
Banach J. Math. Anal. 10 (2016), no. 3, 495–508

http://dx.doi.org/10.1215/17358787-3607090

ISSN: 1735-8787 (electronic)

http://projecteuclid.org/bjma

ON STAR, SHARP, CORE, AND MINUS PARTIAL
ORDERS IN RICKART RINGS

JANKO MAROVT

Communicated by J. Stochel

Abstract. Let A be a Rickart ∗-ring and let ≤∗,≤],≤⊕, and ≤⊕ denote the
star, the sharp, the core, and the dual core partial orders in A, respectively.
The sets of all b ∈ A such that a ≤ b, along with the sets of all b ∈ A such
that b ≤ a, are characterized, where a ∈ A is given and where ≤ is one of the
partial orders: ≤∗, or ≤], or ≤⊕, or ≤⊕. Such sets of elements that are above
or below a given element under the minus partial order ≤− in a Rickart ring A
are also studied. Some recent results of Cvetković-Ilić et al. on partial orders
in B(H), the algebra of all bounded linear operators on a Hilbert space H, are
thus generalized.

1. Introduction

Let H be a Hilbert space and let B(H) be the algebra of all bounded linear
operators on H. For an operator A ∈ B(H), the symbols KerA and ImA will
denote the kernel and the image of A, respectively, while A∗ will denote the
adjoint operator of A. Let M be a closed subspace of H. We will denote by PM

the self-adjoint idempotent operator in B(H) such that ImP = M . Many partial
orders may be defined on B(H). One of such orders is the star partial order ≤∗,
which is defined as follows. For A,B ∈ B(H), we write

A ≤∗ B if A∗A = A∗B and AA∗ = BA∗. (1.1)

Note that Drazin [6] defined this order in a more general setting of proper
∗-semigroups. In a very recent paper [3], the set of all B ∈ B(H) such that
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A ≤∗ B, and the set of all B ∈ B(H) such that B ≤∗ A, where A ∈ B(H)
is given, were characterized; the authors first observed that the description of
the set of all operators above a given operator A ∈ B(H) under the star par-
tial order follows directly from an equivalent definition of the star partial order
provided in [5]. Namely, for a given A ∈ B(H), we have A ≤∗ B if and only if
B = A+PKer A∗XPKer A for some X ∈ B(H). Next, the authors stressed that any
operator B ∈ B(H) has the following matrix representation with respect to the
orthogonal direct sum H = ImB ⊕KerB∗:

B =

[
B1 B2

0 0

]
:

[
ImB
KerB∗

]
→

[
ImB
KerB∗

]
. (1.2)

The following result from [3] describes the set of all A ∈ B(H) such that A ≤∗ B
and B is given.

Proposition 1.1. Let B ∈ B(H) be given by (1.2). For A ∈ B(H), A ≤∗ B if
and only if

A =

[
PB1 PB2

0 0

]
:

[
ImB
KerB∗

]
→

[
ImB
KerB∗

]
for some self-adjoint idempotent P ∈ B(ImB) which commutes with D = B1B

∗
1+

B2B
∗
2 ∈ B(ImB).

Some other well-known partial orders—the sharp, the core, and the minus
partial orders—were studied in [3], where results similar to Proposition 1.1 were
obtained. It is the aim of this paper to generalize these results from B(H) to
Rickart rings or to Rickart ∗-rings.

Let A be a ring. A ring admitting an involution ∗ will be called an involutory
ring. The set of all idempotent elements in a ring A will be denoted by E(A).
For a ∈ A, we will denote by a◦ the right annihilator of a (i.e., the set a◦ =
{x ∈ A : ax = 0}). Similarly, we denote the left annihilator ◦a of a (i.e., the set
◦a = {x ∈ A : xa = 0}). A ring A is called a Rickart ring if for every a ∈ A
there exist idempotent elements p, q ∈ A such that a◦ = p · A and ◦a = A · q.
Note that every Rickart ring A has the (multiplicative) identity (see [2] or [10]).
An involutory ring A is called a Rickart ∗-ring if the left annihilator ◦a of any
element a ∈ A is generated by a self-adjoint idempotent e ∈ A; that is, ◦a = A · e
where e = e∗ = e2 (observe that such a self-adjoint idempotent is unique; see [2]).
For an involutory ring A, denote the sets {x ∈ A : ax∗ = 0} = (a◦)∗ and
{x ∈ A : x∗a = 0} = (◦a)∗. Note that (a◦)∗ = ◦(a∗) and (◦a)∗ = (a∗)◦ for every
a ∈ A. Let a be an element in a Rickart ∗-ring A. There exists by definition a
self-adjoint idempotent f ∈ A such that ◦(a∗) = A · f . Since f is a self-adjoint
element, this is equivalent to (◦(a∗))∗ = f · A (i.e., a◦ = f · A). So, the analogous
property for right annihilators is fulfilled in the case when A is a Rickart ∗-ring.
Note also that B(H) is a Rickart ∗-ring and hence a Rickart ring. In fact, the
class of Rickart rings includes von Neumann algebras and rings with no proper
zero divisors (see [2]).
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Let A be a ring with identity 1. Suppose that p and q are idempotent elements
in A. Then any x ∈ A can be represented in the following form:

x = pxq + px(1− q) + (1− p)xq + (1− p)x(1− q) =

[
x1,1 x1,2

x2,1 x2,2

]
p×q

.

Here x1,1 = pxq, x1,2 = px(1 − q), x2,1 = (1 − p)xq, x2,2 = (1 − p)x(1 − q). If
x = (xi,j)p×q and y = (yi,j)p×q, then x+y = (xi,j+yi,j)p×q. Moreover, if r ∈ A is an

idempotent, and if x = (xi,j)p×q, and y = (yi,j)q×r, then xy = (
∑2

k=1xi,kyk,j)p×r.
Thus, if we have idempotents in A, then the usual algebraic operations in A can
be interpreted as simple operations between appropriate 2 × 2 matrices over A.
Furthermore, if A admits an involution ∗ and x ∈ A, then we have

x∗ =

[
x∗
1,1 x∗

2,1

x∗
1,2 x∗

2,2

]
q∗×p∗

.

Let us denote

LP(a) =
{
p ∈ A : p = p2, ◦a = A · (1− p)

}
,

RP(a) =
{
q ∈ A : q = q2, a◦ = (1− q) · A

}
.

Note that the sets LP(a) and RP(a) are nonempty in the case when A is a Rickart
ring. If A is a Rickart ∗-ring, then there exists the unique self-adjoint idempotent
in LP(a), which we will denote by lp(a). Similarly, let rp(a) denote the unique
self-adjoint idempotent in RP(a).

The following proposition holds true for any idempotent p in a ring with identity
(see [4, Lemma 2.1]).

Proposition 1.2. Let A be a ring with identity 1, and let p ∈ E(A). Then
A · (1− p) = ◦p and (1− p) · A = p◦.

Let A be a Rickart ring and let b ∈ A. By Proposition 1.2, there exists an
idempotent s ∈ A such that ◦s = ◦b (i.e., s ∈ LP(b)). Let b =

[
b1 b2
b3 b4

]
s×s

, where

s ∈ LP(b). Since b3 = (1 − s)bs, b4 = (1 − s)b(1 − s), and (1 − s) ∈ ◦s = ◦b,
we may conclude that b3 = b4 = 0. So, every b ∈ A may be represented in the
following form:

b =

[
b1 b2
0 0

]
s×s

, s ∈ LP(b). (1.3)

Note that in the case when A is a Rickart ∗-ring, every b ∈ A may be represented
in the following form:

b =

[
b1 b2
0 0

]
s×s

, s = lp(b). (1.4)

Throughout the present article, we will use the following notation: d = b1b
∗
1+b2b

∗
2.

Remark 1.3. Let B ∈ B(H), and denote by I the identity operator in B(H). Since
B(H) is a Rickart ∗-ring, there exists the unique self-adjoint idempotent operator
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S ∈ B(H) such that ◦S = ◦B (i.e., S = lp(B)). So, B = SBS + SB(I − S); that
is,

B =

[
B1 B2

0 0

]
S×S

,

where B1 = SBS and B2 = SB(I−S). For C,D ∈ B(H), Lemma 2.1 in [13] yields
◦C = ◦D if and only if ImC = ImD. It follows that ImS = ImB and thus that
Im(I − S) = KerS = KerB∗. Therefore, we may regard (1.4) as a generalization
of matrix representation (1.2) from B(H) to an arbitrary Rickart ∗-ring A (for
more details, see [15]).

2. The star order

Let A be an involutory ring with identity 1. A new order was introduced in [13,
Definition 4] on involutory rings with identity. The definition is as follows. For
a, b ∈ A, we write a ≤∗ b if there exist self-adjoint idempotent elements p, q ∈ A
such that

◦a = A(1− p), a◦ = (1− q)A, pa = pb, and aq = bq.

Authors called this new order the star order and showed that when A is a Rickart
∗-ring, the new order is the same as the order introduced by Drazin (1.1). Namely
(see [13, Theorem 1]), for elements a, b in a Rickart ∗-ring A, we have

a ≤∗ b if and only if a∗a = a∗b and aa∗ = ba∗.

There are many equivalent definitions of the star partial order in Rickart ∗-rings
(see [13]); the following one will be used in the rest of this section:

a ≤∗ b if and only if a = lp(a)b = b rp(a). (2.1)

Another equivalent definition is as follows. For a Rickart ∗-ringA and for a, b ∈ A,
we have a ≤∗ b if and only if

a =

[
a 0
0 0

]
lp(a)×rp(a)

and b =

[
a 0
0 b1

]
lp(a)×rp(a)

, (2.2)

where b1 ∈ (1− lp(a))A(1− rp(a)).
Let A be a Rickart ∗-ring and let a ∈ A. By (2.2), we may conclude that a ≤∗ b

if and only if

b = a+
(
1− lp(a)

)
x
(
1− rp(a)

)
for some x ∈ A. With this observation we described the set of all elements b ∈ A
such that a ≤∗ b where a is a given element in a Rickart ∗-ring A. With the next
theorem we will describe the set of all a ∈ A such that a ≤∗ b where b ∈ A is
given. We will thus generalize Proposition 1.1.

Theorem 2.1. Let A be a Rickart ∗-ring and let b ∈ A be given by (1.4). For
a ∈ A, we have a ≤∗ b if and only if a =

[
pb1 pb2
0 0

]
s×s

, where p ∈ sA s, p = p∗ = p2,
and pd = dp.
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Proof. Let a, b ∈ A and let b =
[
b1 b2
0 0

]
s×s

, where s = lp(b). Suppose first that

a ≤∗ b and let a =
[
a1 a2
a3 a4

]
s×s

. By (2.1), a = lp(a)b = b rp(a). It follows that
◦b ⊆ ◦a, which implies that (1− s)a = 0 and hence that a3 = 0 and a4 = 0. Since
◦(lp(a)) = ◦a, we obtain (1− s) lp(a) = 0, and hence

lp(a) =

[
r1 r2
0 0

]
s×s

.

From lp(a) = (lp(a))∗ we have

lp(a) =

[
r1 0
0 0

]
s×s

.

Note that r1 = r∗1 = r21 and denote r1 = p. Since a = lp(a)b,

a =

[
p 0
0 0

]
s×s

[
b1 b2
0 0

]
s×s

=

[
pb1 pb2
0 0

]
s×s

.

Recall that d = b1b
∗
1 + b2b

∗
2. Since a ≤∗ b, we have aa∗ = ba∗. So,[

pb1 pb2
0 0

]
s×s

[
b∗1p 0
b∗2 p 0

]
s×s

=

[
b1 b2
0 0

]
s×s

[
b∗1p 0
b∗2 p 0

]
s×s

,

and hence pdp = dp. Since p and d are self-adjoint, we have pdp = pd; thus
pd = dp.

Conversely, let a =
[
pb1 pb2
0 0

]
s×s

, where s = lp(b), p ∈ sA s, p = p∗ = p2, and

pd = dp. Recall that b =
[
b1 b2
0 0

]
s×s

. It follows that

ba∗ =

[
b1 b2
0 0

]
s×s

[
b∗1p 0
b∗2 p 0

]
s×s

=

[
dp 0
0 0

]
s×s

and that

aa∗ =

[
pb1 pb2
0 0

]
s×s

[
b∗1p 0
b∗2 p 0

]
s×s

=

[
pdp 0
0 0

]
s×s

.

Since pd = dp, we may conclude that aa∗ = ba∗. We may similarly show that
a∗a = a∗b. So, a ≤∗ b. �

3. The sharp order

Other characterizations, similar to the one described with Proposition 1.1, of
sets of operators from B(H) that are above or below a given operator under a
certain (sharp, or core, or minus) partial order were given in [3]. In this section,
we will generalize results from [3] concerning the sharp partial order.

Let S be a semigroup and let a ∈ S. Any solution x = a− to the equation
axa = a is called an inner generalized inverse of a. If such a− exists, then a is
called regular. We say that a has the group inverse a] in S if x = a] satisfies
the following equations: axa = a, xax = x, and ax = xa. The group inverse,
if it exists, is unique (see [9]). For a ring A with identity, denote by G(A) the
subset of elements in A which have the group inverse. Mitra introduced in [14]
(see also [7]) the sharp partial order on the set of all n × n complex matrices
Mn which have the group inverse. Namely, for A,B ∈ G(Mn), we write A ≤] B
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if A]A = A]B and AA] = BA]. This order was further generalized in [12] and
[16]. The definition from [12, pp. 1715–1722] is as follows. Let A be a ring with
identity 1. For a ∈ G(A) and b ∈ A, we write

a ≤] b if a]a = a]b and aa] = ba].

The order ≤] is called the sharp partial order on G(A). It was shown in [12] that
≤] is indeed a partial order on G(A). Note that the assumption in [12] for the
above definition was that element b also has the group inverse (i.e., a, b ∈ G(A));
however, it is easy to check that the results from [12] which follow are valid also
when we assume that a ∈ G(A) and b ∈ A. Namely, some equivalent definitions
of the sharp partial order were presented in [12]. For example, for a ∈ G(A) and
b ∈ A, we have a ≤] b if and only if there exists p ∈ E(A) such that

a =

[
a 0
0 0

]
p×p

and b =

[
a 0
0 b1

]
p×p

,

where b1 ∈ (1− p)A(1− p). So, for a given a ∈ G(A), we have a ≤] b if and only
if

b = a+ (1− p)x(1− p),

where p ∈ E(A) such that ◦p ⊆ ◦a and p◦ ⊆ a◦, and x is an element in A.
This observation describes the set of all elements b ∈ A such that a ≤] b where
a ∈ G(A) is given (see also [16, Theorem 3.5]). Let us now prove the following
auxiliary result, which is analogous to Theorem 3.5 from [3].

Lemma 3.1. Let A be a ring with identity 1, let a ∈ G(A), and let b ∈ A.
Suppose that b =

[
b1 b2
0 0

]
s×s

, where s ∈ E(A). If a ≤] b, then a =
[
pb1 pb2
0 0

]
s×s

,

where p ∈ sA s ∩ E(A), pb21 = b1pb1, and pb1b2 = b1pb2.

Proof. Suppose that b =
[
b1 b2
0 0

]
s×s

where s ∈ E(A), and let a =
[
a1 a2
a3 a4

]
s×s

. Since

a ≤] b, we may conclude (see Theorem 9 and concluding remarks in [12]) that
there exists an idempotent r ∈ A such that ◦r = ◦a, r◦ = a◦, ra = rb, and
ar = br. So, a(1− r) = 0, and hence a = br. This implies that ◦b ⊆ ◦a, and thus
that a3 = a4 = 0 and ◦b ⊆ ◦r. It follows that (1− s)r = 0, and hence

r =

[
r1 r2
0 0

]
s×s

.

Since r2 = r, we have r21 = r1. Let r1 = p. From ◦r = ◦a, we have a = ra = rb;
thus

a =

[
p r2
0 0

]
s×s

[
b1 b2
0 0

]
s×s

=

[
pb1 pb2
0 0

]
s×s

.

Note that p ∈ sA s ∩E(A). Since a ≤] b, we also have (see [12]) ab = ba = a2. It
follows that [

pb21 pb1b2
0 0

]
s×s

= ab = ba =

[
b1pb1 b1pb2
0 0

]
s×s

,

and thus that pb21 = b1pb1 and pb1b2 = b1pb2. �
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We say that an involutory ring A is proper if, for every x ∈ A where xx∗ = 0,
we have x = 0. Recall that every Rickart ∗-ring is a proper involutory ring (see,
e.g., [2]). The proof of the following proposition is short and may be found in [2,
p. 10].

Proposition 3.2. Let A be a proper involutory ring. Then ◦x = ◦(xx∗) for every
x ∈ A.

For a Rickart ∗-ringA, we will now characterize the set of all elements a ∈ G(A)
such that a ≤] b, where b ∈ A is given.

Theorem 3.3. Let A be a Rickart ∗-ring and let b ∈ A be given by (1.4). For
a ∈ G(A), we have a ≤] b if and only if a =

[
pb1 pb2
0 0

]
s×s

, where p ∈ sA s ∩ E(A)
and pb1 = b1p.

Proof. Suppose that a ∈ G(A), b ∈ A, and b =
[
b1 b2
0 0

]
s×s

, where s = lp(b). Let

first a ≤] b. By Lemma 3.1, a =
[
pb1 pb2
0 0

]
s×s

where p ∈ sA s ∩E(A), pb21 = b1pb1,
and pb1b2 = b1pb2. Let us now show that pb1 = b1p. We have pb1b1b

∗
1 = b1pb1b

∗
1

and pb1b2b
∗
2 = b1pb2b

∗
2. Adding these equations, we obtain pb1d = b1pd where

d = b1b
∗
1 + b2b

∗
2. So, (pb1 − b1p) ∈ ◦d. Note that

bb∗ =

[
d 0
0 0

]
s×s

(i.e., d = bb∗), and recall that A is a proper involutory ring. Since ◦b = ◦(lp(b)) =
◦s, we may conclude by Proposition 3.2 that ◦(bb∗) = ◦s. So, ◦d = ◦s, and
hence (pb1 − b1p)s = 0. Recall that b1 = sbs and that p ∈ sA s. It follows that
(pb1 − b1p) ∈ sA s, and thus that 0 = (pb1 − b1p)s = pb1 − b1p (i.e., pb1 = b1p).

Conversely, let a =
[
pb1 pb2
0 0

]
s×s

, where p ∈ sA s ∩ E(A) and pb1 = b1p. By

Theorem 13 in [12], a ≤] b if and only if (b− a) ∈ ◦a ∩ a◦. We have

(b− a)a =

[
b1 − pb1 b2 − pb2

0 0

]
s×s

[
pb1 pb2
0 0

]
s×s

=

[
(b1 − pb1)pb1 (b1 − pb1)pb2

0 0

]
s×s

.

Since pb1 = b1p, it follows that (b1 − pb1)pb1 = pb21 − pb21 = 0 and (b1 − pb1)pb2 =
pb1b2 − pb1b2 = 0. This yields (b − a)a = 0 (i.e., (b − a) ∈ ◦a). Again, since
pb1 = b1p, we obtain

a(b− a) =

[
pb1(b1 − pb1) pb1(b2 − pb2)

0 0

]
s×s

= 0,

and thus (b− a) ∈ a◦. So, (b− a) ∈ ◦a ∩ a◦, which yields a ≤] b. �

With Theorem 3.3 we generalized a result from [3, Corollary 3.1] where the
authors described the set of all operators A ∈ G(B(H)) that are under the sharp
partial order below a given (relatively) regular operator B ∈ B(H). Note that in
Theorem 3.3 we omitted the regularity condition, namely, b ∈ A was an arbitrary
given (not necessarily regular) element in a Rickart ∗-ring A.
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4. The core order

Baksalary and Trenkler introduced in [1] a new order ≤⊕, called the core partial
order, on the set of all n×n complex matrices Mn which have the group inverse.
One of the equivalent definitions is the following (see [11, p. 1638]): For A, B ∈
G(Mn), we write

A ≤⊕ B if A∗A = A∗B and AA] = BA]. (4.1)

We may observe that the core partial order is “between” the star partial order
and the sharp partial order. To present an extension of this order from the set
G(Mn) to G(B(H)) or even to some wider set, let us first recall the following
lemma (see [13]) and definition (see [16, p. 5]).

Lemma 4.1 ([13, Lemma 2.4]). Let A be a Rickart ∗-ring and let a, b ∈ A. The
following are then equivalent:

(i) a = lp(a)b,
(ii) a = pb for some self-adjoint element p ∈ A,
(iii) a∗a = a∗b.

Let A be an arbitrary ring with identity 1. Then we define

IA = {a ∈ A : ◦a = ◦p and a◦ = p◦ for some idempotent p ∈ A}.
For a ∈ IA, the idempotent p is unique (see [16]), so we may write p = pa.

LetX be a Banach space and let B(X) be the set of all bounded linear operators
on X. In a special case when A = B(X), it turns out (see [16, Theorem 2.6]) that
IB(X) = {A ∈ B(X) : ImA⊕KerA = X}. Note that if dimX < ∞, then the set
{A ∈ B(X) : ImA ⊕ KerA = X} coincides with the set of all group invertible
operators in B(X).

Let a ∈ IA and let b ∈ A, where A is a ring with identity. It is not hard to
prove (see the proof of Lemma 3.3 in [16]) that then

a = b pa if and only if a2 = ba. (4.2)

Suppose now that a ∈ A has the group inverse a], and let b ∈ A. It is easy to
check that a2 = ba if and only if aa] = ba]. By these observations (compare them
with (4.1) and Lemma 4.1), the core partial order was extended in [16] from the
set G(Mn) to IA where A is a Rickart ∗-ring. The definition is as follows.

Definition 4.2 ([16, Definition 4.5]). Let A be a Rickart ∗-ring. For a, b ∈ A, we
write a ≤⊕ b if a ∈ IA and

a = lp(a)b = b pa.

It was proved in [16] that the relation ≤⊕ is indeed a partial order on IA where
A is a Rickart ∗-ring. Very recently, another generalization of the core partial
order has been independently introduced in [3], where the authors generalized
this order from G(Mn) to B(H)—where H is a Hilbert space—in the following
way.

Definition 4.3. For A,B ∈ B(H), we write A ≤⊕ B if there exists a self-adjoint
idempotent operator P ∈ B(H) and an idempotent operator Q ∈ B(H) such that
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(i) ImP = ImA,
(ii) ImQ = ImA, KerQ = KerA,
(iii) PA = PB ,
(iv) AQ = BQ .

Clearly, Definition 4.3 makes sense only for operators belonging to the set {A ∈
B(H) : ImA⊕KerA = H}. Recall that {A ∈ B(H) : ImA⊕KerA = H} = IB(H).
The proof of the following lemma is easy and may follow a known technique, and
therefore we leave it to the reader (see [13, Lemma 2.1]).

Lemma 4.4. Definitions 4.2 and 4.3 are equivalent on IB(H).

In [16], the set of all elements b ∈ A that are above a given element a ∈ IA under
the core partial order where A is a Rickart ∗-ring was characterized. Namely,

a ≤⊕ b iff b =

[
a 0
0 b1

]
lp(a)×pa

iff b = a+
(
1− lp(a)

)
x(1− pa)

for some b1 ∈ (1 − lp(a))A(1 − pa) and x ∈ A. We will characterize with the
next theorem the set of all elements a ∈ IA that are below a given element
b ∈ A. Thus, we will generalize Theorem 3.7 from [3], which describes the set of
all operators A ∈ G(B(H)) that are below a given operator B ∈ G(B(H)) under
the core partial order.

Theorem 4.5. Let A be a Rickart ∗-ring and let b ∈ A be given by (1.4). For
a ∈ IA, a ≤⊕ b if and only if a =

[
pb1 pb2
0 0

]
s×s

, where p ∈ sA s, p = p∗ = p2, and
pb1p = b1p.

Proof. Let b ∈ A be given as in (1.4). For a ∈ IA, suppose that a ≤⊕ b. By
Definition 4.2, we have a = lp(a)b = b pa, and hence ◦b ⊆ ◦a. It follows that
(1 − s)a = 0, and hence that a =

[
a1 a2
0 0

]
s×s

. Since (1 − s) ∈ ◦a = ◦(lp(a)),

we may also conclude that lp(a) =
[
p1 p2
0 0

]
s×s

. Recall that lp(a) is a self-adjoint

idempotent, so p2 = 0, and hence lp(a) = s lp(a)s. Let p = lp(a). Since a = lp(a)b,
we have

a =

[
p 0
0 0

]
s×s

[
b1 b2
0 0

]
s×s

=

[
pb1 pb2
0 0

]
s×s

.

By (4.2), a = b pa implies that a2 = ba. So,[
pb1pb1 pb1pb2

0 0

]
s×s

=

[
b1pb1 b1pb2
0 0

]
s×s

,

and hence b1pb1 = pb1pb1 and b1pb2 = pb1pb2. It follows that b1pb1b
∗
1 = pb1pb1b

∗
1

and that b1pb2b
∗
2 = pb1pb2b

∗
2, which yields

(b1p− pb1p)d = 0,

where d = b1b
∗
1 + b2b

∗
2 = bb∗. Since A is a proper involutory ring, ◦b = ◦(bb∗) by

Proposition 3.2. Recall that ◦b = ◦s, and hence that ◦d = ◦s. Therefore, since
(b1p − pb1p) ∈◦ d, we have (b1p − pb1p)s = 0. From p = sps, we may conclude
that b1p− pb1p = 0 (i.e., that b1p = pb1p).
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Conversely, for a ∈ IA, let a =
[
pb1 pb2
0 0

]
s×s

, where p ∈ sA s, p = p∗ = p2, and
pb1p = b1p. Then

a∗a =

[
b∗1p 0
b∗2 p 0

]
s×s

[
pb1 pb2
0 0

]
s×s

=

[
b∗1pb1 b∗1pb2
b∗2pb1 b∗2pb2

]
s×s

and

a∗b =

[
b∗1p 0
b∗2 p 0

]
s×s

[
b1 b2
0 0

]
s×s

=

[
b∗1pb1 b∗1pb2
b∗2pb1 b∗2pb2

]
s×s

,

which yields by Lemma 4.1, a = lp(a)b. Also,

a2 =

[
pb1 pb2
0 0

]
s×s

[
pb1 pb2
0 0

]
s×s

=

[
pb1pb1 pb1pb2

0 0

]
s×s

and

ba =

[
b1 b2
0 0

]
s×s

[
pb1 pb2
0 0

]
s×s

=

[
b1pb1 b1pb2
0 0

]
s×s

.

Since pb1p = b1p, we have pb1pb1 = b1pb1 and pb1pb2 = b1pb2. It follows that
a2 = ba, and hence by (4.2), that a = b pa. So a = lp(a)b = b pa, and thus by
Definition 4.2, a ≤⊕ b. �

Let us conclude this section with another order, the dual core partial order,
which was introduced in [1] on the set of all matrices in Mn which have the group
inverse and is generalized in [16] to the set IA, where A is an arbitrary Rickart
∗-ring. The definition is as follows.

Definition 4.6. Let A be a Rickart ∗-ring. For a, b ∈ A, we write a ≤⊕ b if a ∈ IA
and

a = pab = b rp(a).

In the same way as this was done for the core partial order, we may describe
the set of all elements b ∈ A that are above a given element a ∈ IA under the
dual core partial order where A is a Rickart ∗-ring. Namely,

a ≤⊕ b iff b =

[
a 0
0 b1

]
pa×rp(a)

iff b = a+ (1− pa)x
(
1− rp(a)

)
for some b1 ∈ (1− pa)A(1− rp(a)) and x ∈ A.

Note now that in the case when A is a Rickart ∗-ring, any b ∈ A may be
represented in the following form:

b =

[
b1 0
b2 0

]
z×z

, z = rp(b). (4.3)

The next corollary describes the set of all elements a ∈ IA below a given ele-
ment b ∈ A under the dual core partial order ≤⊕. Its proof is similar to that of
Theorem 4.5 above; however, it is more elegant to consider a new Rickart ∗-ring
(A,+, ·L, ∗), where

a ·L b := ba (4.4)
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for a, b ∈ A. It is then easy to see (see Definitions 4.2 and 4.6) that for every
a, b ∈ A we have

a ≤⊕ b if and only if a ≤⊕
L b,

where ≤⊕
L is the core partial order in (A,+, ·L, ∗). Corollary 4.7 follows then

immediately by (4.4) and Theorem 4.5.

Corollary 4.7. Let A be a Rickart ∗-ring and let b ∈ A be given by (4.3). For
a ∈ IA, a ≤⊕ b if and only if a =

[
b1p 0
b2p 0

]
z×z

, where p ∈ zA z, p = p∗ = p2, and
pb1p = pb1.

5. The minus order

A regular semigroup is a semigroup in which every element is regular. The
minus partial order was originally introduced by Hartwig in [8] in the following
way. For a regular semigroup S and for a, b ∈ S, we write

a ≤− b if a′a = a′b and aa′ = ba′, (5.1)

where a′ is a reflexive generalized inverse of a (i.e., a′ ∈ {x ∈ S : a = axa,
x = xax}). Note here that for a regular element a ∈ S there exists a reflexive
generalized inverse a′ of a: a′ = a−aa−, where aa−a = a. Šemrl studied in [17]
the minus partial order on B(H). He did not want to restrict himself only to
operators in B(H) that are (relatively) regular, so he introduced a new order on
B(H), proved that it is indeed a partial order on B(H) for a general Hilbert space
H and showed that the new partial order is the same as Hartwig’s minus partial
order ≤− when H is finite-dimensional. In [4], Šemrl’s definition of the minus
partial order was generalized in the following way.

Definition 5.1 ([4, Definition 2.1]). LetA be a ring with identity 1 and let a, b ∈ A.
Then we write a ≤− b if there exist idempotent elements p, q ∈ A such that
◦a = A(1− p), a◦ = (1− q)A, pa = pb, and aq = bq.

It was proved in [4] that this order ≤− is indeed a partial order when A is a
Rickart ring. Suppose now for a moment that A is a ring with identity 1 in which
every element is regular (i.e., A is a von Neumann regular ring). Theorem 2.2 in
[4] states that on A, Hartwig’s definition (5.1) and Definition 5.1 are equivalent.
It turns out that the proof of this theorem may be used to prove the following
observation: Let A be a ring with identity 1. For a regular element a ∈ A and any
(not necessarily regular) b ∈ A, we have a ≤− b in the sense of Definition 5.1 if
and only if a′a = a′b and aa′ = ba′, where a′ is some reflexive generalized inverse
of a.

In [12], the present author described the set of all elements b ∈ A that are
above a given element a ∈ A under the minus partial order where A is a Rickart
ring. Namely, for a given a ∈ A,

a ≤− b if and only if b =

[
a 0
0 b1

]
p×q

for some b1 ∈ (1− p)A(1− q) and p, q ∈ E(A). The set of all operators in B(H)
that are below a given operator B ∈ B(H) was studied in [3]. Authors managed to
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characterize the set of all (relatively) regular operators A ∈ B(H) that are below
a given (relatively) regular operator B ∈ B(H). It is natural to ask if the result
from [3] is valid also for general (not necessarily (relatively) regular) operators
in B(H) or are there some counterexamples. We tried to answer this question
in a more general setting of Rickart rings; however, we managed to obtain the
following result, which is again limited to the set of regular elements in a Rickart
ring A.

Theorem 5.2. Let A be a Rickart ring and let b ∈ A be given by (1.3). For
a regular element a ∈ A, we have a ≤− b if and only if there exists a reflexive
generalized inverse a′ of a such that ba′b = a and a =

[
pb1 pb2
0 0

]
s×s

, where aa′ =[
p p1
0 0

]
s×s

; that is, p = saa′s, p1 ∈ sA(1−s), and (1−s)aa′s = 0 = (1−s)aa′(1−s).

Proof. Let A be a Rickart ring and let b ∈ A be given by (1.3). For a regular
element a ∈ A, suppose first that a ≤− b. So, there exists a reflexive generalized
inverse a′ of a such that a′a = a′b and aa′ = ba′. Fix such a′ and let p̃ = aa′

and q̃ = a′a. We have, p̃ 2 = p̃, q̃ 2 = q̃, p̃a = p̃ b, aq̃ = bq̃. From p̃ = aa′ we
obtain a = p̃a and from q̃ = a′a it follows that a = aq̃. Thus, a =

[
a 0
0 0

]
p̃×q̃

. Let

b =
[
b1 b2
b3 b4

]
p̃×q̃

. We have, b1 = p̃ bq̃ = p̃aq̃ = a, b2 = p̃ b(1 − q̃ ) = p̃a(1 − q̃ ) = 0,

and similarly b3 = 0. So,

b =

[
a 0
0 b4

]
p̃×q̃

.

From p̃ = aa′, we have a′p̃ = a′, and q̃ = a′a yields q̃a′ = a′. Thus, a′ =
[
a′ 0
0 0

]
q̃×p̃

.

It follows that

ba′b =

[
a 0
0 b4

]
p̃×q̃

[
a′ 0
0 0

]
q̃×p̃

[
a 0
0 b4

]
p̃×q̃

=

[
a 0
0 0

]
p̃×q̃

= a.

Let p̃ =
[

p p1
p2 p3

]
s×s

. Recall that b is given by (1.3), and note that p̃ = aa′ and

a = p̃a yield ◦a = ◦p̃, and that a = bq̃ yields ◦b ⊆ ◦a. So, since (1 − s) ∈ ◦b, it
follows that p2 = p3 = 0, and therefore a = p̃ b implies that

a =

[
p p1
0 0

]
s×s

[
b1 b2
0 0

]
s×s

=

[
pb1 pb2
0 0

]
s×s

.

Conversely, suppose that there exists a reflexive generalized inverse a′ of a such
that ba′b = a and a =

[
pb1 pb2
0 0

]
s×s

, where aa′ =
[
p p1
0 0

]
s×s

. Denote p̃ = aa′ and

q̃ = a′a. As before, we have p̃a = a and aq̃ = a, and hence ◦a = ◦p̃ and q̃◦ = a◦.
Also, p̃ 2 = p̃, q̃ 2 = q̃, and

p̃a =

[
p p1
0 0

]
s×s

[
pb1 pb2
0 0

]
s×s

=

[
pb1 pb2
0 0

]
s×s

= p̃ b.

Let a′ =
[
c1 c2
c3 c4

]
s×s

. Since a′ = a′aa′, we have[
c1 c2
c3 c4

]
s×s

=

[
c1 c2
c3 c4

]
s×s

[
p p1
0 0

]
s×s

,
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and thus c1 = c1p and c3 = c3p. It follows that

q̃ =

[
c1 c2
c3 c4

]
s×s

[
pb1 pb2
0 0

]
s×s

=

[
c1pb1 c1pb2
c3pb1 c3pb2

]
s×s

=

[
c1b1 c1b2
c3b1 c3b2

]
s×s

=

[
c1 c2
c3 c4

]
s×s

[
b1 b2
0 0

]
s×s

= a′b.

We have bq̃ = ba′b = a = aq̃. By Definition 5.1, together with Proposition 1.2, we
may conclude that a ≤− b. �

The following observation is valid for general Rickart rings.

Proposition 5.3. Let A be a Rickart ring and let b ∈ A be given by (1.3). If
a ≤− b, a ∈ A, then there exists an idempotent p ∈ sA s such that

a =

[
pb1 pb2
0 0

]
s×s

.

We will omit the proof of this proposition since it is similar to (parts of)
proofs of some results from this paper (for example, see the first part of the proof
of Theorem 2.1). Let us conclude the paper with the following conjecture (cf.
Theorem 3.2 in [3]).

Open question. For a Rickart ring A, let b ∈ A be given by (1.3). For a ∈ A, we
have a ≤− b if and only if there exists an idempotent p ∈ sA s such that

a =

[
pb1 pb2
0 0

]
s×s

.

We leave the reader with the question whether this conjecture holds (at least
on the set of regular elements in A), or perhaps there are some counterexamples.
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16. D. S. Rakić, Generalization of sharp and core partial order using annihilators, Banach J.
Math. Anal. 9 (2015), no. 3, 228–242. MR3296136. DOI 10.15352/bjma/09-3-16. 500, 502,
503, 504
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