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Abstract. We define Hardy spaces of functions taking values on a Banach
space X over nonsmooth domains. The types of functions we consider are
harmonic functions on a starlike Lipschitz domain and solutions to the heat
equation on a time-varying domain. Our purpose is twofold: (a) to characterize
the Radon–Nikodym property of the Banach space X in terms of the existence
of nontangential limits of X -valued functions u in the corresponding Hardy
space with index p ≥ 1, (b) to identify the function of the boundary values
of u in the Hardy space with index p > 1 with an element in the space Vp

X
of measures of p-bounded variation in the absence of the Radon–Nikodym
property of X . This extends similar results already known on the unit disk of
C and the semispace Rn × (0,∞).

1. Introductory remarks

In this work we continue the study started in [28] in which we began to general-
ize some well-known results on the connection of the Radon–Nikodym property of
a Banach space X and the boundary behavior of harmonic functions u : D → X ,
where D is the unit disk in C (see, e.g., [6], [2], [15]). The issue to address is to
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consider more general X -valued functions on nonsmooth domains of Euclidean
spaces.

Recall that a Banach space X has the Radon–Nikodym property (X ∈ RNP) if,
for every probability space (Ω,Σ, λ), and every λ-continuous measure µ defined
on Σ with values in X , one can find a Bochner λ-integrable function f : Ω → X
such that µ(E) =

∫
E
f dλ for every E ∈ Σ. Also, recall that µ is λ-continuous if

µ(E) = 0 whenever λ(E) = 0, E ∈ Σ. A fundamental point is that the Radon–
Nikodym property is independent of the (nonatomic) probability space (Ω,Σ, λ)
as established in [8, Theorem 2]. Therefore, we may consider the Radon–Nikodym
property with respect to the harmonic or caloric measure on the boundary of the
nonsmooth domain in question.

The first type of question that occurs has already been addressed for harmonic
functions in [28]. Indeed, in that work, it is established that the equivalence of
X ∈ RNP with the existence of boundary values for X -valued harmonic functions
in a suitable defined Hardy space (of index 1 ≤ p ≤ ∞) defined on a starlike
Lipschitz domain.

In the present article, we prove the analogue result for solutions of the heat
equation (caloric functions) defined on a noncylindrical domain in Rn+1. The
only related result, to our knowledge, is that of [26], in which caloric functions
of one space variable on a rectangle are considered. The technique in [26] uses
an expansion of the heat kernel in series and certain parabolic coordinates on
a rectangle introduced in [1]. Here we use a representation formula for caloric
functions using the caloric measure along with some ideas from [28]. We have
included a thorough description of the noncylindrical setting on which there has
been some relatively recent developments on Dirichlet-type problems for the heat
equation.

A second type of question arises when considering the boundary values of
elements in any Hardy space with index p > 1. In the classical scalar-valued case
of the unit disk D or the semispace Rn+1

+ = Rn× (0,∞), it is well known that this
function of boundary values is identified with the corresponding Lebesgue spaces
through the Poisson integral. In the vector-valued setting, it turns out that, in the
absence of the Radon–Nikodym property of X , the identification with Lebesgue
spaces of a classical setting does not prevail as observed originally in [2] and later
extended to Rn+1

+ in [27].
In this work, we prove that the result from [2] in the setting of the unit disk

D can be extended to both of our settings over nonsmooth domains. A feature of
the proofs we present is that some well-known estimates for the harmonic or the
caloric measures provide the essential tools for the argumentations. In fact, for
harmonic functions over Lipschitz domains, or caloric functions over noncylindri-
cal domains, the right Poisson formula is given in terms of the harmonic or the
caloric measure, respectively. We provide some details of this adaptation in both
the elliptic setting of the Laplace’s equation as well as the parabolic setting of the
heat equation.

Finally, we note that [3, Theorem 5.9] allows us to obtain similar results for
appropriate Hardy spaces of solutions to the stationary Schrödinger equation as
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those for harmonic functions, and so we state and prove results for harmonic func-
tions bearing in mind this generalization. We are aware of a different definition
of Hardy spaces associated to the Schrödinger equation considered, for instance,
in [13]. It may be of interest to establish similar results as those reported in this
note for functions in that type of Hardy space.

Plan of the paper. In Section 2, we introduce some of the basic concepts and
notation from Banach space theory that we will use throughout this work. In
Section 3, we provide precise descriptions of the elliptic setting and we prove
the new result for harmonic functions. Sections 4 and 5 contain basic detailed
definitions of the parabolic setting and the statements of the main theorems
related to the caloric Hardy spaces. We also include the adaptation to caloric
functions of the proof of the new result from Section 3. In Section 6, we have
included the adaptation to caloric functions of [28, Theorem 1.1].

2. Notation and definitions from Banach space theory

As observed in the introductory remarks, we will be considering the Radon–
Nikodym property of a Banach space X with respect to a measure space associ-
ated to the boundary of a domain. These measure spaces turn out to be spaces
of a homogeneous type, and so we initiate our descriptions in this generality.

We consider the triple (M, µ, d), where M is a compact topological space,
µ a regular finite measure defined on B ≡ B(M), the Borel sets of M, and
d : M × M → [0,∞) is a quasidistance on M; this means that d satisfies the
following properties:

(1) d(x, y) = d(y, x) for every x, y in M (symmetry property),
(2) d(x, y) = 0 if and only if x = y,
(3) there exists a constant K > 0 such that d(x, y) ≤ K(d(x, z) + d(z, y)) for

every x, y, z in M (quasidistance property).

Additional features of the measure µ are that it is nonatomic, and it satisfies
the following doubling property : there exist constants r0 > 0 and c0 > 0 such
that, for 0 < r < r0 and x ∈M , we have

µ
(
B2r(x)

)
≤ c0µ

(
Br(x)

)
, (2.1)

where, as usual, Br(x) = {y : d(x, y) < r} denotes the open ball of radius r
centered at x.

Given any positive measure µ defined on Borel sets of M and 1 ≤ p < ∞,
Lp
X (M, dµ) will denote the Banach space of all Bochner measurable X -valued

functions such that

‖f‖Lp
X (M,dµ) =

(∫
M

∥∥f(Q)∥∥p

X dµ(Q)
)1/p

<∞.

The notation Lp(M, dµ) is adopted for the Lebesgue spaces of scalar-valued func-
tions, 1 ≤ p < ∞. The space of X -valued continuous functions defined on M is
denoted by either CX (M) or C(M,X ). For scalar-valued continuous functions,
we use analogous notation, dropping the dependance on X .
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Define the Hardy–Littlewood maximal function with respect to µ for a Borel
measure ν defined on B, with total variation |ν|, as

Mµν(x) = sup
r>0

ν(Br(x))

µ(Br(x))
. (2.2)

If f ∈ L1(M, dµ), then we set Mµf(x) =Mµν(x) with dν(x) = f(x) dx. It is well
known that the following version of the Hardy–Littlewood theorem holds.

Theorem 2.1. There exist a constant c0 > 0 such that, for 1 < p ≤ ∞ and
f ∈ Lp(M, dµ),

µ
{
x ∈ M :Mµν(x) > t

}
≤ c0

t
|ν|(M),

‖Mµf‖Lp(M,dµ) ≤ c0‖f‖Lp(M,dµ).

We call vector measures on (M,B) the finitely additive X -valued functions ν
defined on the Borel sets of M. If such a function is countably additive, then we
call it a countably additive vector measure.

Let p ∈ (1,∞], and let ν be a vector measure. We recall the variation and
p-variation with respect to µ of ν on A ∈ B defined, respectively, as

|ν|(A) = sup
π

∑
E∈π

∥∥ν(E)∥∥X ,

|ν|p(A) = sup
π

{∑
E∈π

‖ν(E)‖pX
µ(E)p−1

}1/p

, p ∈ (1,∞),

|ν|∞(A) = sup
{
C > 0 :

∥∥ν(A)∥∥ ≤ Cµ(A)
}
, p = ∞.

In the first two cases, the supremum is taken over all finite partitions π of the
set A. There are scalar versions of these spaces, obtained by taking X equal to C
or R, and, as before, we will drop the dependence on X from the notation.

We say that ν has bounded variation or bounded p-variation with respect to µ if
|ν|(M) < ∞, or |ν|p(M) < ∞, for p ∈ (1,∞], respectively. We denote the space
of measures of bounded p-variation with respect to the measure µ with V p

X (M, µ),
and when the measure µ is clear from the context, we use only the term measures
of bounded p-variation. If ν is a countably additive vector measure with bounded
variation, then there exists a finite positive measure denoted by |ν| such that∥∥ν(A)∥∥X ≤ |ν|(A)

for all Borel sets A, and |ν| is minimal with this property (see [11, Chapter 1]).
In this case we say that ν is regular if |ν| is regular. This measure is the variation
of ν.

The space of Borel X -valued regular measures of bounded variation is denoted
by MX (M). Once again, for scalar-valued measures over M, we drop the sub-
script X from this notation. By Singer’s representation theorem, it turns out that
CX (M)∗ = MX ∗(M), where in this case the equal sign means that there is an
isometry between the spaces involved.

At this point we state some results that we will use in the remainder of this
article.
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Lemma 2.2 ([2, Remark 1.1]). For p ∈ (1,∞], let ν be a vector measure of
bounded p-variation with respect to µ. Then ν is a countably additive vector mea-
sure, which is µ-continuous and has bounded variation. Moreover, the variation
|ν| belongs to the scalar space V p(M, µ).

Lemma 2.3 ([12, Theorem 12.7]). Let ν be a vector measure, and suppose that
there exists a X -valued function f such that ν(E) =

∫
E
f dµ for every E ∈ B.

Let p ∈ (1,∞]. Then ν has bounded p-variation with respect to µ if and only if
f ∈ Lp

X (M, dµ).

Lemma 2.2 and the Radon–Nikodym theorem imply the existence of an in-
tegrable function f such that d|ν| = f dµ, and Lemma 2.3 implies that f ∈
Lp(M, dµ) since |ν| ∈ V p(M, dµ).

For measures ν in V p
X (M, µ), it is not difficult to see that the integral∫

M
f dν (2.3)

is well defined for every function f ∈ Lq
B(M, dµ) with 1/p + 1/q = 1, and B is a

Banach space in duality with X or B = R, the real numbers. Moreover, we have
the next result.

Theorem 2.4 ([12, Corollary 13.1.1]). Let 1 < p ≤ ∞ and let 1/p + 1/q = 1.
Then there is an isomorphism between V p

X ∗(∂D, µ) and L
q
X (∂D, dµ)

∗ given by the
integral (2.3).

Before continuing, we make some notational comments. For ξ∗ ∈ X ∗ and x ∈ X ,
we adopt the notation 〈ξ∗, x〉 for the action of ξ∗ on x, also denoted by ξ∗(x).
In several of the estimates in the next paragraphs and sections, we may use a
generic constant that may change from line to line but still is denoted with the
same letter as long as the dependence of this constant on other parameters does
not interfere with the essence of the argumentation. In particular, we adopt the
standard notation A . B to mean that there is a constant k that may depend
on the geometric features of the domain in question, or the dimension n, or with
the dependence just described such that A ≤ kB. Likewise, A ≈ B means that
A . B and B . A hold simultaneously.

3. The result for harmonic functions

Harmonic measures on a starlike Lipschitz domain. A bounded open set
D ⊂ Rn is a starlike Lipschitz domain centered at the origin with character
M > 0 if, letting Sn−1 = {X ∈ Rn : |X| = 1}, there exist δ0 > 0 and a function
ϕ : Sn−1 −→ R satisfying |ϕ(t) − ϕ(s)| ≤ M |t − s| and ϕ(t) ≥ δ0 > 0, and such
that in spherical coordinates D = {(ρ, s) : 0 ≤ ρ < ϕ(s), s ∈ Sn−1}. On ∂D there
is a well-defined surface measure that we denote by σ, and in fact it is equivalent
to the (n− 1)-dimensional Hausdorff measure.

When working in the setting of starlike Lipschitz domains, it is customary to
use letters X, Y , and Z to denote points in D, and to use P and Q to denote
points in ∂D. For points in Rn−1, we use lowercase letters x, y, z, and so forth.
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With this convention, for 0 < r < 1, set Dr = {(ρ, s) : 0 ≤ ρ ≤ rϕ(s)}, and for
Q ∈ ∂D, Q = (ϕ(s0), s0), we let rQ ∈ Dr be the point rQ = (rϕ(s0), s0). We also
define the diameter of D as diamD = sup{|X − Y | : X,Y ∈ D}.

A well-established fact is that the boundary of a starlike Lipschitz domain can
be covered, after translations and rotations, by a finite collection of basic Lipschitz
domains of the form Ω(ψj) = {(x, ψj(x)) : x ∈ Uj ⊂ Rn−1}, with ψj : Rn−1 → R
satisfying |ψj(x)− ψj(y)| ≤MD|x− y| uniformly for x, y ∈ Rn−1 and Uj ⊂ Rn−1

open bounded sets. The constant MD = maxj ‖∇ψj‖∞ is proportional to the
constant M of D.

The size of the local neighborhoods Uj used to describe ∂D locally will de-
termine a constant 0 < r0 < diamD/8 which will be fixed all throughout this
section. Given Q ∈ ∂D and 0 < r < r0, define Or(Q) the cylinder around Q
of radius r as the infinite cylinder with axis coinciding with the line emerging
from the origin that crosses Q. The surface ball centered at Q and radius r > 0
is defined as ∆r(Q) = Or(Q) ∩ ∂D.

Similarly, Γα(Q) is defined as the right cone with axis joining Q with the origin,
with vertex at Q, and with an aperture α > 0 such that Γα(Q) ⊂ D. We stress
that these cones are always truncated at a height such that the upper part of the
cone reaches the origin. The aperture constant α > 0 is chosen and fixed in such
a way that Γα(Q) ⊂ D for every Q ∈ ∂D.

We can also define the Carleson region of diameter r around Q ∈ ∂D as
Tr(Q) = Or(Q)∩D ∩Bs0r(Q), where s0 > 0 is chosen and fixed so that Or(Q)∩
∂Bs0r(Q) ⊂ Γ(Q). With the constant s0 > 0 already fixed, we can define the
corkscrew point associated to Q and r > 0, denoted by Ar(Q), as the point in
D ∩ ∂Bs0r which lies in the line joining Q with the origin.

We have observed above that there is a fundamental result that allows us to
translate the results we have for harmonic functions to solutions of a stationary
Schrödinger equation. Thus, throughout the following definitions and descrip-
tions, we denote momentarily by L either the Laplace operator ∆ or the station-
ary Schrödinger operator ∆− V with V a positive potential in Lp(D), p ≥ n/2.
(For a basic review of the potential theory associated to ∆−V from the viewpoint
of harmonic measure techniques, see, for example, [3].)

Given X ∈ D, consider the linear mapping f 7→ u(X) defined on the space
C(∂D) of continuous functions on the boundary ∂D of D. Here u(X) denotes
the solution of the continuous Dirichlet problem Lu = 0 on D, u|∂D = f . By the
maximum principle, the mapping is positive and bounded, and so by the Riesz
representation theorem there exists a unique Borel measure, denoted by ωX and
supported on ∂D, such that

u(X) =

∫
∂D

f(Q) dωX(Q). (3.1)

The harmonic measure with pole in X is precisely ωX . From now on, it will

become handy to denote by ω ≡ ω
~0 the harmonic measure with the pole at the

origin, which is the starlike center of D.
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Define an adapted Hardy–Littlewood maximal function of a Borel measure ν on
∂D as

Mων(Q) = sup
r>0

ν(∆r(x))

ω(∆r(x))
,

adopting the notation Mωf for functions in f ∈ L1(∂D, dω) described in (2.2).
The nontangential maximal function of u : D → X is defined as

Nαu(P ) ≡ Nu(P ) = sup
{∣∣u(X)

∣∣ : X ∈ Γ(P )
}
.

A well-known comparison between these maximal functions is addressed in (vi)
of Theorem 3.2 below. We collect some basic properties of the harmonic measure
in the following theorem.

Theorem 3.1 (see [22, Lemma 1.2.7, Theorem 1.4.1], [17, p. 311], [9, Theorem 1]).
Let D be a starlike Lipschitz domain centered at the origin, and retain notation
previously introduced.

(i) For any Borel set E ⊂ ∂D, the measure ωX(E) is a solution to Lu = 0
as a function of the variable X ∈ D with boundary datum χE.

(ii) ωX is mutually absolutely continuous with respect to ω = ω
~0 for every

X ∈ D.
(iii) ω is a doubling measure in the sense that there exists C0 > 0 such that for

0 < r < r0 one has

ωX
(
∆2r(Q)

)
≤ C0ω

X
(
∆r(Q)

)
for X ∈ D \ T3r(Q).

(iv) ω and σ are mutually absolutely continuous measures.
(v) Theorem 2.1 holds for Mων in the setting of ∂D equipped with ω and the

Euclidean distance.

The kernel function. By (ii) of Theorem 3.1, the Radon–Nikodym derivative

K(X,P ) =
dωX

dω
(P ), X ∈ D,P ∈ ∂D

is well defined as an element in L1(∂D, dω), and we refer to it as the kernel
function associated to L on D. Some basic properties of the kernel function are
summarized in the following theorem (see [22, pp. 11–14], [17], [18], [3]).

Theorem 3.2. Let D be a starlike Lipschitz domain centered at the origin, and
retain notation previously introduced.

(i) For P ∈ ∂D, the kernel function K(−, P ) is a positive solution to Lu = 0

on D with K(~0, P ) = 1.
(ii) For every X ∈ D and Q ∈ ∂D,

K(X,Q) = lim
r→0

ωX(∆r(Q))

ω(∆r(Q))
.

(iii) For X ∈ D, K(X,−) ∈ C(∂D), and if P ∈ ∂D, then for Q ∈ ∂D \ {P}
one has limX→QK(X,P ) = 0.
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(iv) More precisely, for 0 < r < r0 and Q0 ∈ ∂D,

lim
X→Q0

(
sup

Q∈∂D\∆r(Q0)

K(X,Q)
)
= 0.

(v) For Q0 ∈ ∂D and 0 < r < r0, let ∆j = ∆2jr(Q0), Rj = ∆j \ ∆j−1,
j = 0, 1, 2, . . . . Then there exist constants C1 > 0 and α > 0 depending at
most on D and n such that

sup
Q∈Rj

K
(
Ar(Q0), Q

)
≤ C1

2αjω(∆j)
.

(vi) If ν is a finite Borel measure on ∂D and

u(X) =

∫
∂D

K(X,Q) dν(Q),

then there exists a constant C2 such that for each P ∈ ∂D

Nu(P ) ≤ C2Mων(P ).

An important remark about the harmonic measures associated to the Lapla-
cian and the stationary Schrödinger operators is contained in the following result,
which is actually valid for more general potentials V taken in the so-called Kato–
Stummel class (see details in [3]).

Theorem 3.3 ([3, Theorem 5.9]). Denote by ω0 and ω1 the harmonic measures
associated to the Laplace operator and the stationary Schrödinger operator, re-
spectively. There exist constants c1, c2 > 0 such that, for any Borel set E ⊂ ∂D
and X ∈ D,

c1ω
X
0 (E) ≤ ωX

1 (E) ≤ c2ω
X
0 (E).

In view of this theorem, the results we provide for harmonic functions have an
immediate corollary for solutions to the stationary Schrödinger equation; hence,
we state only results for harmonic functions, bearing in mind the corresponding
result for solutions to the stationary Schrödinger equation.

The main result. In this paragraph we consider X -valued functions u : D → X .
For such a type of function we can define the nontangential maximal function as
Nαu(P ) ≡ Nu(P ) = sup{‖u(X)‖X : X ∈ Γ(P )}, and we can define the vector
Hardy spaces Hp

X (D) with 0 < p ≤ ∞ as the space of X -valued harmonic func-
tions u in D such that the nontangential maximal function Nαu ∈ Lp(∂D, dω).
We equip this space with the norm ‖u‖Hp

X (D) = ‖Nαu‖Lp(∂D,dω).

Now recall a result already proved in [28] which takes up the question of charac-
terizing the Radon–Nikodym property of X in terms of the validity of a Fatou-type
theorem for harmonic functions defined on a starlike Lipchitz domain.

Theorem 3.4 ([28, Theorem 1.1]). Let D be a starlike Lipschitz domain centered
at the origin, and let X be a Banach space. Then it is equivalent that X has
the Radon–Nikodym property with the property that, for some 1 ≤ p ≤ ∞ and
u ∈ Hp

X (D), the limit

lim
X→P

X∈Γ(P )

u(X) = u(P )
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exists for σ-almost every P ∈ ∂D. In fact, this is equivalent to the same statement
for all 1 ≤ p ≤ ∞.

Next we present the main theorem of this section. This result identifies the
boundary values of elements in Hp

X (D), p > 1, with elements in V p
X (∂D, ω).

Theorem 3.5. For p > 1 there is an isomorphism between V p
X (∂D, ω) and Hp

X (D)
given through integration with the kernel function. More precisely, for any vector
measure ν ∈ V p

X (∂D, ω), one can assign the function u defined as

u(X) =

∫
∂D

K(X,P ) dν(P ), (3.2)

and this mapping defines an isomorphism.

Proof. Starting with a vector measure ν ∈ V p
X (∂D, ω), define the function u by

integration of the kernel function with respect to ν as in (3.2).
By (iii) of Theorem 3.2, the kernel function K(X,−) is continuous in ∂D, a

compact space, and so it belongs to Lq(∂D, dω); hence, the function u is well
defined. To prove that u is harmonic, one actually proves that it is a weakly
harmonic function as follows.

Let ξ∗ ∈ X ∗ be fixed. Define u∗(X) ≡ 〈ξ∗, u(X)〉, and consider the set function
ν∗ defined as ν∗(A) = 〈ξ∗, ν(A)〉. Notice that |ν∗(A)| ≤ ‖ξ∗‖X ∗|ν|(A); therefore,
by Lemma 2.2 we have ν∗ ∈ V p(∂D, dω). Moreover, ν∗ has bounded variation
and is ω-continuous.

The Radon–Nikodym theorem assures the existence of a scalar function f∗ in
L1(∂D, dω) such that dν∗ = f∗dω, and because of Lemma 2.3 f∗ ∈ Lp(∂D, dω).
Therefore, we have

u∗(X) =

∫
∂D

K(X,P ) dν∗(P ) =

∫
∂D

K(X,P )f∗(P ) dω(P ).

Finally, notice that the last integral represents a scalar-valued harmonic function
in D with boundary value f∗ (see [17, p. 310]).

Let us see now that the nontangential maximal function of u belongs to Lp(∂D,
dω). Since ν is of bounded variation, we have the following inequality (see [12,
Proposition 8.4]):∥∥∥∫

∂D

K(X,P ) dν(P )
∥∥∥
X
≤

∫
∂D

K(X,P ) d|ν|(P ).

With the same token used above, and using Lemmas 2.2 and 2.3, we obtain a
function f in Lp(∂D, dω) such that d|ν| = f dω. And from (vi) of Theorem 3.2,

sup
X∈Γα(Q)

∥∥∥∫
∂D

K(X,P ) dν(P )
∥∥∥
X
≤ sup

X∈Γα(Q)

∫
∂D

K(X,P )f(P ) dω(P ) ≤Mωf(Q).

By Theorem 2.1 we conclude that Nu ∈ Lp(∂D, dω), and in fact ‖Nu‖Lp(∂D,dω) .
‖f‖Lp(∂D,dω).

The above argument proves the inclusion V p
X (∂D, ω) ↪→ Hp

X (D) via integration
with the kernel function. Now we explore the other inclusion. Let u be a function
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in Hp
X (D). First, we recall that a standard argument using Banach–Alaouglu’s

theorem provides the existence of a measure µ ∈ V p
X ∗∗(∂D, dω) such that

lim
ρ→1

uρ = µ in the weak∗ sense, (3.3)

where for P ∈ ∂D we have set uρ(P ) = u(ρP ) (see [2], [28], [27]). By Theo-
rem 2.4 we have V p

X ∗∗(∂D, dω) = (Lq
X ∗(∂D, dω))∗ with 1/p+ 1/q = 1. Therefore,

(3.3) means that for every X ∗-valued function g ∈ Lq
X ∗(∂D, dω) we have the

convergence 〈uρ, g〉 → 〈µ, g〉 as ρ → 1. Since for every ξ∗ ∈ X ∗ fixed we have
K(X,−)ξ∗ ∈ Lq

X ∗(∂D, dω), this in particular implies that〈
ξ∗, u(X)

〉
=

〈
ξ∗,

∫
∂D

K(X,P ) dµ(P )
〉

(3.4)

for every X ∈ D.
The weak∗ argument gives a limit measure that is X ∗∗-valued. Nevertheless,

we can follow the proof in [28, Lemma 2.2] or [27, Proposition 2.2] to see that the
measure µ is actually X -valued. This way we obtain the stronger equality

u(X) =

∫
∂D

K(X,P ) dµ(P ); (3.5)

hence the arbitrary element u ∈ Hp
X (D) is associated to µ ∈ V p

X (∂D, ω).
Suppose now that the original X -valued harmonic function u is given by the

kernel integral of a vector measure with bounded p-variation, say

u(X) =

∫
∂D

K(X,P ) dν(P )

for some ν ∈ V p
X (∂D, ω). In order to establish uniqueness of the representation, we

wish to prove that ν = µ, where µ is the measure just obtained, which amounts
to showing that ν(F ) = µ(F ) for all closed sets F ∈ B. For this purpose, we will
need a preliminary construction and an auxiliary result.

Let F be a closed set in ∂D, and let {Gk} be a decreasing sequence of open sets
of Rn such that F =

⋂
k≥1Gk. We may assume that the domains Dk = D\Gk are

regular for the Dirichlet problem associated to Laplace’s equation, and through
the argument in and around (3.1) we can consider ωk, the harmonic measure with
respect to Dk with the pole at the origin.

For Q ∈ F , notice that by (iii) of Theorem 3.2 the function K(X,Q) vanishes
for X ∈ ∂Dk ∩ ∂D, and by (i) of the same theorem it is harmonic in the variable
X; hence, ∫

∂Dk∩D
K(X,Q) dωk(X) = K(0, Q) = 1

because this integral represents the value at the origin of the harmonic function
on Dk with boundary datum given by the function K(X,Q). For Q /∈ F , there is
a large k0 such that Q /∈ ∂Dk ∩D for k > k0. Then, by (iii) of Theorem 3.2, we
have

lim
k→∞

∫
∂Dk∩D

K(X,Q) dωk(X) = 0.
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All in all, k

lim
k→∞

∫
∂Dk∩D

K(X,Q) dωk(X) = χF (Q). (3.6)

Armed with this identity, we now note that, for ξ∗ ∈ X ∗, the very definition of
ν and Fubini’s theorem imply that

lim
k→∞

〈
ξ∗,

∫
∂Dk∩D

u(X) dωk(X)
〉
=

〈
ξ∗, ν(F )

〉
. (3.7)

On the other hand, by the construction of µ and (3.5) we have〈
ξ∗,

∫
∂Dk∩D

u(X) dωk(X)
〉
=

∫
∂Dk∩D

〈
ξ∗, u(X)

〉
dωk(X)

=

∫
∂Dk∩D

〈
ξ∗,

∫
∂D

K(X,Q) dµ(Q)
〉
dωk(X);

however, the last integral is equal to∫
∂D

∫
∂Dk∩D

K(X,Q) dωk(X)
〈
ξ∗, dµ(Q)

〉
.

Continuity of ξ∗ and the bounded p-variation of µ make the measure µ∗ = 〈ξ∗, µ〉
a scalar-valued measure of bounded p-variation. From the above argumentation
and (3.6), we conclude that

lim
k→∞

∫
∂D

∫
∂Dk∩D

K(X,Q) dωk(X) dµ∗(Q) =

∫
∂D

χF (Q) dµ∗(Q) = µ∗(F ).

Therefore, by (3.7) we get 〈ξ∗, µ(F )〉 = 〈ξ∗, ν(F )〉 for every ξ∗ in X ∗, which
implies that µ(F ) = ν(F ) for F ∈ B a closed set.

In this way we have proved that, for every element u ∈ Hp
X , there exists a unique

vector measure µ in V p
X (∂D, ω) such that it represents the original function u via

the integral of the kernel function. Moreover, the boundary value of u is this
vector measure µ in the weak∗ sense. �

4. Noncylindrical domains for the heat equation

The contents of this section are rather technical, and provide the appropriate
framework that generalizes for the heat equation the environment already de-
scribed for harmonic functions. After these geometric notions are introduced, we
leave until the next section the definition of the caloric measure and the caloric
Hardy spaces.

A first idea to consider is the introduction of a time variable in Euclidean
spaces that leads us to consider Rn+1 ≡ Rn × R as the environment space. This
way, points in Rn+1 are denoted by (X, t), with X ∈ Rn recalled as the space
variable and with t ∈ R recalled as the time variable.

Along with this new framework, there is an underlying change of homogene-
ity of the space Rn+1. There are some fundamental works providing a thorough
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description of the parabolic homogeneity associated to Rn+1 (see, e.g., [7] and ref-
erences therein). Here we just record some notions used at several stages of this
paper.

With a slight abuse of language, within this work we call the parabolic distance
between (X, t), (Y, s) ∈ Rn+1 the expression dist(X, t;Y, s) = |X −Y |+ |t− s|1/2,
and the parabolic norm of (X, t) ∈ Rn+1 is defined as ‖X, t‖ ≡ |X| + |t|1/2.
This norm may also be applied to points (x, t) ∈ Rn−1 × R, as they still have
dependance on the variable t.

Given (X, t) ∈ Rn+1, denote by Cr(X, t) the parabolic cylinder {(Y, s) ∈ Rn+1 :
|X−Y | < r, |t−s| < r2}. We also introduce the lower parabolic cylinder of radius
r > 0 and centered at (X, t), defined as Cr(X, t) = {(Y, s) ∈ Rn+1 : |X − Y | <
r, 0 < t− s < r2}.

The parabolic boundary of an open connected set Ω ∈ Rn+1, denoted by ∂pΩ,
consists of points (Q, s) ∈ ∂Ω (the topological boundary of Ω) such that for every
r > 0 one has Cr(Q, s) \ Ω 6= ∅.

We now define the regularity of functions that will describe locally the boundary
of the noncylindrical domains on which we work. For this description we adopt
the convention that points in Rn+1 may be denoted by (x0, x, t) ∈ R×Rn−1 ×R
to stress that in graph coordinates x0 is the variable depending on (x, t). This
particular way to denote the graph coordinates for problems associated to the
heat equation goes back at least to the work of [23]. We also adopt the notation
X, Y, etc. for points in Rn+1 whenever both the time variable t and the graph
variable x0 are irrelevant for the argumentation.

A function ψ : Rn −→ R is a Lip(1, 1/2) function with constant A1 > 0 if,
for (x, t), (y, s) ∈ Rn, |ψ(x, t) − ψ(y, s)| ≤ A1‖x − y, t − s‖. The function ψ is
called a parabolic Lipschitz function with constant A1 if it satisfies the following
two conditions:

• ψ satisfies a Lipschitz condition in the space variable∣∣ψ(x, t)− ψ(y, t)
∣∣ ≤ A1|x− y| uniformly on t ∈ R, (4.1)

• for every interval I ⊆ R and every x ∈ Rn,

1

|I|

∫
I

∫
I

|ψ(x, t)− ψ(x, s)|2

|s− t|2
dt ds ≤ A1 <∞. (4.2)

This last condition can be recalled as a BMO-Sobolev scale in the t-variable by
results in [30], and it roughly states that a half-order derivative of ψ(x, t) with
respect to the t variable is in BMO(R). Intuitively, the smaller the constant A1

is, the flatter the graph of ψ is (more details appear in [16]).
The notion of parabolic Lipschitz functions was motivated by a question posed

by R. Hunt. Indeed, according to [16], he had asked to find adequate regularity
conditions on functions that describe locally the boundary of a domain where one
can solve initial Lp-Dirichlet problems (1 < p <∞) associated to the heat equa-
tion. The fact that the Lip(1, 1/2) condition is not the correct type of regularity
was settled by a 1-dimensional example in [20], where it is proved the singularity
of caloric measure (as defined right above (4.4)) with respect to graph measure
of a Lip(1/2) function.
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On the other hand, it has been established that parabolic Lipschitz functions
are slightly more regular than Lip(1, 1/2) functions, and, in particular, every
parabolic Lipschitz function is a Lip(1, 1/2) function; moreover, on domains with
the boundary described locally by parabolic Lipschitz graphs one can solve this
type of Lp-Dirichlet problem (see [16]). One can also obtain the mutual absolute
continuity of caloric measure and the surface measure defined for any Borel set
F ⊂ Rn+1 by

σ(F ) =

∫
F

dσt dt, (4.3)

where σt is the (n− 1)-dimensional Hausdorff measure of Ft ≡ F ∩Rn ×{t}, and
dt denotes integration with respect to the 1-dimensional Hausdorff measure (see
(4.4) below). This is proved in [23] and [16] for instance (see also [29]).

To describe domains whose boundary is given locally by parabolic Lipschitz
graphs, we adapt some definitions from [4]. Given A1, r0 > 0, define the local
cylinder with constants A1, r0 as

Z =
{
(x0, x, t) ∈ R×Rn−1×R : |xi| < r0, i = 1, 2, . . . , n−1, |x0| < 2nA1r0, t ∈ R

}
.

Here, x ∈ Rn−1 is viewed as the (n − 1)-tuple x = (x1, x2, . . . , xn−1). We denote
by 2Z the concentric double of Z.

Let Ω ⊂ Rn+1 be an open connected set such that ∂pΩ = ∂Ω. We say that
Ω is an infinite noncylindrical region with constants A1, r0 if there exist local
cylinders {Zi : i = 1, 2, . . . , N}, with constants A1, r0, which are obtained from
Z through rigid motions in the space variables and parabolic Lipschitz functions
{ψi : i = 1, 2, . . . , N} with constant A1, defined on the transformation of Rn

through the same rigid motion defining Zi, and such that the following conditions
hold:

• 2Zi ∩ ∂Ω = {(x0, x, t) : x0 = ψi(x, t)} ∩ 2Zi, i = 1, 2, . . . , N ;
• 2Zi ∩ Ω = {(x0, x, t) : x0 > ψi(x, t)} ∩ 2Zi, i = 1, 2, . . . , N ;

• ∂Ω is covered by
⋃N

i=1 Zi;
• for every s ∈ R, the set Ω(s) = {(X, t) ∈ Ω : t = s} is a bounded starlike
Lipschitz domain centered at the origin with fixed constants M > 0 and
δ0 > 0, and with M depending on the constant A1.

Given an infinite noncylindrical region Ω and (X, t) ∈ Ω, we write δ(X, t) =
dist(X, t; ∂Ω), and we set diamΩ = sup{diamΩ(s) : s ∈ R}.

If Ω is an infinite noncylindrical region, for T > 0 we define the bounded
noncylindrical region of height T as ΩT = {(X, t) ∈ Ω : 0 < t < T}. The lateral

boundary of ΩT is defined by ST ≡ ∂pΩT ∩ ∂Ω. Also, set Ξ = (~0, T + 1), which,
even though it is not in ΩT , will be recalled as the parabolic center of ΩT in the
sense that will be explained in a later paragraph.

Define the surface cubes ∆ρ(Q, s) ≡ Cρ(Q, s) ∩ S for 0 < ρ < r0/4 and
(Q, s) ∈ S. If ∆ is any surface cube such that its closure satisfies ∆ ⊂ ST , then,
to shorten notation, we write ∆ b ST .

Denote by H the heat operator Hu = ∆u − ∂u/∂t. For Ω an infinite non-
cylindrical region as described above, the caloric measure, denoted by ω(X,t)(·)
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for (X, t) ∈ Ω, is the unique Borel measure supported on ST such that

uf (X, t) =

∫
ST

f(Y, s) dω(X,t)(Y, s) (4.4)

is the solution of the Dirichlet-type of problem Hu = 0 on ΩT , u|ST
= f for f

continuous and supported on ST . This solution exists because of the regularity
(in the sense of Perron–Wiener–Brelot, see [24, Chapter III, Section 4]) of ΩT

or in general domains with lateral boundaries given by Lip(1, 1/2) functions (by
Wiener’s criterion, for instance; see [14]).

Observe that in particular u(X, s) = 0 for every X ∈ Ω(s) and every s ≤ 0.
Hence uf may be thought of as a solution to an initial-Dirichlet problem on ΩT .
This is the reason why ωX is actually a measure supported on ST although it is
well defined for X ∈ Ω+ = {(Y, s) ∈ Ω : s > 0}. We denote by ω(·) the caloric
measure ωΞ(·).

Given (Q, s) ∈ ST , consider the parabolic path (Qr, sr) joining Ξ with (Q, s)
given by

Qr = rQ, sr = (1− r2)(T + 1) + r2s for 0 < r < 1. (4.5)

This way Ξ may be thought of as a parabolic center of ΩT , and the parabolic
path may be viewed as a parabolic radial trajectory joining points in ST with Ξ.
This is an analogue of the 2-dimensional parabolic coordinates from [1].

Recalling x0 as the coordinate depending on (x, t), we define a parabolic cone

fixed at the origin as Γ̃α = {(x0, x, t) : ‖x, t‖ < αx0}. For (Q, s) ∈ ∂Ω, we use a

translation and a rotation not involving the t variable in order to move Γ̃α from
the origin to (Q, s), keeping the axis of the cone in the direction of OQ. This way

we can define infinite parabolic cones Γ̃α(Q, s) pointing toward the interior of Ω
with the vertex on (Q, s), accordingly.

We define appropriate bounded nontangential approach regions adapted to an
infinite parabolic cylinder Ω as follows. First, for (Q, s) ∈ Ω we set ρ(Q, s) ≡ |Q|
and define ρ0 = inf{ρ(Q, s) : (Q, s) ∈ ∂Ω} in such a way that ρ0 ≥ δ0, the
constant of the starlike Lipschitz domains Ω(s), s ∈ R. Then we define Γα(Q, s)

as the truncation of Γ̃α(Q, s) at height ρ0.
If Ω is an infinite noncylindrical region such that

(i) for every (Q, s) ∈ ST one has (Qr, sr) ∈ ΩT+1 for every 0 < r < 1,

(ii) there is an aperture α > 0 such that Γα(Q, s) ⊂ Ω and (Qr, sr) ∈ Γ̃α(Q, s)
for every (Q, s) ∈ ST and every 0 < r < 1,

then we say that ΩT is a special bounded starlike region.Observe that any Lipschitz
cylinder D × (0, T ) within the infinite cylinder D × R, with D ⊂ Rn a starlike
Lipschitz domain, is an example of a special bounded starlike region. Also, a
bounded noncylindrical region of height T within an infinite noncylindrical region
is a special bounded starlike region, provided that the constant A1 in the definition
of local cylinders is suitably small.

Fixing α > 0 as described above, we can drop the subscript α from the no-
tation in the cones and nontangential approach regions. Also, when working on
the special bounded starlike region we will restrict the radii of the surface balls
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to be strictly smaller than min{r0, ρ0/2}, and, in order to disregard degenerate
situations, from now on we always take T > 5ρ0.

As for harmonic functions on starlike Lipschitz domains, we can now define
for u : ΩT → R a nontangential maximal function as Nαu(Q, s) ≡ Nu(Q, s) =
sup{|u(X, t)| : (X, t) ∈ Γ(Q, s)}.

For ΩT a special bounded starlike region, choose N0 ≥ 1 such that both of the
following points,

A(∆) = Ar(Q, s) ≡ (q0 +N0r, q, s+ r2),

A(∆) = Ar(Q, s) ≡ (q0 +N0r, q, s− r2),

are contained in Ω for every (Q, s) = (q0, q, s) ∈ ∂Ω and 0 < r < ρ0 such that
∆r(Q, s) b S ∩ {(Y, s) : −1 < s < T + 1}. This choice of N0 depends only on
the aperture α of the definition of special bounded starlike regions, which in turn
depends on how flat the lateral boundary S is.

5. Statement of results for Hardy spaces of caloric functions

Caloric measure and kernel function. Let ΩT be a special bounded starlike
region. As observed above, the caloric measure on ST provides the representation
formula (4.4) for solutions of a Dirichlet-type problem for the heat equation on ΩT .
As for harmonic functions, a fundamental property of this caloric measure over
the time-varying domains ΩT is the doubling property, which can be roughly
described as follows: there exists a constant C > 0 such that for any surface ball
∆r(Q) ⊂ S of radius 0 < r < r0, centered at Q ∈ ST , the estimate

ωX
(
∆2r(Q)

)
≤ CωX

(
∆r(Q)

)
(5.1)

holds for any X ∈ Ω such that ‖X −Q‖ ≥ 3r. The proof of this property is in
[25, Theorem 3.2].

At this point we recall that the interior Harnack inequality for positive solutions
of the heat equation has a time-lag by the evolutive nature of solutions. This result
is proved as an interior estimate, for instance, in [10, p. 163], and we state it here
with sufficient generality to be used within this work.

Theorem 5.1. Let ΩT be a special bounded starlike region within the infinite
noncylindrical region Ω, and let δ > 0. Suppose that δ is chosen small enough in
such a way that Ωδ

T ≡ {(Y, s) ∈ ΩT : δ < s < T + 2, δ(Y, s) > δ} is connected,
and let u be a nonnegative caloric function on ΩT+2. Then there exists a constant
C > 0 depending on the geometric constants of Ω, T , n, and δ such that u(X, t) ≤
Cu(Y, s) whenever (X, t), (Y, s) ∈ Ωδ

T satisfy s− t > δ2.

Recall that ω = ωΞ with Ξ = (~0, T + 1). Now, with δ > 0 appropriately small,
Ξ ∈ Ωδ

T so that, as an application of Theorem 5.1, for every X ∈ Ωδ
T the measure

ωX is absolutely continuous with respect to ω. This is true because ωX(E) is a
nonnegative caloric function of X ∈ Ω for every Borel set E ⊂ ST . In fact, the
analogue of (i) of Theorem 3.1 holds in this setting (see, e.g., [24]).
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From now on, for X ∈ ΩT and Q ∈ ST , we denote by K(X;Q) the Radon–
Nykodým derivative K(X;Q) = (dωX/dω)(Q). This function is referred to as
the kernel function associated to the heat equation on ΩT .

Note that since the caloric measures are supported on ST , the maximum prin-
ciple for caloric functions implies that K(X, 0;Q) = 0 for (X, 0) ∈ Ω(0); that
is, the kernel function satisfies the vanishing initial condition on ΩT (see, e.g.,
[24]). Moreover, the following representation formula for functions f ∈ C(ST ) is
immediate from (4.4):

u(X) =

∫
ST

K(X;Q)f(Q) dω(Q). (5.2)

Instead of gathering some of the important properties of caloric measure over
special bounded starlike regions in the form of a theorem as we did for harmonic
functions in Theorems 3.1 and 3.2, we will state the corresponding results when
needed.

It will be convenient, though, to record the following general properties of the
caloric measure and the caloric kernel function over the special bounded starlike
region ΩT .

(i) Theorem 2.1 holds for the Hardy–Littlewood maximal function of a Borel
measure ν with respect to ω on ST defined as

Mων(Q) = sup
r>0

ν(∆r(Q))

ω(∆r(Q))

with a similar definition for Mωf .
(ii) K(−,P) is a positive caloric function on ΩT with K(Ξ;P) = 1.
(iii) For every Q ∈ ST ,

K(X,Q) = lim
r→0

ωX(∆r(Q))

ω(∆r(Q))
.

(iv) If ν is a finite Borel measure on ST and

u(X) =

∫
ST

K(X,Q) dν(Q),

then there exists a constant C2 such that for each P ∈ ST

Nu(P) ≤ C2Mων(P).

Caloric Hardy spaces. Because of the definition of the caloric measure, we
want to consider Hardy spaces of caloric functions taking a vanishing initial value.
LetH0(Ω) denote the class of caloric scalar functions u defined on Ω and satisfying
u(x, t) = 0 for t ≤ 0. Whenever the function takes values on a Banach space X ,
we adopt the notation H0(Ω,X ) for the class defined in a similar fashion. Now
for 1 ≤ p ≤ ∞, the symbol Hp

X (Ω) denotes the Banach space of caloric functions
u ∈ H0(Ω,X ) with Nu ∈ Lp(ST , dω). As in the classical scalar theory and the
vector-valued case of harmonic functions, we endow Hp

X (Ω) with the norm

‖u‖Hp
X
= ‖Nu‖Lp

X (ST ,dω).
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And, again, a similar definition is adopted for scalar-valued caloric functions,
dropping the dependance of X from the notation.

The use of the harmonic measure as a weight in the definition of Hardy spaces of
harmonic functions is a well-established feature, and it has actually been adopted
in Section 3 in this work (see, e.g., [19]). For caloric functions, to our knowledge,
this type of definition has not been considered yet, although an unweighted para-
bolic Hardy space was considered in [5]. Our first result for caloric Hardy spaces
is the analogue of Theorem 3.4 in Section 3. It is proved in the next section
following through the proof in [28] for the case of harmonic functions.

Theorem 5.2. Let X be a Banach space, and let ΩT be a special bounded starlike
region. Then X ∈ RNP if and only if, for some 1 ≤ p ≤ ∞ (or, equivalently, for
all 1 ≤ p ≤ ∞) and for every u ∈ Hp

X (Ω), the limit

lim
X→P

X∈Γ(P)

u(X) = u(P)

exists for σ-almost every P ∈ ST .

As in Theorem 3.4, the existence of nontangential limits for σ-almost every P ∈
ST is a consequence of the mutual absolute continuity between these measures
over the class of time-varying domains that we consider in this work (see [23], [16]).
Also, as in the case for harmonic functions in Theorem 3.5, we can identify the
boundary values of elements in Hp

X (Ω), p > 1, with elements in V p
X (ST , ω).

Theorem 5.3. For p > 1, we have the isomorphism V p
X (ST , ω) = Hp

X (Ω) through
integration with the kernel function.

Sketch of Proof. We will only give a sketch of the proof, and for further details
we refer the reader to the proof of Theorem 3.5 above.

For ν ∈ V p
X (ST , ω), one defines

u(X) =

∫
ST

K(X,P) dν(P).

The kernel function K(X,−) is continuous on the compact set ∂pΩT so that
K(X,P) (as a function of P ) belongs to Lq(ST , dω), and hence u is well defined.
Since K(X,P) as a function of X is a solution of the heat equation, we can use
the same device in the proof of Theorem 3.5 to establish that u is a weak solution
of the heat equation, and hence u is actually a caloric function in H0(Ω,X ). In
this case, however, our use of the scalar theory requires not only Lemmas 2.2
and 2.3, but also Lemma 5.4, proved below.

To prove that Nu ∈ Lp(ST , dω), again we observe that if ν is of bounded
variation, then ∥∥∥∫

ST

K(X,P) dν(P)
∥∥∥
X
≤

∫
ST

K(X,P) d|ν|(P).
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Using Lemmas 2.2 and 2.3, we obtain a function f in Lp(ST , dω) such that d|ν| =
f dω, and by property (iv) above we get

sup
X∈Γ(Q)

∥∥∥∫
ST

K(X,P) dν(P)
∥∥∥
X
≤ sup

X∈Γ(Q)

∫
ST

K(X,P)f(P) dω(P) ≤ C2Mωf(Q).

By Theorem 2.1 our assertion is proved, and thus we have proved the inclusion
V p
X (ST , ω) ↪→ Hp

X (Ω).
For the proof of the converse inclusion, we start with u ∈ Hp

X (Ω) and apply
Banach–Alaouglu’s theorem to obtain a measure µ ∈ V p

X ∗∗(ST , ω) such that

lim
ρ→1

uρ = µ in the weak∗ sense, (5.3)

where for (Q, s) ∈ ST this time we have set uρ(Q, s) = u(Qρ, sρ) as defined in
(4.5). It turns out, as in Theorem 3.5, that µ is X -valued and we can associate µ
with u via integration with the kernel function. The uniqueness of ν can be proved
following the same procedure as in Theorem 3.5, and we omit the details. �

A Fatou-type theorem for caloric functions. We have already used the
following scalar parabolic version of Fatou’s theorem, and we will have another
use for it in a subsequent section. As will be shown, it follows from standard
techniques, and we include the proof for completeness.

Lemma 5.4 (Fatou-type theorem). Let ΩT be a special bounded starlike region,
and suppose that u ∈ H1(Ω). Then there exists a unique Borel measure ν defined
on ST such that

u(X) =

∫
ST

K(X;Q) dν(Q),

and in fact ν is absolutely continuous with respect to ω with Radon–Nikodym de-
rivative f ∈ L1(ST , dω). Moreover, u converges nontangentially to f for ω-almost
every point in ST .

For the proof of this lemma and for easy future reference, we now state the
following results on estimates between the caloric measure and the caloric ker-
nel function, stated with adaptations to our noncylindrical setting and with the
pertinent references provided.

Lemma 5.5 ([21, Lemma 2.1]). Suppose that ΩT is a special bounded starlike
region. Let Q ∈ ST , and let ∆ = ∆r(Q) denote a surface ball of radius 0 < r < r0.
Then, for r > 0 sufficiently small,

sup
Q′∈ST \∆

K(X;Q′) → 0 as X → Q within ΩT . (5.4)

Lemma 5.6 ([21, Lemma 2.4]). Let ΩT be a special bounded starlike region, and
for Q0 ∈ ST let 0 < r < r0 be such that ∆2r(Q0) b ST . For 0 < s < r sufficiently
small and Q ∈ ∆r(Q0),

sup
Q′∈∆s(Q)

K
(
As(Q);Q′) ≤ c

ωΞ(∆s(Q))
.

Here c > 0 is a constant depending only on Ω.
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Proof of Lemma 5.4. For 0 < r < 1 and (X, t) ∈ ΩT ∪ ST , define ur(X, t) =
u(rX, (1− r2)(T +1)+ r2t). Note that this simply extends the parabolic path in
(4.5) to points in the interior of ΩT . As observed before, by Harnack’s inequality
ω(X,t) is absolutely continuous with respect to ωΞ for (X, t) ∈ ΩT . Therefore,
K(X, t;Q, s) is essentially bounded and positive for σ almost every (Q, s) ∈ ST

for each fixed (X, t) ∈ ΩT . Moreover,∫
ST

K(X, t;Q, s) dω(Q, s) =

∫
ST

dω(X,t)(Q, s) = 1. (5.5)

On the other hand, we also have

ur(X, t) =

∫
ST

K(X, t;Q, s)ur(Q, s) dω(Q, s). (5.6)

SinceNu ∈ L1(ST , dω), the family of measures {dµr(Q, s) ≡ ur(Q, s) dω(Q, s) :
0 < r < 1} is a bounded set on C(ST )

∗, and each of these measures is absolutely
continuous with respect to ω. By Banach–Alaoglu’s theorem there is a sequence
{rn} with rn → 1 and a measure µ such that µrn converges in the weak∗ sense to
µ ∈ C(ST )

∗ =M(ST ); that is,

lim
r→1

∫
ST

h(Q) dµr(Q) =

∫
ST

h(Q) dµ(Q) for every h ∈ C(ST ). (5.7)

Now, taking E ⊂ ST and a sequence {gm} ⊂ C(ST ) approaching to χE in
L1(ST , dω)-norm, one can use (5.7) along with the absolute continuity µr � ω to
prove that µ is absolutely continuous with respect to ω. Therefore, we can restate
(5.7) by writing

lim
r→1

∫
ST

h(Q) dµr(Q) =

∫
ST

h(Q)f(Q) dω(Q) for every h ∈ C(ST ) (5.8)

for certain f ∈ L1(ST , dω). If g ∈ L∞(ST , dω), then by Lusin’s theorem, g =
g1 + g2, where g1 is continuous and g2 has arbitrarily small support; hence,

lim
r→1

∣∣∣∫
ST

g(Q)ur(Q) dω(Q)−
∫
ST

g(Q)f(Q) dω(Q)
∣∣∣ = 0.

Since K(X;Q) is bounded in the variable Q ∈ ST for fixed X ∈ ΩT , letting
rn → 1 from (5.6), we get

u(X) =

∫
ST

K(X;Q)f(Q) dω(Q).

Now we prove the ω-almost everywhere nontangential convergence. Let Q0 ∈
ST be a Lebesgue point of f with respect to ω, and let X ∈ Γ(Q0) with ‖X −
Q0‖ = r. If ∆ = ∆r(Q0), then∣∣u(X)− f(Q0)

∣∣ ≤ ∫
∆

K(X;Q)
∣∣f(Q)− f(Q0)

∣∣ dω(Q)

+

∫
ST \∆

K(X;Q)
∣∣f(Q)− f(Q0)

∣∣ dω(Q)

= I + II . (5.9)
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By Lemma 5.6 and the Lebesgue differentiation theorem (recall that ω is a
doubling measure), we deduce that I tends to 0 as X → Q0 in Γ(Q0). On the
other hand, the term II in (5.9) is majorized by(

‖f‖1 + f(Q0)
)

sup
Q∈ST \∆

K(X;Q).

By Lemma 5.5 we can see that II tends to 0 as X → Q0 in Γ(Q0). This proves
the lemma. �

6. Proof of Theorem 5.2

In this section, we basically adapt an argument from [28] to caloric functions
in our noncylindrical domain. So we will keep the notation from the previous sec-
tion while introducing new terminology and definitions as needed. In particular,
throughout this section we assume that ΩT is a special bounded starlike region
within an infinite noncylindrical region Ω. For some arguments in this section, we
will use fundamental properties of the caloric measure and the kernel function,
some of which we already quoted above, all of them contained, for instance, in
[21]. We will refer to those results providing the pertinent reference.

The next two lemmas prepare the ground for the proof of Theorem 5.2, which
will be explained afterward.

Lemma 6.1. If f ∈ CX (ST ), then the vector-valued function v(X) defined for
X ∈ ΩT as

v(X) =

∫
∂pΩT

f(Q) dωX(Q)

is a solution to the heat equation satisfying

lim
X→P

X∈Γ(P)

v(X) = f(P)

for every P ∈ ST .

Proof. To prove that v(X) is a solution to the heat equation, it suffices to prove
that it is a weak solution to that heat equation.

In this case we simply observe that, by well-known properties of Bochner inte-
grals, the following identity holds:〈

ξ∗,

∫
ST

f(Q) dωX(Q)
〉
=

∫
ST

〈
ξ∗, f(Q)

〉
dωX(Q);

also, by (5.2), the scalar-valued function in the left-hand side is a solution to the
heat equation on ΩT with continuous datum over ST given by 〈ξ∗, f(Q)〉. Now,
the proof for nontangential convergence is similar to that in (5.9). �

Lemma 6.2. Let u ∈ H1
X (Ω). Then there exists µ ∈ MX (ST ) an ω-continuous

X -valued measure such that

u(X) =

∫
ST

K(X;Q) dµ(Q). (6.1)
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Proof. This is simply the vector-valued case of Lemma 5.4, and its proof is a
reprise of that scalar case. In this case we invoke Singer’s representation theorem
in order to use the isomorphism MX ∗∗(ST ) = CX ∗(ST )

∗. �

Proof of Theorem 5.2. At this point, it only remains for us to provide the
following two main blocks to construct the proof of Theorem 5.2.

Lemma 6.3. If X ∈ RNP, then every function u ∈ H1
X (Ω) has nontangential

limits for ω-almost every Q ∈ ST (and, equivalently, σ-almost every Q ∈ ST ).

Proof. According to Lemma 6.2 and the Radon–Nikodym property of X , we can
represent u ∈ H1

X (ΩT ) by

u(X) =

∫
∂pΩT

K(X;Q)f(Q) dω(Q)

with f ∈ L1
X (ST , dω). Recalling that caloric measure is a doubling measure as

observed in (5.1), it will suffice to prove that the nontangential limits exist in
every ω-Lebesgue point of f .

To prove this assertion, and also that f is the function of nontangential
(ω-almost everywhere) limits of u, we proceed again as in the proof of Lemma 5.4,
taking P ∈ ST as an ω-Lebesgue point of f . Given ε > 0, we choose δ > 0 such
that

1

ω(∆)

∫
∆

∥∥f(Q)− f(P)
∥∥
X dω(Q) < ε

whenever ‖Q−P‖ < δ, where ∆ ≡ ∆δ(P). Using Lemmas 5.5 and 5.6. we have
the ingredients to finish the proof again as in the estimate (5.9). �

Since Hp
X (ΩT ) ⊆ H1

X (ΩT ) for p > 1, then the previous lemma implies one
part of Theorem 5.2. The other part is contained in the next lemma because
H∞

X (ΩT ) ⊆ Hp
X (ΩT ) for 1 ≤ p <∞.

Lemma 6.4. If every function in H∞
X (ΩT ) has nontangential limits ω-almost

everywhere, then X ∈ RNP.

Proof. We will prove that every continuous linear operator T : L1(ST , dω) → X
is representable by a function f ∈ L∞

X (ST , dω) in the sense that

T (g) =

∫
ST

f(Q)g(Q) dω(Q).

(By [11, Chapter III, Section 1, Theorem 5], this already implies that X ∈ RNP .)
Define for X ∈ ΩT the vector-valued function v(X) = T [K(X; ·)]. Then∥∥v(X)

∥∥
X ≤ ‖T‖

∥∥K(X, ·)
∥∥
L1(ST ,dω)

= ‖T‖.

Moreover, since T is continuous, then v is caloric, and, as observed right above
(5.2), the kernel function satisfies the initial conditionK(X,Q) = 0 forX ∈ Ω(0).
Therefore, v ∈ H∞

X (Ω).
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Let f ∈ L∞
X (ST , dω) be the nontangential limit of v, which we know exists by

assumption. We claim that f represents the operator T . By a standard density
argument it suffices to prove that

T (χA) =

∫
A

f dω

for every Borel set A in ST , where χA denotes the characteristic function of A.
Now, by linearity of T ,∫

A

f dω = lim
r→1

∫
A

v(Qr, sr) dω(Q, s) = lim
r→1

∫
ST

T
[
K(Qr, sr;−)

]
χA(Q, s) dω(Q, s)

= lim
r→1

∫
ST

T
[
K(Qr, sr;−)χA(Q, s)

]
dω(Q, s), (6.2)

where the last integral is interpreted as a Bochner integral. The continuity of K
on Ω× ST implies that∫

ST

T
(
K(Qr, sr;−)χA(Q, s)

)
dω(Q, s) = T

(∫
ST

K(Qr, sr;−)χA(Q, s) dω(Q, s)
)
.

We now claim that

lim
r→1

∫
ST

K(Qr, sr;−)χA(Q, s) dω(Q, s) = χA(−)

in the weak topology of L1
X (ST , dω). Indeed, for every g ∈ L∞

X (ST , dω), by Fubini’s
theorem we have∫

ST

(∫
A

K(Qr, sr;P) dω(Q, s)
)
g(P) dω(P)

=

∫
A

(∫
ST

K(Qr, sr;P)g(P) dω(P)
)
dω(Q, s).

But the interior integral is uniformly bounded and converges ω-almost everywhere
to g; hence,

lim
r→1

∫
ST

(∫
A

K(Qr, sr;P) dω(Q, s)
)
g(P) dω(P) =

∫
A

g(P) dω(P),

and our claim follows.
The continuity of T implies the continuity of T when L1(ST , dω) and X are

endowed with the weak topology. This in turn implies that for every ξ∗ ∈ X ∗, we
have 〈

ξ∗, T (χA)
〉
= lim

r→1

〈
ξ∗, T

[∫
∂D

K(Qr, sr;−)χA(Q, s) dω(Q, s)
]〉
. (6.3)

From (6.2) and (6.3) we conclude that〈
ξ∗, T (χA)

〉
=

〈
ξ∗,

∫
A

f dω
〉

for all ξ∗ ∈ X ∗ and, therefore, T (χA) =
∫
A
f dω. The lemma follows. �
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28. S. Pérez-Esteva and J. Rivera-Noriega, Vector-valued Hardy spaces in non-smooth domains,
J. Math. Anal. Appl. 330 (2007), no. 1, 388–405. Zbl 1122.46019. MR2302931. DOI
10.1016/j.jmaa.2006.06.097. 523, 524, 525, 530, 532, 539, 542

29. J. Rivera-Noriega, Absolute continuity of parabolic measure and area integral estimates in
non-cylindrical domains, Indiana Univ. Math. J. 52 (2003), no. 2, 477–525. Zbl 1073.35096.
MR1976086. DOI 10.1512/iumj.2003.52.2210. 535

30. R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29
(1980), no. 4, 539–558. Zbl 0437.46028. MR0578205. DOI 10.1512/iumj.1980.29.29041. 534

1Centro de Investigación en Ciencias, Universidad Autónoma del Estado de
Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca Mor. CP 62209,
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