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Abstract. We introduce the Hardy type space for Musielak–Orlicz spaces.
It includes several existing Hardy type spaces such as the Hardy–Orlicz spaces
and the Hardy spaces with variable exponents. Furthermore, we develop an
atomic decomposition such that the size condition just relies on the norms
of Musielak–Orlicz spaces. This gives us a nature extension of the molecular
decompositions to the Hardy type space for Musielak–Orlicz spaces.

1. Introduction

In this article we aim to establish the atomic and molecular decompositions for
the Hardy spaces built on the Musielak–Orlicz spaces.

Once Fefferman, Stein, and Weiss introduced the classical Hardy spaces Hp,
they became one of the most important function spaces in analysis. Recently, there
have been several extensions of classical Hardy spaces. We have the Hardy–Orlicz
spaces which are the Orlicz space version of the classical Hardy spaces (see [18],
[17], [28], [35]). The Hardy spaces with variable exponents were introduced and
studied in [27] and [30]. The atomic decomposition for weighted Hardy spaces
with variable exponents is developed in [14].

We also have the atomic decompositions for the Hardy–Morrey spaces (see [11],
[16]). The reader may also consult [31] and [37] for some detailed studies on the
Triebel–Lizorkin–Morrey spaces which are generalizations of the Hardy–Morrey
spaces.
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The atomic decomposition of the Hardy–Morrey spaces with variable exponents
is given in [12]. For the study of some generalizations of Morrey spaces, the reader
is referred to [10], [13], [25], and [26]. Furthermore, the Hardy spaces built on the
Musielak–Orlicz spaces were given in [15], [19]–[21], and [36].

The Musielak–Orlicz spaces [24], [5, Sections 2.3–2.8] provide a framework for
the study of function spaces including the weighted Lebesgue spaces, the Or-
licz spaces, and the Lebesgue spaces with a variable exponent. Notice that the
Musielak–Orlicz spaces used in [19] and [20] do not cover the Lebesgue spaces
with a variable exponent.

The studies of the Hardy spaces mentioned above give us a motivation to
establish a unified family of Hardy spaces built on general Musielak–Orlicz spaces
so that the Hardy spaces with variable exponents and the Hardy–Musielak–Orlicz
spaces introduced in [19] and [20] are included under this new family of Hardy
spaces.

Other than a new unified family of Hardy spaces, we also introduce a new
atomic decomposition adapted to the Hardy–Musielak–Orlicz spaces. We call it
the intrinsic atomic decompositions.

Before we describe the intrinsic atomic decomposition, let us review the atomic
decomposition for the classical Hardy spaces. We are particularly interested in
the size condition. Recall that the size condition imposed on the atom a with
supp a ⊂ 3B, where Q is ball, for the atomic decompositions of the classical

Hardy spaces Hp is given by ‖a‖Lq ≤ |Q|
1
q
− 1

p = ‖χQ‖
1− q

p

Lq , 1 < q < ∞, where χQ
is the characteristic function of Q.

On the other hand, in view of [27, Definition 1.4], the size condition for the
atoms associated with the atomic decompositions for the Hardy spaces with vari-

able exponents Hp(·) is given by ‖a‖Lq ≤ |Q|
1
q

‖χQ‖
Lp(·)

=
‖χQ‖Lq

‖χQ‖
Lp(·)

where supp a ⊂ Q.

The reader is referred to [27], [3], and [5] for the definitions and properties for
Hardy spaces with variable exponents and Lebesgue spaces with variable expo-
nents, respectively.

We see that the size condition for the atom a for Hp(·) involves the Lq norms
of a and χQ. In this paper, as a special case of the general result for the Hardy–
Musielak–Orlicz spaces, we present another atomic decomposition for Hp(·) where
the size condition for the corresponding atom is given by

‖a‖Lq(·) ≤
‖χQ‖Lq(·)

‖χQ‖Lp(·)
= ‖χQ‖

1
r
−1

Lp(·) , (1.1)

where q(·) = rp(·) for some sufficient large r > 1. Note that ‖χB‖Lq(·) = ‖χB‖
1
r

Lp(·) .
The size condition (1.1) does not involve the Lq norm, it just relies on the

quasinorms ‖ · ‖Lrp(·) and ‖ · ‖Lp(·) . Using the terminology from the geometry of
quasi-Banach spaces [22, Vol. II, pp. 53–54] and [29, Section 2.2], Lrp(·) is the
r-convexification of Lp(·).

Therefore, we call the atomic decompositions for the Hardy spaces with variable
exponents using the atoms satisfying the size condition (1.1) the intrinsic atomic
decomposition.
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The condition (1.1) does not only give us a more naturally adapted size condi-
tion for the atomic decompositions for the Hardy–Musielak–Orlicz spaces, but it
also offers a straightforward generalization for the size condition on the molecules
used in the molecular decompositions. Notice that even for the classical Hardy
spaces, we also have atomic decompositions with atoms defined in terms of Ba-
nach function spaces (see [7], [9]).

Recall that the molecular decomposition for the classical Hardy spaces was
introduced by Coifman, Taibleson, and Weiss [2], [33]. The molecular decom-
positions for the classical Hardy spaces provide some profound applications on
function spaces, especially on the boundedness of operators on the classical Hardy
spaces (see [2], [23], [33]).

The intrinsic atomic and molecular decompositions established in this paper
offer us a mapping property for the singular integral operator. Roughly speaking,
we find that if a singular integral operator T satisfies some mild condition on its
Schwartz kernel and is bounded on some Musielak–Orlicz spaces, then it is also
bounded on the corresponding Hardy–Musielak–Orlicz spaces. For the precise
statement of this mapping property, the reader is referred to Section 4.

This article has the following organization. We present the definitions and some
properties of the Musielak–Orlicz spaces in Section 2. The Hardy–Musielak–Orlicz
space is introduced in Section 3. We also establish the intrinsic atomic decom-
positions of the Hardy–Musielak–Orlicz spaces in that section. The molecular
decomposition for the Hardy–Musielak–Orlicz spaces is given in Section 4. We
also present an application of the intrinsic atomic and molecular decompositions
on singular integral operators in Section 4.

2. Musielak–Orlicz spaces

The classical Musielak–Orlicz space was introduced in [24]. In this section, in
order to prepare for the atomic decomposition, we present some properties for the
Musielak–Orlicz spaces. We especially obtain the Fefferman–Stein vector-valued
maximal inequalities for the Musielak–Orlicz spaces.

Let B(x, r) = {y ∈ Rn : |x− y| < r} denote the open ball with center x ∈ Rn

and radius r > 0. Let B = {B(x, r) : x ∈ Rn, r > 0}. For any B ∈ B, let xB and
rB be its center and radius. Let S be the set of simple functions, and let L1

loc be
the set of locally integrable functions.

For any 0 < q <∞ and Lebesgue measurable function φ : Rn×[0,∞) → [0,∞),
write φq(x, t) = φ(x, tq), ∀x ∈ Rn and t > 0. The following definition is modified
from [5, Definition 2.3.1].

Definition 2.1. A function φ : Rn × [0,∞) → [0,∞) is a generalized quasi-Φ-
function if

(1) for any x ∈ Rn, φ(x, ·) is nondecreasing, left-continuous with φ(x, 0) = 0,
limt→0+ φ(x, t) = 0, and limt→∞ φ(x, t) = ∞ for all x ∈ Rn,

(2) for any t ∈ [0,∞), φ(·, t) is a Lebesgue measurable function,
(3) there exists a r > 1 such that φr(x, ·) is convex.

We say that φ is a generalized Φ-function if φ(x, ·) is convex and φ is a generalized
quasi-Φ-function.
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In order to define the Hardy–Musielak–Orlicz spaces, we need to use the gen-
eralized quasi-Φ-function instead of the generalized Φ-function. For example, the
classical Hardy space is defined via the function ψp(t) = tp, 0 < p < 1, which is
not convex.

Definition 2.2. Let φ be a generalized quasi-Φ-function. The Musielak–Orlicz
space Lφ consists of all Lebesgue measurable functions f satisfying

‖f‖Lφ = inf
{
λ > 0 :

∫
Rn

φ
(
x,

|f(x)|
λ

)
dx ≤ 1

}
<∞.

For any R > 0, LφR consists of all Lebesgue measurable functions f satisfying
‖f‖Lφ

R
= ‖fχB(0,R)‖Lφ <∞ where χB(0,R) is the characteristic function of B(0, R).

The reader is referred to [5, Definition 2.3.11] for the definition of the Musielak–
Orlicz space associated with the generalized Φ-function. We find that

‖f‖Lφs =
∥∥|f |s∥∥1/s

Lφ . (2.1)

Therefore, Lφs is the 1
s
th power of Lφ (the s-convexification of Lφ) (see [29,

Section 2.2] or [22, Vol. II, pp. 53–54]).
According to item (3) of Definition 2.1 and [5, Theorem 2.3.13], for any gener-

alized quasi-Φ-function φ, Lφr is a Banach space, and therefore (2.1) assures that
Lφ is a quasi-Banach space.

We recall another important notion for the generalized Φ-function from [5,
Definition 2.6.1].

Definition 2.3. For any generalized Φ-function φ, the conjugate function φ∗ is
defined by

φ∗(x, u) = sup
t≥0

(
tu− φ(x, t)

)
.

In view of [5, Corollary 2.6.3], we have φ = (φ∗)∗. Next, we present the Hölder
inequality for the pair Lφ and Lφ

∗
.

Lemma 2.4 (Hölder inequality). Let φ be a generalized Φ-function. We have∫
Rn

∣∣f(x)g(x)∣∣ dx ≤ 2‖f‖Lφ‖g‖Lφ .

For the proof of the above lemma, the reader is referred to [5, Lemma 2.6.5].

Corollary 2.5. Let φ be a generalized Φ-function. If for any R > 0, S ⊂ Lφ
∗

R ,
then, for any f ∈ Lφ,

‖f‖Lφ ≤ sup
g∈S,‖g‖

Lφ∗≤1

∫
Rn

∣∣f(x)g(x)∣∣ dx ≤ 2‖f‖Lφ .

The reader may consult [5, Corollary 2.7.5 and Remark 2.7.6] for the proof of
the above result.

Definition 2.6. A generalized Φ-function φ is called proper if Lφ is a Banach
function space.
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The reader is referred to [1, Chapter 1, Definition 1.1] for the definition of a
Banach function space. In addition, it is shown in [5, p. 61] that φ is proper if
and only if S ⊂ Lφ ∩ (Lφ)′.

It is easy to see that if φ is proper, then, for any s ≥ 1, φs is also proper.

Definition 2.7. For any Banach function spaceX, the associated spaceX ′ consists
of all f ∈ M such that

‖f‖X′ = sup
{∫

Rn

f(x)g(x) dx : ‖g‖X ≤ 1
}
<∞.

The associated space X ′ is a Banach function space (see [1, Chapter 1, Theo-
rem 2.2, and Definition 2.3]). We now recall an important result for Lφ from [5,
Theorem 2.7.12].

Theorem 2.8. Let φ be a proper generalized Φ-function. Then Lφ
∗
= (Lφ)′ and

(Lφ
∗
)′ = Lφ. In addition, (Lφ)′′ = Lφ with ‖ · ‖Lφ = ‖ · ‖(Lφ)′′.

We now present a generalization of the notion of the proper generalized Φ-
function. The main motivation for this generalization is on the weighted Lebesgue
spaces. The weighted Lebesgue space L p(ω) is not necessarily a Banach function
space, as even ω belongs to the Muckenhoupt Ap class, since the characteristic
function of an unbounded Lebesgue measurable set E with |E| < ∞ does not
necessarily belong to L p(ω). Therefore, we need to extend the notion of proper
so that the weighted Lebesgue spaces are included in our study. The following
definition is inspired by [5, Definition 2.7.8].

Definition 2.9. A generalized Φ-function φ is said to be semiproper if for any
R > 0, S ⊂ LφR ∩ Lφ

∗

R .

When ω ∈ Ap, 1 ≤ p < ∞, the definition of the Muckenhoupt Ap class [32,
Chapter V] guarantees that φω(x, t) = tpω(x) is semiproper.

Definition 2.10. For any generalized Φ-function φ, we write φ ∈ M if φ is a
semiproper generalized Φ-function and the Hardy–Littlewood maximal operator
M is bounded on Lφ.

The above definition is a special case from Banach function spaces (see [9,
Definition 2.1]). When φ ∈ M or φ∗ ∈ M, we have the following result.

Lemma 2.11. Let φ be a generalized Φ-function. If φ ∈ M or φ∗ ∈ M, then there
exist constants C1, C2 > 0 such that

C1|B| ≤ ‖χB‖Lφ‖χB‖Lφ∗ ≤ C2|B|, ∀B ∈ B. (2.2)

Proof. In view of the fact that φ = (φ∗)∗, it suffices to assume that φ ∈ M. The
Hölder inequality on Lφ yields the left-hand side inequality in (2.2).

For any B ∈ B, we consider the projection (PBg)(y) = ( 1
|B|

∫
B
|g(x)| dx)χB(y).

There exists a constant C > 0 independent of R > 0 such that, for any B ∈ B,
PB(f) ≤ CM(f); hence, supB ‖PB‖Lφ

R→Lφ
R
≤ C‖M‖Lφ→Lφ .
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Furthermore, as LφR is a Banach function space, Theorem 2.8 guarantees that

(LφR)
′ = Lφ

∗

R . Thus the definition of associate space ensures that there exists a
constant C > 0 such that, for any R > 0,

‖χB‖Lφ∗
R
‖χB‖Lφ

R
= sup

{∣∣∣∫
B

g(x) dx
∣∣∣‖χB‖Lφ

R
: g ∈ LφR, ‖g‖Lφ

R
≤ 1

}
≤ C|B|

(2.3)

for some C > 0 independent of R > 0 and B ∈ B.
For any given B ∈ B, pick R > 0 such that B ⊂ B(0, R). Then ‖χB‖Lφ∗

R
=

‖χB‖Lφ∗ and ‖χB‖Lφ
R
= ‖χB‖Lφ . Therefore, the right-hand side inequality of (2.2)

follows from (2.3). �

The following is the basic assumption imposed on φ for the study of the atomic
decomposition of the Hardy–Musielak–Orlicz spaces.

Definition 2.12. Let 1 ≤ s < ∞ and 0 < v ≤ 1 and φ be a generalized
quasi-Φ-function. We write φ ∈ Hs,v if

(1) (φ∗
s)v is a semiproper generalized Φ-function where φ∗

s = (φs)
∗, and

(2) (φ∗
s)v ∈ M.

As (φ∗
s)v is a semiproper generalized Φ-function, [5, Remark 2.7.11] asserts that,

for any R > 0, L
(φ∗s)v
R is a Banach function space. Since 0 < v ≤ 1, L

φ∗s
R is also a

Banach function space; hence, S ⊂ L
φ∗s
R , and [5, Corollary 2.7.9] guarantees that

φs is semiproper.
Therefore, we have

‖χB‖Lφs <∞, ∀B ∈ B. (2.4)

Lemma 2.13. Let 1 ≤ s <∞. For any 0 < v ≤ t ≤ 1, we have Hs,v ⊆ Hs,t.

Proof. As (φ∗
s)v is a semiproper generalized Φ-function, for any R > 0, L

(φ∗s)v
R

is a Banach function space. Consequently, L
(φ∗s)t
R = (L

(φ∗s)v
R )t/v is also a Banach

function space. Thus (φ∗
s)t is a semiproper generalized Φ-function.

Furthermore, the Hardy–Littlewood maximal operator is bounded on (Lφ
∗
s)v.

In view of Jensen’s inequality, for any 0 < v ≤ t, we have M(f) ≤ (M(|f |t/v))v/t,
∀f ∈ L1

loc. Therefore,∥∥M(f)
∥∥
L(φ∗s)t ≤

∥∥(M(
|f |t/v

))v/t∥∥
L(φ∗s)t =

∥∥(M(
|f |t/v

))∥∥v/t
L(φ∗s)v

≤ C
∥∥(|f |t/v)∥∥v/t

L(φ∗s)v = C‖f‖L(φ∗s)t

for some C > 0; that is, (φ∗
s)t ∈ M. Thus Hs,v ⊆ Hs,t. �

We introduce some indices in the following. They are used to define the indices
appearing in the intrinsic atomic decomposition.

Definition 2.14. For any φ ∈
⋃

1≤s<∞ Hs,1, write

sφ = inf{s ≥ 1 : φ∗
s ∈ M}. (2.5)
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Define H =
⋃

1≤s<∞
0<v<1

Hs,v. For any φ ∈ H, write

Sφ =
{
s : s ≥ 1, (φ∗

s)v ∈ M for some 0 < v < 1
}
. (2.6)

For any fixed s ∈ Sφ, define vsφ = inf{v : (φ∗
s)v ∈ M}.

Roughly speaking, the index vsφ is used to measure the “left-openness” of the

boundedness of the Hardy–Littlewood maximal operator on Lφ
∗
s .

The Jensen inequality shows that, for any v > vsφ, (φ
∗
s)v ∈ M. Thus s ∈ Sφ

implies s > sφ.
For any 0 < p <∞, let ψp(t) = tp. To compute sψp , we find that, for any s ≥ 1,

we have (ψp)s(t) = ψps(t) = tps. Therefore, (ψp)
∗
s(t) = t(ps)

∗
when ps > 1.

Thus,

sψp = 1/p, Sψp = [1/p,∞) and νsψp
= 1− 1

ps
(2.7)

whenever ps > 1.
Later in the atomic decomposition of the Hardy–Musielak–Orlicz spaces, we

see that the indices sψp and νsψp
are used to generate some well-known indices in

the atomic decompositions such as the order of the vanishing moment conditions.
Next, we establish the Fefferman–Stein vector-valued maximal inequalities on

the Musielak–Orlicz spaces in the following.

Theorem 2.15. Let φ be a generalized Φ-function. If φ ∈
⋃

1<s<∞ Hs,1, then, for
any 1 ≤ sφ < β <∞, we have∥∥∥∥{Mfi}i∈N

∥∥
lq

∥∥
L
φβ ≤ C

∥∥∥∥{fi}i∈N∥∥lq∥∥Lφβ (2.8)

for some C > 0. In particular, we have

‖Mf‖
L
φβ ≤ C‖f‖

L
φβ . (2.9)

Proof. As φ ∈ Ht,1 for some 0 < t < ∞, there exists a s such that sφ < s < β
and φ∗

s ∈ M. Since φ∗
s is semiproper, Theorem 2.8 shows that, for any R > 0,

(LφsR )′ = L
φ∗s
R is a Banach function space. Furthermore, φ∗

s ∈ M assures that the

Hardy–Littlewood maximal operator is bounded on (LφsR )′. Therefore, there exists
a constant C > 0 independent of R such that ‖Mf‖Lφ∗s ≤ C‖f‖Lφ∗s . Consequently,

‖Mf‖(Lφs
R )′ = ‖Mf‖Lφ∗s ≤ C‖f‖Lφ∗s = C‖f‖(Lφs

R )′ , ∀f ∈ (LφsR )′. (2.10)

The constant in (2.10) is independent of R > 0, and the Hardy–Littlewood
maximal operator is bounded on L1(ω) for any ω ∈ A1. Therefore, by using
Lφβ = (Lφs)β/s and β > s, the proof of the extrapolation theorem for general
Banach function spaces (see [4, Corollary 4.8]) guarantees that (2.8) is valid for
any bounded Lebesgue measurable functions with supp fi ⊂ B(0, R),∥∥∥∥{Mfi}i∈N

∥∥
lq

∥∥
L
φβ ≤ C

∥∥∥∥{fi}i∈N∥∥lq∥∥Lφβ ,

where C > 0 is independent of R > 0.
Finally, by applying Fatou’s lemma (see [5, Theorem 2.3.17(d)]) on fki =

fiχ{x:|fi(x)|≤k,|x|≤k}, k ∈ N, we establish (2.8). �
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We introduce another new index in the following.

Definition 2.16. For any φ ∈ H, define

dφ = sup
{
s(1− νsφ) : s ∈ Sφ

}
.

For instance, in view of (2.7), we have dψp = 1/p, 0 < p ≤ 1. By using this
index, we establish the following property which is crucial for the atomic and
molecular decompositions.

Roughly speaking, this index is used to measure the “dilation property” for the
characteristic function of B ∈ B under the quasinorm ‖ · ‖Lφ .

Proposition 2.17. Let φ ∈ H. For any d < dφ, there exists constant C2 > 0
such that, for any x0 ∈ Rn and r > 0, we have

C22
jnd ≤

‖χB(x0,2jr)‖Lφ

‖χB(x0,r)‖Lφ

, ∀j ∈ N. (2.11)

Proof. In view of the definition of dφ, for any d < dφ there exist 1 ≤ s < ∞ and
0 < t < 1 such that d < s(1− t) and φ ∈ Hs,t.

For any B = B(x0, r) ∈ B and j ∈ N, we have a constant C > 0 such that

C2−jn ≤ M(χB)(x) (2.12)

when x ∈ B(x0, 2
jr), j ∈ N. Thus,

2−jn‖χB(x0,2jr)‖L(φ∗s)t ≤ C
∥∥M(χB)

∥∥
L(φ∗s)t ≤ C‖χB‖L(φ∗s)t ;

that is,

2−jnt‖χB(x0,2jr)‖Lφ∗s ≤ C
∥∥M(χB)

∥∥
Lφ∗s ≤ C‖χB‖Lφ∗s . (2.13)

Since φ∗
s ∈ M, Lemma 2.11 provides constants D1, D2 > 0 such that, for any

B ∈ B,
D1|B| ≤ ‖χB‖Lφs‖χB‖Lφ∗s ≤ D2|B|. (2.14)

Therefore, (2.13), (2.14), d < s(1− t), and ‖χB‖Lφs = ‖χB‖1/sLφ yield (2.11). �

We also have an upper estimate for (2.11). Since we do not need that estimate
in this paper, for brevity, we refer the reader to [10, Proposition 2.5] for details.

3. Atomic decomposition

In this section, we define the Hardy–Musielak–Orlicz spaces and establish the
corresponding intrinsic atomic decomposition.

Let S and S ′ denote the classes of tempered functions and Schwartz distri-
butions, respectively. Let P denote the class of polynomials in Rn. A Schwartz
distribution f ∈ S ′ is a bounded tempered distribution if ψ ∗ f ∈ L∞(Rn) for any
ψ ∈ S.

For any j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn, Qj,k = {(x1, x2, . . . , xn) ∈ Rn :
ki ≤ 2jxi ≤ ki+1, i = 1, 2, . . . , n}. We write xQ, |Q|, and l(Q) to be the center of
Q, the Lebesgue measure of Q, and the side length of Q, respectively. We denote
the set of dyadic cubes {Qj,k : j ∈ Z, k ∈ Zn} by Q.
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For anyN ∈ N and ϕ ∈ S, defineNN(ϕ) = supx∈Rn(1+|x|)N
∑

|γ|≤N+1 |∂γϕ(x)|.
Write FN = {ϕ ∈ S : NN(ϕ) ≤ 1}. For any t > 0 and ϕ ∈ S, write ϕt(x) =
t−nϕ(x/t). For any f ∈ S ′, the grand maximal function of f is given by

(Mf)(x) = sup
ϕ∈FN

sup
t>0

∣∣(ϕt ∗ f)(x)∣∣
(see [32, Chapter III, (2)]).

The grand maximal function depends on N . For simplicity, we use the abused
notion M. We are now ready to define the Hardy–Musielak–Orlicz spaces.

Definition 3.1. Let φ ∈ H. The Hardy–Musielak–Orlicz spaces Hφ consist of all
bounded f ∈ S ′ satisfying ‖f‖Hφ = ‖Mf‖Lφ <∞.

We introduce the atoms used in the intrinsic atomic decomposition for Hφ.

Definition 3.2. Let φ ∈ H, and let p > sφ. For any N ∈ N, a family of measurable
functions {aB}B∈B is called a (φ, p,N)-atomic family if

supp aB ⊆ 3B, ∀B ∈ B, (3.1)∫
Rn

xγaB(x) dx = 0, ∀γ ∈ Nn with 0 ≤ |γ| ≤ N, (3.2)

‖aB‖Lφp ≤ ‖χB‖
1
p
−1

Lφ . (3.3)

We call aB an atom supported in B.

In the size condition (3.3), it only involves the quasinorms ‖ · ‖Lφ and ‖ · ‖Lφp .
Similar to the atomic decomposition of the classical Hardy spaces, the intrinsic

atomic decomposition for Hφ consists of two parts, namely, the decomposition
theorem and the reconstruction theorem. We now present the decomposition part
of the intrinsic atomic decomposition for Hφ.

Theorem 3.3. Let φ ∈ H. For any s ∈ Sφ, f ∈ Hφ, and any positive integer N ,
there exist a (φ, s,N)-atomic family, {aB}B∈B, and a sequence t = {tB}B∈B such
that

f =
∑
B∈B

tBaB (3.4)

converges in S ′ and∥∥∥∑
B∈B

( |tB|
‖χB‖Lφ

)θ
χB

∥∥∥ 1
θ

L
φ1/θ

≤ C‖f‖Hφ , ∀0 < θ <∞

for some C > 0.

We recall a crucial supporting result for the atomic decomposition [32, Chap-
ter III, Section 2.1]. We use the presentation given in [12, Proposition 5.4] and
[28, Lemma 4.7]. For any d ∈ N, let Pd denote the class of polynomials in Rn of
degree less than or equal to d.

Proposition 3.4. Let d ∈ N, and let σ > 0. For any f ∈ S ′, there exist g ∈ S ′,
{bk}k∈N ⊂ S ′, a collection of cubes {Qk}k∈N, and a family of smooth functions
with compact supports {ηk} such that
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(1) f = g + b, where b =
∑

k∈N bk,
(2) the family {Qk}k∈N has bounded intersection property and

⋃
k∈NQk = {x ∈

Rn : (Mf)(x) > σ},
(3) supp ηk ⊂ Qk, 0 ≤ ηk ≤ 1, and

∑
k∈N ηk = χ{x∈Rn:(Mf)(x)>σ},

(4) the tempered distribution g satisfies

(Mg)(x) ≤ C(Mf)(x)χ{y∈Rn:(Mf)(y)≤σ}(x)

+ Cσ
∑
k∈N

l(Qk)
n+d+1

(l(Qk) + |x− xk|)n+d+1
,

where xk denotes the center of the cube Qk,
(5) the tempered distribution bk is given by bk = (f − ck)ηk, where ck ∈ Pd

satisfying 〈f − ck, q · ηk〉 = 0, ∀q ∈ Pd, and

(Mbk)(x) ≤ C(Mf)(x)χQk
(x) + Cσ

l(Qk)
n+d+1

|x− xk|n+d+1
χRn\Qk

(x) (3.5)

for some C > 0.

We present some folklore facts about b and g given in Proposition 3.4.

Lemma 3.5. Let φ ∈ H, and let f ∈ Hφ. The distribution g given in Proposi-
tion 3.4 is locally integrable.

Proof. We first show that Mg ∈ L1
loc. In view of item (4) of Proposition 3.4 and

the fact that
Cln

(l + |x− y|)n
≤ (MχB(y,l))(x) (3.6)

for some C > 0 independent of x, y ∈ Rn and l > 0, it suffices to show that

F =
∑

k∈N(MχQk
)
n+d+1

n ∈ L1
loc.

The definition of sφ assures that there exists sφ < r such that the Hardy–
Littlewood maximal operator M is bounded on Lφ

∗
r .

For any B ∈ B, by [6, Chapter II, Theorem 2.12], we have∫
B

∣∣F (x)∣∣ dx ≤
∑
k∈N

∫
Rn

(
MχQk

(x)
)n+d+1

n χB(x) dx

≤ C

∫
Rn

(∑
k∈N

χQk
(x)

)
(MχB)(x) dx.

By using the bounded intersection property for {Qk}, we find that∫
B

∣∣F (x)∣∣ dx ≤ C

∫
Rn

χ{y∈Rn:(Mf)(y)>σ}(x)(MχB)(x) dx.

The Hölder inequality yields∫
B

∣∣F (x)∣∣ dx ≤ C‖χ{x∈Rn:(Mf)(x)>σ}‖Lφr‖MχB‖Lφ∗r

≤ C‖χ{x∈Rn:(Mf)(x)>σ}‖1/rLφ ‖χB‖Lφ∗r

≤ Cσ−1/r‖Mf‖1/r
Lφ ‖χB‖Lφ∗r <∞;
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that is, F ∈ L1
loc, and hence Mg ∈ L1

loc. By using the idea from [32, Chapter III,
2.3.3], we now prove that g ∈ L1

loc.
For any B ∈ B, let AB be the spaces of finite Borel measures on B. AB is the

dual of the space of continuous functions on B and Mg ∈ L1
loc ⊂ AB. Taking

an approximate of identity Ψ, we have |Ψi ∗ g| ≤ CMg for some C > 0 and
Ψi ∗ g → g in S ′.

The Banach–Alaoglou theorem assures that there exists a subsequence of Ψi∗g
converging weakly to a measure dµ ∈ AB. Since |Ψi ∗ g| ≤ CMg, we find that
dµ = h dx is absolutely continuous with

∫
B
|h(x)| dx < ∞, and hence g = h.

Therefore, g ∈ L1
loc. �

Proposition 3.6. Let φ ∈ H, and let f ∈ Hφ. If d ≥ [nsφ − n], then the
distributions b and g given in Proposition 3.4 belong to Hφ.

Proof. Since g = f − b, it suffices to show that b ∈ Hφ. Let O = {x ∈ Rn :
(Mf)(x) > σ} =

⋃
k∈NQk. The definition of sφ assures the existence of r > sφ

such that

sφ < r <
[nsφ − n] + n+ 1

n
≤ d+ n+ 1

n
, (3.7)

and the Hardy–Littlewood maximal operator M is bounded on Lφ
∗
r .

In view of (3.5) and (3.6), for any h ∈ Lφ
∗
r with ‖h‖Lφ∗r ≤ 1, we have∫

Rn

(Mb)(x)1/r
∣∣h(x)∣∣ dx

≤ C

∫
Rn

∑
k∈N

(Mf)(x)1/r
∣∣h(x)∣∣χQk

(x) dx

+ Cσ1/r

∫
Rn

∣∣h(x)∣∣∑
k∈N

(
l(Qk)

n+d+1χRn\Qk
(x)

(l(Qk) + |x− xk|)n+d+1

)1/r

dx

≤ C

∫
O

(Mf)(x)1/r
∣∣h(x)∣∣ dx+ Cσ1/r

∑
k∈N

∫
Rn

(MχQk
)(x)(n+d+1)/rn

∣∣h(x)∣∣ dx.
By using [6, Chapter II, Theorem 2.12], we obtain∫

Rn

(MχQk
)(x)(n+d+1)/rn

∣∣h(x)∣∣ dx ≤ C

∫
Rn

χQk
(x)(n+d+1)/rn(Mh)(x) dx

= C

∫
Rn

χQk
(x)(Mh)(x) dx

= C

∫
Qk

(Mh)(x) dx

because n+d+1
rn

> 1.
Lemma 2.4, the bounded intersection property satisfied by {Qk}k∈N, and (3.9)

assure that ∫
Rn

(Mb)(x)1/r
∣∣h(x)∣∣ dx ≤ C

∫
O

(Mf)(x)1/r(Mh)(x) dx

≤ C
∥∥χO(Mf)1/r

∥∥
Lφr

‖Mh‖Lφ∗r .
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Since M is bounded on Lφ
∗
r and ‖h‖Lφ∗r ≤ 1, we obtain∫

Rn

(Mb)(x)1/r
∣∣h(x)∣∣ dx ≤ C

∥∥χO(Mf)1/r
∥∥
Lφr

‖h‖Lφ∗r ≤ C
∥∥χO(Mf)1/r

∥∥
Lφr

.

By taking supremum over those h ∈ Lφ
∗
r with ‖h‖Lφ∗r ≤ 1, Proposition 2.5

yields

‖Mb‖1/r
Lφ =

∥∥(Mb)1/r
∥∥
Lφr

≤ C
∥∥χO(Mf)1/r

∥∥
Lφr

= C‖χOMf‖1/r
Lφ <∞; (3.8)

that is, b ∈ Hφ. �

To consider the density of Hφ ∩L1
loc in H

φ, we use the notion of the absolutely
continuous quasinorm (see [8, Definition 2.4]).

Definition 3.7. Let φ ∈ H. We say that f ∈ Hφ has an absolutely continuous
quasinorm if ‖χEj

Mf‖Lφ ↓ 0 whenever {Ej}∞j=1 are Lebesgue measurable sets
and Ej ↓ ∅.

We say that Hφ has an absolutely continuous quasinorm provided that any
f ∈ Hφ has an absolutely continuous quasinorm.

Corollary 3.8. Let φ ∈ H. If f ∈ Hφ has an absolutely continuous quasinorm,
then there exist a family of locally integrable functions {gj}∞j=1 ⊂ Hφ ∩ L1

loc such

that limj→∞ ‖f − gj‖Hφ = 0. Furthermore, if Hφ has an absolutely continuous
quasinorm, then Hφ ∩ L1

loc is dense in Hφ.

Proof. Suppose that f ∈ Hφ has an absolutely continuous quasinorm. Let b j, gj

be the distributions given in Proposition 3.4 corresponding to σ = 2j, j ∈ Z. Let
Oj = {x ∈ Rn : (Mf)(x) > 2j}. We have Oj ↓ ∅ as j → ∞.

Therefore, (3.8) shows that

lim
j→∞

‖b j‖Hφ = lim
j→∞

‖Mb j‖Lφ ≤ C lim
j→∞

‖χOjMf‖Lφ = 0.

Since gj ∈ Hφ ∩ L1
loc, we find that limj→∞ ‖f − gj‖Hφ = limj→∞ ‖b j‖Hφ = 0.

Obviously, if Hφ has an absolutely continuous quasinorm, then Hφ ∩ L1
loc is

dense in Hφ. �

In view of [3, Theorems 2.58 and 2.62 and p. 73], the Lebesgue space with
variable exponent Lp(·) has absolutely continuous norm if and only if
ess supx∈Rn p(x) < ∞. Thus, if q : Rn → (0,∞] satisfies ess supx∈Rn q(x) = ∞,
then Hφ with φ(x, t) = tq(x) does not have absolutely continuous norm.

We are now ready to prove Theorem 3.3. The proof follows the idea from [32,
Chapter III, Section 2].

Proof of Theorem 3.3. For any s ∈ Sφ with s > sφ, let ds = [ns − n]. Notice
that we have sφ < s < ds+n+1

n
. It suffices to establish Theorem 3.3 for an

(φ, s, d)-atomic family with d > ds.
For any f ∈ Hφ, by applying Proposition 3.4 with d, σ = 2j, j ∈ Z, we have

f = gj + b j with b j =
∑

k∈N b
j
k . The b

j
k are supported in the cubes Qj

k where
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these cubes satisfy ⋃
k∈N

Qj
k =

{
x ∈ Rn : (Mf)(x) > 2j

}
= Oj. (3.9)

Let {ηjk} be the family of smooth functions given in item (3) of Proposition 3.4

for the collection of cube {Qj
k}.

Item (4) of Proposition 3.4 ensures that

c
∣∣ϕ ∗ gj(x)

∣∣ ≤ (Mgj)(x)

≤ C(Mf)(x)χ{y∈Rn:(Mf)(y)≤2j}(x) + C2j
∑
k∈N

l(Qj
k)
n+d+1

(l(Qj
k) + |x− xjk|)n+d+1

≤ C2j

for some constants c, C > 0, where xjk is the center of Qj
k. Therefore, g

j → 0 in
S ′ as j → −∞.

Next, we show that b j → 0 in S ′ as j → ∞. By item (5) of Proposition 3.4,
we find that, for any B = B(z, 1) ∈ B, z ∈ Rn,∫

B

(Mb j)(x)1/s dx

≤ C

∫
B

∑
k∈N

(Mf)(x)1/sχQj
k
(x) dx

+ C2j/s
∫
B

∑
k∈N

( l(Qj
k)
n+d+1χRn\Qj

k
(x)

(l(Qj
k) + |x− xjk|)n+d+1

)1/s

dx

≤ C

∫
B∩Oj

(Mf)(x)1/s dx+ C2j/s
∑
k∈N

∫
Rn

χB(x)(MχQj
k
)(x)(n+d+1)/sn dx.

By using [6, Chapter II, Theorem 2.12], we obtain∫
Rn

(MχQj
k
)(x)(n+d+1)/snχB(x) dx ≤ C

∫
Rn

χQj
k
(x)(n+d+1)/sn(MχB)(x) dx

= C

∫
Rn

χQj
k
(x)(MχB)(x) dx

= C

∫
Qj

k

(MχB)(x) dx

because (n+ ds + 1)/sn > 1.
Consequently, the above inequalities, (3.9), and the bounded intersection prop-

erty satisfied by {Qj
k}k∈N yield∫

B

(Mb j)(x)1/s dx ≤ C

∫
Oj

(Mf)(x)1/s(MχB)(x) dx

≤ C

∫
Oj

(Mf)(y)1/s
(
1 + |z − y|

)−n
dy.



DECOMPOSITIONS OF HARDY–MUSIELAK–ORLICZ SPACES 579

By using Lemma 2.11 and the Hölder inequality for the pair Lφs and Lφ
∗
s , we

find that ∫
Rn

(Mf)(y)1/s
(
1 + |z − y|

)−n
dy

≤ C
∞∑
k=0

2−kn
∫
Rn

(Mf)(y)1/sχBk(y) dy

≤ C
∞∑
k=0

1

|B(z, 2k)|
∥∥(Mf)(y)1/s

∥∥
Lφs

‖χB(z,2k)‖Lφ∗s

≤ C

∞∑
k=0

1

‖χB(z,2k)‖Lφs

‖Mf‖1/s
Lφ ,

where Bk = B(z, 2k)\B(z, 2k−1) when k ≥ 1 and B0 = B(z, 1).
Proposition 2.17 gives∫

Rn

(Mf)(y)1/s
(
1 + |z − y|

)−n
dy ≤ C‖Mf‖1/s

Lφ .

In view of the fact that Oj ↓ ∅, the dominated convergence theorem yields that,
for any fixed z ∈ Rn,

lim
j→∞

∫
B(z,1)

(Mb j)(x)1/s dx

≤ C lim
j→∞

∫
Oj

(Mf)(y)1/s
(
1 + |z − y|

)−n
dy = 0.

(3.10)

For any ψ ∈ S and z ∈ Rn, we have∣∣b j ∗ ψ(z)∣∣1/s ≤ inf
|y−z|≤1

sup
x∈Rn:|y−x|≤1

∣∣(ψ ∗ b j)(x)
∣∣1/s ≤ C

∫
B(z,1)

M(b j)(y)1/s dy

for some C > 0 independent of j. Thus (3.10) yields that limj→∞ bj = 0 in S ′.
Therefore, for any f ∈ Hφ there exists a sequence of locally integrable func-

tions {gj} ⊂ L1
loc such that gj → f in S ′. Consequently, to obtain the atomic

decomposition, it suffices to assume that f ∈ Hφ ∩ L1
loc.

The convergence of gj and b j guarantees that

f =
∑
j∈Z

(gj+1 − gj) in S ′. (3.11)

Moreover, item (5) of Proposition 3.4 gives

gj+1 − gj = b j+1 − b j =
∑
k∈N

(
(f − c j+1

k )ηj+1
k − (f − c jk )η

j
k

)
,

where c jk ∈ Pd satisfies
∫
Rn(f(x)− c jk (x))q(x)η

j
k(x) dx = 0, ∀q ∈ Pd.

Consequently, we have f =
∑

j,k A
j
k, where

Ajk = (f − c jk )η
j
k −

∑
l∈N

(f − c j+1
l )ηj+1

l ηjk +
∑
l∈N

ck,lη
j+1
l
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and ck,l ∈ Pd fulfills∫
Rn

((
f(x)− c j+1

l (x)
)
ηjk(x)− ck,l(x)

)
q(x)ηj+1

l (x) dx = 0, ∀q ∈ Pd.

Define ajk = λ−1
j,kA

j
k and λj,k = c2j‖χQj

k
‖Lφ , where c is a constant determined

by the family {Ajk}j,k. The important fact is that the constant c is independent
of j and k (see [32, pp. 108–109]).

The proof for the classical Hardy space (see [32, Chapter III, Section 2]) assures
that ajk satisfies (3.1), (3.2), and ‖ajk‖L∞ ≤ C‖χQj

k
‖−1
Lφ .

Furthermore, we have χ3Qk
j
≤ CM(χQk

j
) for some C > 0 independent of j, k.

Thus, (2.9) shows that, for any fixed β > sφ,

‖χ3Qk
j
‖Lφ = ‖χ3Qk

j
‖β
L
φβ

≤ C
∥∥M(χQk

j
)
∥∥β
L
φβ ≤ C‖χQk

j
‖Lφ .

Therefore, ‖ajk‖Lφs ≤ C‖χ3Qk
j
‖Lφs‖χQk

j
‖−1
Lφ = ‖χQk

j
‖

1
s
−1

Lφ . The definition of Qj
k

and the finite intersection property of the family {Qj
k}k∈N yield that, for any

0 < θ <∞, ∑
k∈N

( |λj,k|
‖χQj

k
‖Lφ

)θ
χQj

k
(x) ≤ C2θjχOj(x);

that is, ∑
j,k

( |λj,k|
‖χQj

k
‖Lφ

)θ
χQj

k
(x) ≤ C

∑
j∈Z

2θjχOj(x) ≤ C(Mf)(x)θ.

Applying the quasinorm ‖ · ‖1/θ
L
φ1/θ

on both sides of the above inequality, we find

that ∥∥∥∑
j,k

( |λj,k|
‖χQj

k
‖Lφ

)θ
χQj

k

∥∥∥ 1
θ

L
φ1/θ

≤ C‖f‖Hφ , 0 < θ <∞

for some C > 0 independent of f . �

In view of Corollary 3.8, we see that, whenever f ∈ Hφ has an absolutely
continuous quasinorm, the decomposition of f given in (3.11) converges in Hφ.
Therefore, the atomic decomposition obtained afterward also converges in Hφ.
Thus, if f ∈ Hφ has an absolutely continuous quasinorm, then the atomic de-
composition given in (3.4) converges in Hφ. Next, we have the reconstruction part
of the intrinsic atomic decomposition of Hφ.

Theorem 3.9. Let φ ∈ H. Suppose that

(1) 0 < θ ≤ 1 satisfies 1
θ
∈ Sφ, and

(2) q > max(sφ, θsφ((v
1/θ
φ )−1)′).

Then, for any (φ, q, [nsφ − n])-atomic family, {aBj
}Bj∈B, and sequence of scalars

{λj}j∈N satisfying ∥∥∥∑
j∈N

( |λj|
‖χBj

‖Lφ

)θ
χBj

∥∥∥ 1
θ

L
φ1/θ

<∞, (3.12)
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the series f =
∑

j∈N λjaBj
converges in S ′ and f ∈ Hφ with

‖f‖Hφ ≤ C
∥∥∥∑
j∈N

( |λj|
‖χBj

‖Lφ

)θ
χBj

∥∥∥ 1
θ

L
φ1/θ

(3.13)

for some C > 0 independent of f .

When φ = ψp, 0 < p ≤ 1, we have sψp = 1/p and 1/θ ∈ Sφ = [1/p,∞).
Therefore, 0 < θ ≤ p and [nsψp −n] = [n

p
−n]. Moreover, if we pick θ = p, then

(3.12) becomes (
∑

j∈N |λj|p)1/p < ∞, which is the well-known condition imposed
on the coefficients of the atomic decomposition of the classical Hardy space Hp.

We find that ν
1/θ
ψp

= 1− θ
p
. Therefore, (ν

1/θ
ψp

)−1 = p
p−θ and ((ν

1/θ
ψp

)−1)′ = p
θ
; that

is, sψp((ν
1/θ
ψp

)−1)′ = 1
p
p
θ
= 1

θ
, and hence q > θsψp((ν

1/θ
ψp

)−1)′ = 1.

Thus, when φ = ψp, 0 < p ≤ 1, Hφ = Hp and the conditions (1) and (2) in
Theorem 3.9 reduce to the well-known conditions for the atoms for the classical
Hardy space Hp. Moreover, we find that those indices introduced in Section 2
are used to generate the well-known indices in the atomic decomposition of the
classical Hardy spaces.

The following lemma can be considered as the generalization of the Jensen
inequality to Musielak–Orlicz spaces.

Lemma 3.10. Let φ ∈ H. If s > sφ, then, for any 1 < α < s/sφ, there exists a
constant C > 0 such that, for any bounded measurable function g, we have

‖χB‖−1

Lφ∗s
‖gχB‖Lφ∗s ≤ C|B|−1/α′‖gχB‖Lα′ , ∀B ∈ B. (3.14)

Proof. The definition of sφ assures that there exists a r > α such that sφ <
s
r
< s

α
and φ∗

s/r ∈ M. Corollary 2.5 assures that

‖gχB‖Lφ∗s ≤ C sup
f∈Lφs

‖f‖
Lφs≤1

∫
B

∣∣g(x)f(x)∣∣ dx
≤ C sup

f∈Lφs

‖f‖
Lφs≤1

‖gχB‖Lr′‖χBf‖Lr .

Since r < s/sφ, φ
∗
s/r is a proper generalized Φ-function. Therefore, we are allowed

to apply the Hölder inequality for Lφs/r to obtain

‖gχB‖Lφ∗s ≤ C sup
f∈Lφs

‖f‖
Lφs≤1

‖gχB‖Lr′‖χB‖1/r
L
φ∗
s/r

∥∥χB|f |r∥∥1/r

L
φs/r

≤ C sup
f∈Lφs

‖f‖
Lφs≤1

‖gχB‖Lr′‖χB‖1/r
L
φ∗
s/r

‖χBf‖Lφs (3.15)

≤ C‖gχB‖Lr′‖χB‖1/r
L
φ∗
s/r
.
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As s > sφ, (2.9) assures that φs ∈ M. Therefore, we are allowed to apply

Lemma 2.11 to Lφs and Lφ
∗
s/r . Consequently, for any B ∈ B, we have

C1|B| ≤ ‖χB‖Lφs‖χB‖Lφ∗s ≤ C2|B|,

C1|B|1/r ≤ ‖χB‖1/r
L
φs/r

‖χB‖1/r
L
φ∗
s/r

≤ C2|B|1/r

for some C1, C2 > 0. As ‖χB‖Lφs = ‖χB‖1/r
L
φs/r

, the above inequalities yield

C1‖χB‖1/r
L
φ∗
s/r

≤ |B|−1/r′‖χB‖Lφ∗s ≤ C2‖χB‖1/r
L
φ∗
s/r
. (3.16)

Therefore, (3.15) and (3.16) give

‖gχB‖Lφ∗s ≤ C‖gχB‖Lr′ |B|−1/r′‖χB‖Lφ∗s .

Since 1 < r′ < α′, Jensen’s inequality yields

‖χB‖−1

Lφ∗s
‖gχB‖Lφ∗s ≤ C|B|−1/r′‖gχB‖Lr′ ≤ C|B|−1/α′‖gχB‖Lα′ . �

The subsequent lemma is inspired by [12, Proposition 5.8] and [30, Section 3.1].
In fact, [12, Proposition 5.8] is also used to establish the atomic decomposition
of the Hardy–Morrey spaces with variable exponents.

Lemma 3.11. Let φ ∈ H. Let u ∈ Sφ and {λk}k∈N be a sequence of scalars. If
s > sφ((v

u
φ)

−1)′, then, for any {bk}k∈N ⊂ Lφs with supp bk ⊆ Bk ∈ B and

‖bk‖Lφs ≤ Ak‖χBk
‖Lφs , (3.17)

where Ak > 0, ∀k ∈ N, we have∥∥∥∑
k∈N

λkbk

∥∥∥
Lφu

≤ C
∥∥∥∑
k∈N

Ak|λk|χBk

∥∥∥
Lφu

(3.18)

for some C > 0 independent of {Ak}k∈N, {bk}k∈N, and {λk}k∈N.

Proof. According to the definition of Sφ, for any u ∈ Sφ, we have vuφ < 1. There-

fore, ((vuφ)
−1)′ is well defined and ((vuφ)

−1)′ > 1. Since s > sφ((v
u
φ)

−1)′, we can

select an α so that ( 1
vuφ
)′ < α < s

sφ
. As s > sφ((v

u
φ)

−1)′ > sφ, (2.9) asserts that

φs ∈ M.
Since u ∈ Sφ implies u > sφ, Theorem 2.15 ensures that φu ∈ M. Thus

Lemma 2.11 guarantees that, for any bounded measurable function g with
‖g‖Lφ∗u ≤ 1,∣∣∣∫

Rn

bk(x)g(x) dx
∣∣∣ ≤ 2‖bk‖Lφs‖χBk

g‖Lφ∗s ≤ CAk|B|‖χB‖−1

Lφ∗s
‖χBk

g‖Lφ∗s .

Therefore, Lemma 3.10 yields∣∣∣∫
Rn

bk(x)g(x) dx
∣∣∣ ≤ CAk|Bk|

1
α

(∫
Bk

∣∣g(x)∣∣α′
dx

) 1
α′
,
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where α′ is the conjugate of α. Consequently,∣∣∣∫
Rn

bk(x)g(x) dx
∣∣∣ ≤ Ak|Bk|

( 1

|Bk|

∫
Bk

∣∣g(x)∣∣α′
dx

) 1
α′

≤ CAk|Bk| inf
x∈Bk

M
(
|g|α′)

(x)
1
α′ ≤ CAk

∫
Bk

M
(
|g|α′)

(x)
1
α′ dx.

Therefore, the Hölder inequality gives∫
Rn

∣∣∣(∑
k∈N

λkbk(x)
)
g(x)

∣∣∣ dx ≤ C
∑
k∈N

Ak|λk|
∫
Bk

M
(
|g|α′)

(x)
1
α′ dx

≤ C

∫
Rn

(∑
k∈N

Ak|λk|χBk
(x)

)
M

(
|g|α′)

(x)
1
α′ dx

≤ C
∥∥∥∑
k∈N

Ak|λk|χBk

∥∥∥
Lφu

∥∥M(
|g|α′) 1

α′
∥∥
Lφ∗u

≤ C
∥∥∥∑
k∈N

Ak|λk|χBk

∥∥∥
Lφu

∥∥M(
|g|α′)∥∥1/α′

(Lφ∗u )1/α′ .

As α′ < 1/vuφ, the definition of vuφ guarantees that there exists a α′ < t < 1/vuφ
such that M is bounded on (Lφ

∗
u)1/t. By using Jensen’s inequality, M is also

bounded on (Lφ
∗
u)1/α

′
. For any bounded measurable function g with ‖g‖Lφ∗u ≤ 1,

we obtain ∫
Rn

∣∣∣(∑
k∈N

λkbk(x)
)
g(x)

∣∣∣ dx ≤ C
∥∥∥∑
k∈N

Ak|λk|χBk

∥∥∥
Lφu

‖g‖Lφ∗u .

For any g ∈ Lφ
∗
u , gm ↑ g where gm = gχ{x∈Rn:|g(x)|<m}, m ∈ N. Thus Fatou’s

lemma assures that ‖gm‖Lφ∗u ↑ ‖g‖Lφ∗u . Finally, Corollary 2.5 yields (3.18). �

We are ready to present the proof of Theorem 3.9. It is close to the ideas in
[27, Section 4].

Proof of Theorem 3.9. Write∥∥∥M(∑
j∈N

|λj|aBj

)∥∥∥
Lφ

≤
∥∥∥∑
j∈N

|λj|χ3Bj
M(aBj

)
∥∥∥
Lφ

+
∥∥∥∑
j∈N

|λj|χRn\3Bj
M(aBj

)
∥∥∥
Lφ

= I + II .

We first deal with I. As for any ψ ∈ S, ψ has a radial majorant that is
nonincreasing, bounded, and integrable. According to [32, Chapter II, (16)], we
have

sup
t>0

∣∣ψt ∗ aBj
(x)

∣∣ ≤M(aBj
)(x)

∫
Rn

∣∣ψ(x)∣∣ dx ≤ CNN(ψ)M(aBj
)(x), ∀x ∈ 3Bj

for some N,C > 0 independent of j ∈ N, ψ ∈ S, x ∈ Rn, and t > 0.
By taking supreme over those ψ ∈ S with NN(ψ) ≤ 1, we obtain

MaBj
(x) ≤ CM(aBj

)(x), ∀x ∈ 3Bj. (3.19)
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As 0 < θ ≤ 1, the θ-inequality gives

I ≤ C
∥∥∥∑
j∈N

|λj|M(aBj
)
∥∥∥
Lφ

≤ C
∥∥∥(∑

j∈N

(
|λj|M(aBj

)
)θ)1/θ∥∥∥

Lφ

= C
∥∥∥∑
j∈N

(
|λj|M(aBj

)
)θ∥∥∥1/θ

L
φ1/θ

.

Since q > sφ, (2.9) asserts that φq ∈ M. Consequently,∥∥(M(aBj
)
)θ∥∥

L
φq/θ =

∥∥M(aBj
)
∥∥θ
Lφq ≤ C‖aBj

‖θ
Lφq ≤ C‖χBj

‖
θ( 1

q
−1)

Lφ .

As 1
θ
∈ Sφ and q/θ > sφ((v

1/θ
φ )−1)′, we apply Lemma 3.11 with u = 1/θ,

bj = (M(aBj
))θ, s = q/θ, and Aj = ‖χBj

‖−θ
Lφ to obtain

I ≤ C
∥∥∥∑
j∈N

(
|λj|M(aBj

)
)θ∥∥∥1/θ

L
φ1/θ

≤ C
∥∥∥∑
j∈N

( |λj|
‖χBj

‖Lφ

)θ
χ3Bj

∥∥∥1/θ

L
φ1/θ

.

Since χ3B ≤ CM(χB), ∀B ∈ B, for some C > 0, Theorem 2.15 yields

I ≤ C
∥∥∥(∑

j∈N

( |λj|θ/2

‖χBj
‖θ/2
Lφ

MχBj

)2) 1
2
∥∥∥2/θ

L
φ2/θ

≤ C
∥∥∥∑
j∈N

|λj|θ

‖χBj
‖θ
Lφ

χBj

∥∥∥1/θ

L
φ1/θ

. (3.20)

Next, we consider II . Let ds = [nsφ−n]. For x ∈ Rn\3Bj, we use the vanishing
moment condition satisfied by aj to obtain∣∣(aBj

∗ ψt)(x)
∣∣ ≤ ∫

Rn

∣∣∣aBj
(y)

(
ψt(x− y)−

∑
|γ|≤dω

(y − xBj
)γ

γ!
∂γψt(x− xBj

)
)∣∣∣ dy.

By using the reminder terms of the Taylor expansion of ψt, we have∣∣(aBj
∗ ψt)(x)

∣∣ ≤ ∫
Rn

∣∣aBj
(y)

∣∣ ∑
|γ|=ds+1

∣∣∣(y − xBj
)γ

γ!
∂γψt

(
x− y + h(y − xBj

)
)∣∣∣ dy

for some 0 ≤ h ≤ 1. Since y ∈ Bj, we have |(y − xBj
)γ| ≤ |Bj|

ds+1

n for any
|γ| = ds + 1. Moreover, for any y ∈ Bj,∣∣x− y + h(y − xBj

)
∣∣ ≥ |x− xBj

| − (1− h)|y − xBj
| ≥ 1

2
|x− xBj

|.

We obtain∣∣(aBj
∗ ψt)(x)

∣∣ ≤ CNN(ψ)t
−(ds+n+1)|Bj|

ds+1

n

(
1 + t−1|x− xBj

|
)−L ∫

3Bj

∣∣aBj
(y)

∣∣ dy
for some sufficient large L > n + ds + 1 and some C > 0 independent of t > 0
and ψ.

As φq ∈ M, we have ‖χ3Bj
‖Lφq‖χ3Bj

‖
Lφ∗q ≤ C|Bj|. The Hölder inequality and

the definition of aBj
yield∫

3Bj

∣∣aBj
(y)

∣∣ dy ≤ 2‖aBj
‖Lφq‖χ3Bj

‖
Lφ∗q ≤ C

|Bj|
‖χBj

‖Lφ

(3.21)
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for some C > 0; that is,∣∣(aBj
∗ ψt)(y)

∣∣ ≤ CNN(ψ)t
−(ds+n+1) |Bj|

n+ds+1

n

‖χQj
‖Lφ

(
1 + t−1|y − xBj

|
)−L

.

As L > n + ds + 1, by taking supreme over t > 0, |x− y| ≤ t and ψ ∈ S with
NN(ψ) ≤ 1 on both sides of the above inequality, we obtain

MaBj
(x) ≤ C

|Bj|
n+ds+1

n

‖χBj
‖Lφ

1

|x− xBj
|n+ds+1

, ∀x ∈ Rn\3Bj.

By using (3.6), we find that

MaBj
(x) ≤ C

(MχBj
(x))

n+ds+1

n

‖χBj
‖Lφ

, ∀x ∈ Rn\3Bj (3.22)

for some C > 0 independent of the atoms {aBj
}. Write γ = n+ds+1

n
. Consequently,

II ≤ C
∥∥∥(∑

j∈N

|λj|
‖χBj

‖Lφ

(MχBj
)γ
)1/γ∥∥∥γ

Lφγ
.

Since γ = n+ds+1
n

≥ n+[nsφ−n]+1

n
> sφ, the Fefferman–Stein vector-valued maximal

inequality asserts that

II ≤ C
∥∥∥(∑

j∈N

|λj|
‖χBj

‖Lφ

χBj

)1/γ∥∥∥γ
Lφγ

= C
∥∥∥∑
j∈N

|λj|
‖χBj

‖Lφ

χBj

∥∥∥
Lφ

for some C > 0. Then the θ-inequality gives

II ≤ C
∥∥∥∑
j∈N

|λj|θ

‖χBj
‖θ
Lφ

χQj

∥∥∥1/θ

L
φ1/θ

. (3.23)

In conclusion, (3.20) and (3.23) yield (3.13). �

4. Molecular characterization

The molecular decomposition for the classical Hardy spaces Hp was introduced
by Coifman, Taibleson, and Weiss in [2] and [33]. In this section, we extend the
molecular decomposition to the Hardy–Musielak–Orlicz spaces. We begin with
the definition of molecules for Hφ (see [34, Chapter XIV, Section 6.6]).

Definition 4.1. Let φ ∈ H, and let p > sφ. For any N,M ∈ N, a family of
measurable functions {MB}B∈B is called a (φ, p,N,M)-molecular family if∥∥MB(·)

∥∥
Lφp ≤ C‖χB‖

1
p
−1

Lφ , (4.1)∥∥MB(·)| · −xB|M
∥∥
Lφp ≤ CrMB ‖χB‖

1
p
−1

Lφ , (4.2)∫
Rn

xγMB(x) dx = 0, ∀γ ∈ Nn with 0 ≤ |γ| ≤ N (4.3)

for some C > 0. We call MB a molecule centered at B.
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It is easy to see that a (φ, p,N)-atomic family is a (φ, p,N,M)-molecular family.
Therefore, an atomic decomposition is also a molecular decomposition.

Consequently, similar to the molecular decomposition of the classical Hardy
spaces, the only nontrivial part for the molecular decomposition of Hφ is the
reconstruction theorem.

Theorem 4.2. Let φ ∈ H. Suppose that

(1) 0 < θ ≤ 1 satisfies 1
θ
∈ Sφ,

(2) q > max(sφ, θsφ((v
1/θ
φ )−1)′), and

(3) M > max(n− nθdφ
q
, [nsφ]− ndφ).

Then, for any (φ, q, [nsφ − n],M)-molecular family, {MB}B∈B, and sequence of
scalars {λB}B∈B satisfying∥∥∥∑

B∈B

( |λB|
‖χB‖Lφ

)θ
χB

∥∥∥ 1
θ

L
φ1/θ

<∞, (4.4)

the series f =
∑

B∈B λBMB converges in S ′ and f ∈ Hφ with

‖f‖Hφ ≤ C
∥∥∥∑
B∈B

( |λB|
‖χB‖Lφ

)θ
χB

∥∥∥ 1
θ

L
φ1/θ

(4.5)

for some C > 0 independent of f .

Proof. We follow the ideas given in the proof of [6, Theorem 7.16]. We first show
that, for any molecule MB, we can rewrite it as a series of atoms. Let {MB}B∈B
be a (φ, p,N,M)-molecular family.

For any fixed B ∈ B, write Bk = B(xB, 2
krB) and Ek = Bk\Bk−1, k ∈ N∪{0}.

Write MB,k(x) = χEk
(x)MB(x), and let P k

B be the unique polynomial of degree
[nsφ − n] such that

∫
Ek
(MB,k(x)− P k

B(x))x
α dx = 0, ∀|α| ≤ [nsφ − n].

Define PB,k(x) = χEk
(x)P k

B(x). Therefore, we haveMB =
∑∞

k=0(MB,k−PB,k)+∑∞
k=0 PB,k. Write f =

∑
B∈B λBMB =

∑
B∈B

∑∞
k=0 λB(MB,k − PB,k) +∑

B∈B
∑∞

k=0 λBPB,k = F +G.
We first consider F . The function MB,k −PB,k is supported in Bk and satisfies

the vanishing moment conditions up to order [nsφ − n].
It remains to deal with the size condition. We find that

‖MB,k − PB,k‖Lφp ≤ C‖MB,k‖Lφp = C
∥∥MB,k| · −xB|M | · −xB|−M

∥∥
Lφq

≤ C2−kMr−MB
∥∥MB,k| · −xB|M

∥∥
Lφq ≤ C2−kM‖χB‖

1
q
−1

Lφ ,

where we obtain the last inequality by using (4.2); that is,

‖MB,k − PB,k‖Lφp ≤ C2−kM
( ‖χB‖Lφ

‖χBk
‖Lφ

) 1
q
−1

‖χBk
‖

1
q
−1

Lφ = CµB,k‖χBk
‖

1
q
−1

Lφ , (4.6)

where µB,k = 2−kM(
‖χB‖

Lφ

‖χBk
‖
Lφ
)
1
q
−1.
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Therefore, {AB,k} is a (φ, q, [nsφ − n])-atomic family where AB,k =
MB,k−PB,k

µB,k
.

Moreover, F =
∑

B∈B
∑∞

k=0 λB
∑∞

k=0(MB,k − PB,k) =
∑

B∈B
∑∞

k=0 λBµB,kAB,k.

Fix a κ > 1 and d < dφ such that M > κn − dnθ
q
. In view of (2.12), we have

χBk
≤ c2knκ(MχB)

κ. Therefore,

∑
B∈B

∞∑
k=0

( λBµB,k
‖χBk

‖Lφ

)θ
χBk

≤ C
∑
B∈B

( λB
‖χB‖Lφ

)θ
(MχB)

κ

∞∑
k=0

2−kMθ2knκ
( ‖χB‖Lφ

‖χBk
‖Lφ

)θ/q
.

Proposition 2.17 assures that, for that given d, there exists a constant C > 0
such that

∞∑
k=0

2kn−kMθ
( ‖χB‖Lφ

‖χBk
‖Lφ

)θ/q
≤ C

∞∑
k=1

2k(κn−M− dnθ
q

) <∞

because M > κn− dnθ
q
.

Thus,∥∥∥∑
B∈B

∞∑
k=0

( λBµB,k
‖χBk

‖Lφ

)θ
χBk

∥∥∥
L
φ1/θ

≤ C
∥∥∥∑
B∈B

( λB
‖χB‖Lφ

)θ
(MχB)

κ
∥∥∥
L
φ1/θ

≤ C
∥∥∥(∑

B∈B

( λB
‖χB‖Lφ

)θ
(MχB)

κ
) 1

κ
∥∥∥κ
L
φκ/θ

.

As κ > 1 and κ
θ
> 1

θ
> sφ, Theorem 2.15 guarantees that∥∥∥∑

B∈B

∞∑
k=0

( λBµB,k
‖χBk

‖Lφ

)θ
χBk

∥∥∥
L
φ1/θ

≤ C
∥∥∥∑
B∈B

( λB
‖χB‖Lφ

)θ
χB

∥∥∥
L
φ1/θ

.

Consequently, Theorem 3.9 yields that A ∈ Hφ and

‖F‖Hφ ≤ C
∥∥∥∑
B∈B

( λB
‖χB‖Lφ

)θ
χB

∥∥∥
L
φ1/θ

. (4.7)

Next, we deal with B. We use the ideas given in [6, pp. 332–334].
For any k ∈ N ∪ {0} and α ∈ Nn with |α| ≤ [nsφ − n], let φkα,B be the unique

function on Ek such that 1
|Ek|

∫
Ek
φkα,B(x)(x − xB)

γ dx = δα,γ, ∀|γ| ≤ [nsφ − n],

where δα,γ = 1 when α = γ and δα,γ = 0 otherwise.
Therefore, PB,k(x) =

∑
|α|≤[nsφ−n]m

k
α,Bφ

k
α,B(x), where m

k
α,B = 1

|Ek|

∫
MB,k(x)×

(x− xB)
α dx.

According to [6, pp. 332–334], we have
∑∞

k=0 PB,k(x) =
∑∞

k=0N
k
α,Bψ

k
α,B(x),

where Nk
α,B =

∑∞
j=k+1m

j
α,B|Ej| and ψkα,B = |Ek+1|−1φk+1

α,B − |Ek|−1φkα,B. We also

have |ψkα,B| ≤ C(2krB)
−|α|−n for some C > 0 independent of B ∈ B and α ∈ Nn.
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Thus, the Hölder inequality assures that∣∣Nk
α,Bψ

k
α,B(x)

∣∣ ≤ C
∞∑

j=k+1

‖MB,j‖Lφq‖χEj
‖
Lφ∗q (2

jrB)
|α|(2krB)

−|α|−n.

The definition of molecular family and the fact that Ej ⊂ Bj guarantees that∣∣Nk
α,Bψ

k
α,B(x)

∣∣
≤ C

∞∑
j=k+1

∥∥MB,j| · −xB|M
(
l(B) + | · −xB|

)−M∥∥
Lφq‖χBj

‖
Lφ∗q 2

(j−k)|α||Bk|−1

≤ C

∞∑
j=k+1

2−jM‖χB‖
1
q
−1

Lφ

‖χBj
‖
Lφ∗q

|Bj|
2(j−k)|α|

|Bj|
|Bk|

.

Since q > sφ, Theorem 2.15 ensures that φq ∈ M. We are allowed to apply
Lemma 2.11 to obtain∣∣Nk

α,Bψ
k
α,B(x)

∣∣ ≤ C2−kM
∞∑

j=k+1

‖χB‖
1
q
−1

Lφ

‖χBj
‖Lφq

2(j−k)(|α|+n−M).

As suppψkα,B ⊆ Bk, by applying the norm ‖ · ‖Lφq on both sides of the above
inequality, we find that

‖Nk
α,Bψ

k
α,B‖Lφq ≤ C2−kM‖χB‖

1
q
−1

Lφ

∞∑
j=k+1

‖χBk
‖Lφq

‖χBj
‖Lφq

2(j−k)(|α|+n−M).

Let d be selected so that d < dφ and M > [nsφ]− nd. Proposition 2.17 assures
that

∞∑
j=k+1

‖χBk
‖Lφq

‖χBj
‖Lφq

2(j−k)(|α|+n−M) ≤
∞∑

j=k+1

2(j−k)(|α|+n−M−nd) <∞

because M > [nsφ − n] + n− nd.

Therefore, we have ‖Nk
α,Bψ

k
α,B‖Lφq ≤ C2−kM‖χB‖

1
q
−1

Lφ , and hence the rest of the
arguments follow from the corresponding arguments fromMB,k−PB,k after (4.6).
Thus, for simplicity, we omit the details and conclude that

‖G‖Hφ ≤ C
∥∥∥∑
B∈B

( λB
‖χB‖Lφ

)θ
χB

∥∥∥
L
φ1/θ

. (4.8)

Finally, by using (4.7) and (4.8), we establish (4.5) because ‖ · ‖Hφ is a quasi-
norm. �

When φ = ψp, 0 < p ≤ 1, we have sψp = dψp = 1/p. Therefore, [nsφ] − ndφ =

[n/p] − n/p ≤ 0. Moreover, n − nθdφ
q

= n − n
q
. Thus, the condition imposed on

M becomes M > n − n
q
. This reduces to the usual condition imposed on the

molecules for the classical Hardy spaces (see [2], [33]).
As special cases of the above theorem, we have the molecular decompositions

of the Hardy–Orlicz spaces and the Hardy spaces with variable exponents.
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Finally, we give an application of the intrinsic atomic and molecular decompo-
sitions on the boundedness of the operator on Hφ.

Theorem 4.3. Let φ ∈ H. Let T be a convolution operator

Tf(x) = lim
ε→0

∫
|x−y|>ε

f(y)K(x− y) dy.

Suppose that there exists a 0 < δ ≤ 1 such that K satisfies∫
ε<|x|<R

K(x) dx = 0, 0 < ε < R <∞, (4.9)∣∣K(x− y)−K(x)
∣∣ ≤ C|y|δ|x|−n−δ, |x| > 2|y| (4.10)

for some C > 0. If

(1) 1 < sφ <
n+1
n
,

(2) T is bounded on Lφq for some q > max(sφ, θsφ((v
1/θ
φ )−1)′) with 1

θ
∈ Sφ,

and
(3) δ > max(n− nθdφ

q
, [nsφ]− ndφ),

then T is bounded on Hφ.

Proof. Let {aB}B∈B be a (φ, q, [nsφ−n])-atomic family. We consider the action of
T on aB. WritemB = TaB. We are going to show that {mB} is a constant multiple

of a (φ, q, [nsφ−n],M)-molecular family with δ > M > max(n− nθdφ
q
, [nsφ]−ndφ).

Since 1 < sφ < n+1
n
, we have [nsφ − n] = 0. In view of (4.9), we find

that
∫
mB(x) dx =

∫
TaB(x) dx = 0. Therefore, {mB}B∈B fulfills (4.3). As T

is bounded on Lφq , we have ‖mB‖Lφq = ‖TaB‖Lφq ≤ C‖aB‖Lφq ≤ C‖χB‖
1
q
−1

Lφ for
some C > 0 independent of B ∈ B. Hence {mB}B∈B satisfies (4.1).

Moreover, we have∥∥mB(·)χB(xB ,2rB)(·)| · −xB|M
∥∥
Lφq ≤ rMB ‖mB‖Lφq ≤ CrMB ‖χB‖

1
q
−1

Lφ . (4.11)

Whenever y ∈ B and x ∈ Rn\B(xB, 2rB), by using the vanishing moment
condition satisfied by {aB} and the Hölder inequality, we find that∣∣TaB(x)∣∣ = ∣∣∣∫

3B

(
K(x− y)−K(x− xB)

)
aB(y) dy

∣∣∣
≤ C

∫
3B

|y − xB|δ

|x− xB|n+δ
∣∣aB(y)∣∣ dy

≤ CrδB
‖χB‖Lφ∗q ‖aB‖Lφq

|x− xB|n+δ

≤ Crδ+nB

‖χB‖Lφ∗q ‖χB‖
1
q
−1

Lφ

|B||x− xB|n+δ
.
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As q > sφ, Theorem 2.15 shows that φq ∈ M. Lemma 2.11 yields that

∣∣TaB(x)∣∣ ≤ Crδ+nB

‖χB‖
1
q
−1

Lφ

‖χB‖Lφq

1

|x− xB|n+δ
≤ Crδ+nB

1

|x− xB|n+δ
‖χB‖−1

Lφ .

Consequently,∥∥mBχRn\B(xB ,2rB)| · −xB|M
∥∥
Lφq

≤ Crδ+nB ‖χB‖−1
Lφ

∥∥(1− χB)| · −xB|M−n−δ∥∥
Lφq .

(4.12)

To deal with ‖(1 − χB)| · −xB|M−n−δ‖Lφq , we first obtain an estimate of
‖χB(xB ,2jrB)‖Lφq in terms of ‖χB‖Lφq .

Write Bj = B(xB, 2
jrB). In view of (2.12), the fact that φq ∈ M yields

‖χBj
‖Lφq ≤ C2jn‖MχB‖Lφq ≤ C2jn‖χB‖Lφq . Since M < δ, we have∥∥(1− χB)| · −xB|M−n−δ∥∥

Lφq ≤ C
∞∑
j=0

2j(M−n−δ)rM−n−δ
B ‖χBj

‖Lφq

≤
∞∑
j=0

2j(M−δ)rM−n−δ
B ‖χB‖Lφq ≤ CrM−n−δ

B ‖χB‖Lφq .

By applying this estimate on (4.12), we obtain∥∥mBχRn\B(xB ,2rB)| · −xB|M
∥∥
Lφq ≤ CrMB ‖χB‖

1
q
−1

Lφ

for some C > 0 independent of B ∈ B.
The above inequality and (4.11) guarantee that {mB} fulfills (4.2); that is,

{mB} is a constant multiple of a (φ, q, [nsφ − n],M)-molecular family.
Therefore, Theorems 3.3 and 4.2 yield our result on the boundedness of T

on Hφ. �

Notice that, in [12] and [27], the boundedness of the singular integral operators
T on the Hardy spaces with variable exponents and the Hardy–Morrey spaces
with variable exponents relies on the boundedness of T on Lebesgue spaces. In
particular, Theorem 4.2 gives us another result on the boundedness of T on Hardy
spaces with variable exponents with the assumption on the boundedness of T on
the corresponding Lebesgue spaces with variable exponents only.

Acknowledgment. The author would like to thank the reviewers for valuable
suggestions that improved the exposition of this article.
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