
Banach J. Math. Anal. 10 (2016), no. 3, 638–670

http://dx.doi.org/10.1215/17358787-3639712

ISSN: 1735-8787 (electronic)

http://projecteuclid.org/bjma

EQUATIONS FOR FRAME WAVELETS IN L2(R2)

XINGDE DAI

To Professor Zurui Guo

Communicated by D. Han

Abstract. A finite solution to a system of equations will generate a sin-
gle function normalized tight frame wavelet (Parseval’s frame wavelet) with
compact support associated with a 2× 2 expansive integral matrix whose de-
terminant is either 2 or −2 in L2(R2).

1. Introduction

In this article, R2 will be the 2-dimensional Euclidean space, and C2 will be

the 2-dimensional complex Euclidean space. We will use notation ~t , ~s , ~r , ~ξ , ~η
for vectors in R2 or C2. We will use the notation ~t 1 ◦ ~t 2 for the standard inner
product of two vectors ~t 1 and ~t 2. For a vector ~ξ =

(
ξ1
ξ2

)
in C2, its real part is

Re(~ξ ) ≡
( Re(ξ1)
Re(ξ2)

)
, and its imaginary part is Im(~ξ ) ≡

( Im(ξ1)
Im(ξ2)

)
. The measure µ

will be the Lebesgue measure on R2, and L2(R2) will be the Hilbert space of all
square integrable functions on R2. A (countable) set of elements {ψi : i ∈ Λ} in
L2(R2) is called a normalized tight frame of L2(R2) if∑

i∈Λ

∣∣〈f, ψi〉
∣∣2 = ‖f‖2, ∀f ∈ L2(R2). (1.1)

It is well known in the literature (see [4]) that the equation (1.1) is equivalent to

f =
∑
i∈Λ

〈f, ψi〉ψi, ∀f ∈ L2(R2). (1.2)
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Let Z2 be the integer lattice in R2. For a vector ~̀ ∈ Z2, the translation operator
T~̀ is defined as

(T~̀ f)(~t ) ≡ f(~t − ~̀), ∀f ∈ L2(R2).

A square matrix is called expansive if all of its eigenvalues have absolute values
greater than 1. Let A be a 2 × 2 expansive integral matrix with eigenvalues
{λ1, λ2}. The norm of the linear transformation A on R2 (or C2) will be ‖A‖ ≡
max{|β1|, |β2|}. For two vectors ~t 1,~t 2 in the Euclidean space R2, we have ~t 1 ◦
A~t 2 = Aτ~t 1 ◦ ~t 2, where Aτ is the transpose matrix of A. We define operator UA

as

(UAf)(~t ) ≡
(√∣∣det(A)∣∣)f(A~t ), ∀f ∈ L2(R2).

This is a unitary operator on L2(R2). In particular, for an expansive matrix A
with | det(A)| = 2, we will use DA to denote UA and we will call it a dilation
operator.

Definition 1.1. Let A be an expansive integral matrix with | det(A)| = 2. A func-
tion ψ ∈ L2(R2) is called a normalized tight frame wavelet, or NTFW, associated
with A, if the set

{Dn
AT~̀ψ, n ∈ Z, ~̀ ∈ Z2} (1.3)

constitutes a normalized tight frame of L2(R2).

Remark 1.2. The function ψ is called a single function NTFW since the frame set
(1.1) is generated by one function ψ. An NTFW is not necessarily a unit vector in
L2(R2) unless it is an orthonormal wavelet. By definition, an element ψ ∈ L2(R2)
is an NTFW if and only if

‖f‖2 =
∑

n∈Z,~̀∈Z2

∣∣〈f,Dn
AT~̀ψ〉

∣∣2, ∀f ∈ L2(R2). (1.4)

By (1.2), this is equivalent to

f(~t ) =
∑

n∈Z,~̀∈Z2

〈f,Dn
AT~̀ψ〉Dn

AT~̀ψ(~t ), ∀f ∈ L2(R2),~t ∈ R2 a.e. (1.5)

The literature on wavelet theory is very rich. Many authors have made signifi-
cant contributions to the theory, so much so that it is hard to make a short list.
But the following works are closely related to the present article.

Q. Gu and D. Han [7] proved that, if an integral expansive matrix associates
with single function orthogonal wavelets with multi-resolution analysis (MRA),
then the absolute value of the matrix determinant must be 2. These orthogo-
nal wavelets are special single function normalized tight frame wavelets. In this
paper we will construct single function normalized tight frame wavelets with com-
pact support associated with expansive integral matrices with determinant ±2 in
L2(R2). We do not find many examples of normalized frame wavelets (orthogo-
nal wavelets) associated with integral matrices constructed by using traditional
methods. The reader can find these examples in [10] by J. Lagarias and Y. Wang,
and in [9] by I. A. Krishtal, B. D. Robinson, G. L. Weiss, and E. N. Wilson for
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Haar-type orthonormal wavelets (and hence with compact support) in L2(R2)
and for higher dimensions. In [2], E. Belogay and Y. Wang constructed exam-
ples of wavelets with compact support and with properties of high smoothness in
L2(R2). Other wavelets in higher dimensions with noncompact supports were also
constructed in [5] by Larson, Speegle, and the author. The goal of the present
paper is to prove that every solution to the system of equations (3.1) will generate
filters for normalized tight frame wavelets. In applications, we just need to solve
the systems of equations for filters. Some computational methods, including the
Monte Carlo method (see [8]), are capable of serving this purpose. Compared with
[10], our methods appear to be more constructive. Moreover, we address single-
function Parseval wavelets, including orthogonal wavelets, and our methods here
provide a foundation for further work on frame wavelets with normal properties,
such as the wavelets in [2].

We will follow the classical method for constructing such frame wavelets as
provided by I. Daubechies in [6], that is, from the filter function m0 to the scaling
function ϕ and then to the wavelet function ψ. To construct the filter function
m0, we start with the system of equations (3.1). The system of equations (3.1) is
a generalization of W. Lawton’s system of equations for frame wavelets in L2(R)
(see [11]).

The scaling function ϕ in this paper is not necessarily orthogonal, and so the
related MRA system constructed should be similar to the frame multiresolution
analysis (FMRA) by J. Benedetto and S. Li in [3], and it is also related to
the general multiresolution analysis (GMRA) by L. Baggett, H. Medina, and K.
Merrill [1]. We provide some examples in Section 7.

2. Reduction theorems

In [2], E. Belogay and Y. Wang also proved that every expansive 2× 2 integral
matrix with | det(A)| = 2 can be expressed in the form SBS−1, where S is a 2×2
integral matrix with | det(S)| = 1 and B is one of the six matrices listed below:[

0 2
1 0

]
,

[
0 2
−1 0

]
,

[
1 1
−1 1

]
,

(2.1)[
−1 −1
1 −1

]
,

[
0 2
−1 1

]
,

[
0 −2
1 −1

]
.

Proposition 2.1. Let A be a 2× 2 expansive integral matrix with | det(A)| = 2.
Then there is a 2× 2 integral matrix S with | det(S)| = 1 such that SAS−1 is one
of the following six matrices:[

1 1
1 −1

]
,

[
1 −3
1 −1

]
,

[
1 1
−1 1

]
,

(2.2)[
−1 −1
1 −1

]
,

[
−1 2
−2 2

]
,

[
1 −2
2 −2

]
.
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Proof. This statement is an immediate consequence of the list (2.1) by E. Belogay
and Y. Wang [2] and the following calculation:[

−1 1
2 −3

] [
0 2
1 0

] [
−1 1
2 −3

]−1

=

[
1 1
1 −1

]
,[

1 −1
0 −1

] [
0 2
−1 0

] [
1 −1
0 −1

]−1

=

[
1 −3
1 −1

]
,[

−1 1
−1 0

] [
0 2
−1 1

] [
−1 1
−1 0

]−1

=

[
−1 2
−2 2

]
,[

−1 1
−1 0

] [
0 −2
1 −1

] [
−1 1
−1 0

]−1

=

[
1 −2
2 −2

]
. �

Lemma 2.2. Let A be a 2× 2 expansive integral matrix with | det(A)| = 2. For
a 2× 2 integral matrix S of | det(S)| = 1, assume B = S−1AS. Then

UST~̀U
−1
S = TS−1~̀ , ∀~̀ ∈ Z2; (2.3)

USD
n
AU

−1
S = Dn

B, ∀n ∈ Z. (2.4)

Proof. Let h ∈ L2(R2). By definition, USUS−1h(~t ) = USh(S
−1~t ) = h(SS−1~t ) =

h(~t ), and so USUS−1 = I. Similarly, we have US−1US = I. Therefore, U−1
S = US−1 .

For ~̀ ∈ Zd, we have

UST~̀U
−1
S h(~t ) = UST~̀US−1h(~t )

= UST~̀h(S
−1~t )

= USh
(
S−1(~t − ~̀)

)
= USh(S

−1~t − S−1~̀)

= h(S−1S~t − S−1~̀)

= h(~t − S−1~̀)

= TS−1~̀h(~t ),

and so we have equation (2.3). Also, we have USDAU
−1
S h(~t ) =

√
2h(S−1AS~t ) =

DBh(~t ), and so

USDAU
−1
S = DB,

USD
−1
A U−1

S = (USDAU
−1
S )−1 = D−1

B .

This implies that, for all n ∈ N,

USD
n
AU

−1
S = (USDAU

−1
S )n = Dn

B;

USD
−n
A U−1

S = (USDAU
−1
S )−n = D−n

B .

This proves equation (2.4). �

Theorem 2.3. Let A be a 2 × 2 expansive integral matrix with | det(A)| = 2,
and let S be a 2 × 2 integral matrix with the property that | det(S)| = 1. Let
B ≡ S−1AS. Assume that a function ψA is a normalized tight frame wavelet
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associated with the matrix A. Then the function ηB ≡ USψA is a normalized tight
frame wavelet associated with the matrix B.

Proof. By assumption and Lemma 2.2, we have B = S−1AS,DB = UB =
US−1AS = USUAUS−1 = USDAU

−1
S . Let f ∈ L2(R2). We have

U−1
S f =

∑
n∈Z,~̀∈Z2

〈U−1
S f,Dn

AT~̀ψA〉Dn
AT~̀ψA.

Since US is a unitary operator, we have

f =
∑

n∈Z,~̀∈Z2

〈f, USD
n
AT~̀ψA〉USD

n
AT~̀ψA

=
∑

n∈Z,~̀∈Z2

〈f, USD
n
AU

−1
S UST~̀U

−1
S USψA〉USD

n
AU

−1
S UST~̀U

−1
S USψA

=
∑

n∈Z,~̀∈Z2

〈f,Dn
BTS−1~̀ ηB〉Dn

BTS−1~̀ ηB

=
∑

n∈Z,~̀∈S−1Z2

〈f,Dn
BT~̀ ηB〉Dn

BT~̀ ηB.

Since S is an integral matrix with | det(S)| = 1, we have Z2 = SZ2 = S−1Z2, and
so we have

f =
∑

n∈Z,~̀∈Z2

〈f,Dn
BT~̀ ηB〉Dn

BT~̀ ηB.
�

For f, g ∈ L1(R2)∩L2(R2), the Fourier transform and Fourier inverse transform
are defined as

(Ff)(~s ) = 1

2π

∫
R2

e−i~s◦~t f(~t ) d~t = f̂(~s ),

(F−1g)(~t ) =
1

2π

∫
R2

ei~s◦
~t g(~s ) d~s = ǧ(~t ).

The set L1(R2) ∩ L2(R2) is dense in L2(R2), and the operator F extends to a
unitary operator on L2(R2) which is still called the Fourier transform. For an

operator V on L2(R2), we will write FV F−1 ≡ V̂ . We will use the following
formulas in this paper.

Lemma 2.4. Let A be a 2× 2 expansive integral matrix. Then

T~̀DA = DATA~̀ ,

T̂~̀ =M
e−i~s◦~̀ ,

D̂A = U(A−1)τ = U(Aτ )−1 = D−1
Aτ = D∗

Aτ ,

where M
e−i~s◦~̀ is the multiplication operator by e−i~s◦~̀ . Operators T~̀ , DA,F , and

M
e−i~s◦~̀ are unitary operators acting on L2(R2).
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Remark 2.5. For the translation operator TA−J ~̀ , where vector A−J ~̀ is in the

refined lattice A−JZ2, we have TA−J ~̀DJ
A = DJ

AT~̀ . We also have D̂J
Aϕ̂(~t ) =

1√
2J
ϕ̂((Aτ )−J~t ). We will need this in the proof of Lemma 5.7. We leave these

to the reader to verify using the same method as in the proof of Lemma 2.4.

Proof. We have

(T̂~̀ f̂)(~s ) = (FT~̀F−1Ff)(~s )

=
1

2π

∫
R2

e−i~s◦~t f(~t − ~̀) d~t

= e−i~s◦~̀ · 1

2π

∫
R2

e−i~s◦~u f(~u ) d~u

= e−i~s◦~̀ · f̂(~s )
= (M

e−i~s◦~̀ f̂)(~s ).

Here the substitution ~u = ~t − ~̀ is used. Next, we have

(D̂Af̂)(~s ) = (FDAf)(~s )

=
1

2π

∫
R2

e−i~s◦~t ·
√
2f(A~t ) dµ

=
1√
2
· 1

2π

∫
R2

e−i~s◦(A−1~u )f(~u ) dν

=
1√
2
· 1

2π

∫
R2

e−i(A−1)τ~s◦~u f(~u ) dν.

Here substitutions ~u = A~t and dν = 2 dµ are used, and so we have

(D̂Af̂)(~s ) =
√
det

(
(A−1)τ

)
· f̂

(
(A−1)τ~s

)
= (U(A−1)τ f̂)(~s ).

This implies that

D̂A = U(A−1)τ = U(Aτ )−1 = D−1
Aτ = D∗

Aτ .

Also, we have

T~̀DAf(~t ) =
√
2T~̀ f(A~t )

=
√
2f

(
A(~t − ~̀)

)
=

√
2f(A~t − A~̀)

= DATA~̀ f(~t ),

T~̀DA = DATA~̀ . �

The integral lattice Z2 is an abelian group under vector addition. The subset
(2Z)2 is a subgroup. For a fixed 2 × 2 integral matrix A with | det(A)| = 2, the
two sets AZ2 and AτZ2 are proper subgroups of Z2 containing (2Z)2. The two

quotient groups AZ2

(2Z)2 and AτZ2

(2Z)2 are two proper subgroups of the quotient group



644 X. DAI

Z2

(2Z)2 which has 4 elements, {( 0
0 ) + (2Z)2, ( 0

1 ) + (2Z)2, ( 1
0 ) + (2Z)2, ( 1

1 ) + (2Z)2}.
If the two elements of the subgroup AZ2

(2Z)2 are ~0 + (2Z)2, ~s + (2Z)2, we will call

{~0 , ~s } the generators for AZ2. We define the generators for AτZ2 in a similar way:
AZ2 = AτZ2 if and only if they have the same generators (in the four elements).

Proposition 2.6. Let A be one of the six matrices in (2.2) as in Proposition 2.1.

Then there exist vectors ~̀A and ~qA in Z2 with the following properties:

(1) Z2 = AτZ2 ·∪ (~̀A + AτZ2);

(2) ~qA ◦ AτZ2 ⊆ 2Z and ~qA ◦ (~̀A + AτZ2) ⊆ 2Z+ 1;
(3) Aτ~qA ∈ (2Z)2;
(4) AZ2 = AτZ2.

Remark 2.7. Equation (4) is not true in general. Let A be [ 0 −2
1 −1 ], which is in the

list (2.1). Then Aτ = [ 0 1
−2 −1 ]. It is left to the reader to verify that {( 0

0 ), (
1
1 )} is the

generator for AτZ2, while the generator for AZ2 is {( 0
0 ), (

0
1 )}, and so AZ2 6= AτZ2.

Proof. 1. Let A = [ 1 1
1 −1 ]. Then A

τ = [ 1 1
1 −1 ]. It is left to the reader to verify that

{( 0
0 ), (

1
1 )} is the generator for both AZ2 and AτZ2. Therefore, we have equation

(4), AZ2 = AτZ2,1 since

AZ2 =

((
0
0

)
+ (2Z)2

)
·∪
((

1
1

)
+ (2Z)2

)
,

AτZ2 =

((
0
0

)
+ (2Z)2

)
·∪
((

1
1

)
+ (2Z)2

)
.

This also implies that

Z2\AτZ2 =

((
1
0

)
+ (2Z)2

)
·∪
((

0
1

)
+ (2Z)2

)
=

(
1
0

)
+ AτZ2

since {(( 0
0 ) + (2Z)2), (( 1

1 ) + (2Z)2), (( 1
0 ) + (2Z)2), (( 0

1 ) + (2Z)2)} is a partition of

Z2, and so the vector ~̀A ≡ ( 1
0 ) satisfies the equation

Z2 = AτZ2 ·∪ (~̀A + AτZ2).

Define ~qA ≡ ( 1
1 ). It is left to the reader to verify that qA ◦AτZ2 are even numbers

and ~qA ◦ (~̀A + AτZ2) are odd numbers since ~qA ◦ ~̀A = 1. Finally, Aτ~qA =
[ 1 1
1 −1 ](

1
1 ) = ( 2

0 ) ∈ (2Z)2. This proves property (3).

2. We list all six matrices in the list (2.2) and their corresponding ~̀A and ~qA
in the next table. The reader may verify, as we did in part 1, the equations in
(1), (2), and (3) are satisfied. Also, it is left to the reader to verify that, for each
matrix in the six cases, the generators for AZ2 and AτZ2 are the same, and so

1In this example, A = Aτ . We do not assume this condition in general.
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we have now established the equation in (4):

A Aτ gen of AτZ2 ~̀
A ~qA Aτ~qA[

1 1
1 −1

] [
1 1
1 −1

] (
0
0

)
,

(
1
1

) (
1
0

) (
1
1

) (
2
0

)
[
1 −3
1 −1

] [
1 1
−3 −1

] (
0
0

)
,

(
1
1

) (
1
0

) (
1
1

) (
2
−4

)
[
1 1
−1 1

] [
1 −1
1 1

] (
0
0

)
,

(
1
1

) (
1
0

) (
1
1

) (
0
2

)
[
−1 −1
1 −1

] [
−1 1
−1 −1

] (
0
0

)
,

(
1
1

) (
1
0

) (
1
1

) (
0
−2

)
[
−1 2
−2 2

] [
−1 −2
2 2

] (
0
0

)
,

(
1
0

) (
0
1

) (
0
1

) (
−2
2

)
[
1 −2
2 −2

] [
1 2
−2 −2

] (
0
0

)
,

(
1
0

) (
0
1

) (
0
1

) (
2
−2

)

(2.5)

�

Two subsets G1,G2 of R2 are said to be 2-translation equivalent, or G1
2∼ G2, if

there exists a mapping Θ from G1 onto G2 with the property that

Θ(~t )− ~t ∈ (2Z)2, ~t ∈ G1 a.e.

Proposition 2.8. Let A be one of the six expansive matrices in Proposition 2.6,
and let ~qA be the corresponding vector related to A and Γ0 ≡ [−1, 1]2. Then there
are two measurable sets Γ1 and Γ2 such that

Γ1
2∼ Γ0;

Γ2
2∼ Γ0;

AτΓ0
2∼ Γ1 ·∪ (~qA + Γ2).

Corollary 2.9. Let Γπ ≡ πΓ0 = [−π, π]2, and let h(~ξ ) be a 2π-periodical contin-
uous function on R2. Then∫

AτΓπ

h(~ξ ) dµ =

∫
Γπ

h(~ξ ) dµ+

∫
Γπ+π~qA

h(~ξ ) dµ. (2.6)

Proof. 1. For any matrix A in the collection [ 1 1
1 −1 ], [

1 1
−1 1 ], and [ −1 −1

1 −1 ], A
τΓ0 has

the same vertices of {( 2
0 ), (

−2
0 ), ( 0

2 ), (
0
−2 )}. By the table in the proof of Proposi-

tion 2.6, the above three matrices share the same vector ~qA = ( 1
1 ) and Γ0 ⊂ AτΓ0

(Figure 1, left). It is enough to discuss only one of the three cases.
Consider A = [ 1 1

1 −1 ]. Let Γ1 ≡ Γ0 and Γ2 ≡ AτΓ0\Γ1. Notice that Γ2 + ~qA
(Figure 1, middle) is a disjoint union of eight triangles {4k, k = 1, 2, . . . , 8}. The
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Figure 1. AτΓ0.

Figure 2. AτΓ0.

following new triangles {4′
k, k = 1, 2, . . . , 8} form a partition for Γ0 modulus zero

measure sets (Figure 1, right).
We have 4′

1 = 41 + ( −2
−2 );4′

2 = 42 + ( −2
−2 );4′

3 = 43 + ( 0
−2 );4′

4 = 44 +
( 0
−2 );4′

5 = 45;4′
6 = 46;4′

7 = 47 + ( −2
0 );4′

8 = 48 + ( −2
0 ). This proves that

~qA + Γ2
2∼ Γ0.

2. Let A = [ 1 −3
1 −1 ]. Then A

τ = [ 1 1
−3 −1 ] and ~qA = ( 1

1 ). A
τΓ0 is the parallelogram

ABCD (Figure 2, left). It is 2-translation equivalent to parallelogram BCED
(Figure 2, middle), which is the disjoint union of 4ABD + ( −2

2 ) and 4CBD.
The parallelogram BCED is 2-translation equivalent to rectangle BFGD since
4DGE = 4BFC + ( 0

−4 ). Now let Γ1 be the square MJHK. It is 2-translation
equivalent to Γ0 since Γ0 = MJIL ·∪ (LIHK + ( 2

0 )). Let Γ2 ≡ �JBFH ·∪
�DMKG. Thus ((�JBFH + ( 0

−2 )) ·∪ �DMKG) + ~qA = Γ0.
3. For any matrix A in the collection [ −1 2

−2 2 ] and [ 1 −2
2 −2 ], its corresponding A

τΓ0

has the same vertices {( 3
−4 ), (

−3
4 ), ( 1

0 ), (
−1
0 )} and the same vector ~qA = ( 0

1 ). It is
enough to discuss only one of the cases.

Let A = [ 1 −2
2 −2 ]. Then, by Proposition 2.8, Aτ = [ 1 2

−2 −2 ] and ~qA = ( 0
1 ). As in

Figure 3 (left), AτΓ0 is the parallelogram ABCD. Then we have



FRAME WAVELETS IN L2(R2) 647

Figure 3. AτΓ0.

AτΓ0
2∼ 4BCD ·∪

(
4ABD +

(
−2
4

))
2∼ 4BED ·∪

(
4DEC +

(
2
0

))
= �BFED,

and so we have shown AτΓ0
2∼ �BFED.

Let Γ1 ≡ �BHGD and Γ2 ≡ �HFEG. We have Γ1
2∼ Γ0 since

�BHGD = �BJID ·∪ �JHGI
2∼ �BJID ·∪

(
�JHGI +

(
0
−2

))
= Γ0.

Also, since �HFEG+ ( 0
1 ) = Γ0 + ( 0

4 ), we have Γ2 + ~qA
2∼ Γ0. �

3. Lawton’s equations and filter function

Throughout the rest of this paper, A will be one of the six matrices as stated
in list (2.2). Let N0 ∈ N and S = {h~n : ~n ∈ Z2} be a complex solution to the
system of equations{∑

~n ∈Z2 h~n h~n +~k = δ~0 ~k ,
~k ∈ AτZ2,∑

~n ∈Z2 h~n =
√
2

(3.1)

with the property that h~n = 0 for all ~n ∈ Z2\[−N0, N0]
2. Let us denote Λ0 ≡

Z2 ∩ [−N0, N0]
2. Here δ is Kronecker’s notation. We will call the system of equa-

tions (3.1) Lawton’s system of equations for normalized frame wavelets in 2D, or
Lawton’s equations.

Define

m0(~t ) =
1√
2

∑
~n ∈Z2

h~n e
−i~n◦~t =

1√
2

∑
~n ∈Λ0

h~n e
−i~n◦~t , ~t ∈ C2. (3.2)
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This is a finite sum and m0(0) = 1. It is a 2π-periodic trigonometric polynomial
function in the sense that m0(~t ) = m0(~t + π~t 0),∀~t 0 ∈ (2Z)2.

Proposition 3.1. Let A be an expansive 2× 2 integral matrix, and let ~qA be as
stated in Proposition 2.6. Let m0 be defined as in (3.2). Then m0 satisfies∣∣m0(~t )

∣∣2 + ∣∣m0(~t + π~qA)
∣∣2 = 1, ∀~t ∈ R2. (3.3)

Remark 3.2. By Proposition 3.1, we have |m0(~t )| ≤ 1 for all ~t ∈ R2. Also, (3.3)
may not hold for ~t ∈ C2 in general.

Proof. We have2∣∣m0(~t )
∣∣2 + ∣∣m0(~t + π~qA)

∣∣2
=

1

2

∣∣∣ ∑
~m ∈Z2

h~m e
−i~m◦~t

∣∣∣2 + 1

2

∣∣∣ ∑
~m ∈Z2

h~m e
−i~m◦(~t +π·~qA)

∣∣∣2
=

1

2

[ ∑
~m ∈Z2,~n ∈Z2

h~m h~n e
−i(~m −~n )◦~t +

∑
~m ∈Z2,~n ∈Z2

(−1)(~m −~n )◦~qAh~m h~n e
−i(~m −~n )◦~t

]
=

1

2

[ ∑
~m ∈Z2,~k ∈Z2

h~m h~m +~k e
i~k◦~t +

∑
~m ∈Z2,~k ∈Z2

(−1)−
~k◦~qAh~m h~m +~k e

i~k◦~t
]
.

Here ~n is replaced by ~m + ~k .

By Proposition 2.6, ~k◦~qA is odd when ~k ∈ (`A+A
τZ2). In the second sum, the

terms (−1)−
~k◦~qAh~m h~m +~k e

i~k◦~t cancel terms h~m h~m +~k e
i~k◦~t in the first sum. The

term ~k ◦ ~qA is even when ~k ∈ AτZ2, and so by definition of {h~t } we have∣∣m0(~t )
∣∣2 + ∣∣m0(~t+ π~qA)

∣∣2 = ∑
~m∈Z2,~k∈AτZ2

h~mh~m+~ke
i~k◦~t

=
∑

~k∈AτZ2

(∑
~m∈Z2

h~mh~m+~k

)
ei
~k◦~t =

∑
~k∈AτZ2

δ~0~ke
i~k◦~t = 1.

�

4. The frame scaling function

Define

g(~ξ ) =
1

2π

∞∏
j=1

m0

(
(Aτ )−j~ξ

)
, ∀~ξ ∈ R2 and (4.1)

ϕ = F−1g. (4.2)

In this section we will prove that g and ϕ are well-defined L2(R2) functions.
We will also prove that, in the extended domain C2, g is an entire function and
ϕ has a compact support in R2. We will call ϕ the scaling function.

2In the calculation, the infinite sum is always converging since there are only finitely many
nonzero terms.
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For z ∈ C, define

v(z) =

{
ez−1
z
, z 6= 0,

1, z = 0.
(4.3)

The function v(z) is an entire function on C.
We will need the following inequality in the proofs of Lemma 4.8 and Proposi-

tion 4.9.

Lemma 4.1. We have

|e−iz − 1| ≤ min
(
2, |z|

)
, ∀z ∈ C, Im(z) ≤ 0.

Proof. Let z = a+ ib with b = Im(z) ≤ 0, and so we have

|e−iz − 1| ≤ 1 + |e−iz| ≤ 1 + eb ≤ 2. (4.4)

Next we will show that

|e−iz − 1| ≤ |z|, ∀b ≤ 0.

We have

|e−iz − 1|2 = e2b − 2eb cos a+ 1

= (eb − 1)2 + 2eb(1− cos a).

Since eb > 1+b,∀b 6= 0, when b < 0, b2 = (−b)2 > (1−eb)2. Also, 2eb(1−cos a) ≤
2(1− cos a) = 4 sin2 a

2
≤ a2, and so

|e−iz − 1|2 ≤ b2 + a2 = |z|2.
This proves the inequality. �

Lemma 4.2. Let A be an expansive integral matrix with | det(A)| = 2, let Ω be

a bounded closed region in C2, and let dj(~ξ ) ≡ m0((A
τ )−j~ξ )− 1. Then∣∣dj(~ξ )∣∣ ≤ CΩ

∥∥(Aτ )−1
∥∥j
, ∀j ∈ N, ~ξ ∈ Ω, (4.5)

for some constant CΩ > 0.

Proof. By definition of h~n , we have∣∣dj(~ξ )∣∣ = ∣∣m0

(
(Aτ )−j~ξ

)
− 1

∣∣
=

∣∣∣ 1√
2

∑
~n ∈Z2

h~n e
−i~n◦(Aτ )−j~ξ − 1

∣∣∣
=

∣∣∣ 1√
2

∑
~n ∈Λ0

h~n (e
−i~n◦(Aτ )−j~ξ − 1)

∣∣∣
=

∣∣∣ 1√
2

∑
~n ∈Λ0

h~n v
(
−i~n ◦ (Aτ )−j~ξ

)[
−i~n ◦ (Aτ )−j~ξ

]∣∣∣
≤ 1√

2

∑
~n ∈Λ0

∣∣v(−i~n ◦ (Aτ )−j~ξ
)∣∣ · ∣∣−i~n ◦ (Aτ )−j~ξ

∣∣
since |hn| ≤ 1 by Remark 3.2.
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For ~n ∈ Λ0, ~ξ ∈ Ω, we have |~ξ | ≤MΩ for some MΩ > 0, and∣∣−i~n ◦ (Aτ )−j~ξ
∣∣ ≤ √

2N0 ·MΩ ·
∥∥(Aτ )−1

∥∥j
= C1

∥∥(Aτ )−1
∥∥j ≤ C1,

where C1 ≡
√
2N0MΩ. Let C2 be the finite least upper bound for a continuous

function |v(z)|, |z| ≤ C1.
Then we have ∣∣dj(~ξ )∣∣ ≤ 1√

2
(2N0 + 1)2C1C2

∥∥(Aτ )−1
∥∥j
.

Therefore, ∣∣dj(~ξ )∣∣ ≤ CΩ

∥∥(Aτ )−1
∥∥j
, (4.6)

where CΩ ≡ 1√
2
(2N0 + 1)2C1C2. �

Proposition 4.3. The function g(~ξ ) is an entire function on C2.

Remark 4.4. By (3.3) and the definition of g, it is clear that the function g is
bounded on R2.

Proof. For J ∈ N, define

gJ(~ξ ) =
1

2π

J∏
j=1

m0

(
(Aτ )−j~ξ

)
, ∀~ξ ∈ C2. (4.7)

It is clear that gJ is an entire function. We have

gJ(~ξ ) =
1

2π

J∏
j=1

m0

(
(Aτ )−j~ξ

)
=

1

2π

J∏
j=1

(
1 + dj(~ξ )

)
.

By Lemma 4.2,
∑

|dj(~ξ )| converges uniformly on the bounded region Ω, and

the product
∏∞

j=0(1 + |dj(~ξ )|) converges uniformly on Ω. This implies that g is
the uniform limit of a sequence of entire functions gJ . By the Morera theorem, g
is an entire function on C2. �

Proposition 4.5. The functions g and ϕ are in L2(R2).

Proof. We will use Γπ to denote [−π, π]2. For J ∈ N, we define on R2

MJ(~ξ ) =

{∏J
j=1 |m0((A

τ )−j~ξ )|2, if ~ξ ∈ (Aτ )J+1Γπ,

0, if ~ξ ∈ R2\(Aτ )J+1Γπ.
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Since A is expansive, Aτ is expansive. We have limMJ(~ξ ) = 4π2|g(~ξ )|2, ~ξ ∈ R2.

To prove the proposition, by Fatou’s lemma, it suffices to show that {
∫
R2 MJ(~ξ ) d~ξ ,

J ∈ N} is a bounded sequence.
We have ∫

R2

MJ(~ξ ) d~ξ =

∫
(Aτ )J+1Γπ

J∏
k=1

∣∣m0

(
(Aτ )−k~ξ

)∣∣2 d~ξ
=

∫
(Aτ )J (AτΓπ)

∣∣m0

(
(Aτ )−J~ξ

)∣∣2
·
J−1∏
k=1

∣∣m0

(
(Aτ )−k~ξ

)∣∣2 d~ξ .
Using ~η ≡ (Aτ )−J~ξ , by Proposition 2.8, we have

∫
R2

MJ(~ξ ) d~ξ =
∣∣det((Aτ )J

)∣∣ ∫
AτΓπ

∣∣m0(~η )
∣∣2 · J−1∏

m=1

∣∣m0

(
(Aτ )mη

)∣∣2 d~η
=

∣∣det((Aτ )J
)∣∣(∫

Γπ

∣∣m0(~η )
∣∣2 · J−1∏

m=1

∣∣m0

(
(Aτ )mη

)∣∣2 d~η
+

∫
Γπ+π~qA

∣∣m0(~η )
∣∣2 · J−1∏

m=1

∣∣m0

(
(Aτ )mη

)∣∣2 d~η )
=

∣∣det((Aτ )J
)∣∣(∫

Γπ

∣∣m0(~η )
∣∣2 · J−1∏

m=1

∣∣m0

(
(Aτ )mη

)∣∣2 d~η
+

∫
Γπ

∣∣m0(~η − π~qA)
∣∣2 · J−1∏

m=1

∣∣m0

(
(Aτ )mη − π(Aτ )m~qA

)∣∣2 d~η ).
Since m0 is 2π-periodical, and by Proposition 2.6(3), we have Aτ~qA ∈ (2Z)2, and
so π(Aτ )m~q ∈ π(2Z)2. By Corollary 2.9, we have

∫
R2

MJ(~ξ ) d~ξ =
∣∣det((Aτ )J

)∣∣(∫
Γπ

∣∣m0(~η )
∣∣2 · J−1∏

m=1

∣∣m0

(
(Aτ )mη

)∣∣2 d~η
+

∫
Γπ

∣∣m0(~η + π~qA)
∣∣2 · J−1∏

m=1

∣∣m0

(
(Aτ )mη

)∣∣2 d~η )
=

∣∣det((Aτ )J
)∣∣ ∫

Γπ

(∣∣m0(~η )
∣∣2 + ∣∣m0(~η + π~qA)

∣∣2)
·
J−1∏
m=1

∣∣m0

(
(Aτ )mη

)∣∣2 d~η .
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By equation (3.3) and then using the substitution ~ξ ≡ (Aτ )J~η , we obtain∫
R2

MJ(~ξ ) d~ξ =
∣∣det((Aτ )J

)∣∣ ∫
Γπ

J−1∏
m=1

∣∣m0

(
(Aτ )mη

)∣∣2 d~η
=

∫
(Aτ )JΓπ

J−1∏
k=1

∣∣m0

(
(Aτ )−k~ξ

)∣∣2 d~ξ
=

∫
R2

MJ−1(~ξ ) d~ξ .

This proves that the sequence
∫
R2 MJ(~ξ ) d~ξ , J ∈ N is a constant sequence. There-

fore, g is square integrable on R2. By the Plancherel theorem, the function ϕ,
which is the Fourier inverse transform of g, is in L2(R2). �

Next, we will prove that the scaling function ϕ has a compact support in R2.
We will need the following Schwartz’s Paley–Wiener theorem.

Theorem 4.6 (Schwartz’s Paley–Wiener theorem). An entire function F on
Cd, d ∈ N, is the Fourier transform of a distribution with compact support in Rd

if and only if there are some constants C,N , and B such that∣∣F (~ξ )∣∣ ≤ C
(
1 + |~ξ |

)N
eB|Im(~ξ )|, ∀~ξ ∈ Cd. (4.8)

The distribution is supported on the closed ball of center ~0 and radius B.

Remark 4.7. In our current situation, d = 2 and the distribution ϕ is a regular
L2(R2) function, as we proved in Proposition 4.5.

Lemma 4.8. There exist constants B0, C0 such that, for all j ∈ N, ~ξ ∈ C2,∣∣m0

(
(Aτ )−j~ξ

)∣∣ ≤ eB0‖(Aτ )−1‖j |Im(~ξ )|(1 + C0min
(
1,
∥∥(Aτ )−1

∥∥j|~ξ |
))
.

Proof. Let j ∈ N, ~ξ ∈ C2 and (Aτ )−j~ξ = ( ξ1
ξ2
) ∈ C2. Define ~̀ ~ξ = ( `1

`2
) ∈ Z2 by

`m =

{
−N0, if Im(ξm) ≤ 0;

N0, if Im(ξm) > 0;
m = 1, 2.

Then Im((~n−~̀ ~ξ )◦((Aτ )−j~ξ )) ≤ 0 for ~n ∈ Λ0. We have |(~n−~̀ ~ξ )| ≤ 2
√
2N0,∀~n ∈

Λ0. We denote B0 ≡ 4
√
2N0. It is clear that |~̀ ξ| ≤ B0

2
and |(~n − ~̀

~ξ )| ≤
B0

2
. By

Lemma 4.1, we have

|e−i(~n −~̀
~ξ
)◦((Aτ )−j~ξ ) − 1| ≤ min

(
2,
∣∣(~n − ~̀

~ξ ) ◦
(
(Aτ )−j~ξ

)∣∣), ∀~n ∈ Λ0.

Then we have

|e−i(~n −~̀
~ξ
)◦((Aτ )−j~ξ ) − 1| ≤ min

(
2, B0

∥∥(Aτ )−1
∥∥j|~ξ |

)
, ∀~n ∈ Λ0. (4.9)

We also have

|e−i~̀ ~ξ
◦((Aτ )−j~ξ )| = e

~̀
~ξ
◦((Aτ )−jIm(~ξ ))

≤ e|
~̀
~ξ
|‖(Aτ )−1‖j |Im(~ξ )|.
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This implies

|e−i~̀ ~ξ
◦((Aτ )−j~ξ )| ≤ eB0‖(Aτ )−1‖j |Im(~ξ )|. (4.10)

Since

m0

(
(Aτ )−j~ξ

)
=

∑
~n ∈Z2

1√
2
h~n e

−i~n◦((Aτ )−j~ξ )

= e−i~̀ ~ξ
◦((Aτ )−j~ξ )

∑
~n ∈Λ0

1√
2
h~n e

−i(~n −~̀
~ξ
)◦((Aτ )−j~ξ )

= e−i~̀ ~ξ
◦((Aτ )−j~ξ )

(
1 +

∑
~n ∈Λ0

1√
2
h~n (e

−i(~n −~̀
~ξ
)◦((Aτ )−j~ξ ) − 1)

)
,

by (4.9) and (4.10), we obtain∣∣m0

(
(Aτ )−j~ξ

)∣∣ ≤ |e−i~̀ ~ξ
◦((Aτ )−j~ξ )|

(
1 +

∑
~n ∈Λ0

1√
2
|h~n | ·

∣∣(e−i(~n −~̀
~ξ
)◦((Aτ )−j~ξ ) − 1)

∣∣)
≤ eB0‖(Aτ )−1‖j |Im(~ξ )|

(
1 +

1√
2
(2N0 + 1)2min

(
2, B0

∥∥(Aτ )−1
∥∥j|~ξ |

))
≤ eB0‖(Aτ )−1‖j |Im(~ξ )|(1 + C0min

(
1,
∥∥(Aτ )−1

∥∥j|~ξ |
))
,

where C0 ≡ max(
√
2(2N0 + 1)2, B0√

2
(2N0 + 1)2). �

Proposition 4.9. The scaling function ϕ is an L2(R2) function with compact
support.

Proof. Let ~ξ ∈ R2, ~ξ 6= ~0 .3 By Schwartz’s Paley–Wiener theorem, it suffices to
prove that the function g satisfies the inequality (4.8).

We write β = ‖(Aτ )−1‖−1. Since A is expansive, β ∈ (1,∞). We have

∞∏
j=1

eB0‖(Aτ )−1‖j |Im(~ξ )| = eB|Im(~ξ )|,

where B ≡
∑∞

j=1
B0

βj . Then, by Lemma 4.8, we have

∣∣g(~ξ )∣∣ = ∣∣∣ 1
2π

∞∏
j=1

m0

(
(Aτ )−j~ξ

)∣∣∣
≤ 1

2π

∞∏
j=1

eB0‖(Aτ )−1‖j |Im(~ξ )|(1 + C0min
(
1,
∥∥(Aτ )−1

∥∥j|~ξ |
))

≤ 1

2π
eB|Im(~ξ )|

∞∏
j=1

(
1 + C0min

(
1,
∥∥(Aτ )−1

∥∥j|~ξ |
))

=
1

2π
eB|Im(~ξ )|

∞∏
j=1

(
1 + C0min

(
1,

|~ξ |
βj

))
.

3The case when ~ξ = ~0 is trivial. We omit it.
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On the other hand, the sequence {βj} is monotonically increasing to +∞. Let
Ij ≡ [βj, βj+1), j ∈ N, and I0 ≡ (0, β). The set of intervals {Ij, j ≥ 0} is a

partition of (0,∞). Then |~ξ | ∈ Ij0 for some integer j0 ≥ 0. We have

(1 + C0)
j0 = βj0 logβ(1+C0)

≤ |~ξ |logβ(1+C0)

≤
(
1 + |~ξ |

)N
,

where N is the smallest natural number no less than logβ(1 + C0). This is a
constant related to A and N0 only, and so we have∣∣g(~ξ )∣∣ ≤ 1

2π
(1 + C0)

j0eB|Im(~ξ )|
∞∏

j=j0+1

(
1 + C0min

(
1,

|~ξ |
βj

))
≤

(
1 + |~ξ |

)N
eB|Im(~ξ )| ·

( 1

2π

∞∏
j=j0+1

(
1 + C0min

(
1,

|~ξ |
βj

)))
.

Now, since |~ξ | ∈ Ij0 = [βj0 , βj0+1), |~ξ |
βj0+1 < 1. We have

1

2π

∞∏
j=j0+1

(
1 + C0min

(
1,

|~ξ |
βj

))
=

1

2π

∞∏
j=j0+1

(
1 + C0

|~ξ |
βj0+1

· 1

βj−(j0+1)

)
≤ 1

2π

∞∏
k=0

(
1 +

C0

βk

)
≤ 1

2π
e
∑ C0

βk .

Denote C ≡ 1
2π
e
∑ C0

βk . This is a constant decided by the matrix A.
Combining the above argument, we have∣∣g(~ξ )∣∣ ≤ C

(
1 + |~ξ |

)N
eB|Im(~ξ )|. �

5. Normalized tight frame wavelet function

In this section, we will construct a normalized tight frame wavelet function ψ
associated with the scaling function ϕ. By definition (4.1) and Lemma 2.4, we
have

ϕ̂(~s ) = g(~s ) = m0

(
(Aτ )−1~s

)
· 1

2π

∞∏
j=2

m0

(
(Aτ )−j~ξ

)
=m0

(
(Aτ )−1~s

)
g
(
(Aτ )−1~s

)
=

1√
2

∑
~n ∈Λ0

h~n e
−i~n◦(Aτ )−1~s g

(
(Aτ )−1~s

)
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=
∑
~n ∈Λ0

h~n T̂A−1~n D̂Ag(~s )

=
∑
~n ∈Λ0

h~n D̂AT̂~n ϕ̂(~s ).

Taking the Fourier inverse transform on two sides, we have

ϕ =
∑
~n ∈Λ0

h~nDAT~n ϕ, or (5.1)

ϕ(~t ) =
√
2
∑
~n ∈Λ0

h~n ϕ(A~t − ~n ), ~t ∈ R2. (5.2)

Define

σA(~n ) =

{
0, ~n ∈ AZ2,

1, ~n /∈ AZ2.

Remark 5.1. It is clear that we have σA(~u + A~v ) = σA(~u ), ∀~u ,~v ∈ Z2. By
Proposition 2.6(4), AZ2 = AτZ2, and so we have σA(~n ) = 0 if and only if ~n ∈
AτZ2. Furthermore, we have σA(~̀A) = 1 and σA(~̀A − ~n ) = 1− σA(~n ),∀~n ∈ Z2.

Definition 5.2. Define a function ψ on R2 by

ψ =
∑
~n ∈Z2

(−1)σA(~n )h~̀
A−~nDAT~n ϕ, or, equivalently, (5.3)

ψ(~t ) =
√
2
∑
~n ∈Z2

(−1)σA(~n )h~̀
A−~n ϕ(A~t − ~n ), ∀~t ∈ R2. (5.4)

In this section we will prove that the function ψ is a normalized tight frame
wavelet associated with the expansive matrix A. It is clear that the function ψ
has a compact support since the scaling function ϕ has a compact support and
the sum in the definition for ψ has only finite nonzero terms. For J ∈ Z and
f ∈ L2(R2), define

IJ ≡
∑
~k ∈Z2

〈f,DJ
AT~k ϕ〉D

J
AT~k ϕ; FJ ≡

∑
~k ∈Z2

〈f,DJ
AT~k ψ〉D

J
AT~k ψ.

Lemma 5.3. Let f ∈ L2(R2). Then

IJ+1 = IJ + FJ , ∀J ∈ Z. (5.5)

Proof. 1. The case J = 0. By equation (5.1), Definition 5.2, and Lemma 2.4, we
have

I0 =
∑
~k ∈Z2

〈f, T~k ϕ〉T~k ϕ

=
∑
~k ∈Z2

〈
f, T~k

∑
~p ∈Z2

h~pDAT~p ϕ
〉
T~k

∑
~q ∈Z2

h~qDAT~q ϕ

=
∑
~p ∈Z2

∑
~q ∈Z2

∑
~k ∈Z2

h~p h~q 〈f,DAT~p +A~k ϕ〉DAT~q +A~k ϕ,
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F0 =
∑
~k ∈Z2

〈f, T~k ψ〉T~k ψ

=
∑
~k ∈Z2

〈
f, T~k

∑
~p ∈Z2

(−1)σA(~p )h~̀
A−~pDAT~p ϕ

〉
T~k

∑
~q ∈Z2

(−1)σA(~q )h~̀
A−~qDAT~q ϕ

=
∑
~p ∈Z2

∑
~q ∈Z2

∑
~k ∈Z2

(−1)σA(~p )+σA(~q )h~̀
A−~p h~̀A−~q 〈f,DAT~p +A~k ϕ〉DAT~q +A~k ϕ.

Using the substitutions ~m ≡ ~p +A~k and ~n ≡ ~q +A~k , we have, by Remark 5.1,

I0 =
∑

~m ,~n ∈Z2

∑
~k ∈Z2

h~m −A~k h~n −A~k 〈f,DAT~m ϕ〉DAT~n ϕ,

F0 =
∑

~m ,~n ∈Z2

∑
~k ∈Z2

(−1)σA(~m −A~k )+σA(~n −A~k )h~̀
A−~m +A~k h~̀A−~n +A~k 〈f,DAT~mϕ〉DAT~nϕ

=
∑

~m ,~n ∈Z2

∑
~k ∈Z2

(−1)σA(~m )+σA(~n )h~̀
A−~m +A~k h~̀A−~n +A~k 〈f,DAT~m ϕ〉DAT~n ϕ.

We will use the notation

α~m ,~n ≡
∑
~k ∈Z2

h~m −A~k h~n −A~k

=
∑

~̀∈AZ2

h~m +~̀h~n +~̀ =
∑

~̀∈~n +AZ2

h~̀+(~m −~n )h~̀ ,

β~m ,~n ≡
∑
~k ∈Z2

(−1)σA(~m )+σA(~n )h~̀
A−~m +A~k h~̀A−~n +A~k

= (−1)σA(~m )+σA(~n )
∑

~̀∈~̀A−~m +AZ2

h~̀+(~m −~n )h~̀ .

If ~m − ~n ∈ AZ2, then σ(~m ) = σA(~n ), (−1)σA(~m )+σA(~n ) = 1, and (~̀A − ~m +
AτZ2) ·∪ (~n + AτZ2) = Z2. By Lawton’s equations (3.1), we have

α~m ,~n + β~m ,~n =
∑

~̀∈~n +AZ2

h~̀+(~m −~n )h~̀ +
∑

~̀∈~̀A−~m +AZ2

h~̀+(~m −~n )h~̀

=
∑
~̀∈Z2

h~̀+(~m −~n )h~̀ = δ~m ,~n .

If ~m −~n ∈ ~̀
A +AZ2, then exactly one element of ~m and ~n is in AZ2 and the

other one is in ~̀A + AZ2. Then (−1)σA(~m )+σA(~n ) = −1 and (~̀A − ~m + AτZ2) =
(~n + AτZ2); hence,

α~m ,~n + β~m ,~n =
∑

~̀∈~n +AτZ2

h~̀+(~m −~n )h~̀ −
∑

~̀∈~̀A−~m +AτZ2

h~̀+(~m −~n )h~̀

= 0.
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Therefore, we have

I0 + F0 =
∑

~m ,~n ∈Z2

(α~m ,~n + β~m ,~n )〈f,DAT~m ϕ〉DAT~n ϕ

=
∑

~m ,~n ∈Z2

δ~m ,~n 〈f,DAT~m ϕ〉DAT~n ϕ

=
∑
~k ∈Z2

〈f,DAT~k ϕ〉DAT~k ϕ

= I1.

This is∑
~k ∈Z2

〈f,DAT~k ϕ〉DAT~k ϕ =
∑
~k ∈Z2

〈f, T~k ϕ〉T~k ϕ+
∑
~k ∈Z2

〈f, T~k ψ〉T~k ψ. (5.6)

2. The general case. Let f ∈ L2(R2). We replace f by (D∗
A)

Jf in equation (5.6),
where D∗

A is the unitary operator dual to DA. Then we have∑
~k ∈Z2

〈
(DJ

A)
∗f,DAT~kϕ

〉
DAT~kϕ =

∑
~k ∈Z2

〈
(DJ

A)
∗f, T~kϕ

〉
T~kϕ+

∑
~k ∈Z2

〈
(DJ

A)
∗f, T~k ψ

〉
T~k ψ.

Apply DJ
A to both sides of the equation. By using 〈(DJ

A)
∗f, h〉 = 〈f,DJ

Ah〉, we
obtain the desired general equality (5.5). �

In the rest of this section, we will establish the main result of this paper.
We state Theorem 5.4 first. We will complete the proof through lemmas and
propositions. For f ∈ L2(R2) and J ∈ Z, we will use the following notation:

LJ(f) ≡
∑
~̀∈Z2

∣∣〈f,DJ
AT~̀ϕ〉

∣∣2; in particular,

L0(f) =
∑
~̀∈Z2

∣∣〈f, T~̀ϕ〉∣∣2.
For a positive number ρ we define functions fρ and fρ by f̂ρ ≡ f̂ · χ{|~t |≤ρ} and

f̂ρ ≡ f̂ ·χ{|~t |>ρ}, respectively. Here χ is the characteristic function. Then we have

f = fρ + fρ. Also, it is clear that ‖f‖2 = ‖f̂‖2 = ‖fρ‖2 + ‖fρ‖2, limρ→∞ ‖fρ‖2 =
‖f‖2, and limρ→∞ ‖fρ‖2 = 0.

Theorem 5.4. Let ψ be as defined in Definition 5.2. Then {Dn
AT~̀ψ, n ∈ Z, ~̀ ∈

Z2} is a normalized tight frame for L2(R2).

Proof. Let f ∈ L2(R2). We will prove that

f =
∑
n∈Z

∑
~̀∈Z2

〈f,Dn
AT~̀ψ〉Dn

AT~̀ψ; (5.7)

the convergence is in the L2(R2)-norm.



658 X. DAI

By Lemma 5.3, we have Ij − Ij−1 = Fj−1, ∀j ∈ Z. Hence
J∑

j=−J+1

Fj = IJ − I−J , ∀J ∈ Z.

This implies that

J∑
j=−J+1

∑
~̀∈Z2

〈f,Dj
AT~̀ψ〉D

j
AT~̀ψ

=
∑
~̀∈Z2

〈f,DJ
AT~̀ϕ〉DJ

AT~̀ϕ−
∑
~̀∈Z2

〈f,D−J
A T~̀ϕ〉D−JT~̀ϕ.

Taking the inner product of f with both sides of the equation, we have

J∑
j=−J+1

∑
~̀∈Z2

∣∣〈f,Dj
AT~̀ψ〉

∣∣2 = LJ(f)− L−J(f).

By Propositions 5.6 and 5.8, we have

lim
J→+∞

LJ(f) = ‖f‖2;

lim
J→+∞

L−J(f) = 0.

Then we have ∑
j∈Z

∑
~̀∈Z2

∣∣〈f,Dj
AT~̀ψ〉

∣∣2 = ‖f‖2, ∀f ∈ L2(R2).
�

To complete the proof of Theorem 5.4, we will prove Propositions 5.6 and 5.8
and the related lemmas. We first need the following.

Lemma 5.5. Let f ∈ L2(R2). Then

LJ(f) =
∑
~̀∈Z2

∣∣〈f,DJ
AT~̀ϕ〉

∣∣2 ≤ (2B + 1)2‖ϕ‖2‖f‖2, ∀J ∈ Z; (5.8)

lim
ρ→∞

lim sup
J→+∞

LJ(fρ) = 0. (5.9)

Proof. By Proposition 4.9, the scaling function ϕ has a compact support. Let B
be a natural number such that the set [−B,B)2 contains the support of ϕ. We
will write E0 ≡ [−1

2
, 1
2
)2, EB ≡ [−B − 1

2
, B + 1

2
)2, and ΛB ≡ Z2 ∩ [−B,B]2. For

~n ∈ Z2, we have ~n = (2B + 1)~̀ + ~d , ~̀ ∈ Z2, ~d ∈ ΛB. Here ~̀ and ~d ∈ ΛB are
uniquely determined by ~n . We have

Z2 =
⋃

d∈ΛB

⋃
~̀∈Z2

(2B + 1)~̀ + ~d .

This is a disjoint union. Also, {EB + (2B + 1)~̀ , ~̀ ∈ Z2} is a partition of R2.

Hence, for a fixed ~d ∈ ΛB, {EB + (2B + 1)~̀ + ~d , ~̀ ∈ Z2} is a partition of

R2. Note that the set EB + (2B + 1)~̀ + ~d contains the support for T~n ϕ, where
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~n = (2B + 1)~̀ + ~d . Then, for a fixed ~d ∈ ΛB, supports of functions in the set

{T~n ϕ,~n = (2B + 1)~̀ + ~d , ~̀ ∈ Z2} are disjoint. Then we have

L0(f) =
∑
~d ∈ΛB

∑
~̀∈Z2

∣∣〈f, T(2B+1)~̀+~d ϕ〉
∣∣2

=
∑
~d ∈ΛB

∑
~̀∈Z2

∣∣∣∫
R2

χEB+(2B+1)~̀+~d (~t )f(~t )T(2B+1)~̀+~d ϕ(~t ) dµ
∣∣∣2

≤
∑
~d ∈ΛB

(
‖ϕ‖2

∑
~̀∈Z2

∫
EB+(2B+1)~̀+~d

∣∣f(~t )∣∣2 dµ)
≤

∑
~d ∈ΛB

‖ϕ‖2‖f‖2 ≤ (2B + 1)2‖ϕ‖2‖f‖2,

and so we have

LJ(f) =
∑
~̀∈Z2

∣∣〈(DJ
A)

∗f, T~̀ϕ
〉∣∣2

≤ (2B + 1)2‖ϕ‖2
∥∥(DJ

A)
∗f
∥∥2

= (2B + 1)2‖ϕ‖2‖f‖2.

Then we have (5.8). Since limρ→∞ ‖fρ̄‖ = 0, the equality (5.9) is an immediate
consequence of the inequality (5.8) just proved. �

Proposition 5.6. Let f ∈ L2(R2). Then

lim
J→+∞

L−J(f) = 0.

Proof. Let f ∈ L2(R2). We have

L−J(f) =
∑
~̀∈Z2

∣∣〈f,D−J
A T~̀ϕ〉

∣∣2
=

∑
~d ∈ΛB

∑
~̀∈Z2

∣∣〈f,D−J
A T(2B+1)~̀+~d ϕ〉

∣∣2
=

∑
~d ∈ΛB

∑
~̀∈Z2\{~0 }

∣∣〈f,D−J
A T(2B+1)~̀+~d ϕ〉

∣∣2 + ∑
~d ∈ΛB

∣∣〈f,D−J
A T~d ϕ〉

∣∣2.
For each ~d ∈ ΛB, {EB + (2B + 1)~̀ + ~d , ~̀ ∈ Z2} is a partition of R2. It is clear

that E0 ⊂ EB+ ~d and (EB+(2B+1)~̀+ ~d )∩E0 = ∅,∀~̀ ∈ Z2\{~0 }. The support
of the function D−J

A T~̀ϕ is contained in AJ(EB + ~̀). We have∑
~̀∈Z2\{~0 }

∣∣〈f,D−J
A T(2B+1)~̀+~d ϕ〉

∣∣2
=

∑
~̀∈Z2\{~0 }

∣∣∣∫
R2

χAJ (EB+(2B+1)~̀+~d ) · f ·D−J
A T(2B+1)~̀+~d ϕdµ

∣∣∣2
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≤
∑

~̀∈Z2\{~0 }

∫
AJ (EB+(2B+1)~̀+~d )

|f |2 dµ · ‖D−J
A T(2B+1)~̀+~d ϕ‖

2

≤
∫
R2\AJE0

|f |2 dµ · ‖ϕ‖2.

Since A is expansive, limJ→+∞AJE0 = R2, limJ→+∞
∫
R2\AJE0

|f |2 dµ = 0, and so

lim
J→+∞

∑
~d ∈ΛB

∑
~̀∈Z2\{~0 }

∣∣〈f,D−J
A T(2B+1)~̀+~d ϕ〉

∣∣2
≤ (2B + 1)2‖ϕ‖2 lim

J→+∞

∫
R2\AJE0

|f |2 dµ = 0.

To complete the proof of this proposition, we need to show that

lim
J→+∞

∑
~d ∈ΛB

∣∣〈f,D−J
A T~d ϕ〉

∣∣2 = 0. (5.10)

Let fN ≡ χ[−N,N ]2 · f . Let ε > 0, and choose N ∈ N to be large such that

‖f − fN‖ ≤ ε
2‖ϕ‖ . Then we have |〈f,D−J

A T~d ϕ〉| ≤ |〈fN , D−J
A T~d ϕ〉|+

ε
2
. Since∣∣〈fN , D−J

A T~d ϕ〉
∣∣ = ∣∣〈DJ

AfN , T~d ϕ〉
∣∣

=
∣∣〈χA−J [−N,N ]2D

J
AfN , T~d ϕ〉

∣∣
=

∣∣〈DJ
AfN , χA−J [−N,N ]2T~d ϕ〉

∣∣,
we have ∣∣〈fN , D−J

A T~d ϕ〉
∣∣ ≤ ‖DJ

AfN‖ ·

√∫
R2

|χA−J [−N,N ]2T~d ϕ|2 dµ

≤ ‖f‖ ·

√∫
R2

|χA−J [−N,N ]2T~d ϕ|2 dµ · ‖T~d ϕ‖

=
(2N + 1)‖f‖‖ϕ‖

2
J
2

.

When J > 2 log2
2(2N+1)‖f‖‖ϕ‖

ε
, we have (2N+1)‖f‖‖ϕ‖

2
J
2

< ε
2
and |〈f,D−J

A T~d ϕ〉| < ε.

Then

lim
J→+∞

∣∣〈f,D−J
A T~d ϕ〉

∣∣2 = 0, ~d ∈ ΛB.

Since ΛB is a finite set, we have

lim
J→+∞

∑
~d ∈ΛB

∣∣〈f,D−J
A T~d ϕ〉

∣∣2 = 0.
�

Lemma 5.7. Let f ∈ L2(R2), and let J ∈ Z. Then

LJ(f) = (2π)2
∫
R2

∑
~̀∈Z2

(
f̂(~t )f̂

(
~t − 2π(Aτ )J ~̀

)
ϕ̂
(
(Aτ )−J~t − 2π~̀

)
ϕ̂
(
(Aτ )−J~t

))
d~t .
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Proof. By Remark 2.5 after Lemma 2.6, we haveDJ
AT~̀ = TA−J ~̀DJ

A. Note the facts

that the Fourier transform F is a unitary operator, D̂J
Aϕ̂(~t ) = 1√

2J
ϕ̂((Aτ )−J~t ),

and (A−J ~̀) ◦ ~t = ~̀ ◦ ((Aτ )−J~t ). We have

LJ(f) =
∑
~̀∈Z2

∣∣〈f, TA−J ~̀D
J
Aϕ〉

∣∣2
=

∑
~̀∈Z2

∣∣〈f̂ , T̂A−J ~̀ D̂
J
Aϕ̂〉

∣∣2
=

∑
~̀∈Z2

∣∣∣∫
R2

f̂(~t ) · ei(A−J ~̀ )◦~t · D̂J
Aϕ̂(~t ) d~t

∣∣∣2
=

∑
~̀∈Z2

∣∣∣ 1√
2J

∫
R2

ei
~̀◦((Aτ )−J~t ) · f̂(~t ) · ϕ̂

(
(Aτ )−J~t

)
d~t

∣∣∣2.
Take the transform d~t ≡ d(Aτ )J~s = 2J d~s . Note that (Aτ )JR2 = R2. We have

LJ(f) = 2J
∑
~̀∈Z2

∣∣∣∫
R2

ei
~̀◦~s · f̂

(
(Aτ )J~s

)
· ϕ̂(~s ) d~s

∣∣∣2.
Note the facts that the function ei

~̀◦~s is 2π-periodic in ~s and that the set {Γπ +

2π~k ,~k ∈ Z2} is a partition of R2, where Γπ is [−π, π)2. We have

LJ(f) = 2J
∑
~̀∈Z2

∣∣∣∑
~k ∈Z2

∫
Γπ+2π~k

ei
~̀◦~s · f̂

(
(Aτ )J~s

)
· ϕ̂(~s ) d~s

∣∣∣2
= 2J

∑
~̀∈Z2

∣∣∣∑
~k ∈Z2

∫
Γπ

ei
~̀◦~r ·

(
f̂
(
(Aτ )J~r − 2π(Aτ )J~k

)
· ϕ̂(~r − 2π~k )

)
d~r

∣∣∣2
= 2J(2π)2

∑
~̀∈Z2

∣∣∣∫
Γπ

1

2π
ei

~̀◦~r

·
∑
~k ∈Z2

(
f̂
(
(Aτ )J~r − 2π(Aτ )J~k

)
· ϕ̂(~r − 2π~k )

)
d~r

∣∣∣2,
where we use the transform ~r = ~s + 2π~k accordingly.

The set of functions { 1
2π
ei

~̀◦~t , ~̀ ∈ Z2} is an orthonormal basis for the Hilbert
space K = L2(Γπ), the set of all square integrable 2π-periodical functions on R2.
Denote

h(~t ) ≡
∑
~k ∈Z2

(
f̂
(
(Aτ )J~t − 2π(Aτ )J~k

)
· ϕ̂(~t − 2π~k )

)
.

Then, by the above calculation on LJ(f) and Lemma 5.5, we have∑
~̀∈Z2

∣∣∣∫
Γπ

h(~t ) · 1

2π
ei

~̀◦~t d~t
∣∣∣2 = 1

2J · (2π)2
· LJ(f) <∞.
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This implies that h ∈ K = L2(Γπ) and

‖h‖2K =
∑
~̀∈Z2

∣∣∣∫
Γπ

h(~t ) · 1

2π
ei

~̀◦~t d~t
∣∣∣2,

where ‖ · ‖K is the norm in K. Therefore,

LJ(f) = 2J · (2π)2 · ‖h‖2K

= 2J · (2π)2
∫
Γπ

∣∣∣∑
~k ∈Z2

(
f̂
(
(Aτ )J~t − 2π(Aτ )J~k

)
· ϕ̂(~t − 2π~k )

)∣∣∣2 d~t
= (2π)2

∫
(Aτ )JΓπ

∣∣∣∑
~k ∈Z2

f̂
(
~s − 2π(Aτ )J~k

)
· ϕ̂

(
(Aτ )−J~s − 2π~k

)∣∣∣2 d~s .
Here we use a transform ~t ≡ (Aτ )−J~s , d~t = 2−J d~s . Then we have

LJ(f) = (2π)2
∫
(Aτ )JΓπ

∑
~k ∈Z2

∑
~̀∈Z2

(
f̂
(
~s − 2π(Aτ )J~k

)
· f̂

(
~s − 2π(Aτ )J ~̀

)
· ϕ̂

(
(Aτ )−J~s − 2π~̀

)
· ϕ̂

(
(Aτ )−J~s − 2π~k

))
d~s .

In the second sum, replace ~̀ by ~̀ + ~k . Then we have

LJ(f) = (2π)2
∑
~k ∈Z2

∫
(Aτ )JΓπ

∑
~̀∈Z2

(
f̂
(
~s − 2π(Aτ )J~k

)
· f̂

(
~s − 2π(Aτ )J~k − 2π(Aτ )J ~̀

)
· ϕ̂

(
(Aτ )−J~s − 2π~k − 2π~̀

)
· ϕ̂

(
(Aτ )−J~s − 2π~k

))
d~s .

Replacing ~s by ~s + 2π(Aτ )J~k , we have

LJ(f) = (2π)2
∑
~k ∈Z2

∫
(Aτ )JΓπ+2π(Aτ )J~k

∑
~̀∈Z2

(
f̂(~s ) · f̂

(
~s − 2π(Aτ )J ~̀

)
· ϕ̂

(
(Aτ )−J~s − 2π~̀

)
· ϕ̂

(
(Aτ )−J~s

))
d~s .

Since {(Aτ )JΓπ + 2π(Aτ )J~k ,~k ∈ Z2} is a partition of R2, we have

LJ(f) = (2π)2
∫
R2

∑
~̀∈Z2

(
f̂(~s ) · f̂

(
~s − 2π(Aτ )J ~̀

)
· ϕ̂

(
(Aτ )−J~s − 2π~̀

)
· ϕ̂

(
(Aτ )−J~s

))
d~s .

Lemma 5.7 is proved. �

Proposition 5.8. We have

lim
J→+∞

LJ(f) = ‖f‖2, ∀f ∈ L2(R2). (5.11)
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Proof. We denote

UJ(f) ≡ (2π)2
∫
R2

f̂(~s ) · f̂(~s ) · ϕ̂
(
(Aτ )−J~s

)
· ϕ̂

(
(Aτ )−J~s

)
d~s

=

∫
R2

∣∣f̂(~s )∣∣2∣∣2πϕ̂((Aτ )−J~s
)∣∣2 d~s ,

VJ(f) ≡ (2π)2
∫
R2

∑
~̀∈Z2\{~0 }

(
f̂(~s ) · f̂

(
~s − 2π(Aτ )J ~̀

)
· ϕ̂

(
(Aτ )−J~s − 2π~̀

)
· ϕ̂

(
(Aτ )−J~s

))
d~s .

By Lemma 5.7, we have LJ(f) = UJ(f) + VJ(f). It is enough to prove that

lim
J→+∞

UJ(f) = ‖f‖2 and (5.12)

lim
J→+∞

VJ(f) = 0. (5.13)

1. Recall that Aτ is expansive, and so limJ→+∞(Aτ )−J~s = ~0 , ∀~s ∈ R2. Also,

by definition of g, Remark 3.2, and Lemma 4.3, 2πϕ̂(~0 ) = 2πg(~0 ) = 1, and
g is continuous and bounded on R2. By the Lebesgue dominated convergence
theorem, we have

lim
J→+∞

UJ(f) = lim
J→+∞

∫
R2

∣∣f̂(~s )∣∣2 · ∣∣2πϕ̂((Aτ )−J~s
)∣∣2 d~s

= lim
J→+∞

∫
R2

∣∣f̂(~s )∣∣2 · ∣∣2πg((Aτ )−J~s
)∣∣2 d~s

= ‖f̂‖2 = ‖f‖2.

This proves (5.12).

2. Let ρ ∈ R+, and let ∆ρ be the open ball with center ~0 and radius ρ. In

particular, ∆1 is the open ball with center ~0 and radius 1. Let χρ and χρ be the

characteristic functions of sets ∆ρ and R2\∆ρ, respectively. Define fρ by f̂ρ ≡ χρf̂ ,

and define fρ by f̂ρ ≡ χρf̂ . Since the Fourier transform is linear, we have f =

fρ+fρ. Also, it is clear that ‖f‖2 = ‖f̂‖2 = ‖fρ‖2+‖fρ‖2, limρ→+∞ ‖fρ‖2 = ‖f‖2,
and limρ→+∞ ‖fρ‖2 = 0.

Since Aτ is expansive, β ≡ ‖(Aτ )−1‖−1 > 1. Denote a ≡ logβ(2ρ). Let Jρ be

the smallest natural number in the interval (a,+∞). When J ≥ Jρ, (A
τ )J∆1

contains an open ball ∆2ρ. Since ∆1 ∩ Z2 = {~0 }, 2π(Aτ )J∆1 ∩ 2π(Aτ )JZ2 =

{~0 }. Also, we have ∆2ρ ⊆ (Aτ )J∆1 ⊆ 2π(Aτ )J∆1. These facts imply that when

J ≥ Jρ, the distance between ~0 and 2π(Aτ )J ~̀ is greater than 2ρ. Then, for

each ~̀ ∈ Z2\{~0 }, the support of f̂ρ(~t ), which is ∆ρ, and the support of f̂ρ(~t −
2π(Aτ )J ~̀), which is ∆ρ + 2π(Aτ )J ~̀ , are disjoint. This implies that the product

f̂ρ(~t )f̂ρ(~t − 2π(Aτ )J ~̀) ≡ 0 when J ≥ Jρ. Therefore, we have

lim
J→+∞

VJ(fρ) = 0, ∀ρ ∈ R+.
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Together with (5.12), we have proved that

lim
J→+∞

LJ(fρ) = ‖fρ‖2, ∀f ∈ L2(R2),∀ρ ∈ R+. (5.14)

3. Let Dρ ≡
∑

~̀∈Z2(〈fρ, DJ
AT~̀ϕ〉〈fρ, DJ

AT~̀ϕ〉+〈fρ, DJ
AT~̀ϕ〉〈fρ, DJ

AT~̀ϕ〉). Then

|Dρ| ≤ 2
∑
~̀∈Z2

∣∣〈fρ, DJ
AT~̀ϕ〉

∣∣ · ∣∣〈fρ, DJ
AT~̀ϕ〉

∣∣
≤ 2

√∑
~̀∈Z2

∣∣〈fρ, DJ
AT~̀ϕ〉

∣∣2 ·√∑
~̀∈Z2

∣∣〈fρ, DJ
AT~̀ϕ〉

∣∣2
= 2

√
LJ(fρ) ·

√
LJ(fρ).

By Lemma 5.5, we have

|Dρ| ≤ 2(2B + 1)2‖ϕ‖2‖fρ‖‖fρ‖.

We have

LJ(f)− ‖f‖2 = LJ(fρ + fρ)− ‖f‖2

=
∑
~̀∈Z2

〈fρ + fρ, D
J
AT~̀ϕ〉〈fρ + fρ, DJ

AT~̀ϕ〉 − ‖f‖2

= LJ(fρ)− ‖f‖2 + LJ(fρ) +Dρ

=
(
LJ(fρ)− ‖fρ‖2

)
− ‖fρ‖2 + LJ(fρ) +Dρ.

By (5.14), (5.9), and Lemma (5.8), we have

lim sup
J→+∞

∣∣LJ(f)− ‖f‖2
∣∣ ≤ 0 + ‖fρ‖2 + 0 + 2(2B + 1)2‖ϕ‖2‖fρ‖‖fρ‖, ∀ρ ∈ R+.

The left-hand side contains no ρ. Let ρ→ +∞. Since limρ→+∞ ‖fρ‖ = 0, we have

lim
J→∞

LJ(f) = ‖f‖2. �

The proof of Theorem 5.4 is complete.

6. Conclusion

Let A0 be a 2 × 2 expansive integral matrix with | det(A0)| = 2. We can
construct normalized tight frame wavelets associated with A0 in the following
steps.

(1) Find a 2×2 integral matrix S with | det(S)| = 1 and with the property that
SAS−1 = A0, where A is one of the six matrices in list (2.2) (Proposition 2.1).

(2) Solve the system of equations (see (3.1)){∑
~n ∈Z2 h~n h~n +~k = δ~0 ~k ,

~k ∈ AτZ2,∑
~n ∈Z2 h~n =

√
2

for a finite solution S = {h~n : ~n ∈ Z2}; that is, the index set of nonzero terms
h~n is included in the set Λ0 ≡ Z2 ∩ [−N0, N0]

2 for some natural number N0.
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(3) Define the filter function m0 by (3.2):

m0(~t ) =
1√
2

∑
~n ∈Z2

h~n e
−i~n◦~t .

(4) Define a function g by (4.1):

g(~ξ ) =
1

2π

∞∏
j=1

m0

(
(Aτ )−j~ξ

)
, ∀~ξ ∈ R2.

The function g is an L2(R2)-function (Proposition 4.5).
(5) Define the scaling function ϕ by (4.2):

ϕ = F−1g.

The scaling function ϕ is an L2(R2)-function with compact support (Proposi-
tion 4.9).

(6) Let ~̀A be the vector as in Proposition 2.6. Define

σA(~n ) =

{
0, ~n ∈ AZ2,

1, ~n /∈ AZ2.

Define the wavelet function ψA on R2 by (5.3):

ψA =
∑
~n ∈Z2

(−1)σA(~n )h~̀
A−~nDAT~n ϕ.

This is a normalized tight frame wavelet with compact support associated with
matrix A (Theorem 5.4).

(7) Define the wavelet function ψ by

ψ(~t ) ≡ ψA(S~t ), ∀~t ∈ R2.

The function ψ is a normalized tight frame wavelet with compact support asso-
ciated with the given matrix A0 (Theorem 2.3).

7. Examples

Let A be one of the six matrices in Proposition 2.1. If we assume that Λ0

contains only one element ~0 , then Lawton’s equations have no solution since this
will require that h~0 = ±1 and

√
2. Assuming that Λ0 = {~n 0, ~n 1}, ~n 0 = ~0 , ~n 1 =

[ 10 ], we will have two cases.
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Case (1). ~n 1 = [ 10 ] ∈ AZ2. In this case, the reduced Lawton system of equations
(3.1) is 

h2~n 0
+ h2~n 1

= 1,

h~n 0 · h~n 1 = 0,

h~n 0 + h~n 1 =
√
2.

(7.1)

Apparently, this system of equations has no solution.
Case (2). ~n 1 = [ 10 ] /∈ AZ2. The reduced Lawton system of equations (3.1) is{

h2~n 0
+ h2~n 1

= 1,

h~n 0 + h~n 1 =
√
2.

(7.2)

The system has one solution h~n 0 = h~n 1 =
√
2
2
. Then, for the first four matrices

in Proposition 2.1,[
1 1
1 −1

]
,

[
1 −3
1 −1

]
,

[
1 1
−1 1

]
,

[
−1 −1
1 −1

]
(7.3)

according to the table in (2.5) n1 /∈ AZ2(= AτZ2). Then, in the case that A is one
of the four matrices, we have the solution. The wavelets created by the solutions
are Haar wavelets. One of them is included in Example 7.1.

Example 7.1. Let

A =

[
1 1
1 −1

]
. By the table in (2.5), ~̀

A =

[
1
0

]
, ~qA =

[
1
1

]
.

h~n 0 = h~n 1 =
√
2
2

is the solution to the reduced Lawton’s equations (7.2) as in the
above discussion. Then the filter function (3.2) is reduced to

m0(~t ) ≡
1

2
+

1

2
e−it1 , ~t =

[
t1
t2

]
∈ C2. (7.4)

The two-scaling relation equation (5.1) is reduced to

ϕH =

√
2

2
DA(I + T~n 1)ϕH . (7.5)

The supports of ϕH and ψH are the same set QA, which is the parallelogram with
vertices {[ 00 ], [ 10 ], [ 21 ], [ 11 ]}. The graph of the supports of ϕH and ψH is illustrated
in Figure 4. The graph of ϕH and ψH is illustrated in Figure 5.

Example 7.2. In this example, we want to show that a solution to Lawton’s
equations will produce a known wavelet in the literature. Let

A =

[
1 1
1 −1

]
, S =

[
0 1
1 −1

]
, and A0 =

[
0 2
1 0

]
.

Then

A0 = S−1AS.
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Figure 4. Supports of ϕH and ψH .

Figure 5. Graphs of ϕH and ψH .

We will construct a scaling function ϕA and related normalized tight frame wavelet
ψA associated with matrix A. Then USψA will be a normalized tight frame wavelet
associated with matrix A0, and USϕA will be the scaling function for USψA.

Assume that the support of the solution is Λ0:

Λ0 =

{[
0
m

]
,m = 0, 1, . . . , 7

}
∪
{[

1
m

]
,m = −1, 0, . . . , 6

}
.

The reduced Lawton’s system of equations related to Λ0 associated with matrix
A has the following 12 equations:

∑
~n ∈Λ0

h2~n = 1,∑5
k=0(h0,k · h0,(2+k) + h1,(k−1) · h1,(k+1)) = 0,∑3
k=0(h0,k · h0,(4+k) + h1,(k−1) · h1,(k+3)) = 0,∑1
k=0(h0,k · h0,(6+k) + h1,(k−1) · h1,(k+5)) = 0,∑7
k=0 h0,k · h1,(k−1) = 0,∑5
k=0 h0,k · h1,(k+1) = 0,∑3
k=0 h0,k · h1,(k+3) = 0,∑1
k=0 h0,k · h1,(k+5) = 0,∑5
k=0 h0,(k+2) · h1,(k−1) = 0,∑3
k=0 h0,(k+4) · h1,(k−1) = 0,∑1
k=0 h0,(k+6) · h1,(k−1) = 0,∑
~n ∈Λ0

h~n =
√
2.

(7.6)
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Table 1. A solution to equations (7.6).

h0,7 0.014008991752812
h0,6 h1,6 0.024264285477802 0.065527403135986
h0,5 h1,5 −0.118573529719665 0.113496791518999
h0,4 h1,4 0.003753698026408 0.489561273639764
h0,3 h1,3 0.195120084182308 0.777712940352809
h0,2 h1,2 −0.080300252489051 0.171377820183894
h0,1 h1,1 −0.090555546214041 −0.195280287797963
h0,0 h1,0 0.052282268983427 −0.019359715773096

h1,−1 0.011177337112703

Figure 6. Graphs of ϕA and ψA.

Table 1 is a solution to equations (7.6). It is from [2, Table A.1, Solution 2], but
we modified the data. The solution satisfies equations (7.6) within errors less than
10−13.

Based on this solution, we obtain the corresponding two-scaling relation asso-
ciated with A and {h~n , ~n ∈ Λ0}:

ϕA =
∑
~n ∈Λ0

h~nDAT~n ϕA.

Then we obtain the normalized tight frame wavelet function ψA and scaling func-
tion ϕA associated with A. The graphs of ϕA and ψA are illustrated in Fig-
ure 6.

Then ψA0 ≡ USψA and ϕA0 ≡ USϕA are the wavelet and scaling function
associated with matrix A0. The graphs of ϕA0 and ψA0 are illustrated in Fig-
ure 7. This ϕA0 is known as the scaling function “Resting Dog” (see Figure 5.2
in [2]).
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Figure 7. Graphs of ϕA0 and ψA0 .
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