\binom{\xi_{1}}{\xi_{2}}$ in \mathbb{C}^{2}, its real part is $\mathfrak{R e}(\vec{\xi}) \equiv\binom{\mathfrak{M c}\left(\xi_{1}\right)}{\mathfrak{R e}\left(\xi_{2}\right)}$, and its imaginary part is $\mathfrak{I m}(\vec{\xi}) \equiv\binom{\mathfrak{J m}\left(\xi_{1}\right)}{\mathfrak{J m}\left(\xi_{2}\right)}$. The measure μ will be the Lebesgue measure on \mathbb{R}^{2}, and $L^{2}\left(\mathbb{R}^{2}\right)$ will be the Hilbert space of all square integrable functions on \mathbb{R}^{2}. A (countable) set of elements $\left\{\psi_{i}: i \in \Lambda\right\}$ in $L^{2}\left(\mathbb{R}^{2}\right)$ is called a normalized tight frame of $L^{2}\left(\mathbb{R}^{2}\right)$ if

$$
\begin{equation*}
\sum_{i \in \Lambda}\left|\left\langle f, \psi_{i}\right\rangle\right|^{2}=\|f\|^{2}, \quad \forall f \in L^{2}\left(\mathbb{R}^{2}\right) \tag{1.1}
\end{equation*}
$$

It is well known in the literature (see [4]) that the equation (1.1) is equivalent to

$$
\begin{equation*}
f=\sum_{i \in \Lambda}\left\langle f, \psi_{i}\right\rangle \psi_{i}, \quad \forall f \in L^{2}\left(\mathbb{R}^{2}\right) . \tag{1.2}
\end{equation*}
$$

Copyright 2016 by the Tusi Mathematical Research Group.
Received Sep. 21, 2015; Accepted Dec. 15, 2015.
2010 Mathematics Subject Classification. Primary 46N99; Secondary 47N99, 46E99, 42C40.
Keywords. Fourier transform, Hilbert space, expansive integral matrix, normalized tight frame wavelet.

Haar-type orthonormal wavelets (and hence with compact support) in $L^{2}\left(\mathbb{R}^{2}\right)$ and for higher dimensions. In [2], E. Belogay and Y. Wang constructed examples of wavelets with compact support and with properties of high smoothness in $L^{2}\left(\mathbb{R}^{2}\right)$. Other wavelets in higher dimensions with noncompact supports were also constructed in [5] by Larson, Speegle, and the author. The goal of the present paper is to prove that every solution to the system of equations (3.1) will generate filters for normalized tight frame wavelets. In applications, we just need to solve the systems of equations for filters. Some computational methods, including the Monte Carlo method (see [8]), are capable of serving this purpose. Compared with [10], our methods appear to be more constructive. Moreover, we address singlefunction Parseval wavelets, including orthogonal wavelets, and our methods here provide a foundation for further work on frame wavelets with normal properties, such as the wavelets in [2].

We will follow the classical method for constructing such frame wavelets as provided by I. Daubechies in [6], that is, from the filter function m_{0} to the scaling function φ and then to the wavelet function ψ. To construct the filter function m_{0}, we start with the system of equations (3.1). The system of equations (3.1) is a generalization of W. Lawton's system of equations for frame wavelets in $L^{2}(\mathbb{R})$ (see [11]).

The scaling function φ in this paper is not necessarily orthogonal, and so the related MRA system constructed should be similar to the frame multiresolution analysis (FMRA) by J. Benedetto and S. Li in [3], and it is also related to the general multiresolution analysis (GMRA) by L. Baggett, H. Medina, and K. Merrill [1]. We provide some examples in Section 7.

2. Reduction theorems

In [2], E. Belogay and Y. Wang also proved that every expansive 2×2 integral matrix with $|\operatorname{det}(A)|=2$ can be expressed in the form $S B S^{-1}$, where S is a 2×2 integral matrix with $|\operatorname{det}(S)|=1$ and B is one of the six matrices listed below:

$$
\begin{array}{ccc}
{\left[\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right],} & {\left[\begin{array}{cc}
0 & 2 \\
-1 & 0
\end{array}\right],} & {\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right],} \\
{\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right],} & {\left[\begin{array}{cc}
0 & 2 \\
-1 & 1
\end{array}\right],} & {\left[\begin{array}{cc}
0 & -2 \\
1 & -1
\end{array}\right] .} \tag{2.1}
\end{array}
$$

Proposition 2.1. Let A be a 2×2 expansive integral matrix with $|\operatorname{det}(A)|=2$. Then there is a 2×2 integral matrix S with $|\operatorname{det}(S)|=1$ such that $S A S^{-1}$ is one of the following six matrices:

$$
\begin{array}{lll}
{\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right],} & {\left[\begin{array}{ll}
1 & -3 \\
1 & -1
\end{array}\right],} & {\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right],} \tag{2.2}\\
{\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right],} & {\left[\begin{array}{ll}
-1 & 2 \\
-2 & 2
\end{array}\right],} & {\left[\begin{array}{cc}
1 & -2 \\
2 & -2
\end{array}\right] .}
\end{array}
$$

Proof. This statement is an immediate consequence of the list (2.1) by E. Belogay and Y. Wang [2] and the following calculation:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-1 & 1 \\
2 & -3
\end{array}\right]\left[\begin{array}{cc}
0 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
2 & -3
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right],} \\
& {\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & 2 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & -3 \\
1 & -1
\end{array}\right],} \\
& {\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 2
\end{array}\right],} \\
& {\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & -2 \\
2 & -2
\end{array}\right] .}
\end{aligned}
$$

Lemma 2.2. Let A be a 2×2 expansive integral matrix with $|\operatorname{det}(A)|=2$. For a 2×2 integral matrix S of $|\operatorname{det}(S)|=1$, assume $B=S^{-1} A S$. Then

$$
\begin{align*}
U_{S} T_{\vec{\ell}} U_{S}^{-1} & =T_{S^{-1} \vec{\ell}}, \quad \forall \vec{\ell} \in \mathbb{Z}^{2} ; \tag{2.3}\\
U_{S} D_{A}^{n} U_{S}^{-1} & =D_{B}^{n}, \quad \forall n \in \mathbb{Z} . \tag{2.4}
\end{align*}
$$

Proof. Let $h \in L^{2}\left(\mathbb{R}^{2}\right)$. By definition, $U_{S} U_{S^{-1}} h(\vec{t})=U_{S} h\left(S^{-1} \vec{t}\right)=h\left(S S^{-1} \vec{t}\right)=$ $h(\vec{t})$, and so $U_{S} U_{S^{-1}}=I$. Similarly, we have $U_{S^{-1}} U_{S}=I$. Therefore, $U_{S}^{-1}=U_{S^{-1}}$. For $\vec{\ell} \in \mathbb{Z}^{d}$, we have

$$
\begin{aligned}
U_{S} T_{\vec{\ell}} U_{S}^{-1} h(\vec{t}) & =U_{S} T_{\vec{\ell}} U_{S^{-1}} h(\vec{t}) \\
& =U_{S} T_{\vec{\imath}} h\left(S^{-1} \vec{t}\right) \\
& =U_{S} h\left(S^{-1}(\vec{t}-\vec{\ell})\right) \\
& =U_{S} h\left(S^{-1} \vec{t}-S^{-1} \vec{\ell}\right) \\
& =h\left(S^{-1} S \vec{t}-S^{-1} \vec{\ell}\right) \\
& =h\left(\vec{t}-S^{-1} \vec{\ell}\right) \\
& =T_{S^{-1} \vec{\ell}} h(\vec{t}),
\end{aligned}
$$

and so we have equation (2.3). Also, we have $U_{S} D_{A} U_{S}^{-1} h(\vec{t})=\sqrt{2} h\left(S^{-1} A S \vec{t}\right)=$ $D_{B} h(\vec{t})$, and so

$$
\begin{aligned}
U_{S} D_{A} U_{S}^{-1} & =D_{B} \\
U_{S} D_{A}^{-1} U_{S}^{-1} & =\left(U_{S} D_{A} U_{S}^{-1}\right)^{-1}=D_{B}^{-1}
\end{aligned}
$$

This implies that, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
U_{S} D_{A}^{n} U_{S}^{-1} & =\left(U_{S} D_{A} U_{S}^{-1}\right)^{n}=D_{B}^{n} \\
U_{S} D_{A}^{-n} U_{S}^{-1} & =\left(U_{S} D_{A} U_{S}^{-1}\right)^{-n}=D_{B}^{-n}
\end{aligned}
$$

This proves equation (2.4).
Theorem 2.3. Let A be a 2×2 expansive integral matrix with $|\operatorname{det}(A)|=2$, and let S be a 2×2 integral matrix with the property that $|\operatorname{det}(S)|=1$. Let $B \equiv S^{-1} A S$. Assume that a function ψ_{A} is a normalized tight frame wavelet
associated with the matrix A. Then the function $\eta_{B} \equiv U_{S} \psi_{A}$ is a normalized tight frame wavelet associated with the matrix B.

Proof. By assumption and Lemma 2.2, we have $B=S^{-1} A S, D_{B}=U_{B}=$ $U_{S^{-1} A S}=U_{S} U_{A} U_{S^{-1}}=U_{S} D_{A} U_{S}^{-1}$. Let $f \in L^{2}\left(\mathbb{R}^{2}\right)$. We have

$$
U_{S}^{-1} f=\sum_{n \in \mathbb{Z}, \vec{\ell} \in \mathbb{Z}^{2}}\left\langle U_{S}^{-1} f, D_{A}^{n} T_{\vec{\ell}} \psi_{A}\right\rangle D_{A}^{n} T_{\vec{\ell}} \psi_{A} .
$$

Since U_{S} is a unitary operator, we have

$$
\begin{aligned}
f & =\sum_{n \in \mathbb{Z}, \vec{\ell} \in \mathbb{Z}^{2}}\left\langle f, U_{S} D_{A}^{n} T_{\vec{\ell}} \psi_{A}\right\rangle U_{S} D_{A}^{n} T_{\vec{\ell}} \psi_{A} \\
& =\sum_{n \in \mathbb{Z}, \vec{\ell} \in \mathbb{Z}^{2}}\left\langle f, U_{S} D_{A}^{n} U_{S}^{-1} U_{S} T_{\vec{\ell}} U_{S}^{-1} U_{S} \psi_{A}\right\rangle U_{S} D_{A}^{n} U_{S}^{-1} U_{S} T_{\vec{\ell}} U_{S}^{-1} U_{S} \psi_{A} \\
& =\sum_{n \in \mathbb{Z}, \vec{\ell} \in \mathbb{Z}^{2}}\left\langle f, D_{B}^{n} T_{S^{-1} \vec{\ell}} \eta_{B}\right\rangle D_{B}^{n} T_{S^{-1} \vec{\ell}} \eta_{B} \\
& =\sum_{n \in \mathbb{Z}, \vec{\ell} \in S^{-1} \mathbb{Z}^{2}}\left\langle f, D_{B}^{n} T_{\vec{\ell}} \eta_{B}\right\rangle D_{B}^{n} T_{\vec{\ell}} \eta_{B}
\end{aligned}
$$

Since S is an integral matrix with $|\operatorname{det}(S)|=1$, we have $\mathbb{Z}^{2}=S \mathbb{Z}^{2}=S^{-1} \mathbb{Z}^{2}$, and so we have

$$
f=\sum_{n \in \mathbb{Z}, \vec{\ell} \in \mathbb{Z}^{2}}\left\langle f, D_{B}^{n} T_{\vec{\ell}} \eta_{B}\right\rangle D_{B}^{n} T_{\vec{\ell}} \eta_{B} .
$$

For $f, g \in L^{1}\left(\mathbb{R}^{2}\right) \cap L^{2}\left(\mathbb{R}^{2}\right)$, the Fourier transform and Fourier inverse transform are defined as

$$
\begin{aligned}
(\mathcal{F} f)(\vec{s}) & =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{-i \vec{s} o \vec{t}} f(\vec{t}) d \vec{t}=\widehat{f}(\vec{s}), \\
\left(\mathcal{F}^{-1} g\right)(\vec{t}) & =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{i \vec{s} o \vec{t}} g(\vec{s}) d \vec{s}=\check{g}(\vec{t})
\end{aligned}
$$

The set $L^{1}\left(\mathbb{R}^{2}\right) \cap L^{2}\left(\mathbb{R}^{2}\right)$ is dense in $L^{2}\left(\mathbb{R}^{2}\right)$, and the operator \mathcal{F} extends to a unitary operator on $L^{2}\left(\mathbb{R}^{2}\right)$ which is still called the Fourier transform. For an operator V on $L^{2}\left(\mathbb{R}^{2}\right)$, we will write $\mathcal{F} V \mathcal{F}^{-1} \equiv \widehat{V}$. We will use the following formulas in this paper.

Lemma 2.4. Let A be a 2×2 expansive integral matrix. Then

$$
\begin{aligned}
T_{\vec{\ell}} D_{A} & =D_{A} T_{A \vec{\ell}} \\
\widehat{T}_{\vec{\ell}} & =M_{e^{-i \vec{\rightharpoonup} \circ} \vec{\ell}} \\
\widehat{D}_{A} & =U_{\left(A^{-1}\right)^{\tau}}=U_{\left(A^{\tau}\right)^{-1}}=D_{A^{\tau}}^{-1}=D_{A^{\tau}}^{*}
\end{aligned}
$$

where $M_{e^{-i \vec{\sigma} \cdot \vec{\ell}}}$ is the multiplication operator by $e^{-i \vec{s} \cdot \vec{\ell}}$. Operators $T_{\vec{\ell}}, D_{A}, \mathcal{F}$, and $M_{e^{-i \overrightarrow{5} \vec{\ell}}}$ are unitary operators acting on $L^{2}\left(\mathbb{R}^{2}\right)$.

Remark 2.5. For the translation operator $T_{A^{-J} \vec{\ell}}$, where vector $A^{-J} \vec{\ell}$ is in the refined lattice $A^{-J} \mathbb{Z}^{2}$, we have $T_{A^{-J}{ }_{\vec{\ell}}} D_{A}^{J}=D_{A}^{J} T_{\vec{\ell}}$. We also have $\overrightarrow{\widehat{D}_{A}^{J} \widehat{\varphi}(\vec{t})}=$ $\frac{1}{\sqrt{2^{j}}} \overline{\widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{t}\right)}$. We will need this in the proof of Lemma 5.7. We leave these to the reader to verify using the same method as in the proof of Lemma 2.4.
Proof. We have

$$
\begin{aligned}
\left(\widehat{T}_{\vec{\ell}} \widehat{f}\right)(\vec{s}) & =\left(\mathcal{F} T_{\vec{\ell}} \mathcal{F}^{-1} \mathcal{F} f\right)(\vec{s}) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{-i \vec{s} \circ \vec{o}} f(\vec{t}-\vec{\ell}) d \vec{t} \\
& =e^{-i \vec{s} \circ \vec{\ell}} \cdot \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{-i \vec{s} \circ \vec{u}} f(\vec{u}) d \vec{u} \\
& =e^{-i \vec{s} \circ \vec{\ell}} \cdot \widehat{f}(\vec{s}) \\
& =\left(M_{e^{-i \vec{s} \circ \vec{\ell}}} \widehat{f}\right)(\vec{s}) .
\end{aligned}
$$

Here the substitution $\vec{u}=\vec{t}-\vec{\ell}$ is used. Next, we have

$$
\begin{aligned}
\left(\widehat{D}_{A} \widehat{f}\right)(\vec{s}) & =\left(\mathcal{F} D_{A} f\right)(\vec{s}) \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{-i \vec{\rightharpoonup} \circ \vec{t}} \cdot \sqrt{2} f(A \vec{t}) d \mu \\
& =\frac{1}{\sqrt{2}} \cdot \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{-i \vec{s} \circ\left(A^{-1} \vec{u}\right)} f(\vec{u}) d \nu \\
& =\frac{1}{\sqrt{2}} \cdot \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{-i\left(A^{-1}\right)^{\tau} \vec{s} \circ \vec{u}} f(\vec{u}) d \nu
\end{aligned}
$$

Here substitutions $\vec{u}=A \vec{t}$ and $d \nu=2 d \mu$ are used, and so we have

$$
\begin{aligned}
\left(\widehat{D}_{A} \widehat{f}\right)(\vec{s}) & =\sqrt{\operatorname{det}\left(\left(A^{-1}\right)^{\tau}\right)} \cdot \widehat{f}\left(\left(A^{-1}\right)^{\tau} \vec{s}\right) \\
& =\left(U_{\left(A^{-1}\right)^{\tau}} \widehat{f}\right)(\vec{s})
\end{aligned}
$$

This implies that

$$
\widehat{D}_{A}=U_{\left(A^{-1}\right)^{\tau}}=U_{\left(A^{\tau}\right)^{-1}}=D_{A^{\tau}}^{-1}=D_{A^{\tau}}^{*}
$$

Also, we have

$$
\begin{aligned}
T_{\vec{\ell}} D_{A} f(\vec{t}) & =\sqrt{2} T_{\vec{\ell}} f(A \vec{t}) \\
& =\sqrt{2} f(A(\vec{t}-\vec{\ell})) \\
& =\sqrt{2} f(A \vec{t}-A \vec{\ell}) \\
& =D_{A} T_{A \vec{\ell}} f(\vec{t}), \\
T_{\vec{\ell}} D_{A} & =D_{A} T_{A \vec{\ell}} .
\end{aligned}
$$

The integral lattice \mathbb{Z}^{2} is an abelian group under vector addition. The subset $(2 \mathbb{Z})^{2}$ is a subgroup. For a fixed 2×2 integral matrix A with $|\operatorname{det}(A)|=2$, the two sets $A \mathbb{Z}^{2}$ and $A^{\tau} \mathbb{Z}^{2}$ are proper subgroups of \mathbb{Z}^{2} containing $(2 \mathbb{Z})^{2}$. The two quotient groups $\frac{A \mathbb{Z}^{2}}{(2 \mathbb{Z})^{2}}$ and $\frac{A^{\top} \mathbb{Z}^{2}}{(2 \mathbb{Z})^{2}}$ are two proper subgroups of the quotient group
$\frac{\mathbb{Z}^{2}}{(2 \mathbb{Z})^{2}}$ which has 4 elements, $\left\{\binom{0}{0}+(2 \mathbb{Z})^{2},\binom{0}{1}+(2 \mathbb{Z})^{2},\binom{1}{0}+(2 \mathbb{Z})^{2},\binom{1}{1}+(2 \mathbb{Z})^{2}\right\}$. If the two elements of the subgroup $\frac{A \mathbb{Z}^{2}}{(2 \mathbb{Z})^{2}}$ are $\overrightarrow{0}+(2 \mathbb{Z})^{2}, \vec{s}+(2 \mathbb{Z})^{2}$, we will call $\{\overrightarrow{0}, \vec{s}\}$ the generators for $A \mathbb{Z}^{2}$. We define the generators for $A^{\tau} \mathbb{Z}^{2}$ in a similar way: $A \mathbb{Z}^{2}=A^{\tau} \mathbb{Z}^{2}$ if and only if they have the same generators (in the four elements).

Proposition 2.6. Let A be one of the six matrices in (2.2) as in Proposition 2.1. Then there exist vectors $\vec{\ell}_{A}$ and \vec{q}_{A} in \mathbb{Z}^{2} with the following properties:
(1) $\mathbb{Z}^{2}=A^{\tau} \mathbb{Z}^{2} \cup\left(\vec{\ell}_{A}+A^{\tau} \mathbb{Z}^{2}\right)$;
(2) $\vec{q}_{A} \circ A^{\tau} \mathbb{Z}^{2} \subseteq 2 \mathbb{Z}$ and $\vec{q}_{A} \circ\left(\vec{\ell}_{A}+A^{\tau} \mathbb{Z}^{2}\right) \subseteq 2 \mathbb{Z}+1$;
(3) $A^{\tau} \vec{q}_{A} \in(2 \mathbb{Z})^{2}$;
(4) $A \mathbb{Z}^{2}=A^{\tau} \mathbb{Z}^{2}$.

Remark 2.7. Equation (4) is not true in general. Let A be $\left[\begin{array}{ll}0 & -2 \\ 1 & -1\end{array}\right]$, which is in the list (2.1). Then $A^{\tau}=\left[\begin{array}{cc}0 & 1 \\ -2 & -1\end{array}\right]$. It is left to the reader to verify that $\left\{\binom{0}{0},\binom{1}{1}\right\}$ is the generator for $A^{\tau} \mathbb{Z}^{2}$, while the generator for $A \mathbb{Z}^{2}$ is $\left\{\binom{0}{0},\binom{0}{1}\right\}$, and so $A \mathbb{Z}^{2} \neq A^{\tau} \mathbb{Z}^{2}$.

Proof. 1. Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right]$. Then $A^{\tau}=\left[\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right]$. It is left to the reader to verify that $\left\{\binom{0}{0},\binom{1}{1}\right\}$ is the generator for both $A \mathbb{Z}^{2}$ and $A^{\tau} \mathbb{Z}^{2}$. Therefore, we have equation (4), $A \mathbb{Z}^{2}=A^{\tau} \mathbb{Z}^{2},{ }^{1}$ since

$$
\begin{aligned}
A \mathbb{Z}^{2} & =\left(\binom{0}{0}+(2 \mathbb{Z})^{2}\right) \cup\left(\binom{1}{1}+(2 \mathbb{Z})^{2}\right), \\
A^{\tau} \mathbb{Z}^{2} & =\left(\binom{0}{0}+(2 \mathbb{Z})^{2}\right) \cup\left(\binom{1}{1}+(2 \mathbb{Z})^{2}\right) .
\end{aligned}
$$

This also implies that

$$
\mathbb{Z}^{2} \backslash A^{\tau} \mathbb{Z}^{2}=\left(\binom{1}{0}+(2 \mathbb{Z})^{2}\right) \cup\left(\binom{0}{1}+(2 \mathbb{Z})^{2}\right)=\binom{1}{0}+A^{\tau} \mathbb{Z}^{2}
$$

since $\left\{\left(\binom{0}{0}+(2 \mathbb{Z})^{2}\right),\left(\binom{1}{1}+(2 \mathbb{Z})^{2}\right),\left(\binom{1}{0}+(2 \mathbb{Z})^{2}\right),\left(\binom{0}{1}+(2 \mathbb{Z})^{2}\right)\right\}$ is a partition of \mathbb{Z}^{2}, and so the vector $\vec{\ell}_{A} \equiv\binom{1}{0}$ satisfies the equation

$$
\mathbb{Z}^{2}=A^{\tau} \mathbb{Z}^{2} \cup\left(\vec{\ell}_{A}+A^{\tau} \mathbb{Z}^{2}\right)
$$

Define $\vec{q}_{A} \equiv\binom{1}{1}$. It is left to the reader to verify that $q_{A} \circ A^{\tau} \mathbb{Z}^{2}$ are even numbers and $\vec{q}_{A} \circ\left(\vec{\ell}_{A}+A^{\tau} \mathbb{Z}^{2}\right)$ are odd numbers since $\vec{q}_{A} \circ \vec{\ell}_{A}=1$. Finally, $A^{\tau} \vec{q}_{A}=$ $\left[\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right]\binom{1}{1}=\binom{2}{0} \in(2 \mathbb{Z})^{2}$. This proves property (3).
2. We list all six matrices in the list (2.2) and their corresponding $\vec{\ell}_{A}$ and \vec{q}_{A} in the next table. The reader may verify, as we did in part 1 , the equations in (1), (2), and (3) are satisfied. Also, it is left to the reader to verify that, for each matrix in the six cases, the generators for $A \mathbb{Z}^{2}$ and $A^{\tau} \mathbb{Z}^{2}$ are the same, and so

[^0]we have now established the equation in (4):
\[

$$
\begin{align*}
& A \quad A^{\tau} \quad \text { gen of } A^{\tau} \mathbb{Z}^{2} \quad \vec{\ell}_{A} \quad \vec{q}_{A} \quad A^{\tau} \vec{q}_{A} \\
& {\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad\binom{0}{0},\binom{1}{1}\binom{1}{0}\binom{1}{1}\binom{2}{0}} \\
& {\left[\begin{array}{ll}
1 & -3 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-3 & -1
\end{array}\right]\binom{0}{0},\binom{1}{1}\binom{1}{0}\binom{1}{1}\binom{2}{-4}} \\
& {\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad\binom{0}{0},\binom{1}{1}\binom{1}{0}\binom{1}{1}\binom{0}{2}} \tag{2.5}\\
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
-1 & -1
\end{array}\right]\binom{0}{0},\binom{1}{1}\binom{1}{0}\binom{1}{1}\binom{0}{-2}} \\
& {\left[\begin{array}{ll}
-1 & 2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & -2 \\
2 & 2
\end{array}\right]\binom{0}{0},\binom{1}{0}\binom{0}{1}\binom{0}{1}\binom{-2}{2}} \\
& {\left[\begin{array}{ll}
1 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-2 & -2
\end{array}\right]\binom{0}{0},\binom{1}{0}\binom{0}{1}\binom{0}{1}\binom{2}{-2}}
\end{align*}
$$
\]

Two subsets $\mathcal{G}_{1}, \mathcal{G}_{2}$ of \mathbb{R}^{2} are said to be 2-translation equivalent, or $\mathcal{G}_{1} \stackrel{2}{\sim} \mathcal{G}_{2}$, if there exists a mapping Θ from \mathcal{G}_{1} onto \mathcal{G}_{2} with the property that

$$
\Theta(\vec{t})-\vec{t} \in(2 \mathbb{Z})^{2}, \quad \vec{t} \in \mathcal{G}_{1} \text { a.e. }
$$

Proposition 2.8. Let A be one of the six expansive matrices in Proposition 2.6, and let \vec{q}_{A} be the corresponding vector related to A and $\Gamma_{0} \equiv[-1,1]^{2}$. Then there are two measurable sets Γ_{1} and Γ_{2} such that

$$
\begin{aligned}
\Gamma_{1} & \stackrel{2}{\sim} \Gamma_{0} ; \\
\Gamma_{2} & \stackrel{2}{\sim} \Gamma_{0} ; \\
A^{\tau} \Gamma_{0} & \stackrel{2}{\sim} \Gamma_{1} \uplus\left(\vec{q}_{A}+\Gamma_{2}\right) .
\end{aligned}
$$

Corollary 2.9. Let $\Gamma_{\pi} \equiv \pi \Gamma_{0}=[-\pi, \pi]^{2}$, and let $h(\vec{\xi})$ be a 2π-periodical continuous function on \mathbb{R}^{2}. Then

$$
\begin{equation*}
\int_{A^{\tau} \Gamma_{\pi}} h(\vec{\xi}) d \mu=\int_{\Gamma_{\pi}} h(\vec{\xi}) d \mu+\int_{\Gamma_{\pi}+\pi \vec{q}_{A}} h(\vec{\xi}) d \mu \tag{2.6}
\end{equation*}
$$

Proof. 1. For any matrix A in the collection $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$, and $\left[\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right], A^{\tau} \Gamma_{0}$ has the same vertices of $\left\{\binom{2}{0},\binom{-2}{0},\binom{0}{2},\binom{0}{-2}\right\}$. By the table in the proof of Proposition 2.6, the above three matrices share the same vector $\vec{q}_{A}=\binom{1}{1}$ and $\Gamma_{0} \subset A^{\tau} \Gamma_{0}$ (Figure 1, left). It is enough to discuss only one of the three cases.

Consider $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. Let $\Gamma_{1} \equiv \Gamma_{0}$ and $\Gamma_{2} \equiv A^{\tau} \Gamma_{0} \backslash \Gamma_{1}$. Notice that $\Gamma_{2}+\vec{q}_{A}$ (Figure 1, middle) is a disjoint union of eight triangles $\left\{\triangle_{k}, k=1,2, \ldots, 8\right\}$. The

Figure 1. $A^{\tau} \Gamma_{0}$.

Figure 2. $A^{\tau} \Gamma_{0}$.
following new triangles $\left\{\triangle_{k}^{\prime}, k=1,2, \ldots, 8\right\}$ form a partition for Γ_{0} modulus zero measure sets (Figure 1, right).

We have $\triangle_{1}^{\prime}=\triangle_{1}+\binom{-2}{-2} ; \triangle_{2}^{\prime}=\triangle_{2}+\binom{-2}{-2} ; \triangle_{3}^{\prime}=\triangle_{3}+\binom{0}{-2} ; \triangle_{4}^{\prime}=\triangle_{4}+$ $\binom{0}{-2} ; \triangle_{5}^{\prime}=\triangle_{5} ; \triangle_{6}^{\prime}=\triangle_{6} ; \triangle_{7}^{\prime}=\triangle_{7}+\binom{-2}{0} ; \triangle_{8}^{\prime}=\triangle_{8}+\binom{-2}{0}$. This proves that $\vec{q}_{A}+\Gamma_{2} \stackrel{2}{\sim} \Gamma_{0}$.
2. Let $A=\left[\begin{array}{ll}1 & -3 \\ 1 & -1\end{array}\right]$. Then $A^{\tau}=\left[\begin{array}{cc}1 & 1 \\ -3 & -1\end{array}\right]$ and $\vec{q}_{A}=\binom{1}{1} . A^{\tau} \Gamma_{0}$ is the parallelogram $A B C D$ (Figure 2, left). It is 2-translation equivalent to parallelogram $B C E D$ (Figure 2, middle), which is the disjoint union of $\triangle A B D+\binom{-2}{2}$ and $\triangle C B D$. The parallelogram $B C E D$ is 2-translation equivalent to rectangle $B F G D$ since $\triangle D G E=\triangle B F C+\left({ }_{-4}^{0}\right)$. Now let Γ_{1} be the square $M J H K$. It is 2-translation equivalent to Γ_{0} since $\Gamma_{0}=M J I L \cup\left(L I H K+\binom{2}{0}\right)$. Let $\Gamma_{2} \equiv \square J B F H \cup$ $\square D M K G$. Thus $\left(\left(\square J B F H+\binom{0}{-2}\right) \cup \square D M K G\right)+\vec{q}_{A}=\Gamma_{0}$.
3. For any matrix A in the collection $\left[\begin{array}{cc}-1 & 2 \\ -2 & 2\end{array}\right]$ and $\left[\begin{array}{cc}1 & -2 \\ 2 & -2\end{array}\right]$, its corresponding $A^{\tau} \Gamma_{0}$ has the same vertices $\left\{\binom{3}{-4},\binom{-3}{4},\binom{1}{0},\binom{-1}{0}\right\}$ and the same vector $\vec{q}_{A}=\binom{0}{1}$. It is enough to discuss only one of the cases.

Let $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -2\end{array}\right]$. Then, by Proposition $2.8, A^{\tau}=\left[\begin{array}{cc}1 & 2 \\ -2 & -2\end{array}\right]$ and $\vec{q}_{A}=\binom{0}{1}$. As in Figure 3 (left), $A^{\tau} \Gamma_{0}$ is the parallelogram $A B C D$. Then we have

Figure 3. $A^{\tau} \Gamma_{0}$.

$$
\begin{aligned}
A^{\tau} \Gamma_{0} & \stackrel{2}{\sim} \triangle B C D \cup\left(\triangle A B D+\binom{-2}{4}\right) \\
& \stackrel{2}{\sim} \triangle B E D \cup\left(\triangle D E C+\binom{2}{0}\right) \\
& =\square B F E D,
\end{aligned}
$$

and so we have shown $A^{\tau} \Gamma_{0} \stackrel{2}{\sim} \square B F E D$.
Let $\Gamma_{1} \equiv \square B H G D$ and $\Gamma_{2} \equiv \square H F E G$. We have $\Gamma_{1} \stackrel{2}{\sim} \Gamma_{0}$ since

$$
\begin{aligned}
\square B H G D & =\square B J I D \cup \square J H G I \\
& \stackrel{2}{\sim} \square B J I D \cup\left(\square J H G I+\binom{0}{-2}\right) \\
& =\Gamma_{0} .
\end{aligned}
$$

Also, since $\square H F E G+\binom{0}{1}=\Gamma_{0}+\binom{0}{4}$, we have $\Gamma_{2}+\vec{q}_{A} \stackrel{2}{\sim} \Gamma_{0}$.

3. LAWTON'S EQUATIONS AND FILTER FUNCTION

Throughout the rest of this paper, A will be one of the six matrices as stated in list (2.2). Let $N_{0} \in \mathbb{N}$ and $\mathcal{S}=\left\{h_{\vec{n}}: \vec{n} \in \mathbb{Z}^{2}\right\}$ be a complex solution to the system of equations

$$
\left\{\begin{array}{l}
\sum_{\vec{n} \in \mathbb{Z}^{2}} h_{\vec{n}} \overline{h_{\vec{n}+\vec{k}}}=\delta_{\overrightarrow{0} \vec{k}}, \quad \vec{k} \in A^{\tau} \mathbb{Z}^{2}, \tag{3.1}\\
\sum_{\vec{n} \in \mathbb{Z}^{2}} h_{\vec{n}}=\sqrt{2}
\end{array}\right.
$$

with the property that $h_{\vec{n}}=0$ for all $\vec{n} \in \mathbb{Z}^{2} \backslash\left[-N_{0}, N_{0}\right]^{2}$. Let us denote $\Lambda_{0} \equiv$ $\mathbb{Z}^{2} \cap\left[-N_{0}, N_{0}\right]^{2}$. Here δ is Kronecker's notation. We will call the system of equations (3.1) Lawton's system of equations for normalized frame wavelets in $2 D$, or Lawton's equations.

Define

$$
\begin{equation*}
m_{0}(\vec{t})=\frac{1}{\sqrt{2}} \sum_{\vec{n} \in \mathbb{Z}^{2}} h_{\vec{n}} e^{-i \vec{n} \circ \vec{t}}=\frac{1}{\sqrt{2}} \sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}} e^{-i \vec{n} \circ \vec{t}}, \quad \vec{t} \in \mathbb{C}^{2} \tag{3.2}
\end{equation*}
$$

This is a finite sum and $m_{0}(0)=1$. It is a 2π-periodic trigonometric polynomial function in the sense that $m_{0}(\vec{t})=m_{0}\left(\vec{t}+\pi \vec{t}_{0}\right), \forall \vec{t}_{0} \in(2 \mathbb{Z})^{2}$.

Proposition 3.1. Let A be an expansive 2×2 integral matrix, and let \vec{q}_{A} be as stated in Proposition 2.6. Let m_{0} be defined as in (3.2). Then m_{0} satisfies

$$
\begin{equation*}
\left|m_{0}(\vec{t})\right|^{2}+\left|m_{0}\left(\vec{t}+\pi \vec{q}_{A}\right)\right|^{2}=1, \quad \forall \vec{t} \in \mathbb{R}^{2} \tag{3.3}
\end{equation*}
$$

Remark 3.2. By Proposition 3.1, we have $\left|m_{0}(\vec{t})\right| \leq 1$ for all $\vec{t} \in \mathbb{R}^{2}$. Also, (3.3) may not hold for $\vec{t} \in \mathbb{C}^{2}$ in general.

Proof. We have ${ }^{2}$

$$
\begin{aligned}
& \left|m_{0}(\vec{t})\right|^{2}+\left|m_{0}\left(\vec{t}+\pi \vec{q}_{A}\right)\right|^{2} \\
& \quad=\frac{1}{2}\left|\sum_{\vec{m} \in \mathbb{Z}^{2}} h_{\vec{m}} e^{-i \vec{m} \circ \vec{t}}\right|^{2}+\frac{1}{2}\left|\sum_{\vec{m} \in \mathbb{Z}^{2}} h_{\vec{m}} e^{-i \vec{m} \circ\left(\vec{t}+\pi \cdot \vec{q}_{A}\right)}\right|^{2} \\
& \quad=\frac{1}{2}\left[\sum_{\vec{m} \in \mathbb{Z}^{2}, \vec{n} \in \mathbb{Z}^{2}} h_{\vec{m}} \overline{h_{\vec{n}}} e^{-i(\vec{m}-\vec{n}) \circ \vec{t}}+\sum_{\vec{m} \in \mathbb{Z}^{2}, \vec{n} \in \mathbb{Z}^{2}}(-1)^{(\vec{m}-\vec{n}) \circ \vec{q}_{A}} h_{\vec{m}} \overline{h_{\vec{n}}} e^{-i(\vec{m}-\vec{n}) \circ \vec{t}}\right] \\
& \quad=\frac{1}{2}\left[\sum_{\vec{m} \in \mathbb{Z}^{2}, \vec{k} \in \mathbb{Z}^{2}} h_{\vec{m}} \overline{h_{\vec{m}+\vec{k}}} e^{i \vec{k} \circ \vec{t}}+\sum_{\vec{m} \in \mathbb{Z}^{2}, \vec{k} \in \mathbb{Z}^{2}}(-1)^{-\vec{k} \circ \vec{q}_{A}} h_{\vec{m}} \overline{h_{\vec{m}+\vec{k}}} e^{i \vec{k} \circ \vec{t}}\right] .
\end{aligned}
$$

Here \vec{n} is replaced by $\vec{m}+\vec{k}$.
By Proposition 2.6, $\vec{k} \circ \vec{q}_{A}$ is odd when $\vec{k} \in\left(\ell_{A}+A^{\tau} \mathbb{Z}^{2}\right)$. In the second sum, the terms $(-1)^{-\vec{k} \circ \vec{q}_{A}} h_{\vec{m}} \overline{h_{\vec{m}+\vec{k}}} e^{i \vec{k} \circ \vec{t}}$ cancel terms $h_{\vec{m}} \overline{h_{\vec{m}+\vec{k}}} e^{i \vec{k} \circ \vec{t}}$ in the first sum. The term $\vec{k} \circ \vec{q}_{A}$ is even when $\vec{k} \in A^{\tau} \mathbb{Z}^{2}$, and so by definition of $\left\{h_{\vec{t}}\right\}$ we have

$$
\begin{aligned}
\left|m_{0}(\vec{t})\right|^{2}+\left|m_{0}\left(\vec{t}+\pi \vec{q}_{A}\right)\right|^{2} & =\sum_{\vec{m} \in \mathbb{Z}^{2}, \vec{k} \in A^{\tau} \mathbb{Z}^{2}} h_{\vec{m}} \overline{h_{\vec{m}+\vec{k}}} e^{i \vec{k} \circ \vec{t}} \\
& =\sum_{\vec{k} \in A^{\tau} \mathbb{Z}^{2}}\left(\sum_{\vec{m} \in \mathbb{Z}^{2}} h_{\vec{m}} \overline{h_{\vec{m}+\vec{k}}}\right) e^{i \vec{k} \circ \vec{t}}=\sum_{\vec{k} \in A^{\tau} \mathbb{Z}^{2}} \delta_{\overrightarrow{0} \vec{k}} e^{i \vec{k} \circ \vec{t}}=1 .
\end{aligned}
$$

4. The frame scaling function

Define

$$
\begin{align*}
g(\vec{\xi}) & =\frac{1}{2 \pi} \prod_{j=1}^{\infty} m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right), \quad \forall \vec{\xi} \in \mathbb{R}^{2} \quad \text { and } \tag{4.1}\\
\varphi & =\mathcal{F}^{-1} g \tag{4.2}
\end{align*}
$$

In this section we will prove that g and φ are well-defined $L^{2}\left(\mathbb{R}^{2}\right)$ functions. We will also prove that, in the extended domain \mathbb{C}^{2}, g is an entire function and φ has a compact support in \mathbb{R}^{2}. We will call φ the scaling function.

[^1]For $z \in \mathbb{C}$, define

$$
v(z)= \begin{cases}\frac{e^{z}-1}{z}, & z \neq 0 \tag{4.3}\\ 1, & z=0\end{cases}
$$

The function $v(z)$ is an entire function on \mathbb{C}.
We will need the following inequality in the proofs of Lemma 4.8 and Proposition 4.9.

Lemma 4.1. We have

$$
\left|e^{-i z}-1\right| \leq \min (2,|z|), \quad \forall z \in \mathbb{C}, \mathfrak{I m}(z) \leq 0
$$

Proof. Let $z=a+i b$ with $b=\mathfrak{I m}(z) \leq 0$, and so we have

$$
\begin{equation*}
\left|e^{-i z}-1\right| \leq 1+\left|e^{-i z}\right| \leq 1+e^{b} \leq 2 . \tag{4.4}
\end{equation*}
$$

Next we will show that

$$
\left|e^{-i z}-1\right| \leq|z|, \quad \forall b \leq 0
$$

We have

$$
\begin{aligned}
\left|e^{-i z}-1\right|^{2} & =e^{2 b}-2 e^{b} \cos a+1 \\
& =\left(e^{b}-1\right)^{2}+2 e^{b}(1-\cos a) .
\end{aligned}
$$

Since $e^{b}>1+b, \forall b \neq 0$, when $b<0, b^{2}=(-b)^{2}>\left(1-e^{b}\right)^{2}$. Also, $2 e^{b}(1-\cos a) \leq$ $2(1-\cos a)=4 \sin ^{2} \frac{a}{2} \leq a^{2}$, and so

$$
\left|e^{-i z}-1\right|^{2} \leq b^{2}+a^{2}=|z|^{2}
$$

This proves the inequality.
Lemma 4.2. Let A be an expansive integral matrix with $|\operatorname{det}(A)|=2$, let Ω be a bounded closed region in \mathbb{C}^{2}, and let $d_{j}(\vec{\xi}) \equiv m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)-1$. Then

$$
\begin{equation*}
\left|d_{j}(\vec{\xi})\right| \leq C_{\Omega}\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}, \quad \forall j \in \mathbb{N}, \vec{\xi} \in \Omega \tag{4.5}
\end{equation*}
$$

for some constant $C_{\Omega}>0$.
Proof. By definition of $h_{\vec{n}}$, we have

$$
\begin{aligned}
\left|d_{j}(\vec{\xi})\right| & =\left|m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)-1\right| \\
& =\left|\frac{1}{\sqrt{2}} \sum_{\vec{n} \in \mathbb{Z}^{2}} h_{\vec{n}} e^{-i \vec{n} \circ\left(A^{\tau}\right)^{-j} \vec{\xi}}-1\right| \\
& =\left|\frac{1}{\sqrt{2}} \sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}}\left(e^{-i \vec{n} \circ\left(A^{\tau}\right)^{-j} \vec{\xi}}-1\right)\right| \\
& =\left|\frac{1}{\sqrt{2}} \sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}} v\left(-i \vec{n} \circ\left(A^{\tau}\right)^{-j} \vec{\xi}\right)\left[-i \vec{n} \circ\left(A^{\tau}\right)^{-j} \vec{\xi}\right]\right| \\
& \leq \frac{1}{\sqrt{2}} \sum_{\vec{n} \in \Lambda_{0}}\left|v\left(-i \vec{n} \circ\left(A^{\tau}\right)^{-j} \vec{\xi}\right)\right| \cdot\left|-i \vec{n} \circ\left(A^{\tau}\right)^{-j} \vec{\xi}\right|
\end{aligned}
$$

since $\left|h_{n}\right| \leq 1$ by Remark 3.2.

For $\vec{n} \in \Lambda_{0}, \vec{\xi} \in \Omega$, we have $|\vec{\xi}| \leq M_{\Omega}$ for some $M_{\Omega}>0$, and

$$
\left|-i \vec{n} \circ\left(A^{\tau}\right)^{-j} \vec{\xi}\right| \leq \sqrt{2} N_{0} \cdot M_{\Omega} \cdot\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}=C_{1}\left\|\left(A^{\tau}\right)^{-1}\right\|^{j} \leq C_{1},
$$

where $C_{1} \equiv \sqrt{2} N_{0} M_{\Omega}$. Let C_{2} be the finite least upper bound for a continuous function $|v(z)|,|z| \leq C_{1}$.

Then we have

$$
\left|d_{j}(\vec{\xi})\right| \leq \frac{1}{\sqrt{2}}\left(2 N_{0}+1\right)^{2} C_{1} C_{2}\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}
$$

Therefore,

$$
\begin{equation*}
\left|d_{j}(\vec{\xi})\right| \leq C_{\Omega}\left\|\left(A^{\tau}\right)^{-1}\right\|^{j} \tag{4.6}
\end{equation*}
$$

where $C_{\Omega} \equiv \frac{1}{\sqrt{2}}\left(2 N_{0}+1\right)^{2} C_{1} C_{2}$.
Proposition 4.3. The function $g(\vec{\xi})$ is an entire function on \mathbb{C}^{2}.
Remark 4.4. By (3.3) and the definition of g, it is clear that the function g is bounded on \mathbb{R}^{2}.

Proof. For $J \in \mathbb{N}$, define

$$
\begin{equation*}
g_{J}(\vec{\xi})=\frac{1}{2 \pi} \prod_{j=1}^{J} m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right), \quad \forall \vec{\xi} \in \mathbb{C}^{2} \tag{4.7}
\end{equation*}
$$

It is clear that g_{J} is an entire function. We have

$$
\begin{aligned}
g_{J}(\vec{\xi}) & =\frac{1}{2 \pi} \prod_{j=1}^{J} m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right) \\
& =\frac{1}{2 \pi} \prod_{j=1}^{J}\left(1+d_{j}(\vec{\xi})\right)
\end{aligned}
$$

By Lemma 4.2, $\sum\left|d_{j}(\vec{\xi})\right|$ converges uniformly on the bounded region Ω, and the product $\prod_{j=0}^{\infty}\left(1+\left|d_{j}(\vec{\xi})\right|\right)$ converges uniformly on Ω. This implies that g is the uniform limit of a sequence of entire functions g_{J}. By the Morera theorem, g is an entire function on \mathbb{C}^{2}.

Proposition 4.5. The functions g and φ are in $L^{2}\left(\mathbb{R}^{2}\right)$.
Proof. We will use Γ_{π} to denote $[-\pi, \pi]^{2}$. For $J \in \mathbb{N}$, we define on \mathbb{R}^{2}

$$
M_{J}(\vec{\xi})= \begin{cases}\prod_{j=1}^{J}\left|m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)\right|^{2}, & \text { if } \vec{\xi} \in\left(A^{\tau}\right)^{J+1} \Gamma_{\pi}, \\ 0, & \text { if } \vec{\xi} \in \mathbb{R}^{2} \backslash\left(A^{\tau}\right)^{J+1} \Gamma_{\pi}\end{cases}
$$

Since A is expansive, A^{τ} is expansive. We have $\lim M_{J}(\vec{\xi})=4 \pi^{2}|g(\vec{\xi})|^{2}, \vec{\xi} \in \mathbb{R}^{2}$. To prove the proposition, by Fatou's lemma, it suffices to show that $\left\{\int_{\mathbb{R}^{2}} M_{J}(\vec{\xi}) d \vec{\xi}\right.$, $J \in \mathbb{N}\}$ is a bounded sequence.

We have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} M_{J}(\vec{\xi}) d \vec{\xi}= & \int_{\left(A^{\tau}\right)^{J+1} \Gamma_{\pi}} \prod_{k=1}^{J}\left|m_{0}\left(\left(A^{\tau}\right)^{-k} \vec{\xi}\right)\right|^{2} d \vec{\xi} \\
= & \int_{\left(A^{\tau}\right)^{J}\left(A^{\tau} \Gamma_{\pi}\right)}\left|m_{0}\left(\left(A^{\tau}\right)^{-J} \vec{\xi}\right)\right|^{2} \\
& \cdot \prod_{k=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{-k} \vec{\xi}\right)\right|^{2} d \vec{\xi}
\end{aligned}
$$

Using $\vec{\eta} \equiv\left(A^{\tau}\right)^{-J} \vec{\xi}$, by Proposition 2.8, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} M_{J}(\vec{\xi}) d \vec{\xi}= & \left|\operatorname{det}\left(\left(A^{\tau}\right)^{J}\right)\right| \int_{A^{\tau} \Gamma_{\pi}}\left|m_{0}(\vec{\eta})\right|^{2} \cdot \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta\right)\right|^{2} d \vec{\eta} \\
= & \left|\operatorname{det}\left(\left(A^{\tau}\right)^{J}\right)\right|\left(\int_{\Gamma_{\pi}}\left|m_{0}(\vec{\eta})\right|^{2} \cdot \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta\right)\right|^{2} d \vec{\eta}\right. \\
& \left.+\int_{\Gamma_{\pi}+\pi \vec{q}_{A}}\left|m_{0}(\vec{\eta})\right|^{2} \cdot \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta\right)\right|^{2} d \vec{\eta}\right) \\
= & \left|\operatorname{det}\left(\left(A^{\tau}\right)^{J}\right)\right|\left(\int_{\Gamma_{\pi}}\left|m_{0}(\vec{\eta})\right|^{2} \cdot \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta\right)\right|^{2} d \vec{\eta}\right. \\
& \left.+\int_{\Gamma_{\pi}}\left|m_{0}\left(\vec{\eta}-\pi \vec{q}_{A}\right)\right|^{2} \cdot \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta-\pi\left(A^{\tau}\right)^{m} \vec{q}_{A}\right)\right|^{2} d \vec{\eta}\right)
\end{aligned}
$$

Since m_{0} is 2π-periodical, and by Proposition 2.6(3), we have $A^{\tau} \vec{q}_{A} \in(2 \mathbb{Z})^{2}$, and so $\pi\left(A^{\tau}\right)^{m} \vec{q} \in \pi(2 \mathbb{Z})^{2}$. By Corollary 2.9, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} M_{J}(\vec{\xi}) d \vec{\xi}= & \left|\operatorname{det}\left(\left(A^{\tau}\right)^{J}\right)\right|\left(\int_{\Gamma_{\pi}}\left|m_{0}(\vec{\eta})\right|^{2} \cdot \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta\right)\right|^{2} d \vec{\eta}\right. \\
& \left.+\int_{\Gamma_{\pi}}\left|m_{0}\left(\vec{\eta}+\pi \vec{q}_{A}\right)\right|^{2} \cdot \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta\right)\right|^{2} d \vec{\eta}\right) \\
= & \left|\operatorname{det}\left(\left(A^{\tau}\right)^{J}\right)\right| \int_{\Gamma_{\pi}}\left(\left|m_{0}(\vec{\eta})\right|^{2}+\left|m_{0}\left(\vec{\eta}+\pi \vec{q}_{A}\right)\right|^{2}\right) \\
& \cdot \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta\right)\right|^{2} d \vec{\eta}
\end{aligned}
$$

By equation (3.3) and then using the substitution $\vec{\xi} \equiv\left(A^{\tau}\right)^{J} \vec{\eta}$, we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} M_{J}(\vec{\xi}) d \vec{\xi} & =\left|\operatorname{det}\left(\left(A^{\tau}\right)^{J}\right)\right| \int_{\Gamma_{\pi}} \prod_{m=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{m} \eta\right)\right|^{2} d \vec{\eta} \\
& =\int_{\left(A^{\tau}\right)^{J} \Gamma_{\pi}} \prod_{k=1}^{J-1}\left|m_{0}\left(\left(A^{\tau}\right)^{-k} \vec{\xi}\right)\right|^{2} d \vec{\xi} \\
& =\int_{\mathbb{R}^{2}} M_{J-1}(\vec{\xi}) d \vec{\xi}
\end{aligned}
$$

This proves that the sequence $\int_{\mathbb{R}^{2}} M_{J}(\vec{\xi}) d \vec{\xi}, J \in \mathbb{N}$ is a constant sequence. Therefore, g is square integrable on \mathbb{R}^{2}. By the Plancherel theorem, the function φ, which is the Fourier inverse transform of g, is in $L^{2}\left(\mathbb{R}^{2}\right)$.

Next, we will prove that the scaling function φ has a compact support in \mathbb{R}^{2}. We will need the following Schwartz's Paley-Wiener theorem.

Theorem 4.6 (Schwartz's Paley-Wiener theorem). An entire function F on $\mathbb{C}^{d}, d \in \mathbb{N}$, is the Fourier transform of a distribution with compact support in \mathbb{R}^{d} if and only if there are some constants C, N, and B such that

$$
\begin{equation*}
|F(\vec{\xi})| \leq C(1+|\vec{\xi}|)^{N} e^{B|\mathfrak{I m}(\vec{\xi})|}, \quad \forall \vec{\xi} \in \mathbb{C}^{d} \tag{4.8}
\end{equation*}
$$

The distribution is supported on the closed ball of center $\overrightarrow{0}$ and radius B.
Remark 4.7. In our current situation, $d=2$ and the distribution φ is a regular $L^{2}\left(\mathbb{R}^{2}\right)$ function, as we proved in Proposition 4.5.

Lemma 4.8. There exist constants B_{0}, C_{0} such that, for all $j \in \mathbb{N}, \vec{\xi} \in \mathbb{C}^{2}$,

$$
\left|m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)\right| \leq e^{B_{0}\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}|\mathfrak{I m}(\vec{\xi})|}\left(1+C_{0} \min \left(1,\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}|\vec{\xi}|\right)\right) .
$$

Proof. Let $j \in \mathbb{N}, \vec{\xi} \in \mathbb{C}^{2}$ and $\left(A^{\tau}\right)^{-j} \vec{\xi}=\binom{\xi_{1}}{\xi_{2}} \in \mathbb{C}^{2}$. Define $\vec{\ell}_{\vec{\xi}}=\binom{\ell_{1}}{\ell_{2}} \in \mathbb{Z}^{2}$ by

$$
\ell_{m}=\left\{\begin{array}{ll}
-N_{0}, & \text { if } \mathfrak{I m}\left(\xi_{m}\right) \leq 0 ; \\
N_{0}, & \text { if } \mathfrak{I m}\left(\xi_{m}\right)>0 ;
\end{array} \quad m=1,2\right.
$$

Then $\mathfrak{I m}\left(\left(\vec{n}-\vec{\ell}_{\vec{\xi}}\right) \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)\right) \leq 0$ for $\vec{n} \in \Lambda_{0}$. We have $\left|\left(\vec{n}-\vec{\ell}_{\vec{\xi}}\right)\right| \leq 2 \sqrt{2} N_{0}, \forall \vec{n} \in$ Λ_{0}. We denote $B_{0} \equiv 4 \sqrt{2} N_{0}$. It is clear that $\left|\vec{\ell}_{\xi}\right| \leq \frac{B_{0}}{2}$ and $\left|\left(\vec{n}-\vec{\ell}_{\vec{\xi}}\right)\right| \leq \frac{B_{0}}{2}$. By Lemma 4.1, we have

$$
\left|e^{-i\left(\vec{n}-\vec{\ell}_{\vec{\xi}}\right) \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)}-1\right| \leq \min \left(2,\left|\left(\vec{n}-\vec{\ell}_{\vec{\xi}}\right) \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)\right|\right), \quad \forall \vec{n} \in \Lambda_{0}
$$

Then we have

$$
\begin{equation*}
\left|e^{-i\left(\vec{n}-\vec{\ell}_{\vec{\xi}}\right) \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)}-1\right| \leq \min \left(2, B_{0}\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}|\vec{\xi}|\right), \quad \forall \vec{n} \in \Lambda_{0} . \tag{4.9}
\end{equation*}
$$

We also have

$$
\begin{aligned}
\mid e^{-i \vec{\ell}} \vec{\xi}_{\vec{\xi}}^{\circ}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right) & =e^{\vec{\ell}_{\vec{\xi}} \circ\left(\left(A^{\tau}\right)^{-j} \mathfrak{I m}(\vec{\xi})\right)} \\
& \leq e^{\left|\vec{\ell}_{\vec{\xi}}\right|\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}|\mathfrak{I m}(\vec{\xi})|} .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left|e^{-i \vec{\ell}_{\xi^{\circ}} \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)}\right| \leq e^{B_{0}\left\|\left(A^{\tau}\right)^{-1}\right\|^{j} \mid \mathfrak{\mathfrak { m } (\vec { \xi }) |} ~} \tag{4.10}
\end{equation*}
$$

Since

$$
\begin{aligned}
m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right) & =\sum_{\vec{n} \in \mathbb{Z}^{2}} \frac{1}{\sqrt{2}} h_{\vec{n}} e^{-i \vec{n} \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)} \\
& =e^{-i \vec{\ell} \vec{\xi}^{\circ} \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)} \sum_{\vec{n} \in \Lambda_{0}} \frac{1}{\sqrt{2}} h_{\vec{n}} e^{-i(\vec{n}-\vec{\ell} \vec{\xi}) \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)} \\
& =e^{-i \overrightarrow{l_{\vec{\xi}}} \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)}\left(1+\sum_{\vec{n} \in \Lambda_{0}} \frac{1}{\sqrt{2}} h_{\vec{n}}\left(e^{-i(\vec{n}-\vec{\ell} \vec{\xi}) \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)}-1\right)\right),
\end{aligned}
$$

by (4.9) and (4.10), we obtain

$$
\begin{aligned}
\left|m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)\right| & \leq \left\lvert\, e^{-i \vec{\ell}_{\vec{\xi}^{\circ}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)} \left\lvert\,\left(1+\sum_{\vec{n} \in \Lambda_{0}} \frac{1}{\sqrt{2}}\left|h_{\vec{n}}\right| \cdot\left|\left(e^{-i\left(\vec{n}-\vec{\ell}_{\vec{\xi}}\right) \circ\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)}-1\right)\right|\right)\right.}\right. \\
& \leq e^{B_{0}\left\|\left(A^{\tau}\right)^{-1}\right\| j|\mathfrak{I m}(\vec{\xi})|}\left(1+\frac{1}{\sqrt{2}}\left(2 N_{0}+1\right)^{2} \min \left(2, B_{0}\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}|\vec{\xi}|\right)\right) \\
& \leq e^{B_{0}\left\|\left(A^{\tau}\right)^{-1}\right\| j|\mathfrak{I m}(\vec{\xi})|}\left(1+C_{0} \min \left(1,\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}|\vec{\xi}|\right)\right),
\end{aligned}
$$

where $C_{0} \equiv \max \left(\sqrt{2}\left(2 N_{0}+1\right)^{2}, \frac{B_{0}}{\sqrt{2}}\left(2 N_{0}+1\right)^{2}\right)$.
Proposition 4.9. The scaling function φ is an $L^{2}\left(\mathbb{R}^{2}\right)$ function with compact support.
Proof. Let $\vec{\xi} \in \mathbb{R}^{2}, \vec{\xi} \neq \overrightarrow{0} \cdot{ }^{3}$ By Schwartz's Paley-Wiener theorem, it suffices to prove that the function g satisfies the inequality (4.8).

We write $\beta=\left\|\left(A^{\tau}\right)^{-1}\right\|^{-1}$. Since A is expansive, $\beta \in(1, \infty)$. We have

$$
\prod_{j=1}^{\infty} e^{B_{0}\left\|\left(A^{\tau}\right)^{-1}\right\| j|\mathfrak{I m}(\vec{\xi})|}=e^{B|\mathfrak{I m}(\vec{\xi})|}
$$

where $B \equiv \sum_{j=1}^{\infty} \frac{B_{0}}{\beta^{j}}$. Then, by Lemma 4.8, we have

$$
\begin{aligned}
|g(\vec{\xi})| & =\left|\frac{1}{2 \pi} \prod_{j=1}^{\infty} m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right)\right| \\
& \leq \frac{1}{2 \pi} \prod_{j=1}^{\infty} e^{B_{0}\left\|\left(A^{\tau}\right)^{-1}\right\| j|\mathfrak{J} \mathfrak{m}(\vec{\xi})|}\left(1+C_{0} \min \left(1,\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}|\vec{\xi}|\right)\right) \\
& \leq \frac{1}{2 \pi} e^{B|\mathfrak{I m}(\vec{\xi})|} \prod_{j=1}^{\infty}\left(1+C_{0} \min \left(1,\left\|\left(A^{\tau}\right)^{-1}\right\|^{j}|\vec{\xi}|\right)\right) \\
& =\frac{1}{2 \pi} e^{B|\mathfrak{J} \mathfrak{m}(\vec{\xi})|} \prod_{j=1}^{\infty}\left(1+C_{0} \min \left(1, \frac{|\vec{\xi}|}{\beta^{j}}\right)\right)
\end{aligned}
$$

[^2]On the other hand, the sequence $\left\{\beta^{j}\right\}$ is monotonically increasing to $+\infty$. Let $I_{j} \equiv\left[\beta^{j}, \beta^{j+1}\right), j \in \mathbb{N}$, and $I_{0} \equiv(0, \beta)$. The set of intervals $\left\{I_{j}, j \geq 0\right\}$ is a partition of $(0, \infty)$. Then $|\vec{\xi}| \in I_{j_{0}}$ for some integer $j_{0} \geq 0$. We have

$$
\begin{aligned}
\left(1+C_{0}\right)^{j_{0}} & =\beta^{j_{0} \log _{\beta}\left(1+C_{0}\right)} \\
& \leq|\vec{\xi}|^{\log _{\beta}\left(1+C_{0}\right)} \\
& \leq(1+|\vec{\xi}|)^{N}
\end{aligned}
$$

where N is the smallest natural number no less than $\log _{\beta}\left(1+C_{0}\right)$. This is a constant related to A and N_{0} only, and so we have

$$
\begin{aligned}
|g(\vec{\xi})| & \leq \frac{1}{2 \pi}\left(1+C_{0}\right)^{j_{0}} e^{B|\mathfrak{J m}(\vec{\xi})|} \prod_{j=j_{0}+1}^{\infty}\left(1+C_{0} \min \left(1, \frac{|\vec{\xi}|}{\beta^{j}}\right)\right) \\
& \leq(1+|\vec{\xi}|)^{N} e^{B|\mathfrak{J m}(\vec{\xi})|} \cdot\left(\frac{1}{2 \pi} \prod_{j=j_{0}+1}^{\infty}\left(1+C_{0} \min \left(1, \frac{|\vec{\xi}|}{\beta^{j}}\right)\right)\right) .
\end{aligned}
$$

Now, since $|\vec{\xi}| \in I_{j_{0}}=\left[\beta^{j_{0}}, \beta^{j_{0}+1}\right), \frac{|\vec{\xi}|}{\beta^{j_{0}+1}}<1$. We have

$$
\begin{aligned}
& \frac{1}{2 \pi} \prod_{j=j_{0}+1}^{\infty}\left(1+C_{0} \min \left(1, \frac{|\vec{\xi}|}{\beta^{j}}\right)\right) \\
& \quad=\frac{1}{2 \pi} \prod_{j=j_{0}+1}^{\infty}\left(1+C_{0} \frac{|\vec{\xi}|}{\beta^{j_{0}+1}} \cdot \frac{1}{\beta^{j-\left(j_{0}+1\right)}}\right) \\
& \quad \leq \frac{1}{2 \pi} \prod_{k=0}^{\infty}\left(1+\frac{C_{0}}{\beta^{k}}\right) \\
& \quad \leq \frac{1}{2 \pi} e^{\sum \frac{C_{0}}{\beta^{k}}}
\end{aligned}
$$

Denote $C \equiv \frac{1}{2 \pi} e^{\sum \frac{C_{0}}{\beta^{k}}}$. This is a constant decided by the matrix A.
Combining the above argument, we have

$$
|g(\vec{\xi})| \leq C(1+|\vec{\xi}|)^{N} e^{B|\mathfrak{T m}(\vec{\xi})|}
$$

5. Normalized tight frame wavelet function

In this section, we will construct a normalized tight frame wavelet function ψ associated with the scaling function φ. By definition (4.1) and Lemma 2.4, we have

$$
\begin{aligned}
\widehat{\varphi}(\vec{s}) & =g(\vec{s})=m_{0}\left(\left(A^{\tau}\right)^{-1} \vec{s}\right) \cdot \frac{1}{2 \pi} \prod_{j=2}^{\infty} m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right) \\
& =m_{0}\left(\left(A^{\tau}\right)^{-1} \vec{s}\right) g\left(\left(A^{\tau}\right)^{-1} \vec{s}\right) \\
& =\frac{1}{\sqrt{2}} \sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}} e^{-i \vec{n} \circ\left(A^{\tau}\right)^{-1} \vec{s}} g\left(\left(A^{\tau}\right)^{-1} \vec{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}} \widehat{T}_{A^{-1} \vec{n}} \widehat{D}_{A} g(\vec{s}) \\
& =\sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}} \widehat{D}_{A} \widehat{T}_{\vec{n}} \widehat{\varphi}(\vec{s})
\end{aligned}
$$

Taking the Fourier inverse transform on two sides, we have

$$
\begin{align*}
\varphi & =\sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}} D_{A} T_{\vec{n}} \varphi, \quad \text { or } \tag{5.1}\\
\varphi(\vec{t}) & =\sqrt{2} \sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}} \varphi(A \vec{t}-\vec{n}), \quad \vec{t} \in \mathbb{R}^{2} \tag{5.2}
\end{align*}
$$

Define

$$
\sigma_{A}(\vec{n})= \begin{cases}0, & \vec{n} \in A \mathbb{Z}^{2} \\ 1, & \vec{n} \notin A \mathbb{Z}^{2}\end{cases}
$$

Remark 5.1. It is clear that we have $\sigma_{A}(\vec{u}+A \vec{v})=\sigma_{A}(\vec{u}), \forall \vec{u}, \vec{v} \in \mathbb{Z}^{2}$. By Proposition 2.6(4), $A \mathbb{Z}^{2}=A^{\tau} \mathbb{Z}^{2}$, and so we have $\sigma_{A}(\vec{n})=0$ if and only if $\vec{n} \in$ $A^{\tau} \mathbb{Z}^{2}$. Furthermore, we have $\sigma_{A}\left(\vec{\ell}_{A}\right)=1$ and $\sigma_{A}\left(\vec{\ell}_{A}-\vec{n}\right)=1-\sigma_{A}(\vec{n}), \forall \vec{n} \in \mathbb{Z}^{2}$.
Definition 5.2. Define a function ψ on \mathbb{R}^{2} by

$$
\begin{align*}
\psi & =\sum_{\vec{n} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{n})} \overline{h_{\vec{\ell}_{A}-\vec{n}}} D_{A} T_{\vec{n}} \varphi, \quad \text { or, equivalently, } \tag{5.3}\\
\psi(\vec{t}) & =\sqrt{2} \sum_{\vec{n} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{n})} \overline{h_{\vec{\ell}_{A}-\vec{n}}} \varphi(A \vec{t}-\vec{n}), \quad \forall \vec{t} \in \mathbb{R}^{2} \tag{5.4}
\end{align*}
$$

In this section we will prove that the function ψ is a normalized tight frame wavelet associated with the expansive matrix A. It is clear that the function ψ has a compact support since the scaling function φ has a compact support and the sum in the definition for ψ has only finite nonzero terms. For $J \in \mathbb{Z}$ and $f \in L^{2}\left(\mathbb{R}^{2}\right)$, define

$$
I_{J} \equiv \sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, D_{A}^{J} T_{\vec{k}} \varphi\right\rangle D_{A}^{J} T_{\vec{k}} \varphi ; \quad F_{J} \equiv \sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, D_{A}^{J} T_{\vec{k}} \psi\right\rangle D_{A}^{J} T_{\vec{k}} \psi
$$

Lemma 5.3. Let $f \in L^{2}\left(\mathbb{R}^{2}\right)$. Then

$$
\begin{equation*}
I_{J+1}=I_{J}+F_{J}, \quad \forall J \in \mathbb{Z} \tag{5.5}
\end{equation*}
$$

Proof. 1. The case $J=0$. By equation (5.1), Definition 5.2, and Lemma 2.4, we have

$$
\begin{aligned}
I_{0} & =\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, T_{\vec{k}} \varphi\right\rangle T_{\vec{k}} \varphi \\
& =\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, T_{\vec{k}} \sum_{\vec{p} \in \mathbb{Z}^{2}} h_{\vec{p}} D_{A} T_{\vec{p}} \varphi\right\rangle T_{\vec{k}} \sum_{\vec{q} \in \mathbb{Z}^{2}} h_{\vec{q}} D_{A} T_{\vec{q}} \varphi \\
& =\sum_{\vec{p} \in \mathbb{Z}^{2}} \sum_{\vec{q} \in \mathbb{Z}^{2}} \sum_{\vec{k} \in \mathbb{Z}^{2}} \overline{h_{\vec{p}}} h_{\vec{q}}\left\langle f, D_{A} T_{\vec{p}+A \vec{k}} \varphi\right\rangle D_{A} T_{\vec{q}+A \vec{k}} \varphi,
\end{aligned}
$$

$$
\begin{aligned}
F_{0} & =\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, T_{\vec{k}} \psi\right\rangle T_{\vec{k}} \psi \\
& =\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, T_{\vec{k}} \sum_{\vec{p} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{p})} \overline{h_{\vec{\ell}_{A}-\vec{p}}} D_{A} T_{\vec{p}} \varphi\right\rangle T_{\vec{k}} \sum_{\vec{q} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{q})} \overline{h_{\vec{\ell}}-\vec{q}} \\
& =\sum_{\vec{p} \in \mathbb{Z}^{2}} \sum_{\vec{q} \in \mathbb{Z}^{2}} \sum_{\vec{k} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{p})+\sigma_{A}(\vec{q})} h_{\overrightarrow{\ell_{A}-\vec{p}}} \overline{h_{\overrightarrow{\ell_{A}}-\vec{q}}}\left\langle f, D_{A} T_{\vec{p}+A \vec{k}} \varphi\right\rangle D_{A} T_{\vec{q}+A \vec{k}} \varphi .
\end{aligned}
$$

Using the substitutions $\vec{m} \equiv \vec{p}+A \vec{k}$ and $\vec{n} \equiv \vec{q}+A \vec{k}$, we have, by Remark 5.1,

$$
\begin{aligned}
& I_{0}=\sum_{\vec{m}, \vec{n} \in \mathbb{Z}^{2}} \sum_{\vec{k} \in \mathbb{Z}^{2}} \overline{h_{\vec{m}-A \vec{k}}} h_{\vec{n}-A \vec{k}}\left\langle f, D_{A} T_{\vec{m}} \varphi\right\rangle D_{A} T_{\vec{n}} \varphi, \\
& F_{0}=\sum_{\vec{m}, \vec{n} \in \mathbb{Z}^{2}} \sum_{\vec{k} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{m}-A \vec{k})+\sigma_{A}(\vec{n}-A \vec{k})} h_{\vec{\ell}}^{A-\vec{m}+A \vec{k}} \\
&=\sum_{\vec{m}, \vec{n} \in \mathbb{Z}^{2}} \sum_{\vec{k} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{m})+A \vec{k}}\left\langle f, D_{A} T_{\vec{m}} \varphi\right\rangle D_{A} T_{\vec{n}} \varphi \\
& h_{\vec{\ell}}-\vec{m}+A \vec{k} \\
& h_{\overrightarrow{\ell_{A}-\vec{n}}+A \vec{k}}\left\langle f, D_{A} T_{\vec{m}} \varphi\right\rangle D_{A} T_{\vec{n}} \varphi .
\end{aligned}
$$

We will use the notation

$$
\begin{aligned}
\alpha_{\vec{m}, \vec{n}} & \equiv \sum_{\vec{k} \in \mathbb{Z}^{2}} \overline{h_{\vec{m}-A \vec{k}}} h_{\vec{n}-A \vec{k}} \\
& =\sum_{\vec{\ell} \in A \mathbb{Z}^{2}} \overline{h_{\vec{m}+\vec{\ell}}} h_{\vec{n}+\vec{\ell}}=\sum_{\vec{\ell} \in \vec{n}+A \mathbb{Z}^{2}} \overline{h_{\vec{\ell}+(\vec{m}-\vec{n})}} h_{\vec{\ell}}, \\
\beta_{\vec{m}, \vec{n}} & \equiv \sum_{\vec{k} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{m})+\sigma_{A}(\vec{n})} h_{\overrightarrow{\ell_{A}}-\vec{m}+A \vec{k}} \overline{h_{\vec{\ell}}-\vec{n}+A \vec{k}} \\
& =(-1)^{\sigma_{A}(\vec{m})+\sigma_{A}(\vec{n})} \sum_{\vec{\ell} \in \vec{\ell}_{A}-\vec{m}+A \mathbb{Z}^{2}} \overline{h_{\vec{\ell}+(\vec{m}-\vec{n})}} h_{\vec{\ell}} .
\end{aligned}
$$

If $\vec{m}-\vec{n} \in A \mathbb{Z}^{2}$, then $\sigma(\vec{m})=\sigma_{A}(\vec{n}),(-1)^{\sigma_{A}(\vec{m})+\sigma_{A}(\vec{n})}=1$, and $\left(\vec{\ell}_{A}-\vec{m}+\right.$ $\left.A^{\tau} \mathbb{Z}^{2}\right) \cup\left(\vec{n}+A^{\tau} \mathbb{Z}^{2}\right)=\mathbb{Z}^{2}$. By Lawton's equations (3.1), we have

$$
\begin{aligned}
\alpha_{\vec{m}, \vec{n}}+\beta_{\vec{m}, \vec{n}} & =\sum_{\vec{\ell} \in \vec{n}+A \mathbb{Z}^{2}} \overline{h_{\vec{\ell}+(\vec{m}-\vec{n})}} h_{\vec{\ell}}+\sum_{\vec{\ell} \in \vec{\ell} A-\vec{m}+A \mathbb{Z}^{2}} \overline{h_{\vec{\ell}+(\vec{m}-\vec{n})}} h_{\vec{\ell}} \\
& =\sum_{\vec{\ell} \in \mathbb{Z}^{2}} \overline{h_{\vec{\ell}+(\vec{m}-\vec{n})}} h_{\vec{\ell}}=\delta_{\vec{m}, \vec{n}} .
\end{aligned}
$$

If $\vec{m}-\vec{n} \in \vec{\ell}_{A}+A \mathbb{Z}^{2}$, then exactly one element of \vec{m} and \vec{n} is in $A \mathbb{Z}^{2}$ and the other one is in $\vec{\ell}_{A}+A \mathbb{Z}^{2}$. Then $(-1)^{\sigma_{A}(\vec{m})+\sigma_{A}(\vec{n})}=-1$ and $\left(\vec{\ell}_{A}-\vec{m}+A^{\tau} \mathbb{Z}^{2}\right)=$ ($\vec{n}+A^{\tau} \mathbb{Z}^{2}$); hence,

$$
\begin{aligned}
\alpha_{\vec{m}, \vec{n}}+\beta_{\vec{m}, \vec{n}} & =\sum_{\vec{l} \in \vec{n}+A^{\tau} \mathbb{Z}^{2}} \overline{h_{\vec{\ell}+(\vec{m}-\vec{n})}} h_{\vec{\ell}}-\sum_{\vec{\ell} \in \vec{\ell} A-\vec{m}+A^{\tau} \mathbb{Z}^{2}} \overline{h_{\vec{\ell}+(\vec{m}-\vec{n})}} h_{\vec{\ell}} \\
& =0 .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
I_{0}+F_{0} & =\sum_{\vec{m}, \vec{n} \in \mathbb{Z}^{2}}\left(\alpha_{\vec{m}, \vec{n}}+\beta_{\vec{m}, \vec{n}}\right)\left\langle f, D_{A} T_{\vec{m}} \varphi\right\rangle D_{A} T_{\vec{n}} \varphi \\
& =\sum_{\vec{m}, \vec{n} \in \mathbb{Z}^{2}} \delta_{\vec{m}, \vec{n}}\left\langle f, D_{A} T_{\vec{m}} \varphi\right\rangle D_{A} T_{\vec{n}} \varphi \\
& =\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, D_{A} T_{\vec{k}} \varphi\right\rangle D_{A} T_{\vec{k}} \varphi \\
& =I_{1} .
\end{aligned}
$$

This is

$$
\begin{equation*}
\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, D_{A} T_{\vec{k}} \varphi\right\rangle D_{A} T_{\vec{k}} \varphi=\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, T_{\vec{k}} \varphi\right\rangle T_{\vec{k}} \varphi+\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle f, T_{\vec{k}} \psi\right\rangle T_{\vec{k}} \psi \tag{5.6}
\end{equation*}
$$

2. The general case. Let $f \in L^{2}\left(\mathbb{R}^{2}\right)$. We replace f by $\left(D_{A}^{*}\right)^{J} f$ in equation (5.6), where D_{A}^{*} is the unitary operator dual to D_{A}. Then we have

$$
\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle\left(D_{A}^{J}\right)^{*} f, D_{A} T_{\vec{k}} \varphi\right\rangle D_{A} T_{\vec{k}} \varphi=\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle\left(D_{A}^{J}\right)^{*} f, T_{\vec{k}} \varphi\right\rangle T_{\vec{k}} \varphi+\sum_{\vec{k} \in \mathbb{Z}^{2}}\left\langle\left(D_{A}^{J}\right)^{*} f, T_{\vec{k}} \psi\right\rangle T_{\vec{k}} \psi
$$

Apply D_{A}^{J} to both sides of the equation. By using $\left\langle\left(D_{A}^{J}\right)^{*} f, h\right\rangle=\left\langle f, D_{A}^{J} h\right\rangle$, we obtain the desired general equality (5.5).

In the rest of this section, we will establish the main result of this paper. We state Theorem 5.4 first. We will complete the proof through lemmas and propositions. For $f \in L^{2}\left(\mathbb{R}^{2}\right)$ and $J \in \mathbb{Z}$, we will use the following notation:

$$
\begin{aligned}
L_{J}(f) & \equiv \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle\right|^{2} ; \quad \text { in particular } \\
L_{0}(f) & =\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f, T_{\vec{\ell}} \varphi\right\rangle\right|^{2}
\end{aligned}
$$

For a positive number ρ we define functions f_{ρ} and $f_{\bar{\rho}}$ by $\widehat{f}_{\rho} \equiv \widehat{f} \cdot \chi_{\{|\vec{t}| \leq \rho\}}$ and $\widehat{f}_{\bar{\rho}} \equiv \widehat{f} \cdot \chi_{\{|\vec{t}|>\rho\}}$, respectively. Here χ is the characteristic function. Then we have $f=f_{\rho}+f_{\bar{\rho}}$. Also, it is clear that $\|f\|^{2}=\|\widehat{f}\|^{2}=\left\|f_{\rho}\right\|^{2}+\left\|f_{\bar{\rho}}\right\|^{2}, \lim _{\rho \rightarrow \infty}\left\|f_{\rho}\right\|^{2}=$ $\|f\|^{2}$, and $\lim _{\rho \rightarrow \infty}\left\|f_{\bar{\rho}}\right\|^{2}=0$.

Theorem 5.4. Let ψ be as defined in Definition 5.2. Then $\left\{D_{A}^{n} T_{\vec{\ell}} \psi, n \in \mathbb{Z}, \vec{\ell} \in\right.$ $\left.\mathbb{Z}^{2}\right\}$ is a normalized tight frame for $\mathrm{L}^{2}\left(\mathbb{R}^{2}\right)$.

Proof. Let $f \in L^{2}\left(\mathbb{R}^{2}\right)$. We will prove that

$$
\begin{equation*}
f=\sum_{n \in \mathbb{Z}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left\langle f, D_{A}^{n} T_{\vec{\ell}} \psi\right\rangle D_{A}^{n} T_{\vec{\ell}} \psi ; \tag{5.7}
\end{equation*}
$$

the convergence is in the $L^{2}\left(\mathbb{R}^{2}\right)$-norm.

By Lemma 5.3, we have $I_{j}-I_{j-1}=F_{j-1}, \forall j \in \mathbb{Z}$. Hence

$$
\sum_{j=-J+1}^{J} F_{j}=I_{J}-I_{-J}, \quad \forall J \in \mathbb{Z}
$$

This implies that

$$
\begin{aligned}
& \sum_{j=-J+1}^{J} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left\langle f, D_{A}^{j} T_{\vec{\ell}} \psi\right\rangle D_{A}^{j} T_{\vec{\ell}} \psi \\
& \quad=\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left\langle f, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle D_{A}^{J} T_{\vec{\ell}} \varphi-\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left\langle f, D_{A}^{-J} T_{\vec{\ell}} \varphi\right\rangle D^{-J} T_{\vec{\ell}} \varphi .
\end{aligned}
$$

Taking the inner product of f with both sides of the equation, we have

$$
\sum_{j=-J+1}^{J} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f, D_{A}^{j} T_{\vec{\ell}} \psi\right\rangle\right|^{2}=L_{J}(f)-L_{-J}(f) .
$$

By Propositions 5.6 and 5.8, we have

$$
\begin{aligned}
\lim _{J \rightarrow+\infty} L_{J}(f) & =\|f\|^{2} \\
\lim _{J \rightarrow+\infty} L_{-J}(f) & =0
\end{aligned}
$$

Then we have

$$
\sum_{j \in \mathbb{Z}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f, D_{A}^{j} T_{\vec{\ell}} \psi\right\rangle\right|^{2}=\|f\|^{2}, \quad \forall f \in L^{2}\left(\mathbb{R}^{2}\right) .
$$

To complete the proof of Theorem 5.4, we will prove Propositions 5.6 and 5.8 and the related lemmas. We first need the following.

Lemma 5.5. Let $f \in L^{2}\left(\mathbb{R}^{2}\right)$. Then

$$
\begin{gather*}
L_{J}(f)=\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle\right|^{2} \leq(2 B+1)^{2}\|\varphi\|^{2}\|f\|^{2}, \quad \forall J \in \mathbb{Z} ; \tag{5.8}\\
\lim _{\rho \rightarrow \infty} \limsup _{J \rightarrow+\infty} L_{J}\left(f_{\bar{\rho}}\right)=0 . \tag{5.9}
\end{gather*}
$$

Proof. By Proposition 4.9, the scaling function φ has a compact support. Let B be a natural number such that the set $[-B, B)^{2}$ contains the support of φ. We will write $E_{0} \equiv\left[-\frac{1}{2}, \frac{1}{2}\right)^{2}, E_{B} \equiv\left[-B-\frac{1}{2}, B+\frac{1}{2}\right)^{2}$, and $\Lambda_{B} \equiv \mathbb{Z}^{2} \cap[-B, B]^{2}$. For $\vec{n} \in \mathbb{Z}^{2}$, we have $\vec{n}=(2 B+1) \vec{\ell}+\vec{d}, \vec{\ell} \in \mathbb{Z}^{2}, \vec{d} \in \Lambda_{B}$. Here $\vec{\ell}$ and $\vec{d} \in \Lambda_{B}$ are uniquely determined by \vec{n}. We have

$$
\mathbb{Z}^{2}=\bigcup_{d \in \Lambda_{B}} \bigcup_{\vec{\ell} \in \mathbb{Z}^{2}}(2 B+1) \vec{\ell}+\vec{d}
$$

This is a disjoint union. Also, $\left\{E_{B}+(2 B+1) \vec{\ell}, \vec{\ell} \in \mathbb{Z}^{2}\right\}$ is a partition of \mathbb{R}^{2}. Hence, for a fixed $\vec{d} \in \Lambda_{B},\left\{E_{B}+(2 B+1) \vec{\ell}+\vec{d}, \vec{\ell} \in \mathbb{Z}^{2}\right\}$ is a partition of \mathbb{R}^{2}. Note that the set $E_{B}+(2 B+1) \vec{\ell}+\vec{d}$ contains the support for $T_{\vec{n}} \varphi$, where
$\vec{n}=(2 B+1) \vec{\ell}+\vec{d}$. Then, for a fixed $\vec{d} \in \Lambda_{B}$, supports of functions in the set $\left\{T_{\vec{n}} \varphi, \vec{n}=(2 B+1) \vec{\ell}+\vec{d}, \vec{\ell} \in \mathbb{Z}^{2}\right\}$ are disjoint. Then we have

$$
\begin{aligned}
L_{0}(f) & =\sum_{\vec{d} \in \Lambda_{B}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f, T_{(2 B+1) \vec{\ell}+\vec{d}} \varphi\right\rangle\right|^{2} \\
& =\sum_{\vec{d} \in \Lambda_{B}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\int_{\mathbb{R}^{2}} \chi_{E_{B}+(2 B+1) \vec{\ell}+\vec{d}}(\vec{t}) f(\vec{t}) T_{(2 B+1) \vec{\ell}+\vec{d}} \varphi(\vec{t}) d \mu\right|^{2} \\
& \leq \sum_{\vec{d} \in \Lambda_{B}}\left(\|\varphi\|^{2} \sum_{\vec{\ell} \in \mathbb{Z}^{2}} \int_{E_{B}+(2 B+1) \vec{\ell}+\vec{d}}|f(\vec{t})|^{2} d \mu\right) \\
& \leq \sum_{\vec{d} \in \Lambda_{B}}\|\varphi\|^{2}\|f\|^{2} \leq(2 B+1)^{2}\|\varphi\|^{2}\|f\|^{2}
\end{aligned}
$$

and so we have

$$
\begin{aligned}
L_{J}(f) & =\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle\left(D_{A}^{J}\right)^{*} f, T_{\vec{\ell}} \varphi\right\rangle\right|^{2} \\
& \leq(2 B+1)^{2}\|\varphi\|^{2}\left\|\left(D_{A}^{J}\right)^{*} f\right\|^{2} \\
& =(2 B+1)^{2}\|\varphi\|^{2}\|f\|^{2} .
\end{aligned}
$$

Then we have (5.8). Since $\lim _{\rho \rightarrow \infty}\left\|f_{\bar{\rho}}\right\|=0$, the equality (5.9) is an immediate consequence of the inequality (5.8) just proved.

Proposition 5.6. Let $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{2}\right)$. Then

$$
\lim _{J \rightarrow+\infty} L_{-J}(f)=0
$$

Proof. Let $f \in L^{2}\left(\mathbb{R}^{2}\right)$. We have

$$
\begin{aligned}
L_{-J}(f) & =\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f, D_{A}^{-J} T_{\vec{\ell}} \varphi\right\rangle\right|^{2} \\
& =\sum_{\vec{d} \in \Lambda_{B}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f, D_{A}^{-J} T_{(2 B+1) \vec{\ell}+\vec{d}} \varphi\right\rangle\right|^{2} \\
& =\sum_{\vec{d} \in \Lambda_{B}} \sum_{\vec{\ell} \in \mathbb{Z}^{2} \backslash\{\overrightarrow{0}\}}\left|\left\langle f, D_{A}^{-J} T_{(2 B+1) \vec{\ell}+\vec{d}} \varphi\right\rangle\right|^{2}+\sum_{\vec{d} \in \Lambda_{B}}\left|\left\langle f, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right|^{2} .
\end{aligned}
$$

For each $\vec{d} \in \Lambda_{B},\left\{E_{B}+(2 B+1) \vec{\ell}+\vec{d}, \vec{\ell} \in \mathbb{Z}^{2}\right\}$ is a partition of \mathbb{R}^{2}. It is clear that $E_{0} \subset E_{B}+\vec{d}$ and $\left(E_{B}+(2 B+1) \vec{\ell}+\vec{d}\right) \cap E_{0}=\emptyset, \forall \vec{\ell} \in \mathbb{Z}^{2} \backslash\{\overrightarrow{0}\}$. The support of the function $D_{A}^{-J} T_{\vec{\ell}} \varphi$ is contained in $A^{J}\left(E_{B}+\vec{\ell}\right)$. We have

$$
\begin{aligned}
& \sum_{\vec{\ell} \in \mathbb{Z}^{2} \backslash\{\overrightarrow{0}\}}\left|\left\langle f, D_{A}^{-J} T_{(2 B+1) \vec{\ell}+\vec{d}} \varphi\right\rangle\right|^{2} \\
& =\sum_{\vec{\ell} \in \mathbb{Z}^{2} \backslash\{\overrightarrow{0}\}}\left|\int_{\mathbb{R}^{2}} \chi_{A^{J}\left(E_{B}+(2 B+1) \vec{\ell}+\vec{d}\right)} \cdot f \cdot \overline{D_{A}^{-J} T_{(2 B+1) \vec{\ell}+\vec{d}} \varphi} d \mu\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{\vec{\ell} \in \mathbb{Z}^{2} \backslash\{\overrightarrow{0}\}} \int_{A^{J}\left(E_{B}+(2 B+1) \vec{\ell}+\vec{d}\right)}|f|^{2} d \mu \cdot\left\|D_{A}^{-J} T_{(2 B+1) \vec{\ell}+\vec{d}} \varphi\right\|^{2} \\
& \leq \int_{\mathbb{R}^{2} \backslash A^{J} E_{0}}|f|^{2} d \mu \cdot\|\varphi\|^{2} .
\end{aligned}
$$

Since A is expansive, $\lim _{J \rightarrow+\infty} A^{J} E_{0}=\mathbb{R}^{2}, \lim _{J \rightarrow+\infty} \int_{\mathbb{R}^{2} \backslash A^{J} E_{0}}|f|^{2} d \mu=0$, and so

$$
\begin{aligned}
& \lim _{J \rightarrow+\infty} \sum_{\vec{d} \in \Lambda_{B}} \sum_{\vec{\ell} \in \mathbb{Z}^{2} \backslash\{\overrightarrow{0}\}}\left|\left\langle f, D_{A}^{-J} T_{(2 B+1) \vec{\ell}+\vec{d}} \varphi\right\rangle\right|^{2} \\
& \quad \leq(2 B+1)^{2}\|\varphi\|^{2} \lim _{J \rightarrow+\infty} \int_{\mathbb{R}^{2} \backslash A^{J} E_{0}}|f|^{2} d \mu=0 .
\end{aligned}
$$

To complete the proof of this proposition, we need to show that

$$
\begin{equation*}
\lim _{J \rightarrow+\infty} \sum_{\vec{d} \in \Lambda_{B}}\left|\left\langle f, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right|^{2}=0 \tag{5.10}
\end{equation*}
$$

Let $f_{N} \equiv \chi_{[-N, N]^{2}} \cdot f$. Let $\varepsilon>0$, and choose $N \in \mathbb{N}$ to be large such that $\left\|f-f_{N}\right\| \leq \frac{\varepsilon}{2\|\varphi\|}$. Then we have $\left|\left\langle f, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right| \leq\left|\left\langle f_{N}, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right|+\frac{\varepsilon}{2}$. Since

$$
\begin{aligned}
\left|\left\langle f_{N}, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right| & =\left|\left\langle D_{A}^{J} f_{N}, T_{\vec{d}} \varphi\right\rangle\right| \\
& =\left|\left\langle\chi_{A^{-J}[-N, N]^{2}} D_{A}^{J} f_{N}, T_{\vec{d}} \varphi\right\rangle\right| \\
& =\left|\left\langle D_{A}^{J} f_{N}, \chi_{A^{-J}[-N, N]^{2}} T_{\vec{d}} \varphi\right\rangle\right|,
\end{aligned}
$$

we have

$$
\begin{aligned}
\left|\left\langle f_{N}, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right| & \leq\left\|D_{A}^{J} f_{N}\right\| \cdot \sqrt{\int_{\mathbb{R}^{2}}\left|\chi_{A^{-J}[-N, N]^{2}} T_{\vec{d}} \varphi\right|^{2} d \mu} \\
& \leq\|f\| \cdot \sqrt{\int_{\mathbb{R}^{2}}\left|\chi_{A^{-J}[-N, N]^{2}} T_{\vec{d}} \varphi\right|^{2} d \mu} \cdot\left\|T_{\vec{d}} \varphi\right\| \\
& =\frac{(2 N+1)\|f\|\|\varphi\|}{2^{\frac{J}{2}}} .
\end{aligned}
$$

When $J>2 \log _{2} \frac{2(2 N+1)\|f\|\|\varphi\|}{\varepsilon}$, we have $\frac{(2 N+1)\|f\|\|\varphi\|}{2^{\frac{1}{2}}}<\frac{\varepsilon}{2}$ and $\left|\left\langle f, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right|<\varepsilon$. Then

$$
\lim _{J \rightarrow+\infty}\left|\left\langle f, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right|^{2}=0, \quad \vec{d} \in \Lambda_{B}
$$

Since Λ_{B} is a finite set, we have

$$
\lim _{J \rightarrow+\infty} \sum_{\vec{d} \in \Lambda_{B}}\left|\left\langle f, D_{A}^{-J} T_{\vec{d}} \varphi\right\rangle\right|^{2}=0 .
$$

Lemma 5.7. Let $f \in L^{2}\left(\mathbb{R}^{2}\right)$, and let $J \in \mathbb{Z}$. Then

$$
L_{J}(f)=(2 \pi)^{2} \int_{\mathbb{R}^{2}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left(\widehat{f}(\vec{t}) \overline{\hat{f}\left(\vec{t}-2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}\right)} \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{t}-2 \pi \vec{\ell}\right) \overline{\hat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{t}\right)}\right) d \vec{t}
$$

Proof. By Remark 2.5 after Lemma 2.6, we have $D_{A}^{J} T_{\vec{\ell}}=T_{A^{-} J \vec{\ell}} D_{A}^{J}$. Note the facts that the Fourier transform \mathcal{F} is a unitary operator, $\overrightarrow{\widehat{D}_{A}^{J} \widehat{\varphi}(\vec{t})}=\frac{1}{\sqrt{2^{J}}} \overrightarrow{\widehat{\varphi}}\left(\left(A^{\tau}\right)^{-J} \vec{t}\right)$, and $\left(A^{-J} \vec{\ell}\right) \circ \vec{t}=\vec{\ell} \circ\left(\left(A^{\tau}\right)^{-J} \vec{t}\right)$. We have

$$
\begin{aligned}
L_{J}(f) & =\sum_{\vec{\imath} \in \mathbb{Z}^{2}}\left|\left\langle f, T_{A^{-J} \vec{\ell}} D_{A}^{J} \varphi\right\rangle\right|^{2} \\
& =\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle\widehat{f}, \widehat{T}_{A^{-} J} \widehat{D}_{A}^{J} \widehat{\varphi}\right\rangle\right|^{2} \\
& =\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\int_{\mathbb{R}^{2}} \widehat{f}(\vec{t}) \cdot e^{i\left(A^{-J} \vec{\ell}\right) o \vec{t}} \cdot \overline{\widehat{D}_{A}^{J} \widehat{\varphi}(\vec{t})} d \vec{t}\right|^{2} \\
& =\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\frac{1}{\sqrt{2^{J}}} \int_{\mathbb{R}^{2}} e^{i \vec{\imath}\left(\left(A^{\tau}\right)^{-J} \vec{t}\right)} \cdot \widehat{f}(\vec{t}) \cdot \overline{\hat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{t}\right)} d \vec{t}\right|^{2} .
\end{aligned}
$$

Take the transform $d \vec{t} \equiv d\left(A^{\tau}\right)^{J} \vec{s}=2^{J} d \vec{s}$. Note that $\left(A^{\tau}\right)^{J} \mathbb{R}^{2}=\mathbb{R}^{2}$. We have

$$
L_{J}(f)=2^{J} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\int_{\mathbb{R}^{2}} e^{i \vec{\ell} \vec{s}} \cdot \widehat{f}\left(\left(A^{\tau}\right)^{J} \vec{s}\right) \cdot \overline{\widehat{\varphi}(\vec{s})} d \vec{s}\right|^{2}
$$

Note the facts that the function $e^{i \vec{l} \circ \vec{s}}$ is 2π-periodic in \vec{s} and that the set $\left\{\Gamma_{\pi}+\right.$ $\left.2 \pi \vec{k}, \vec{k} \in \mathbb{Z}^{2}\right\}$ is a partition of \mathbb{R}^{2}, where Γ_{π} is $[-\pi, \pi)^{2}$. We have

$$
\begin{aligned}
L_{J}(f)= & 2^{J} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\sum_{\vec{k} \in \mathbb{Z}^{2}} \int_{\Gamma_{\pi}+2 \pi \vec{k}} e^{i \vec{\ell} \stackrel{\rightharpoonup}{s}} \cdot \widehat{f}\left(\left(A^{\tau}\right)^{J} \vec{s}\right) \cdot \overline{\widehat{\varphi}(\vec{s})} d \vec{s}\right|^{2} \\
= & 2^{J} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\sum_{\vec{k} \in \mathbb{Z}^{2}} \int_{\Gamma_{\pi}} e^{i \vec{\ell} \vec{r}} \cdot\left(\widehat{f}\left(\left(A^{\tau}\right)^{J} \vec{r}-2 \pi\left(A^{\tau}\right)^{J} \vec{k}\right) \cdot \overline{\hat{\varphi}(\vec{r}-2 \pi \vec{k})}\right) d \vec{r}\right|^{2} \\
= & 2^{J}(2 \pi)^{2} \sum_{\vec{\ell} \in \mathbb{Z}^{2}} \left\lvert\, \int_{\Gamma_{\pi}} \frac{1}{2 \pi} e^{i \vec{\imath} \vec{\circ}}\right. \\
& \left.\cdot \sum_{\vec{k} \in \mathbb{Z}^{2}}\left(\widehat{f}\left(\left(A^{\tau}\right)^{J} \vec{r}-2 \pi\left(A^{\tau}\right)^{J} \vec{k}\right) \cdot \overline{\hat{\varphi}(\vec{r}-2 \pi \vec{k})}\right) d \vec{r}\right|^{2}
\end{aligned}
$$

where we use the transform $\vec{r}=\vec{s}+2 \pi \vec{k}$ accordingly.
The set of functions $\left\{\frac{1}{2 \pi} e^{i \vec{\ell} \circ \vec{t}}, \vec{\ell} \in \mathbb{Z}^{2}\right\}$ is an orthonormal basis for the Hilbert space $\mathcal{K}=L^{2}\left(\Gamma_{\pi}\right)$, the set of all square integrable 2π-periodical functions on \mathbb{R}^{2}. Denote

$$
h(\vec{t}) \equiv \sum_{\vec{k} \in \mathbb{Z}^{2}}\left(\widehat{f}\left(\left(A^{\tau}\right)^{J} \vec{t}-2 \pi\left(A^{\tau}\right)^{J} \vec{k}\right) \cdot \overline{\hat{\varphi}(\vec{t}-2 \pi \vec{k})}\right)
$$

Then, by the above calculation on $L_{J}(f)$ and Lemma 5.5, we have

$$
\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\int_{\Gamma_{\pi}} h(\vec{t}) \cdot \frac{1}{2 \pi} e^{i \vec{\ell} \vec{t}} d \vec{t}\right|^{2}=\frac{1}{2^{J} \cdot(2 \pi)^{2}} \cdot L_{J}(f)<\infty
$$

This implies that $h \in \mathcal{K}=L^{2}\left(\Gamma_{\pi}\right)$ and

$$
\|h\|_{\mathcal{K}}^{2}=\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\int_{\Gamma_{\pi}} h(\vec{t}) \cdot \frac{1}{2 \pi} e^{i \vec{\ell} \vec{t}} d \vec{t}\right|^{2},
$$

where $\|\cdot\|_{\mathcal{K}}$ is the norm in \mathcal{K}. Therefore,

$$
\begin{aligned}
L_{J}(f) & =2^{J} \cdot(2 \pi)^{2} \cdot\|h\|_{\mathcal{K}}^{2} \\
& =2^{J} \cdot(2 \pi)^{2} \int_{\Gamma_{\pi}}\left|\sum_{\vec{k} \in \mathbb{Z}^{2}}\left(\widehat{f}\left(\left(A^{\tau}\right)^{J} \vec{t}-2 \pi\left(A^{\tau}\right)^{J} \vec{k}\right) \cdot \overline{\hat{\varphi}(\vec{t}-2 \pi \vec{k})}\right)\right|^{2} d \vec{t} \\
& =(2 \pi)^{2} \int_{\left(A^{\tau}\right)^{J} \Gamma_{\pi}}\left|\sum_{\vec{k} \in \mathbb{Z}^{2}} \widehat{f}\left(\vec{s}-2 \pi\left(A^{\tau}\right)^{J} \vec{k}\right) \cdot \overline{\widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}-2 \pi \vec{k}\right)}\right|^{2} d \vec{s} .
\end{aligned}
$$

Here we use a transform $\vec{t} \equiv\left(A^{\tau}\right)^{-J} \vec{s}, d \vec{t}=2^{-J} d \vec{s}$. Then we have

$$
\begin{aligned}
L_{J}(f)= & (2 \pi)^{2} \int_{\left(A^{\tau}\right)^{J} \Gamma_{\pi}} \sum_{\vec{k} \in \mathbb{Z}^{2}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left(\widehat{f}\left(\vec{s}-2 \pi\left(A^{\tau}\right)^{J} \vec{k}\right) \cdot \overline{\hat{f}\left(\vec{s}-2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}\right)}\right. \\
& \left.\cdot \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}-2 \pi \vec{\ell}\right) \cdot \overline{\hat{\varphi}}\left(\left(A^{\tau}\right)^{-J} \vec{s}-2 \pi \vec{k}\right)\right) d \vec{s} .
\end{aligned}
$$

In the second sum, replace $\vec{\ell}$ by $\vec{\ell}+\vec{k}$. Then we have

$$
\begin{aligned}
L_{J}(f)= & (2 \pi)^{2} \sum_{\vec{k} \in \mathbb{Z}^{2}} \int_{\left(A^{\tau}\right)^{J} \Gamma_{\pi}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left(\widehat{f}\left(\vec{s}-2 \pi\left(A^{\tau}\right)^{J} \vec{k}\right)\right. \\
& \cdot \frac{\widehat{f}\left(\vec{s}-2 \pi\left(A^{\tau}\right)^{J} \vec{k}-2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}\right)}{} \\
& \left.\cdot \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}-2 \pi \vec{k}-2 \pi \vec{\ell}\right) \cdot \bar{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}-2 \pi \vec{k}\right)\right) d \vec{s} .
\end{aligned}
$$

Replacing \vec{s} by $\vec{s}+2 \pi\left(A^{\tau}\right)^{J} \vec{k}$, we have

$$
\begin{aligned}
L_{J}(f)= & (2 \pi)^{2} \sum_{\vec{k} \in \mathbb{Z}^{2}} \int_{\left(A^{\tau}\right)^{J} \Gamma_{\pi}+2 \pi\left(A^{\tau}\right)^{J} \vec{k}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left(\widehat{f}(\vec{s}) \cdot \overline{\widehat{f}\left(\vec{s}-2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}\right)}\right. \\
& \left.\cdot \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}-2 \pi \vec{\ell}\right) \cdot \overline{\hat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}\right)}\right) d \vec{s} .
\end{aligned}
$$

Since $\left\{\left(A^{\tau}\right)^{J} \Gamma_{\pi}+2 \pi\left(A^{\tau}\right)^{J} \vec{k}, \vec{k} \in \mathbb{Z}^{2}\right\}$ is a partition of \mathbb{R}^{2}, we have

$$
\begin{aligned}
L_{J}(f)= & (2 \pi)^{2} \int_{\mathbb{R}^{2}} \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left(\widehat{f}(\vec{s}) \cdot \overline{\hat{f}\left(\vec{s}-2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}\right)}\right. \\
& \left.\cdot \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}-2 \pi \vec{\ell}\right) \cdot \overline{\widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}\right)}\right) d \vec{s}
\end{aligned}
$$

Lemma 5.7 is proved.
Proposition 5.8. We have

$$
\begin{equation*}
\lim _{J \rightarrow+\infty} L_{J}(f)=\|f\|^{2}, \quad \forall f \in L^{2}\left(\mathbb{R}^{2}\right) \tag{5.11}
\end{equation*}
$$

Proof. We denote

$$
\begin{aligned}
U_{J}(f) \equiv & (2 \pi)^{2} \int_{\mathbb{R}^{2}} \widehat{f}(\vec{s}) \cdot \overline{\hat{f}(\vec{s})} \cdot \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}\right) \cdot \overline{\hat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}\right)} d \vec{s} \\
= & \int_{\mathbb{R}^{2}}|\widehat{f}(\vec{s})|^{2}\left|2 \pi \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}\right)\right|^{2} d \vec{s} \\
V_{J}(f) \equiv & (2 \pi)^{2} \int_{\mathbb{R}^{2}} \sum_{\vec{\ell} \in \mathbb{Z}^{2} \backslash\{\overrightarrow{0}\}}\left(\widehat{f}(\vec{s}) \cdot \overline{\widehat{f}\left(\vec{s}-2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}\right)}\right. \\
& \left.\cdot \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}-2 \pi \vec{\ell}\right) \cdot \overline{\hat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}\right)}\right) d \vec{s}
\end{aligned}
$$

By Lemma 5.7, we have $L_{J}(f)=U_{J}(f)+V_{J}(f)$. It is enough to prove that

$$
\begin{align*}
\lim _{J \rightarrow+\infty} U_{J}(f) & =\|f\|^{2} \quad \text { and } \tag{5.12}\\
\lim _{J \rightarrow+\infty} V_{J}(f) & =0 \tag{5.13}
\end{align*}
$$

1. Recall that A^{τ} is expansive, and so $\lim _{J \rightarrow+\infty}\left(A^{\tau}\right)^{-J} \vec{s}=\overrightarrow{0}, \forall \vec{s} \in \mathbb{R}^{2}$. Also, by definition of g, Remark 3.2, and Lemma 4.3, $2 \pi \widehat{\varphi}(\overrightarrow{0})=2 \pi g(\overrightarrow{0})=1$, and g is continuous and bounded on \mathbb{R}^{2}. By the Lebesgue dominated convergence theorem, we have

$$
\begin{aligned}
\lim _{J \rightarrow+\infty} U_{J}(f) & =\lim _{J \rightarrow+\infty} \int_{\mathbb{R}^{2}}|\widehat{f}(\vec{s})|^{2} \cdot\left|2 \pi \widehat{\varphi}\left(\left(A^{\tau}\right)^{-J} \vec{s}\right)\right|^{2} d \vec{s} \\
& =\lim _{J \rightarrow+\infty} \int_{\mathbb{R}^{2}}|\widehat{f}(\vec{s})|^{2} \cdot\left|2 \pi g\left(\left(A^{\tau}\right)^{-J} \vec{s}\right)\right|^{2} d \vec{s} \\
& =\|\widehat{f}\|^{2}=\|f\|^{2}
\end{aligned}
$$

This proves (5.12).
2. Let $\rho \in \mathbb{R}^{+}$, and let Δ_{ρ} be the open ball with center $\overrightarrow{0}$ and radius ρ. In particular, Δ_{1} is the open ball with center $\overrightarrow{0}$ and radius 1 . Let χ_{ρ} and $\chi_{\bar{\rho}}$ be the characteristic functions of sets Δ_{ρ} and $\mathbb{R}^{2} \backslash \Delta_{\rho}$, respectively. Define f_{ρ} by $\widehat{f}_{\rho} \equiv \chi_{\rho} \widehat{f}$, and define $f_{\bar{\rho}}$ by $\widehat{f}_{\bar{\rho}} \equiv \chi_{\bar{\rho}} \widehat{f}$. Since the Fourier transform is linear, we have $f=$ $f_{\rho}+f_{\bar{\rho}}$. Also, it is clear that $\|f\|^{2}=\|\widehat{f}\|^{2}=\left\|f_{\rho}\right\|^{2}+\left\|f_{\bar{\rho}}\right\|^{2}, \lim _{\rho \rightarrow+\infty}\left\|f_{\rho}\right\|^{2}=\|f\|^{2}$, and $\lim _{\rho \rightarrow+\infty}\left\|f_{\bar{\rho}}\right\|^{2}=0$.

Since A^{τ} is expansive, $\beta \equiv\left\|\left(A^{\tau}\right)^{-1}\right\|^{-1}>1$. Denote $a \equiv \log _{\beta}(2 \rho)$. Let J_{ρ} be the smallest natural number in the interval $(a,+\infty)$. When $J \geq J_{\rho},\left(A^{\tau}\right)^{J} \Delta_{1}$ contains an open ball $\Delta_{2 \rho}$. Since $\Delta_{1} \cap \mathbb{Z}^{2}=\{\overrightarrow{0}\}, 2 \pi\left(A^{\tau}\right)^{J} \Delta_{1} \cap 2 \pi\left(A^{\tau}\right)^{J} \mathbb{Z}^{2}=$ $\{\overrightarrow{0}\}$. Also, we have $\Delta_{2 \rho} \subseteq\left(A^{\tau}\right)^{J} \Delta_{1} \subseteq 2 \pi\left(A^{\tau}\right)^{J} \Delta_{1}$. These facts imply that when $J \geq J_{\rho}$, the distance between $\overrightarrow{0}$ and $2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}$ is greater than 2ρ. Then, for each $\vec{\ell} \in \mathbb{Z}^{2} \backslash\{\overrightarrow{0}\}$, the support of $\widehat{f}_{\rho}(\vec{t})$, which is Δ_{ρ}, and the support of $\widehat{f}_{\rho}(\vec{t}-$ $\left.2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}\right)$, which is $\Delta_{\rho}+2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}$, are disjoint. This implies that the product $\widehat{f}_{\rho}(\vec{t}) \widehat{\hat{f}_{\rho}\left(\vec{t}-2 \pi\left(A^{\tau}\right)^{J} \vec{\ell}\right)} \equiv 0$ when $J \geq J_{\rho}$. Therefore, we have

$$
\lim _{J \rightarrow+\infty} V_{J}\left(f_{\rho}\right)=0, \quad \forall \rho \in \mathbb{R}^{+}
$$

Together with (5.12), we have proved that

$$
\begin{equation*}
\lim _{J \rightarrow+\infty} L_{J}\left(f_{\rho}\right)=\left\|f_{\rho}\right\|^{2}, \quad \forall f \in L^{2}\left(\mathbb{R}^{2}\right), \forall \rho \in \mathbb{R}^{+} \tag{5.14}
\end{equation*}
$$

3. Let $D_{\rho} \equiv \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left(\left\langle f_{\rho}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle \overline{\left\langle f_{\vec{\rho}}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle}+\left\langle f_{\bar{\rho}}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle \overline{\left\langle f_{\rho}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle}\right)$. Then

$$
\begin{aligned}
\left|D_{\rho}\right| & \leq 2 \sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f_{\rho}, D_{A}^{J} T_{\vec{\imath}} \varphi\right\rangle\right| \cdot\left|\left\langle f_{\bar{\rho}}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle\right| \\
& \leq 2 \sqrt{\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f_{\rho}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle\right|^{2}} \cdot \sqrt{\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left|\left\langle f_{\bar{\rho}}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle\right|^{2}} \\
& =2 \sqrt{L_{J}\left(f_{\rho}\right)} \cdot \sqrt{L_{J}\left(f_{\bar{\rho}}\right)} .
\end{aligned}
$$

By Lemma 5.5, we have

$$
\left|D_{\rho}\right| \leq 2(2 B+1)^{2}\|\varphi\|^{2}\left\|f_{\rho}\right\|\left\|f_{\bar{\rho}}\right\| .
$$

We have

$$
\begin{aligned}
L_{J}(f)-\|f\|^{2} & =L_{J}\left(f_{\rho}+f_{\bar{\rho}}\right)-\|f\|^{2} \\
& =\sum_{\vec{\ell} \in \mathbb{Z}^{2}}\left\langle f_{\rho}+f_{\bar{\rho}}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle \overline{\left\langle f_{\rho}+f_{\bar{\rho}}, D_{A}^{J} T_{\vec{\ell}} \varphi\right\rangle}-\|f\|^{2} \\
& =L_{J}\left(f_{\rho}\right)-\|f\|^{2}+L_{J}\left(f_{\bar{\rho}}\right)+D_{\rho} \\
& =\left(L_{J}\left(f_{\rho}\right)-\left\|f_{\rho}\right\|^{2}\right)-\left\|f_{\bar{\rho}}\right\|^{2}+L_{J}\left(f_{\bar{\rho}}\right)+D_{\rho} .
\end{aligned}
$$

By (5.14), (5.9), and Lemma (5.8), we have

$$
\limsup _{J \rightarrow+\infty}\left|L_{J}(f)-\|f\|^{2}\right| \leq 0+\left\|f_{\bar{\rho}}\right\|^{2}+0+2(2 B+1)^{2}\|\varphi\|^{2}\left\|f_{\rho}\right\|\left\|f_{\bar{\rho}}\right\|, \quad \forall \rho \in \mathbb{R}^{+}
$$

The left-hand side contains no ρ. Let $\rho \rightarrow+\infty$. Since $\lim _{\rho \rightarrow+\infty}\left\|f_{\bar{\rho}}\right\|=0$, we have

$$
\lim _{J \rightarrow \infty} L_{J}(f)=\|f\|^{2}
$$

The proof of Theorem 5.4 is complete.

6. Conclusion

Let A_{0} be a 2×2 expansive integral matrix with $\left|\operatorname{det}\left(A_{0}\right)\right|=2$. We can construct normalized tight frame wavelets associated with A_{0} in the following steps.
(1) Find a 2×2 integral matrix S with $|\operatorname{det}(S)|=1$ and with the property that $S A S^{-1}=A_{0}$, where A is one of the six matrices in list (2.2) (Proposition 2.1).
(2) Solve the system of equations (see (3.1))

$$
\left\{\begin{array}{l}
\sum_{\vec{n} \in \mathbb{Z}^{2}} h_{\vec{n}} \overline{h_{\vec{n}+\vec{k}}}=\delta_{\overrightarrow{0} \vec{k}}, \quad \vec{k} \in A^{\tau} \mathbb{Z}^{2}, \\
\sum_{\vec{n} \in \mathbb{Z}^{2}} h_{\vec{n}}=\sqrt{2}
\end{array}\right.
$$

for a finite solution $\mathcal{S}=\left\{h_{\vec{n}}: \vec{n} \in \mathbb{Z}^{2}\right\}$; that is, the index set of nonzero terms $h_{\vec{n}}$ is included in the set $\Lambda_{0} \equiv \mathbb{Z}^{2} \cap\left[-N_{0}, N_{0}\right]^{2}$ for some natural number N_{0}.
(3) Define the filter function m_{0} by (3.2):

$$
m_{0}(\vec{t})=\frac{1}{\sqrt{2}} \sum_{\vec{n} \in \mathbb{Z}^{2}} h_{\vec{n}} e^{-i \vec{n} \circ \vec{t}}
$$

(4) Define a function g by (4.1):

$$
g(\vec{\xi})=\frac{1}{2 \pi} \prod_{j=1}^{\infty} m_{0}\left(\left(A^{\tau}\right)^{-j} \vec{\xi}\right), \quad \forall \vec{\xi} \in \mathbb{R}^{2}
$$

The function g is an $L^{2}\left(\mathbb{R}^{2}\right)$-function (Proposition 4.5).
(5) Define the scaling function φ by (4.2):

$$
\varphi=\mathcal{F}^{-1} g
$$

The scaling function φ is an $L^{2}\left(\mathbb{R}^{2}\right)$-function with compact support (Proposition 4.9).
(6) Let $\vec{\ell}_{A}$ be the vector as in Proposition 2.6. Define

$$
\sigma_{A}(\vec{n})= \begin{cases}0, & \vec{n} \in A \mathbb{Z}^{2} \\ 1, & \vec{n} \notin A \mathbb{Z}^{2}\end{cases}
$$

Define the wavelet function ψ_{A} on \mathbb{R}^{2} by (5.3):

$$
\psi_{A}=\sum_{\vec{n} \in \mathbb{Z}^{2}}(-1)^{\sigma_{A}(\vec{n})} \overline{h_{\vec{\ell}_{A}-\vec{n}}} D_{A} T_{\vec{n}} \varphi
$$

This is a normalized tight frame wavelet with compact support associated with matrix A (Theorem 5.4).
(7) Define the wavelet function ψ by

$$
\psi(\vec{t}) \equiv \psi_{A}(S \vec{t}), \quad \forall \vec{t} \in \mathbb{R}^{2}
$$

The function ψ is a normalized tight frame wavelet with compact support associated with the given matrix A_{0} (Theorem 2.3).

7. Examples

Let A be one of the six matrices in Proposition 2.1. If we assume that Λ_{0} contains only one element $\overrightarrow{0}$, then Lawton's equations have no solution since this will require that $h_{\overrightarrow{0}}= \pm 1$ and $\sqrt{2}$. Assuming that $\Lambda_{0}=\left\{\vec{n}_{0}, \vec{n}_{1}\right\}, \vec{n}_{0}=\overrightarrow{0}, \vec{n}_{1}=$ $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, we will have two cases.

Case (1). $\vec{n}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \in A \mathbb{Z}^{2}$. In this case, the reduced Lawton system of equations (3.1) is

$$
\left\{\begin{array}{l}
h_{\vec{n}_{0}}^{2}+h_{\vec{n}_{1}}^{2}=1 \tag{7.1}\\
h_{\vec{n}_{0}} \cdot h_{\vec{n}_{1}}=0 \\
h_{\vec{n}_{0}}+h_{\vec{n}_{1}}=\sqrt{2}
\end{array}\right.
$$

Apparently, this system of equations has no solution.
Case (2). $\vec{n}_{1}=\left[\begin{array}{c}1 \\ 0\end{array}\right] \notin A \mathbb{Z}^{2}$. The reduced Lawton system of equations (3.1) is

$$
\left\{\begin{array}{l}
h_{\vec{n}_{0}}^{2}+h_{\vec{n}_{1}}^{2}=1 \tag{7.2}\\
h_{\vec{n}_{0}}+h_{\vec{n}_{1}}=\sqrt{2}
\end{array}\right.
$$

The system has one solution $h_{\vec{n}_{0}}=h_{\vec{n}_{1}}=\frac{\sqrt{2}}{2}$. Then, for the first four matrices in Proposition 2.1,

$$
\left[\begin{array}{cc}
1 & 1 \tag{7.3}\\
1 & -1
\end{array}\right], \quad\left[\begin{array}{ll}
1 & -3 \\
1 & -1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right], \quad\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right]
$$

according to the table in (2.5) $n_{1} \notin A \mathbb{Z}^{2}\left(=A^{\tau} \mathbb{Z}^{2}\right)$. Then, in the case that A is one of the four matrices, we have the solution. The wavelets created by the solutions are Haar wavelets. One of them is included in Example 7.1.

Example 7.1. Let

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] . \quad \text { By the table in }(2.5), \quad \vec{\ell}_{A}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \vec{q}_{A}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

$h_{\vec{n}_{0}}=h_{\vec{n}_{1}}=\frac{\sqrt{2}}{2}$ is the solution to the reduced Lawton's equations (7.2) as in the above discussion. Then the filter function (3.2) is reduced to

$$
m_{0}(\vec{t}) \equiv \frac{1}{2}+\frac{1}{2} e^{-i t_{1}}, \quad \vec{t}=\left[\begin{array}{l}
t_{1} \tag{7.4}\\
t_{2}
\end{array}\right] \in \mathbb{C}^{2}
$$

The two-scaling relation equation (5.1) is reduced to

$$
\begin{equation*}
\varphi_{H}=\frac{\sqrt{2}}{2} D_{A}\left(I+T_{\vec{n}_{1}}\right) \varphi_{H} \tag{7.5}
\end{equation*}
$$

The supports of φ_{H} and ψ_{H} are the same set Q_{A}, which is the parallelogram with vertices $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$. The graph of the supports of φ_{H} and ψ_{H} is illustrated in Figure 4. The graph of φ_{H} and ψ_{H} is illustrated in Figure 5.

Example 7.2. In this example, we want to show that a solution to Lawton's equations will produce a known wavelet in the literature. Let

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad S=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right], \quad \text { and } \quad A_{0}=\left[\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right]
$$

Then

$$
A_{0}=S^{-1} A S
$$

Figure 4. Supports of φ_{H} and ψ_{H}.

Figure 5. Graphs of φ_{H} and ψ_{H}.
We will construct a scaling function φ_{A} and related normalized tight frame wavelet ψ_{A} associated with matrix A. Then $U_{S} \psi_{A}$ will be a normalized tight frame wavelet associated with matrix A_{0}, and $U_{S} \varphi_{A}$ will be the scaling function for $U_{S} \psi_{A}$.

Assume that the support of the solution is Λ_{0} :

$$
\Lambda_{0}=\left\{\left[\begin{array}{c}
0 \\
m
\end{array}\right], m=0,1, \ldots, 7\right\} \cup\left\{\left[\begin{array}{c}
1 \\
m
\end{array}\right], m=-1,0, \ldots, 6\right\} .
$$

The reduced Lawton's system of equations related to Λ_{0} associated with matrix A has the following 12 equations:

$$
\left\{\begin{array}{l}
\sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}}^{2}=1, \tag{7.6}\\
\sum_{k=0}^{5}\left(h_{0, k} \cdot h_{0,(2+k)}+h_{1,(k-1)} \cdot h_{1,(k+1)}\right)=0, \\
\sum_{k=0}^{3}\left(h_{0, k} \cdot h_{0,(4+k)}+h_{1,(k-1)} \cdot h_{1,(k+3)}\right)=0, \\
\sum_{k=0}^{1}\left(h_{0, k} \cdot h_{0,(6+k)}+h_{1,(k-1)} \cdot h_{1,(k+5)}=0,\right. \\
\sum_{k=0}^{7} h_{0, k} \cdot h_{1,(k-1)}=0, \\
\sum_{k=0}^{5} h_{0, k} \cdot h_{1,(k+1)}=0, \\
\sum_{k=0}^{3} h_{0, k} \cdot h_{1,(k+3)}=0, \\
\sum_{k=0}^{1} h_{0, k} \cdot h_{1,(k+5)}=0, \\
\sum_{k=0}^{5} h_{0,(k+2)} \cdot h_{1,(k-1)}=0, \\
\sum_{k=0}^{3} h_{0,(k+4)} \cdot h_{1,(k-1)}=0, \\
\sum_{k=0}^{1} h_{0,(k+6)} \cdot h_{1,(k-1)}=0, \\
\sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}}=\sqrt{2} .
\end{array}\right.
$$

TABLE 1. A solution to equations (7.6).

$h_{0,7}$		0.014008991752812	
$h_{0,6}$	$h_{1,6}$	0.024264285477802	0.065527403135986
$h_{0,5}$	$h_{1,5}$	-0.118573529719665	0.113496791518999
$h_{0,4}$	$h_{1,4}$	0.003753698026408	0.489561273639764
$h_{0,3}$	$h_{1,3}$	0.195120084182308	0.777712940352809
$h_{0,2}$	$h_{1,2}$	-0.080300252489051	0.171377820183894
$h_{0,1}$	$h_{1,1}$	-0.090555546214041	-0.195280287797963
$h_{0,0}$	$h_{1,0}$	0.052282268983427	-0.019359715773096
	$h_{1,-1}$		0.011177337112703

Figure 6. Graphs of φ_{A} and ψ_{A}.
Table 1 is a solution to equations (7.6). It is from [2, Table A.1, Solution 2], but we modified the data. The solution satisfies equations (7.6) within errors less than 10^{-13}.

Based on this solution, we obtain the corresponding two-scaling relation associated with A and $\left\{h_{\vec{n}}, \vec{n} \in \Lambda_{0}\right\}$:

$$
\varphi_{A}=\sum_{\vec{n} \in \Lambda_{0}} h_{\vec{n}} D_{A} T_{\vec{n}} \varphi_{A} .
$$

Then we obtain the normalized tight frame wavelet function ψ_{A} and scaling function φ_{A} associated with A. The graphs of φ_{A} and ψ_{A} are illustrated in Figure 6 .

Then $\psi_{A_{0}} \equiv U_{S} \psi_{A}$ and $\varphi_{A_{0}} \equiv U_{S} \varphi_{A}$ are the wavelet and scaling function associated with matrix A_{0}. The graphs of $\varphi_{A_{0}}$ and $\psi_{A_{0}}$ are illustrated in Figure 7. This $\varphi_{A_{0}}$ is known as the scaling function "Resting Dog" (see Figure 5.2 in [2]).

Figure 7. Graphs of $\varphi_{A_{0}}$ and $\psi_{A_{0}}$.

Acknowledgments. The author thanks the referees for many helpful comments, and especially for the sharp observations and suggestions that inspired the creation of Section 7 and all the examples in that section. The author also thanks Wei Huang for providing help with the examples and graphs.

References

1. L. Baggett, H. Medina, and K. Merrill, Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn, J. Fourier Anal. Appl. 5 (1999), no. 6, 563-573. Zbl 0972.42021. MR1752590. DOI 10.1007/BF01257191. 640
2. E. Belogay and Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in \mathbb{R}^{2}, SIAM J. Math. Anal. 30 (1999), no. 3, 678-697. Zbl 0946.42025. MR1677949. DOI 10.1137/ S0036141097327732. 640, 641, 668
3. J. Benedetto and S . Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal. 5 (1998), no. 4, 389-427. Zbl 0915.42029. MR1646534. DOI 10.1006/acha.1997.0237. 640
4. O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003. Zbl 1017.42022. MR1946982. DOI 10.1007/978-0-8176-8224-8. 638
5. X. Dai, D. R. Larson, and D. M Speegle, Wavelet sets in \mathbb{R}^{n}, J. Fourier Anal. Appl. 3 (1997), no. 4, 451-456. Zbl 0881.42023. MR1468374. DOI 10.1007/BF02649106. 640
6. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. Math. 61, SIAM, Philadelphia, 1992. Zbl 0776.42018. MR1162107. DOI 10.1137/1.9781611970104. 640
7. Q. Gu and D. Han, On multiresolution analysis (MRA) wavelets in \mathbb{R}^{n}, J. Fourier Anal. Appl. 6 (2000), no. 4, 437-447. Zbl 0964.42021. MR1776974. DOI 10.1007/BF02510148. 639
8. A. Jablonski, A Monte Carlo algorithm for solving systems of nonlinear equations, J. Comput. Appl. Math. 6 (1980), 171-175. Zbl 0466.65030. MR0594158. 640
9. I. A. Krishtal, B. D. Robinson, G. L. Weiss, and E. N. Wilson, Some simple Haar-type wavelets in higher dimensions, J. Geom. Anal. 17 (2007), no. 1, 87-96. Zbl 1124.42026. MR2302875. DOI 10.1007/BF02922084. 639
10. J. Lagarias and Y. Wang, Haar type orthonormal wavelet bases in \mathbb{R}^{2}, J. Fourier Anal. Appl. 2 (1995), no. 1, 1-14. Zbl 0908.42022. MR1361539. DOI 10.1007/s00041-001-4019-2. 639, 640
11. W. M. Lawton, Tight frames of compactly supported affine wavelets, J. Math. Phys. 31 (1990), no. 8, 1898-1901. Zbl 0708.46020. MR1067632. DOI 10.1063/1.528688. 640

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA.

E-mail address: xdai@uncc.edu

[^0]: ${ }^{1}$ In this example, $A=A^{\tau}$. We do not assume this condition in general.

[^1]: ${ }^{2}$ In the calculation, the infinite sum is always converging since there are only finitely many nonzero terms.

[^2]: ${ }^{3}$ The case when $\vec{\xi}=\overrightarrow{0}$ is trivial. We omit it.

