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ABSTRACT. We introduce the Hardy type space for Musielak—Orlicz spaces.
It includes several existing Hardy type spaces such as the Hardy—Orlicz spaces
and the Hardy spaces with variable exponents. Furthermore, we develop an
atomic decomposition such that the size condition just relies on the norms
of Musielak—Orlicz spaces. This gives us a nature extension of the molecular
decompositions to the Hardy type space for Musielak—Orlicz spaces.

1. INTRODUCTION

In this article we aim to establish the atomic and molecular decompositions for
the Hardy spaces built on the Musielak—Orlicz spaces.

Once Fefferman, Stein, and Weiss introduced the classical Hardy spaces HP,
they became one of the most important function spaces in analysis. Recently, there
have been several extensions of classical Hardy spaces. We have the Hardy—Orlicz
spaces which are the Orlicz space version of the classical Hardy spaces (see [18],
[17], [28], [35]). The Hardy spaces with variable exponents were introduced and
studied in [27] and [30]. The atomic decomposition for weighted Hardy spaces
with variable exponents is developed in [14].

We also have the atomic decompositions for the Hardy—Morrey spaces (see [11],
[16]). The reader may also consult [31] and [37] for some detailed studies on the
Triebel-Lizorkin—Morrey spaces which are generalizations of the Hardy—Morrey
spaces.
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The atomic decomposition of the Hardy—Morrey spaces with variable exponents
is given in [12]. For the study of some generalizations of Morrey spaces, the reader
is referred to [10], [13], [25], and [26]. Furthermore, the Hardy spaces built on the
Musielak—Orlicz spaces were given in [15], [19]-[21], and [36].

The Musielak-Orlicz spaces [24], [5, Sections 2.3-2.8] provide a framework for
the study of function spaces including the weighted Lebesgue spaces, the Or-
licz spaces, and the Lebesgue spaces with a variable exponent. Notice that the
Musielak—Orlicz spaces used in [19] and [20] do not cover the Lebesgue spaces
with a variable exponent.

The studies of the Hardy spaces mentioned above give us a motivation to
establish a unified family of Hardy spaces built on general Musielak—Orlicz spaces
so that the Hardy spaces with variable exponents and the Hardy—Musielak—Orlicz
spaces introduced in [19] and [20] are included under this new family of Hardy
spaces.

Other than a new unified family of Hardy spaces, we also introduce a new
atomic decomposition adapted to the Hardy—Musielak—Orlicz spaces. We call it
the intrinsic atomic decompositions.

Before we describe the intrinsic atomic decomposition, let us review the atomic
decomposition for the classical Hardy spaces. We are particularly interested in
the size condition. Recall that the size condition imposed on the atom a with
suppa C 3B, where @ is ball, for the atomic decompositions of the classical

q
Hardy spaces H? is given by |lal|z« < ]Q\; r = HXQHIL;;, 1 < g < oo, where xq
is the characteristic function of Q).
On the other hand, in view of [27, Definition 1.4], the size condition for the
atoms associated with the atomic decompositions for the Hardy spaces with vari-

1
le exponents H?) is given < QT _ Ixellra
able exponents s given by |[lal|za < oG = TxalG

The reader is referred to [27], [3], and [5] for the definitions and properties for
Hardy spaces with variable exponents and Lebesgue spaces with variable expo-
nents, respectively.

We see that the size condition for the atom a for H?®) involves the L9 norms
of a and x¢. In this paper, as a special case of the general result for the Hardy—
Musielak-Orlicz spaces, we present another atomic decomposition for H?) where
the size condition for the corresponding atom is given by

where suppa C Q.

Ixellzae 1
allre)y L —F7—— = [AIPRN 1.1
H HLq ||XQ||LP(') HXQHLP() ( )
1
where q(-) = rp(-) for some sufficient large r > 1. Note that ||x5/lz) = x5/ }0)-
The size condition (1.1) does not involve the L? norm, it just relies on the
quasinorms || - || ey and || - ||;»). Using the terminology from the geometry of

quasi-Banach spaces [22, Vol. II, pp. 53-54] and [29, Section 2.2], L") is the
r-convexification of LPC).

Therefore, we call the atomic decompositions for the Hardy spaces with variable
exponents using the atoms satisfying the size condition (1.1) the intrinsic atomic
decomposition.
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The condition (1.1) does not only give us a more naturally adapted size condi-
tion for the atomic decompositions for the Hardy—Musielak—Orlicz spaces, but it
also offers a straightforward generalization for the size condition on the molecules
used in the molecular decompositions. Notice that even for the classical Hardy
spaces, we also have atomic decompositions with atoms defined in terms of Ba-
nach function spaces (see [7], [9]).

Recall that the molecular decomposition for the classical Hardy spaces was
introduced by Coifman, Taibleson, and Weiss [2], [33]. The molecular decom-
positions for the classical Hardy spaces provide some profound applications on
function spaces, especially on the boundedness of operators on the classical Hardy
spaces (see [2], [23], [33]).

The intrinsic atomic and molecular decompositions established in this paper
offer us a mapping property for the singular integral operator. Roughly speaking,
we find that if a singular integral operator 7' satisfies some mild condition on its
Schwartz kernel and is bounded on some Musielak—Orlicz spaces, then it is also
bounded on the corresponding Hardy—Musielak—Orlicz spaces. For the precise
statement of this mapping property, the reader is referred to Section 4.

This article has the following organization. We present the definitions and some
properties of the Musielak—Orlicz spaces in Section 2. The Hardy—Musielak—Orlicz
space is introduced in Section 3. We also establish the intrinsic atomic decom-
positions of the Hardy—Musielak—Orlicz spaces in that section. The molecular
decomposition for the Hardy—Musielak—Orlicz spaces is given in Section 4. We
also present an application of the intrinsic atomic and molecular decompositions
on singular integral operators in Section 4.

2. MUSIELAK—ORLICZ SPACES

The classical Musielak-Orlicz space was introduced in [24]. In this section, in
order to prepare for the atomic decomposition, we present some properties for the
Musielak—Orlicz spaces. We especially obtain the Fefferman—Stein vector-valued
maximal inequalities for the Musielak—Orlicz spaces.

Let B(z,r) = {y € R": |z — y| < r} denote the open ball with center € R"
and radius 7 > 0. Let B = {B(x,r) : « € R",r > 0}. For any B € B, let xp and
rp be its center and radius. Let S be the set of simple functions, and let L{ _ be
the set of locally integrable functions.

For any 0 < ¢ < oo and Lebesgue measurable function ¢ : R"x [0, 00) — [0, 00),
write ¢,(x,t) = ¢(x,t9), Vo € R" and ¢ > 0. The following definition is modified
from [5, Definition 2.3.1].

Definition 2.1. A function ¢ : R" x [0,00) — [0,00) is a generalized quasi-®-
function if

(1) for any x € R", ¢(z,-) is nondecreasing, left-continuous with ¢(z,0) = 0,

lim; g+ ¢(z,t) = 0, and limy_,, ¢(x,t) = oo for all z € R,

(2) for any t € [0,00), ¢(+,t) is a Lebesgue measurable function,

(3) there exists a r > 1 such that ¢,(x,-) is convex.
We say that ¢ is a generalized ®-function if ¢(z, -) is convex and ¢ is a generalized
quasi-P-function.
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In order to define the Hardy—Musielak-Orlicz spaces, we need to use the gen-
eralized quasi-®-function instead of the generalized ®-function. For example, the
classical Hardy space is defined via the function ,(t) = t*, 0 < p < 1, which is
not convex.

Definition 2.2. Let ¢ be a generalized quasi-®-function. The Musielak—Orlicz
space L? consists of all Lebesgue measurable functions f satisfying

| fllze = inf{)\ >0: /ﬂ(mw) dz < 1} < 00.

For any R > 0, L‘g consists of all Lebesgue measurable functions f satisfying
1 fll ¢ = [l fXBo,R)|lLe < 00 Where X p(o,r) is the characteristic function of B(0, R).
R

The reader is referred to [5, Definition 2.3.11] for the definition of the Musielak—

Orlicz space associated with the generalized ®-function. We find that
1/s

1 lzes = [[1F1]] Lo - (2.1)

Therefore, L% is the 1th power of L? (the s-convexification of L?) (see [29,
Section 2.2] or [22, Vol. II, pp. 53-54]).

According to item (3) of Definition 2.1 and [5, Theorem 2.3.13], for any gener-
alized quasi-®-function ¢, Ly, is a Banach space, and therefore (2.1) assures that
L% is a quasi-Banach space.

We recall another important notion for the generalized ®-function from [5,
Definition 2.6.1].

Definition 2.3. For any generalized ®-function ¢, the conjugate function ¢* is
defined by

¢*(z,u) = sup(tu — ¢(z,1)).

t>0

In view of [5, Corollary 2.6.3], we have ¢ = (¢*)*. Next, we present the Holder
inequality for the pair L? and L?".

Lemma 2.4 (Hoélder inequality). Let ¢ be a generalized ®-function. We have

| [f@g(@)] dw < 20 fllze gl

For the proof of the above lemma, the reader is referred to [5, Lemma 2.6.5].

Corollary 2.5. Let ¢ be a generalized ®-function. If for any R > 0, S C L‘f;,
then, for any f € L?,

[flle < sup |f(2)g(x)| dz < 2] f]| o

9€S.lgll o+ <1 JR7

The reader may consult [5, Corollary 2.7.5 and Remark 2.7.6] for the proof of
the above result.

Definition 2.6. A generalized ®-function ¢ is called proper if L? is a Banach
function space.
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The reader is referred to [1, Chapter 1, Definition 1.1] for the definition of a
Banach function space. In addition, it is shown in [5, p. 61] that ¢ is proper if
and only if S C L? N (L?).

It is easy to see that if ¢ is proper, then, for any s > 1, ¢, is also proper.

Definition 2.7. For any Banach function space X, the associated space X’ consists
of all f € M such that

1#llx = sup{ [ f(@)g(e)da: |lgllx <1} < oo.

R

The associated space X' is a Banach function space (see [1, Chapter 1, Theo-
rem 2.2, and Definition 2.3]). We now recall an important result for L? from [5,
Theorem 2.7.12].

Theorem 2.8. Let ¢ be a proper generalized ®-function. Then LY = (L) and
(L?") = L?. In addition, (L?)" = L® with || - |s = || - || (zey-

We now present a generalization of the notion of the proper generalized ®-
function. The main motivation for this generalization is on the weighted Lebesgue
spaces. The weighted Lebesgue space LP(w) is not necessarily a Banach function
space, as even w belongs to the Muckenhoupt A, class, since the characteristic
function of an unbounded Lebesgue measurable set E with |E| < oo does not
necessarily belong to L?(w). Therefore, we need to extend the notion of proper
so that the weighted Lebesgue spaces are included in our study. The following
definition is inspired by [5, Definition 2.7.8].

Definition 2.9. A generalized ®-function ¢ is said to be semiproper if for any
R>0,ScCLynLy.

When w € A4,, 1 < p < oo, the definition of the Muckenhoupt A, class [32,
Chapter V] guarantees that ¢, (z,t) = tPw(x) is semiproper.

Definition 2.10. For any generalized ®-function ¢, we write ¢ € M if ¢ is a
semiproper generalized ®-function and the Hardy-Littlewood maximal operator
M is bounded on L.

The above definition is a special case from Banach function spaces (see [9,
Definition 2.1]). When ¢ € M or ¢* € M, we have the following result.

Lemma 2.11. Let ¢ be a generalized ®-function. If ¢ € M or ¢* € M, then there
exist constants Cy,Cy > 0 such that

Ci|B| < lIxsllzelixslle < Co|B|, VB €B. (2.2)

Proof. In view of the fact that ¢ = (¢*)*, it suffices to assume that ¢ € M. The
Hélder inequality on L? yields the left-hand side inequality in (2.2).

For any B € B, we consider the projection (Pgg)(y) = (ﬁ S5 l9(z)] dz)xB(y).
There exists a constant C' > 0 independent of R > 0 such that, for any B € B,
Pg(f) < CM(f); hence, supg HPBHL?%HL% < C||M||pé—spe-
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Furthermore, as L% is a Banach function space, Theorem 2.8 guarantees that

(Lf—i)’ = L‘f;. Thus the definition of associate space ensures that there exists a
constant C' > 0 such that, for any R > 0,

Xz = SUP{‘/ 9(x) de‘HXBHL;g cg€ Ly lgl <1}
B 9
< c|B|

HXBHL}’/’; (2‘3)

for some C' > 0 independent of R > 0 and B € B.

For any given B € B, pick R > 0 such that B C B(0, R). Then ”XBHLT; =
x5l s+ and HXBHL;@ = ||xBl|re. Therefore, the right-hand side inequality of (2.2
follows from (2.3). O

The following is the basic assumption imposed on ¢ for the study of the atomic
decomposition of the Hardy—Musielak—Orlicz spaces.

Definition 2.12. Let 1 < s < oo and 0 < v < 1 and ¢ be a generalized
quasi-®-function. We write ¢ € H;, if

(1) (¢%), is a semiproper generalized ®-function where ¢* = (¢5)*, and
(2) (95)v € M.

As (¢%), is a semiproper generalized ®-function, [5, Remark 2.7.11] asserts that,
for any R > 0, L&?:)“ is a Banach function space. Since 0 < v < 1, L(ff is also a
Banach function space; hence, S C L}?, and [5, Corollary 2.7.9] guarantees that
¢, is semiproper.

Therefore, we have

IxBllLs: <00, VB EB. (2.4)
Lemma 2.13. Let 1 < s < oo. For any 0 <v <t <1, we have Hj, C H,,.

Proof. As (¢%), is a semiproper generalized ®-function, for any R > 0, L%’D“

is a Banach function space. Consequently, Lg:)t = (Lg:)”)t/ Y is also a Banach
function space. Thus (¢%), is a semiproper generalized ®-function.

Furthermore, the Hardy-Littlewood maximal operator is bounded on (L%:)v.
In view of Jensen’s inequality, for any 0 < v < ¢, we have M(f) < (M(|f[*/*))"/?,

Vf € Li . Therefore,

loc*
1Mo < NOLAFT)) | eorr, = IOLAFT) [
< O UA7) 3o, = Cllf e
for some C' > 0; that is, (¢%); € M. Thus Hj, C H,,. O

We introduce some indices in the following. They are used to define the indices
appearing in the intrinsic atomic decomposition.

Definition 2.14. For any ¢ € U1§s<oo H 1, write
sp =inf{s > 1: ¢; € M}. (2.5)
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Define H = (J1<s<oo Hj,,. For any ¢ € H, write

0<wv<1
Se ={s:5>1,(¢}), € M for some 0 < v < 1}. (2.6)
For any fixed s € Sy, define v3 = inf{v : (¢}), € M}.

Roughly speaking, the index vy is used to measure the “left-openness” of the

boundedness of the Hardy-Littlewood maximal operator on L?:.

The Jensen inequality shows that, for any v > v, (¢7), € M. Thus s € S,
implies s > s,4.

For any 0 < p < 00, let 1,(t) = t. To compute s, , we find that, for any s > 1,
we have (1,)4(t) = ¥,s(t) = tP*. Therefore, (1,)%(t) = t*" when ps > 1.

Thus,

sy, = 1/p, Sy, = [1/p,0) and vy, =1-— I% (2.7)
whenever ps > 1.

Later in the atomic decomposition of the Hardy—Musielak—Orlicz spaces, we
see that the indices sy, and vy, are used to generate some well-known indices in
the atomic decompositions such as the order of the vanishing moment conditions.

Next, we establish the Fefferman—Stein vector-valued maximal inequalities on
the Musielak-Orlicz spaces in the following.

Theorem 2.15. Let ¢ be a generalized ®-function. If ¢ € U, . Hs1, then, for
any 1 < sy < B < 00, we have

KM fikienlly, Nl oo < ClIHSYienl], ] oa (2.8)
for some C' > 0. In particular, we have
M fll e < ClFIl o6 (2.9)

Proof. As ¢ € H;; for some 0 < ¢t < oo, there exists a s such that s; < s < /3
and ¢ € M. Since ¢} is semiproper, Theorem 2.8 shows that, for any R > 0,
(L‘f{‘)’ = LQI;: is a Banach function space. Furthermore, ¢¥ € M assures that the
Hardy-Littlewood maximal operator is bounded on (L% )’. Therefore, there exists
a constant C' > 0 independent of R such that || M f||; sz < C|f]| ;. Consequently,

IM Nl ooy = IMfllgor < Clfllgor = Clfllgony VS € (LF)" (2.10)

The constant in (2.10) is independent of R > 0, and the Hardy-Littlewood
maximal operator is bounded on L'(w) for any w € A;. Therefore, by using
L = (L?)%* and B > s, the proof of the extrapolation theorem for general
Banach function spaces (see [4, Corollary 4.8]) guarantees that (2.8) is valid for
any bounded Lebesgue measurable functions with supp f; C B(0, R),

MM fikienll, Nl oo < ClIESYsenl,, Nl oo

where C' > 0 is independent of R > 0.
Finally, by applying Fatou’s lemma (see [5, Theorem 2.3.17(d)]) on fF =
fiX{a:|f:(2) <k |z|<k}> kB € N, we establish (2.8). !
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We introduce another new index in the following.

Definition 2.16. For any ¢ € H, define
dg = sup{s(1 —vj): s €Sy}

For instance, in view of (2.7), we have dy, = 1/p, 0 < p < 1. By using this
index, we establish the following property which is crucial for the atomic and
molecular decompositions.

Roughly speaking, this index is used to measure the “dilation property” for the
characteristic function of B € B under the quasinorm || - ||¢.

Proposition 2.17. Let ¢ € H. For any d < dg, there exists constant Cy > 0
such that, for any ro € R™ and r > 0, we have

Cyoimd < B2l

< , VjeN. (2.11)
X B0, | o

Proof. In view of the definition of d,, for any d < d, there exist 1 < s < oo and
0 <t < 1such that d < s(1 —t) and ¢ € H,,.
For any B = B(zo,7) € B and j € N, we have a constant C' > 0 such that

02" < M(xs)(x) (2.12)
when z € B(xg,2’r), j € N. Thus,

27jnHXB(:Eo,2jT)HL(¢§)t < C||M(XB)HL(¢§)t < Cllxsll oo
that is,

27X Bwo,2in) 2o < CM(xB)|| os < Cllxallpos- (2.13)

Since ¢: € M, Lemma 2.11 provides constants D;, Dy > 0 such that, for any
B e B,

Di|B| < |Ixsllces[IxBll Loz < Da|Bl. (2.14)
Therefore, (2.13), (2.14), d < s(1—1), and |[x gl = |[xz]}s vield (2.11). O

We also have an upper estimate for (2.11). Since we do not need that estimate
in this paper, for brevity, we refer the reader to [10, Proposition 2.5] for details.

3. ATOMIC DECOMPOSITION

In this section, we define the Hardy—Musielak—Orlicz spaces and establish the
corresponding intrinsic atomic decomposition.

Let S and S’ denote the classes of tempered functions and Schwartz distri-
butions, respectively. Let P denote the class of polynomials in R™. A Schwartz
distribution f € &’ is a bounded tempered distribution if ¢ * f € L>(R") for any
P eSs.

For anyj € Z and k = (l{}l,kg,...,kn) € Zn’ ijk = {(xl,xg,...,xn) € R"™:
ki <2x; <ki+1,i=1,2,...,n}. We write z¢, |Q|, and I(Q) to be the center of
@, the Lebesgue measure of (), and the side length of (), respectively. We denote
the set of dyadic cubes {Q;x:j € Z,k € Z"} by Q.
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For any N € Nand ¢ € S, define My (p) = sup,egn (1+|z])Y Y yen+1 107 p(2)]-
Write Fy = {¢ € § : Mn(p) < 1}. For any t > 0 and ¢ € S, write ¢ (z) =
“"p(z/t). For any f € &', the grand maximal function of f is given by
(M[)(x) = sup sup|(p;  f)(@)]
peFnN t>0

(see [32, Chapter III, (2)]).
The grand maximal function depends on N. For simplicity, we use the abused
notion M. We are now ready to define the Hardy—Musielak-Orlicz spaces.

Definition 3.1. Let ¢ € H. The Hardy Musielak-Orlicz spaces H? consist of all
bounded f € &’ satisfying || f||ge = [[M [f]|1s < oo.

We introduce the atoms used in the intrinsic atomic decomposition for H?.

Definition 3.2. Let ¢ € H, and let p > s,. For any N € N, a family of measurable
functions {ap}pep is called a (¢, p, N)-atomic family if

suppag C 3B, VB € B, (3.1)

/ ag(x)dr =0, VyeN'with0<|y| <N, (3.2)
1

lasllLer < lIxsll7s - (3.3)

We call ag an atom supported in B.

In the size condition (3.3), it only involves the quasinorms || - ||z¢ and || - || .¢s-

Similar to the atomic decomposition of the classical Hardy spaces, the intrinsic
atomic decomposition for H? consists of two parts, namely, the decomposition
theorem and the reconstruction theorem. We now present the decomposition part
of the intrinsic atomic decomposition for H?.

Theorem 3.3. Let ¢ € H. For any s € Sy, f € H?, and any positive integer N,
there exist a (¢, s, N)-atomic family, {ap}per, and a sequence t = {tp}pep such

that
f=> tpap (3.4)
BEB
converges in S" and
HZ( izl )0 ’é < CO|fllue, Y0 <6< o0
Ixgllze/ “Pllzene = I

for some C' > 0.

We recall a crucial supporting result for the atomic decomposition [32, Chap-
ter III, Section 2.1]. We use the presentation given in [12, Proposition 5.4] and
28, Lemma 4.7]. For any d € N, let P, denote the class of polynomials in R" of
degree less than or equal to d.

Proposition 3.4. Let d € N, and let 0 > 0. For any f € §', there exist g € ',
{bi}ren C S', a collection of cubes {Qy}ren, and a family of smooth functions
with compact supports {ny} such that
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(1) f=g+b, where b="7", bx,

(2) the family {Qr }ren has bounded intersection property and | J, oy Qr = {7 €
R™: (M[)(z) > o},

(3) suppme C Qr, 0 < <1, and Y, oy Mk = X{aeRr:(Mf)(2)>0) >

(4) the tempered distribution g satisfies

(My)(z) < C(M[)(z )X{yeRn~(Mf)( )<} ()

n+d+1

Co ;
+ Z Qk + |SL‘ _ $k|)n+d+1

keN

where xy denotes the center of the cube Qy,
(5) the tempered distribution by is given by by = (f — cx)nk, where ¢ € Py
satisfying (f — cr, q-m) =0, Yq € Py, and

n+d+1
(Mby)() < CMP)(@)xa (@) + OU%W\QM (3.5)

for some C' > 0.
We present some folklore facts about b and ¢ given in Proposition 3.4.

Lemma 3.5. Let ¢ € H, and let f € H®. The distribution g given in Proposi-
tion 3./ 1is locally integrable.

Proof. We first show that Mg € L}
the fact that

loe- In view of item (4) of Proposition 3.4 and

clm
(=) = < (Mxsp)(z) (3.6)

for some C' > 0 independent of x,y € R" and [ > 0, it suffices to show that

n+d+1
F = ZkEN(MXQk) € Lloc
The definition of sy assures that there exists sy < r such that the Hardy—

Littlewood maximal operator M is bounded on L%r.
For any B € B, by [6, Chapter II, Theorem 2.12], we have

/‘F |dx<Z/ Mxq, (z n+d+1XB(x)dx

keN

By using the bounded intersection property for {Qy}, we find that

/B}F(x)\ dx < C/Rn X{yern:(Mf)(y)>0} (T) (M xp)(z) dz.

The Holder inequality yields
/B]F(x)| dr < Cl|x(zernMmp)@)>o) | or | M X8 Loz

1/r
< Ollxermmp@sor |1 x5l ot
< Co VM IMEL sl o < 003
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that is, F' € Li_, and hence Mg € L|
2.3.3], we now prove that g € L .

For any B € B, let Ap be the spaces of finite Borel measures on B. Ap is the
dual of the space of continuous functions on B and Mg € L, C Ap. Taking
an approximate of identity ¥, we have |¥; x g| < CMg for some C > 0 and
U, g —gin S’

The Banach—Alaoglou theorem assures that there exists a subsequence of U, x g
converging weakly to a measure du € Ap. Since |¥; x g| < C Mg, we find that
dp = hdz is absolutely continuous with [, |h(z)|dz < oo, and hence g = h.
Therefore, g € L], . O

Proposition 3.6. Let ¢ € H, and let f € H?. If d > [nsy — n], then the
distributions b and g given in Proposition 5./ belong to H®.

Proof. Since g = f — b, it suffices to show that b € H?. Let O = {z € R" :
(Mf)(x) > 0} = Upeny @r- The definition of s, assures the existence of r > s,
such that

By using the idea from [32, Chapter III,

loc®

— 1 d 1
S¢<T<[n5¢ n]+n+ < +n+ ’ (3.7)
n n
and the Hardy-Littlewood maximal operator M is bounded on L?r.

In view of (3.5) and (3.6), for any h € L% with ||h]|, ¢z < 1, we have

/(Mb ()7 ()| da

<C Z./\/lf I/T‘h )| xq, (z) dz
R™ keN
ntd+1

eRY }Z XrmQy (7) I/Td
g ¥ |z — g e r

keN

<C/ Mf) (@) 7| h(z) |da:+C’al/TZ/ (Mxq,) (@) 0 h(z)]| da.

keN

By using [6, Chapter II, Theorem 2.12], we obtain

[ 0@ @ 0 )| de < C [ vy ) 0 (0 o) do
=0 | Xa/(@)(Mh)@) de

= C’/Qk(Mh)(x) dx

because 2t4EL > 1.

Lemma 2.4, the bounded intersection property satisfied by {Qy }xen, and (3.9)
assure that

/ (Mb)(z)V"|h(z)| dz < C/(Mf)(x)l/T(Mh)(x) dx
< O|lxoMAHY|| o |MR| ox.
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Since M is bounded on L and ||h||;+: < 1, we obtain
[ M@ @) do < ClxoMH | Ihll: < Cllxo M.

By taking supremum over those h € L% with ||h]| s+ < 1, Proposition 2.5
yields

MBI = MDY o < CllxoMAHY"|| 0 = ClixoMFILL < oo; (3.8)
that is, b € H?. O

To consider the density of H? N Li in H?, we use the notion of the absolutely

loc
continuous quasinorm (see [8, Definition 2.4]).

Definition 3.7. Let ¢ € H. We say that f € H? has an absolutely continuous
quasinorm if ||x g, Mfl|rs | 0 whenever {£;}22, are Lebesgue measurable sets
and E; | (.

We say that H? has an absolutely continuous quasinorm provided that any
f € H? has an absolutely continuous quasinorm.

Corollary 3.8. Let ¢ € H. If f € H? has an absolutely continuous quasinorm,
then there exist a family of locally integrable functions {gj}]?"’:1 C HN L}, such
that lim; o || f — ¢’||zre = 0. Furthermore, if H® has an absolutely continuous

quasinorm, then H® N Ll is dense in H.

loc

Proof. Suppose that f € H? has an absolutely continuous quasinorm. Let b7, ¢/
be the distributions given in Proposition 3.4 corresponding to o = 27, j € Z. Let
Ol ={z e R": (Mf)(z) > 27}. We have O; | 0 as j — oo.

Therefore, (3.8) shows that

lim [[b7]| 76 = lim [Mb7||e < C lim |[xos M fl|1s = 0.
j—o0 j—o0 j—o0

Since ¢/ € H? N L., we find that lim; || f — ¢*|| ge = lim;_e0 [|07]| g6 = 0.
Obviously, if H? has an absolutely continuous quasinorm, then H?® N Ll _ is

dense in H?. O

In view of [3, Theorems 2.58 and 2.62 and p. 73], the Lebesgue space with
variable exponent LP() has absolutely continuous norm if and only if
esssup,epn P(z) < oo. Thus, if ¢ : R — (0, 00] satisfies esssup,cpn ¢(z) = 00,
then H? with ¢(x,t) = t%®) does not have absolutely continuous norm.

We are now ready to prove Theorem 3.3. The proof follows the idea from [32,
Chapter III, Section 2].

Proof of Theorem 3.3. For any s € Sy with s > s,, let dy = [ns — n|. Notice
that we have sy < s < %. It suffices to establish Theorem 3.3 for an
(¢, s, d)-atomic family with d > d.

For any f € H?, by applying Proposition 3.4 with d, o = 2.5 €, we have
f=¢ +b with b/ =3, b7. The b} are supported in the cubes Q] where
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these cubes satisfy
Uel={zer": Mf)(z)>2} =0 (3.9)
keN

Let {n]} be the family of smooth functions given in item (3) of Proposition 3.4

for the collection of cube {Q1}.
Item (4) of Proposition 3.4 ensures that

cle * ¢ (x)] < (Mg')(2)

( )( ) ' Z Z(Qi)nJrcHl
< OM ) (@)X yern:(Mmf) )<y (T) + C2 ' ;
{yeR™:(Mf)(y)<27} — (Z(Qi) + |m . x“)n—f—d—i—l

< C

for some constants ¢, C' > 0, where xi: is the center of Qi. Therefore, ¢/ — 0 in
S as j — —o0.

Next, we show that b7 — 0 in &’ as j — oco. By item (5) of Proposition 3.4,
we find that, for any B = B(z,1) € B, z € R,

| )@ o

<C [ Y (M) xg (x) do

B LeN

U@L X o7 (X)) 1/
i/s \@s
+02 / J n+d+1) v
B NUQL) + | — a7))

< O/ (Mf)( )l/sdx+02]/82/ XB MX )(x)(n+d+1)/5nd$.
BNOJ

keN

By using [6, Chapter 1T, Theorem 2.12], we obtain

/ (Mxgy) (@) "y () da < © / Xoi (@)D (Myp) (2) da

—C [ gy @) (Mxw) (o) do
C/j(MXB)(Z‘) dx

because (n +ds +1)/sn > 1.
Consequently, the above inequalities, (3.9), and the bounded intersection prop-
erty satisfied by {Q7 }ren yield

/B (Mb)@) o de < C [ (MF)(0)*(Mxs)(x) de

0J

<c [ Mp@ (=) dy



DECOMPOSITIONS OF HARDY-MUSIELAK-ORLICZ SPACES 579

By using Lemma 2.11 and the Holder inequality for the pair L? and L%, we
find that

[ n@ = = ol) " dy
<yt [ MmN ) dy

X B(z,2F) Hmz

- 1 1/s
< CZ WH(Mf)(y) Pl e

<C Mf 1/87
E:MBMMW” Iz

where B¥ = B(z,2F)\B(z,2%"!) when k > 1 and B° = B(z,1).
Proposition 2.17 gives

[ M@z o) "y < UM

In view of the fact that O7 | (), the dominated convergence theorem yields that,
for any fixed z € R",

lim (M) ()Y da
7= JB(z,1) (3.10)
<Clim [ (M) (1+]z—yl) " dy =0.
J—= Joi
For any ¥ € § and z € R", we have
|b]*w ‘ inf sup |(¢*bj)(x)|1/s <C M) ()" dy
|1/ z|<1 peRrn: ly—z|<1 B(z,1)

for some C' > 0 independent of j. Thus (3.10) yields that lim; ,,,b; =0in S’
Therefore, for any f € H? there exists a sequence of locally integrable func-

tions {¢’} C Li, such that ¢/ — f in &'. Consequently, to obtain the atomic

decomposition, it suffices to assume that f € H® N L]
The convergence of ¢ and b’ guarantees that

F=Y(¢"-¢) S (3.11)

JET

loc*®

Moreover, item (5) of Proposition 3.4 gives
P = =0 b0 = (e~ (- o),
keN
where ¢/ € Py satisfies Jan (f(x) — ¢l ())q(z)nl(x) dx = 0, Vg € Py.
Consequently, we have f =3, A, where

A= (f = el = _(f =l Tl e

leN leN
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and ¢y € Py tulfills

| (@) = @) = auta))atanf @) do =0, Vg € P

Define a] = )ClAj and A\, = 02j||XQj ¢, where ¢ is a constant determined

by the family {A }ik- The important fact is that the constant ¢ is independent
of j and k (see [32, pp. 108-109)]).

The proof for the classical Hardy space (see [32, Chapter I1I, Section 2]) assures
that a), satisfies (3.1), (3.2), and ||a}||~ < CHX%H;.

Furthermore, we have X3qk < CM (XQ;?) for some C' > 0 independent of j, k.
Thus, (2.9) shows that, for any fixed 8 > s,,

B
Ixsqellze = lIxaqull? o, < ClIM(xgs)|l o5 < Cllxgyllze-

Therefore, [|al| s < C||X3Q§||L¢>s XQ;?HZ; = HXQ?HE; . The definition of @,

and the finite intersection property of the family {Qi}keN yield that, for any

0 <0< oo,
Z( [Ajik

eN ||XQ?€||L¢

0 .
) Xqi () < C2%x0i(a);

that is,

Z<M)GXQ{;(:C) <O 2yoi(x) < C(MS)(x)’.

g 1 2

Applying the quasinorm ||- ||/ L4170 00 both sides of the above inequality, we find

that
‘)\,k’ o il
HZ(W) XQ?@ 1.%1/6 < C||f||H¢7 0< <o
gk Q.
for some C' > 0 independent of f. -

In view of Corollary 3.8, we see that, whenever f € H? has an absolutely
continuous quasinorm, the decomposition of f given in (3.11) converges in H?.
Therefore, the atomic decomposition obtained afterward also converges in H?.
Thus, if f € H? has an absolutely continuous quasinorm, then the atomic de-
composition given in (3.4) converges in H?. Next, we have the reconstruction part
of the intrinsic atomic decomposition of H?.

Theorem 3.9. Let ¢ € H. Suppose that
(1) 0 < 6 <1 satisfies 3 € Sy, and

0
(2) > max(sg, Bso((61/") ).
Then, for any (¢,q, [nsy — nl)-atomic family, {ap,},c8, and sequence of scalars

{\j}jen satisfying
0
I3 (i)

||XB Hm

6

L¢1/9

(3.12)
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the series [ = ..y \jap, converges in 8" and f € H? with

W < S (i M)y,

5,1l e

jEN

0

(3.13)

L¢1/0

for some C' > 0 independent of f.

When ¢ = ¢, 0 <p < 1, we have sy, =1/p and 1/0 € Sy = [1/p, 00).

Therefore, 0 < 6 < p and [ns,, —n| = [% — n]. Moreover, if we pick § = p, then
(3.12) becomes (_;qy |Aj|P)/P < oo, which is the well-known condition imposed
on the coefficients of the atomic decomposition of the classical Hardy space HP.

We find that yige =1- Q Therefore, (Vlz/?e)_1 = 25 and ((1/;1/09)_1)’ = L that

is, swp((yiée)_l)’ = 5= and hence ¢ > 0sy, ((v,;, 1/ ) =1
Thus, when ¢ = 1, () <p<1, H® = HP and the conditions (1) and (2) in
Theorem 3.9 reduce to the well-known conditions for the atoms for the classical
Hardy space HP. Moreover, we find that those indices introduced in Section 2
are used to generate the well-known indices in the atomic decomposition of the
classical Hardy spaces.
The following lemma can be considered as the generalization of the Jensen

inequality to Musielak—Orlicz spaces.

Lemma 3.10. Let ¢ € H. If s > s4, then, for any 1 < o < s/sg, there exists a
constant C' > 0 such that, for any bounded measurable function g, we have

: <CIBI™||lgxsll ., VBEB. (3.14)

Il Zo:

Proof. The definition of s, assures that there exists a r > « such that sy < 2 < 2
and ¢ I € M. Corollary 2.5 assures that

loxslle <C  sup /Mmmmm
B

feLss
[£1les <1

<C suw |lgxsllp xSl
f€L¢s
”f”LcﬁsSl

Since r < s/54, ¢ I is a proper generalized ®-function. Therefore, we are allowed

to apply the Holder inequality for L%/ to obtain

1/r r 1/’!’
loxslle: <€ sup lgxsllrllxel s, [IxslfI"[%.,.
feL¢s
£l os <1

<C sup |gxslp ||><B||1“ xsfllzes (3.15)
feLd—‘s
NNl gs <1
1/r
<0||ng||”||><3||/ .
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As s > s4, (2.9) assures that ¢s € M. Therefore, we are allowed to apply
Lemma 2.11 to L% and L%/, Consequently, for any B € B, we have

C11B| < |IxsllLes IxBll e < Co|Bl,
CUBIM™ < Ixall"s lxsl': < Co| B

Ld’s/r L¢s/r
for some O, Cy > 0. As || xg||1es = ||XB||2/¢Z/T, the above inequalities yield
Cillxal"s < IBI™Y" IxallLer < Collxall') (3.16)

L¢:/T L¢:/T

Therefore, (3.15) and (3.16) give
loxallze: < Cllgxallp 1Bl x5l e
Since 1 < v’ < o/, Jensen’s inequality yields

gxslle: < CIBI7 lgxallr < CIBI7Y lgxsll o 0

(D=1 e

The subsequent lemma is inspired by [12, Proposition 5.8] and [30, Section 3.1].
In fact, [12, Proposition 5.8] is also used to establish the atomic decomposition
of the Hardy—Morrey spaces with variable exponents.

Lemma 3.11. Let ¢ € H. Let u € S, and {\g}ren be a sequence of scalars. If
s > sd,((v;)_l)’, then, for any {by}reny C L9 with supp by C By, € B and

10k]| es < AllXBy |l Lo (3.17)

where A > 0, Vk € N, we have

[, <l v
keN keN

for some C > 0 independent of {Ag}ren, {bk ren, and { g} ren.

(3.18)

Lou

Proof. According to the definition of Sy, for any u € Sy, we have v < 1. There-
fore, ((vg)~")" is well defined and ((v§)~")" > 1. Since s > s4((v})~")’, we can
select an « so that (é)’ <a< i. As s > sy((v4)71) > 54, (2.9) asserts that
¢s € M.

Since u € Sy implies u > sy, Theorem 2.15 ensures that ¢, € M. Thus
Lemma 2.11 guarantees that, for any bounded measurable function g with

lgll oz <1,

[ ol do] < 2lbelzo ol < CABI ol Imuglls

Therefore, Lemma 3.10 yields

1
o

[ g de| < et ([ ot ar)”.
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where o is the conjugate of a. Consequently,

‘/ bi(z)g(x) da:’ < Ak|B,€|<|B_1k|/B 9(a)

< CA By inf M(lgl”) ()7 < C A / M(1g”) (2) da.
rE€By, By,

Therefore, the Holder inequality gives

<Z)\kbk ) )dx<CZAk\Aky/ (191°) ()% dz
C [ (30 A, () M1l ) )

< CHZAICP\HXBIC

keN

< CHZAH)\HXBk

keN

N
L (g™)

1/a’

Rl

)l/a’ .

As o/ < 1/vy, the definition of v} guarantees that there exists a o/ <t < 1/v
such that M is bounded on (L%:)'/!. By using Jensen’s inequality, M is also
bounded on (L%:)/". For any bounded measurable function g with ||g|| s < 1,

we obtain C T
(Z/\kbk > ‘ dx < OHZAIC|)V€|XBk

For any g € L%, g,, T g where gn, = gX{zern:|g(x)|<m}, M € N. Thus Fatou’s
lemma assures that ||gm|l;ex T |lg|| ¢:- Finally, Corollary 2.5 yields (3.18). O

gl

We are ready to present the proof of Theorem 3.9. It is close to the ideas in
[27, Section 4].

Proof of Theorem 5.9. Write
(3 Pl )|
jEN

< |3 Wilxan Man,)
jeN
We first deal with I. As for any v € S, 9 has a radial majorant that is

nonincreasing, bounded, and integrable. According to [32, Chapter II, (16)], we
have

suplwt*aB( )| < M(ag,) / |(z)| dz < CNy(¥)M (ap,)(z), Vz € 3B;

t>0

L¢

I e ], =
Jje

for some N,C' > 0 independent of j € N, v € S, x € R", and t > 0.
By taking supreme over those 1) € S with 9y (¢)) < 1, we obtain

Map,(r) < CM(ap;)(z), Vo€ 3B;. (3.19)
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As 0 < 0 < 1, the #-inequality gives

L¢

I< (JHZ |/\j|M(aBj)HL¢ < CH (Z(lAj|M(aBj))e>1/e’

—CHZ I\ M (ag,) ‘

jeN

L%1/6°

Since ¢ > s4, (2.9) asserts that ¢, € M. Consequently,

1(M(a5,))’ | oo = 1M (a8,)|02, < Cllas, |50, < Cllxs, e -

As 5 € Sy and ¢/60 > s¢((v;/ )71, we apply Lemma 3.11 with v = 1/,

bj = (M(ag,))’, s = q/6, and A; = HXBHZf to obtain

L¢1/9_ HZ< o )0

HXB Hm

1/6

I<CHZ A M (ag,) (

L¢1/0 ’

Since x3p < CM(xg), VB € B, for some C' > 0, Theorem 2.15 yields

(S (A )

Ix

2/6

|\
126 S CHZ I g XB;
JEN

1/6
(3.20)

XB ||L¢ Lél/g.

Next, we consider /1. Let ds = [nss —n]. For € R"\3B;, we use the vanishing
moment condition satisfied by a; to obtain

y—xp;)"
|(ag, * ¢o)(x / jan, () (nlz = y) = > %awx—x@))(dy.
ly<dw 7
By using the reminder terms of the Taylor expansion of vy, we have

\<aBj*¢t><x>|gAn|aBj<y>\ 3 \wa(m—ymg—xm)\dzj

W=dot1

for some 0 < h < 1. Since y € Bj, we have |(y — zp,)" “F for any

|v| = ds + 1. Moreover, for any y € B,
1
|z —y+h(y—=p,)| > |z —zp| — (1= h)ly —zp,| > §|x — x|
We obtain
(a5, * ) (@)] < CRu @) GBS (1417 o — xp, I)L/ |as, (y)| dy

for some sufficient large L > n + ds; + 1 and some C' > 0 independent of t > 0
and .

As ¢y € M, we have |\x3p, |1 llX38, | 65 < C|B;|. The Holder inequality and
the definition of ap, yield

| Bj

_— 3.21
T s (3:21)

[ o, @l < 2l 55 < €

J
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for some C' > 0; that is,

ntds+1

|(ap, * ) (y)| < CNy ()t~ (@Hn+D) Bl
HXQ]H ¢
As L > n +d, + 1, by taking supreme over ¢ > 0, | —y| <t and ¢ € S with

My (1) <1 on both sides of the above inequality, we obtain

(1 +tty — :ij|)7L

n+d5+1
[Bj| 1
(r) < C Vo € R"\3B,;.
MCLBJ (37) > ||XBj HL¢ |x — xBj|n+ds+17 x \ J
By using (3.6), we find that
n+ds+1
Myxp. ()"
Mag,(r) < C'( Xﬁ(; |)|)L¢ , Vo e R"\3B; (3.22)
i
n+dS

for some C' > 0 independent of the atoms {ap, }. Write v = *1 Consequently,

I < CH(Z ] N )7>1/v g

XB; Hm L

Since v = > 54, the Fefferman—Stein vector-valued maximal

inequality asserts that

1 <o|(S o) e =S o

n+ds+1 > n+ [nsi—n}

B lle Bl e
for some C' > 0. Then the f-inequality gives
BY: |9 1/0
<
i CHZ a7 @ e (3.23)
In conclusion, (3.20) and (3.23) yield (3.13). O

4. MOLECULAR CHARACTERIZATION

The molecular decomposition for the classical Hardy spaces H? was introduced
by Coifman, Taibleson, and Weiss in [2] and [33]. In this section, we extend the
molecular decomposition to the Hardy—Musielak—Orlicz spaces. We begin with
the definition of molecules for H? (see [34, Chapter XIV, Section 6.6]).

Definition 4.1. Let ¢ € H, and let p > s4. For any N, M € N, a family of
measurable functions {Mp}gep is called a (¢, p, N, M )-molecular family if

13
[ME()|| o < Clixalfe (4.1)
1
M) =25l Loy < Crilixsllfs (4.2)
/ 2Mp(x)de =0, VyeN'with0<|y|<N (4.3)

for some C' > 0. We call Mg a molecule centered at B.
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It is easy to see that a (¢, p, N)-atomic family is a (¢, p, N, M )-molecular family.
Therefore, an atomic decomposition is also a molecular decomposition.

Consequently, similar to the molecular decomposition of the classical Hardy
spaces, the only nontrivial part for the molecular decomposition of H? is the
reconstruction theorem.

Theorem 4.2. Let ¢ € H. Suppose that
(1) 0 < 6 <1 satisfies 5 € Sy,
(2) ¢ > max(s¢,95¢(eg ;/ ™Y, and
(3) M > max(n — nT¢, [nse] — ndy).

Then, for any (¢, q,[nse — n], M)-molecular family, {Mp}pen, and sequence of
scalars {\p}pep satisfying

= (o)

||XBHL¢

0

<
L¢1/9

00, (4.4)

the series [ =Y pep AMp converges in " and f € H? with

e <] S (i) o

IxsllLe

1
0
L¢1/6

(4.5)

for some C' > 0 independent of f.

Proof. We follow the ideas given in the proof of [6, Theorem 7.16]. We first show
that, for any molecule Mp, we can rewrite it as a series of atoms. Let {Mp}pep
be a (¢, p, N, M)-molecular family.

For any fixed B € B, write B, = B(z, 2¥rg) and Ej, = B;\By_1, k € NU{0}.
Write Mpx(z) = xg, (z)Mp(z), and let PE be the unique polynomial of degree
[nss — n] such that fEk(MBk(x) — PE(x))z*dx =0, V|a| < [nsg — n].

Define Pg j(x) = x5, (x)Pf(x). Therefore, we have Mp = > 77 ((Mpy— Ppi)+
ZZOZO PBJg. Write f = ZBG]B )\BMB = ZBeB 220:0 )\B(MBJg - PB,k) +
s S0 AsPri = F + G

We first consider F'. The function Mg — Pp is supported in Bj, and satisfies
the vanishing moment conditions up to order [ns, — n|.

It remains to deal with the size condition. We find that

Mgk — Prillper < ClIMpgllper = C||Mpil| - —x5|"| - =25 .

11
S CQ_kM’I"E;MHMB7k| : —IlfBlMHL¢q § CQ_kMHXBHzcb ’

where we obtain the last inequality by using (4.2); that is,

x5l i1 i1
HMBk — Pp kap <C2” kM(HXB ”LL ) ||XBk||Z¢ = CNB,k||XBkHZ¢ , (4.6)
k

. 2 kM( ”XB”LdJ )Efl

where
KBk = x5, 00
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Therefore, {Ag} is a (¢, ¢, [nsy — n|)-atomic family where Ap; = %

Moreover, F'=3 55> 5" A D i oMbk — Ppi) = X pes 2reo ABHBKAB k-
Fix a k > 1 and d < dy such that M > kn — %. In view of (2.12), we have
X8, < 2¥%(Myg)*. Therefore,

ZZ( ABUB k > .

> 0/q
) (Mys)" ZQ—kMGann(HXBHL¢> '
k=0

<03 (i X0 l2e

2\ Tsllee

Proposition 2.17 assures that, for that given d, there exists a constant C' > 0
such that

o0

Zan k;Mé)( IxBl L )9/‘1 < szk(m—M—%) < 00
k=1

By llze

dnd

because M > kn — =

Thus,

HZZ( BB K )

oo <A (i) 0007,

CH( <||x‘21ﬁ;>9<MXB>”>K

Ask>1and 5 > % > 54, Theorem 2.15 guarantees that

=2 ol = €I () o

Consequently, Theorem 3.9 yields that A € H?® and

[E | e < CHZ<HXBHL¢) )

Next, we deal with B. We use the ideas given in [6, pp. 332-334].

For any k € NU {0} and v € N" with |a| < [nsy — n], let ¢F 5 be the unique
function on Ej such that ﬁ fEk Fp(@) (@ — zp) dr = dan, VY| < [nsy — ),
where 9, = 1 when a = v and 9, , = 0 otherwise.

Therefore, Ppx(2) = 3|0 1< (s, —n] mk gk p(x), where mf p = ﬁ [ Mp k() x
(x —zp)*dz.

According to [0, pp. 332-334], we have Y~ Pgi(x) = > 5o Nk gk p(x),
where Nf 5 =322, ml g|Ej| and ¢f 5 = |Ep| 7 okl — |Bil ¢k 5. We also
have [¢F 5| < C(2%rg)~1*I=" for some C' > 0 independent of B € B and a € N".

K

L¢n/0 ’

L¢1/9 ’

(4.7)

Ld’l/t‘) ’
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Thus, the Holder inequality assures that

[NE gk (@) < C 37 M llea X, Il o3 (2775) ) (2F75) 10"

j=k+1

The definition of molecular family and the fact that £; C B; guarantees that

‘ BwaB |
<C Z M) - =25 (UB) + |- —25]) || oo x5, ] o3 207 By 7!
j—k+1
vlIx; Il e ol 1Bl
<C Z =M ||y BHan |T|L2j ™ ‘|B|
Jj=k+1 k

Since g > sy, Theorem 2.15 ensures that ¢, € M. We are allowed to apply
Lemma 2.11 to obtain

-1
|NE | < Cc27*M Z |||XB”L¢ oi=k)(lal-+n—M)

2 sl

As supp ¥ g C By, by applying the norm || - || ¢, on both sides of the above
inequality, we find that

1 o0
INE S ll o < C2 P g3 S —”XB‘“”L“ 20 el

Let d be selected so that d < dy and M > [nsy] — nd. Proposition 2.17 assures
that

Z HXBIQHL% 2(3 )(Jee|+n—M) < Z 2 k)(|a|+n—M—nd) < 00

because M > [nsy — n] +n —nd.
Therefore, we have |[N¥ gk | 6, < C27 kM||XB||L¢ , and hence the rest of the

arguments follow from the correspondmg arguments from Mp , — Pp, after (4.6).
Thus, for simplicity, we omit the details and conclude that

161 < |32 )

Finally, by using (4.7) and (4.8), we establish (4.5) because || - ||g¢ is a quasi-
norm. 0

When ¢ = ¢, 0 < p <1, we have sy, = dy, = 1/p. Therefore, [nsy] — ndy =
n9d¢

(4.8)

L¢1/0 ’

[n/p] — n/p < 0. Moreover, n — = n — 7. Thus, the condition imposed on
M becomes M > n — E' This reduces to the usual condition imposed on the
molecules for the classical Hardy spaces (see [2], [33]).

As special cases of the above theorem, we have the molecular decompositions

of the Hardy—Orlicz spaces and the Hardy spaces with variable exponents.
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Finally, we give an application of the intrinsic atomic and molecular decompo-
sitions on the boundedness of the operator on H?.

Theorem 4.3. Let ¢ € H. Let T' be a convolution operator

Tf(x) = lim fW)K(x —y)dy.

e—0 |x_y‘>5

Suppose that there exists a 0 < 0 <1 such that K satisfies

/ K(z)dr =0, 0<e<R < o0, (4.9)
e<|z|<R
|K (2 —y) = K(z)] < Clyl’l|7"7,  |z] > 2Jy| (4.10)

for some C' > 0. If
(1) 1 < sy < 2HL
(2) T is bounded on L% for some q > max(s¢,93¢((v;/9)_1)’) with 5 € Sy,
and
(3) 0 > max(n — %, [nse] —ndy),
then T is bounded on H?.

Proof. Let {ap}per be a (¢, ¢, [ns, —n])-atomic family. We consider the action of

T on ap. Write mp = Tap. We are going to show that {mpg} is a constant multiple

ofa (¢, q, [nss—n], M)-molecular family with 6 > M > max(n— no%’ [nSe] —ndy).

Since 1 < s5 < ™2 we have [nsy —n] = 0. In view of (4.9), we find
that [mp(z)dr = [Tag(x)dx = 0. Therefore, {mp}pep fulfills (4.3). As T
is bounded on L%, we have ||mg|| 6. = [|Tap| e < Cllap|lie < C||XB||E;1 for

some C' > 0 independent of B € B. Hence {mp}pep satisfies (4.1).
Moreover, we have

1
[ms()xBep2rs) O - —28|" || o, < 78 ImBllLes < Cryllixsllf, - (4.11)

Whenever y € B and © € R"\B(xp,2rg), by using the vanishing moment
condition satisfied by {ag} and the Holder inequality, we find that

[Tan(a)| = | | (G =)~ K(o = a))anly) i

ly — 5[’
< 0/33 WMB@” dy

5 IxBll s llal Led
= Crp iz — wp|+e

1_
Ixsll o llxBll s

<Cv o0+n )
=" TBlx — ap
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As q¢ > sy, Theorem 2.15 shows that ¢, € M. Lemma 2.11 yields that

1
Ixsll7s 1 1 -
Tag(z)| < Créf™ L <Crgfnt— .
[Tan@) < Cr5™ T oot = 7 =g ol
Consequently,
I pes 2| - =251 | o,
Sty 111 Mon-s (4.12)
< CrglIxsllze|| (1= x5)| - —zs] [P
To deal with [[(1 — xp)| - —2p|M || 4,, We first obtain an estimate of

IXB(p,29rp) | o0 I terms of [[xpl[ e
Write B; = B(xp,2'rp). In view of (2.12), the fact that ¢, € M yields
IxB; |l pea < CP™|MxBllLeq < C2"||XB 1sq. Since M < 0, we have

(1= xp)] - = o, < C PO g o
=0

o
< Z 2]'(M‘5)T%J‘”‘5IIXBIIW < Cry " xsll Lo
=0

By applying this estimate on (4.12), we obtain

19
HmBXR"\B(mB,2T3)| : _xB’MHL% < CT%HXBHEM

for some C' > 0 independent of B € B.
The above inequality and (4.11) guarantee that {mp} fulfills (4.2); that is,
{mp} is a constant multiple of a (¢, ¢, [nsy — n], M )-molecular family.

Therefore, Theorems 3.3 and 4.2 yield our result on the boundedness of T’
on H. 0

Notice that, in [12] and [27], the boundedness of the singular integral operators
T on the Hardy spaces with variable exponents and the Hardy—Morrey spaces
with variable exponents relies on the boundedness of T" on Lebesgue spaces. In
particular, Theorem 4.2 gives us another result on the boundedness of T" on Hardy
spaces with variable exponents with the assumption on the boundedness of T on
the corresponding Lebesgue spaces with variable exponents only.
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