Banach J. Math. Anal. 10 (2016), no. 3, 451-465
http://dx.doi.org/10.1215/17358787-3599609
ISSN: 1735-8787 (electronic)
http://projecteuclid.org/bjma

GENERALIZED 3-CIRCULAR PROJECTIONS FOR UNITARY CONGRUENCE INVARIANT NORMS

ABDULLAH BIN ABU BAKER

Communicated by F. Zhang

Abstract

A projection P_{0} on a complex Banach space is generalized 3circular if its linear combination with two projections P_{1} and P_{2} having coefficients λ_{1} and λ_{2}, respectively, is a surjective isometry, where λ_{1} and λ_{2} are distinct unit modulus complex numbers different from 1 and $P_{0} \oplus P_{1} \oplus P_{2}=I$. Such projections are always contractive. In this paper, we prove structure theorems for generalized 3 -circular projections acting on the spaces of all $n \times n$ symmetric and skew-symmetric matrices over \mathbb{C} when these spaces are equipped with unitary congruence invariant norms.

1. Introduction

The study of projections on Banach spaces is of great interest since they appear as building blocks of more complicated operators. This is clearly demonstrated by the powerful spectral theory of operators. Furthermore, spaces supporting a rich collection of projections, such as the von Neumann algebras, present very nice structures.

A class of projections, known as the generalized bicircular projections (henceforth $G B P$), has recently attracted the attention of many mathematicians. This class was introduced by Fošner, Ilišević, and Li [9] in 2007. A projection P on a Banach space X is said to be a $G B P$ if $P+\lambda(I-P)$ is a surjective isometry on X, where $\lambda \in \mathbb{T} \backslash\{1\}$. Here, \mathbb{T} denotes the unit circle in the complex plane. In [9], the authors characterized GBPs on finite-dimensional Banach spaces with

[^0]The structures of $G 3 P \mathrm{~s}$ on \mathbb{C}^{n} and $\mathbb{M}_{m \times n}(\mathbb{C})$, where these spaces are equipped with a symmetric norm, are described in [3]. The purpose of this paper is to give complete descriptions of the structures of $G 3 P \mathrm{~S}$ on the spaces of symmetric and skew-symmetric matrices when these spaces are equipped with a unitary congruence invariant norm.

2. Preliminaries and notation

Given two matrices $A, B \in \mathbb{M}_{n}(\mathbb{C})$, A is said to be unitarily similar to B if there exists a unitary $U \in \mathbb{M}_{n}(\mathbb{C})$ such that $A=U^{*} B U$. Similarly, A is said to be unitarily congruent to B if $A=U^{t} B U$ for some unitary $U \in \mathbb{M}_{n}(\mathbb{C})$. Unitary similarity is a natural equivalence relation in the study of normal or Hermitian matrices: $U^{*} A U$ is normal (resp., Hermitian) if U is unitary and A is normal (resp., Hermitian). Unitary congruence is a natural equivalence relation in the study of complex symmetric or skew-symmetric matrices: $U^{t} A U$ is symmetric (resp., skew symmetric) if U is unitary and A is symmetric (resp., skew symmetric). We refer the reader to [10] for more details on this subject.

Let us denote by
$S_{n}(\mathbb{C})$: the space of all $n \times n$ symmetric matrices over \mathbb{C},
$K_{n}(\mathbb{C})$: the space of all $n \times n$ skew-symmetric matrices over \mathbb{C}, and
$U\left(\mathbb{C}^{n}\right)$: the group of all unitary operators on \mathbb{C}^{n}.
We recall the definition of a unitary congruence invariant norm.
Definition 2.1. A norm on $X=S_{n}(\mathbb{C})$ or $K_{n}(\mathbb{C})$ is called unitary congruence invariant if for every $A \in X$ we have $\left\|U^{t} A U\right\|=\|A\|$ for all $U \in U\left(\mathbb{C}^{n}\right)$.

To characterize $G 3 P \mathrm{~s}$, we first need to identify the surjective linear isometries on $S_{n}(\mathbb{C})$ and $K_{n}(\mathbb{C})$ for unitary congruence invariant norms. The descriptions of the isometry group of these spaces are given in the following theorems.
Theorem 2.2 ([14, Theorem 2.8]). For a unitary congruence invariant norm on $S_{n}(\mathbb{C})$, which is not a multiple of the Frobenius norm, any isometry T is given by $T(A)=U^{t} A U$, where $U \in U\left(\mathbb{C}^{n}\right)$.
Theorem 2.3 ([14, Theorem 2.9]). For a unitary congruence invariant norm on $K_{n}(\mathbb{C}), n \neq 4$, which is not a multiple of the Frobenius norm, any isometry T is given by $T(A)=U^{t} A U$, where $U \in U\left(\mathbb{C}^{n}\right)$.

If $n=4$, then any isometry T is given by either $T(A)=U^{t} A U$ or $T(A)=$ $\psi\left(U^{t} A U\right)$, where $U \in U\left(\mathbb{C}^{n}\right)$ and $\psi(A)$ is obtained from A by interchanging its $(1,4)$ and $(2,3)$ entries, and interchanging its $(4,1)$ and $(3,2)$ entries.
Remark 2.4. In the remainder of the paper, whenever we mention that P_{0} is a $G 3 P$ and write $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}=T$, we will always mean that T, λ_{i}, and P_{i}, $i=1,2$, are as in Definition 1.1. The scalars λ_{1} and λ_{2} will sometimes be referred to as the scalars associated with P_{0}.
Remark 2.5. Let P_{0} be a $G 3 P$ on a Banach space X such that $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}=$ T. Then

$$
P_{0}=\frac{\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right)}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)}, \quad P_{1}=\frac{(T-I)\left(T-\lambda_{2} I\right)}{\left(\lambda_{1}-1\right)\left(\lambda_{1}-\lambda_{2}\right)}
$$

and

$$
P_{2}=\frac{(T-I)\left(T-\lambda_{1} I\right)}{\left(\lambda_{2}-1\right)\left(\lambda_{2}-\lambda_{1}\right)}
$$

The following lemma will be useful later. Its proof is similar to the proof of Lemma 2.1 in [2].

Lemma 2.6. Let X be a Banach space satisfying the following property:
whenever P is a projection on X such that $P+\lambda(I-P)$ is a surjective isometry, we have $\lambda=-1$.

Let P_{0} be a G3P on X such that $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}=T$. Then λ_{1} and λ_{2} are of the same order.

3. Structure of $G 3 P$ s for symmetric matrices

In this section, we characterize $G 3 P \mathrm{~s}$ on $S_{n}(\mathbb{C})$ with a unitary congruence invariant norm.

Remark 3.1. Suppose that $T: S_{n}(\mathbb{C}) \longrightarrow S_{n}(\mathbb{C})$ is defined by $T(A)=U^{t} A U$, where $U \in U\left(\mathbb{C}^{n}\right)$. Assume that U^{t} has eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ with eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$. Then T has eigenvalues $\mu_{i} \mu_{j}$ with eigenvectors $x_{i} x_{j}^{t}+x_{j} x_{i}^{t}$ for $1 \leq i, j \leq n$. To see this, observe that, for any two eigenvalues μ_{i} and μ_{j} of U^{t} with corresponding eigenvectors x_{i} and x_{j}, we have

$$
\begin{aligned}
T\left(x_{i} x_{j}^{t}+x_{j} x_{i}^{t}\right) & =U^{t}\left(x_{i} x_{j}^{t}+x_{j} x_{i}^{t}\right) U \\
& =U^{t} x_{i} x_{j}^{t} U+U^{t} x_{j} x_{i}^{t} U \\
& =\mu_{i} x_{i} \mu_{j} x_{j}^{t}+\mu_{j} x_{j} \mu_{i} x_{i}^{t} \\
& =\mu_{i} \mu_{j}\left(x_{i} x_{j}^{t}+x_{j} x_{i}^{t}\right) .
\end{aligned}
$$

Now, if λ is an eigenvalue of T with eigenvector A, then $U^{t} A U=\lambda A$ or $U^{t} A=$ $\lambda A U^{*}$. For an eigenvalue μ_{i} of U^{t} with eigenvector x_{i}, we have $U^{t} A \overline{x_{i}}=\lambda A U^{*} \overline{x_{i}}=$ $\lambda A \overline{\mu_{i} x_{i}}=\lambda \overline{\mu_{i}} A \overline{x_{i}}$. This implies that $\lambda \overline{\mu_{i}}$ is an eigenvalue of U^{t}, and hence $\lambda \overline{\mu_{i}}=\mu_{j}$ for some j. As eigenvalues of a unitary matrix are of a unit modulus, we have $\lambda=\mu_{i} \mu_{j}$ or $\lambda=\mu_{i}^{2}$ if $i=j$.

Theorem 3.2. Let $\|\cdot\|$ be a unitary congruence invariant norm on $S_{n}(\mathbb{C})$, which is not a multiple of the Frobenius norm, and let P_{0} be a G3P. Then there exist an integer p and $R_{i}=R_{i}^{*}=R_{i}^{2}$ in $\mathbb{M}_{n}(\mathbb{C})$ such that

$$
P_{0}(A)=\sum_{i=0}^{p-1} R_{i}^{t} A R_{(p-i)(\bmod p)}
$$

where
(i) $i=0,1, \ldots, p-1$ and p is an odd integer ≥ 3,
(ii) $R_{i} R_{j}=0$ for $i \neq j$,
(iii) $\sum_{i=0}^{p-1} R_{i}=I$.

Proof. Let $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}=T$ such that T is of the form $A \longmapsto U^{t} A U$ for some $U \in U\left(\mathbb{C}^{n}\right)$. The spectrum of T is $\left\{1, \lambda_{1}, \lambda_{2}\right\}$. Suppose that U has eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$. Then T has eigenvalues $\mu_{i} \mu_{j}, 1 \leq i, j \leq n$.

We claim that U can have two or three distinct eigenvalues.
To see the claim, suppose that U has one eigenvalue, say, μ. Then T will have eigenvalue μ^{2}, which is a contradiction.

If U has four distinct eigenvalues, say, $\mu_{1}, \mu_{2}, \mu_{3}$, and μ_{4}, then $\mu_{1} \mu_{2}, \mu_{1} \mu_{3}, \mu_{1} \mu_{4}$, and μ_{1}^{2} are distinct eigenvalues of T, which is impossible. Similarly, U cannot have more than four distinct eigenvalues.

So, we consider the following two steps.
Step I. Assume that μ_{1}, μ_{2}, and μ_{3} are distinct eigenvalues of U. Then the set $A=\left\{\mu_{1}^{2}, \mu_{1} \mu_{2}, \mu_{1} \mu_{3}, \mu_{2}^{2}, \mu_{2} \mu_{3}, \mu_{3}^{2}\right\}$ consists of eigenvalues of T. The elements μ_{1}^{2}, $\mu_{1} \mu_{2}, \mu_{1} \mu_{3}$ are all distinct. Therefore, $\mu_{2} \mu_{3}=\mu_{1}^{2}$, which implies that $\mu_{2}^{2}=\mu_{1} \mu_{3}$ and $\mu_{3}^{2}=\mu_{1} \mu_{2}$. Then $A=\left\{\mu_{1}^{2}, \mu_{2}^{2}, \mu_{3}^{2}\right\}$. Due to the symmetry of these elements, it is sufficient to consider $\mu_{1}^{2}=1, \mu_{2}^{2}=\lambda_{1}$, and $\mu_{3}^{2}=\lambda_{2}$. Thus, $\mu_{1} \mu_{3}=\lambda_{1}$, $\mu_{3}^{2}=\lambda_{2}=\lambda_{1}^{2}$, and $\mu_{2}^{2} \mu_{3}^{2}=1=\lambda_{1} \lambda_{2}$. Therefore, λ_{1} and λ_{2} are cube roots of unity, and hence $T^{3}(A)=A=X^{t} A X$ for all $A \in S_{n}(\mathbb{C})$, where $X=U^{3}$. Putting $A=I$, we have $X^{t} X=I$ or $X^{t}=X^{-1}$. This implies that $A=X^{t} A X=X^{-1} A X$ or $X A=A X$. But the centralizer of the space of symmetric matrices is $\pm I$, and so $X=I$ or $-I$.

Let $U^{3}=I$. We put

$$
R_{i}=\frac{I+\alpha_{i} U+\alpha_{i}^{2} U^{2}}{3}
$$

where $i=0,1,2, \alpha_{0}=1, \alpha_{1}=\omega$, and $\alpha_{2}=\omega^{2}$. Then we have

$$
P_{0} A=R_{0}^{t} A R_{0}+R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1} .
$$

Let $U^{3}=-I$. We put

$$
R_{i}=\frac{I-\alpha_{i} U+\alpha_{i}^{2} U^{2}}{3}
$$

where $i=0,1,2, \alpha_{0}=1, \alpha_{1}=\omega$, and $\alpha_{2}=\omega^{2}$. Then we obtain

$$
P_{0} A=R_{0}^{t} A R_{0}+R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1} .
$$

In both cases, it is straightforward to verify that $R_{i}=R_{i}^{*}=R_{i}^{2}$ for $i \neq j$, $R_{i} R_{j}=0$, and $R_{0}+R_{1}+R_{2}=I$; hence, the theorem is proved for $p=3$.

Step II. Suppose that U has two distinct eigenvalues, say, μ_{1} and μ_{2}. Then the spectrum of T will be $\left\{\mu_{1}^{2}, \mu_{2}^{2}, \mu_{1} \mu_{2}\right\}=\left\{1, \lambda_{1}, \lambda_{2}\right\}$.

Lemma 2.6 and [9, Proposition 5.1] imply that λ_{1} and λ_{2} have the same order. Let p be the order of λ_{1}.

Consider the following two cases:
(a) If $\mu_{1}^{2}=1, \mu_{2}^{2}=\lambda_{2}$, and $\mu_{1} \mu_{2}=\lambda_{1}$, then we get $\lambda_{1}^{2}=\lambda_{2}$ or $\lambda_{1}= \pm \sqrt{\lambda_{2}}$.

We first claim that $\lambda_{1} \neq-\sqrt{\lambda_{2}}$. To see this, if $\lambda_{1}=-\sqrt{\lambda_{2}}$, then we have $\lambda_{1}^{p}=\left(-\sqrt{\lambda_{2}}\right)^{p}=1$ or $(-1)^{p}\left(\lambda_{2}\right)^{p / 2}=1$. This shows that p is odd; otherwise,
$\left(\lambda_{2}\right)^{p / 2}=1$, which is a contradiction because the order of λ_{2} is p. Hence, we get $\left(\lambda_{2}\right)^{p / 2}=-1$. It follows that $\lambda_{1}^{p}=-1$, which is a contradiction since the order of λ_{1} is p.

Thus, we must have $\lambda_{1}=\sqrt{\lambda_{2}}$ and $\lambda_{1}^{p}=\left(\sqrt{\lambda_{2}}\right)^{p}=\left(\lambda_{2}\right)^{p / 2}=1$. This implies that p is odd. As the order of λ_{1} is p, we have $U^{p}=I$. Further, for $i=0,1, \ldots, p-1$, we have

$$
P_{0}+\lambda_{1}^{i} P_{1}+\lambda_{2}^{i} P_{2}=T^{i}
$$

Adding these equations, we get

$$
p P_{0}+\left(\sum_{i=0}^{p-1} \lambda_{1}^{i}\right) P_{1}+\left(\sum_{i=0}^{p-1} \lambda_{2}^{i}\right) P_{2}=I+T+T^{2}+\cdots+T^{p-1}
$$

Since $\sum_{i=0}^{p-1} \lambda_{1}^{i}=\sum_{i=0}^{p-1} \lambda_{2}^{i}=0$, we obtain

$$
P_{0}=\frac{I+T+T^{2}+\cdots+T^{p-1}}{p}
$$

We now define

$$
R_{i}=\frac{1}{p} \sum_{j=0}^{p-1} \lambda_{1}^{i j} U^{j}
$$

where $i=0,1, \ldots, p-1$. It can be easily verified that $R_{i}=R_{i}^{*}=R_{i}^{2}$ for $i \neq j$, $R_{i} R_{j}=0$, and $\sum_{i=0}^{p-1} R_{i}=I$.

Therefore, P_{0} will be of the form

$$
P_{0}(A)=\sum_{i=0}^{p-1} R_{i}^{t} A R_{(p-i)(\bmod p)}
$$

We can also get the form of P_{1} and P_{2}. We first observe that $P_{j}, j=1,2$, will have the form

$$
P_{j}=\frac{I+\overline{\lambda_{j}} T+{\overline{\lambda_{j}}}^{2} T^{2}+\cdots+{\overline{\lambda_{j}}}^{p-1} T^{p-1}}{p}
$$

But $\overline{\lambda_{j}}=\lambda_{j}^{p-1}$ and $\lambda_{1}^{2}=\lambda_{2}$, and so we get

$$
P_{1}(A)=\sum_{i=0}^{p-1} R_{i}^{t} A R_{(p-1-i)(\bmod p)} .
$$

Similarly,

$$
P_{2}(A)=\sum_{i=0}^{p-1} R_{i}^{t} A R_{(p-2-i)(\bmod p)}
$$

Here, we note that the order of λ_{1} and λ_{2} can be 3 .
(b) If $\mu_{1}^{2}=\lambda_{1}, \mu_{2}^{2}=\lambda_{2}$, and $\mu_{1} \mu_{2}=1$, then we get $\lambda_{1} \lambda_{2}=1$. Now,

$$
\begin{aligned}
T & =P_{0}+\lambda_{1} P_{1}+\overline{\lambda_{1}} P_{2} \\
& \Longrightarrow \lambda_{1} T=P_{2}+\lambda_{1} P_{0}+\lambda_{1}^{2} P_{1} .
\end{aligned}
$$

Because $\lambda_{1} T$ is again an isometry, we are reduced to the previous case, and so P_{2} will be of the form $P_{2}(A)=\sum_{i=0}^{p-1} R_{i}^{t} A R_{(p-i)(\bmod p)}$, where the R_{i} 's satisfy conditions (i)-(iii) of Theorem 3.2.

Proceeding in the same way as above, we can easily obtain the form of P_{0}.
This completes the proof.

4. Structure of $G 3 P$ s for skew-Symmetric matrices

In this section, we identify the structure of $G 3 P \mathrm{~S}$ on $K_{n}(\mathbb{C})$ with a unitary congruence invariant norm.

Remark 4.1. Suppose that $T: K_{n}(\mathbb{C}) \longrightarrow K_{n}(\mathbb{C})$ is defined by $T(A)=U^{t} A U$, where $U \in U\left(\mathbb{C}^{n}\right)$. Assume that U^{t} has eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ with eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$. Then, arguing in a similar fashion as we did in Remark 3.1, we can show that T has eigenvalues $\mu_{i} \mu_{j}$ with eigenvectors $x_{i} x_{j}^{t}-x_{j} x_{i}^{t}$ for $1 \leq$ $i<j \leq n$. Now, suppose that μ_{i} is an eigenvalue of multiplicity at least 2 and that x_{i}, y_{i} are the corresponding eigenvectors. In this case,

$$
\begin{aligned}
T\left(x_{i} y_{i}^{t}-y_{i} x_{i}^{t}\right) & =U^{t}\left(x_{i} y_{i}^{t}-y_{i} x_{i}^{t}\right) U \\
& =U^{t} x_{i} y_{i}^{t} U-U^{t} y_{i} x_{i}^{t} U \\
& =\mu_{i} x_{i} \mu_{i} y_{i}^{t}-\mu_{i} y_{i} \mu_{i} x_{i}^{t} \\
& =\mu_{i}^{2}\left(x_{i} y_{i}^{t}-y_{i} x_{i}^{t}\right) .
\end{aligned}
$$

Therefore, we conclude that μ_{i}^{2} is an eigenvalue of T if the multiplicity of the eigenvalue μ_{i} is at least 2 .

The following remark will be used in the proof of Theorem 4.3 (see the remark before Proposition 5.1 in [9]).

Remark 4.2. We note that the mapping on $K_{4}(\mathbb{C})$ defined by $A \longmapsto \psi\left(U A U^{t}\right)$ can be written as $A \longmapsto \operatorname{det}(U) W \psi(A) W^{t}$ with $W=R \bar{U} R$, where $R=E_{14}-$ $E_{23}+E_{32}-E_{41}$.

Since $K_{2}(\mathbb{C})$ is one-dimensional, we assume that $n \geq 3$.
Theorem 4.3. Let $\|\cdot\|$ be a unitary congruence invariant norm on $K_{n}(\mathbb{C})$ not equal to a multiple of the Frobenius norm, $n \geq 3$, and let P_{0} be a G3P. Suppose the scalars λ_{1} and λ_{2} associated with P_{0} are cube roots of unity. Then one and only one of the following assertions holds:
(a) There exist $R_{i}=R_{i}^{*}=R_{i}^{2}$ in $\mathbb{M}_{n}(\mathbb{C})$ such that $R_{i} R_{j}=0$ for $i \neq j$, $R_{0}+R_{1}+R_{2}=I$, and $P_{0}(A)=R_{0}^{t} A R_{0}+R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}$.
(b) $n=4$ and the isometry associated with P_{0} is of the form $A \longmapsto \psi\left(U A U^{t}\right)$. Then there exist $U \in U\left(\mathbb{C}^{4}\right), \alpha, \beta \in \mathbb{C}$ with $\alpha^{3}=\beta^{2}, \alpha=\frac{1}{\operatorname{det}(U)}$, and $V \in U\left(\mathbb{C}^{4}\right)$ such that $\psi\left(U^{t} A U\right)=\alpha V^{t} A V, V^{3}=\frac{1}{\beta} I$, and

$$
P_{0}(A)=\frac{A+\alpha V^{t} A V+\alpha^{2}\left(V^{t}\right)^{2} A V^{2}}{3}
$$

Proof. Let $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}=T$, where $T(A)=U^{t} A U$ for some $U \in U\left(\mathbb{C}^{n}\right)$. As λ_{1} and λ_{2} are cube roots of unity, we have $T^{3}=I$. Thus, for all $A \in K_{n}(\mathbb{C})$, $A=T^{3}(A)=X^{t} A X$, where $X=U^{3}$. This is possible if and only if $X=I$ or $-I$.

If $U^{3}=I$, then we define

$$
R_{i}=\frac{I+\alpha_{i} U+\alpha_{i}^{2} U^{2}}{3}, \quad i=0,1,2, \alpha_{0}=1, \alpha_{1}=\omega, \text { and } \alpha_{2}=\omega^{2}
$$

It follows that

$$
P_{0} A=R_{0}^{t} A R_{0}+R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1} .
$$

If $U^{3}=-I$, we define

$$
R_{i}=\frac{I-\alpha_{i} U+\alpha_{i}^{2} U^{2}}{3}, \quad i=0,1,2, \alpha_{0}=1, \alpha_{1}=\omega, \text { and } \alpha_{2}=\omega^{2}
$$

We conclude that P_{0} has the form

$$
A \longmapsto R_{0}^{t} A R_{0}+R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1} .
$$

In both cases, it can be easily verified that $R_{i}=R_{i}^{*}=R_{i}^{2}, R_{i} R_{j}=0$ for $i \neq j$, and $R_{0}+R_{1}+R_{2}=I$.

Thus, we get assertion (a).
Suppose that $n=4$ and that there is a $U \in U\left(\mathbb{C}^{4}\right)$ such that

$$
T(A)=\psi\left(U^{t} A U\right)=\operatorname{det}(U) W \psi(A) W^{t}
$$

with $W=R \bar{U} R$ and $R=E_{14}-E_{23}+E_{32}-E_{41}$. This implies that $\psi(T(A))=$ $\psi^{2}\left(U^{t} A U\right)=U^{t} A U$. Therefore,

$$
\begin{aligned}
T^{2}(A) & =T(T(A))=\psi\left(U^{t} T(A) U\right) \\
& =\operatorname{det}(U) W \psi(T(A)) W^{t} \\
& =\operatorname{det}(U) W U^{t} A U W^{t} \\
& =\operatorname{det}(U) X^{t} A X \quad \text { with } X=U W^{t}
\end{aligned}
$$

It follows that

$$
T^{3}(A)=T^{2}(T(A))=\operatorname{det}(U) X^{t} T(A) X
$$

Since $T^{3}=I$ and $X X^{*}=X^{*} X=I$, we get $T(A)=\alpha \bar{X} A X^{*}$, where $\alpha=\frac{1}{\operatorname{det}(U)}$. This implies that

$$
T^{2}(A)=\alpha^{2} \bar{X}^{2} A\left(X^{*}\right)^{2} \quad \text { and } \quad T^{3}(A)=\alpha^{3} \bar{X}^{3} A\left(X^{*}\right)^{3}
$$

Since T^{3} is the identity operator, there exists $\beta \in \mathbb{C}$ with $\beta^{2}=\alpha^{3}$ such that $I=\beta\left(X^{*}\right)^{3}$.

Hence, assertion (b) is proved.
Theorem 4.4. Let $\|\cdot\|$ be a unitary congruence invariant norm on $K_{n}(\mathbb{C})$ not equal to a multiple of the Frobenius norm, $n \geq 3$, and let P_{0} be a G3P. Suppose the scalars λ_{1} and λ_{2} associated with P_{0} are not cube roots of unity and $n \neq 4$. Then there exist $R_{i}=R_{i}^{*}=R_{i}^{2}$ in $\mathbb{M}_{n}(\mathbb{C}), i=1, \ldots, p$ with $R_{i} R_{j}=0$ for $i \neq j$, $R_{i}^{t} A R_{i}=0$ for all $A \in K_{n}(\mathbb{C})$, and $U \in U\left(\mathbb{C}^{n}\right)$ such that one and only one of the following assertions holds:
(a) U has three distinct eigenvalues and each has multiplicity one, and $P_{0}(A)=$ $A-\left(A R_{1}+A R_{2}\right)+\left(A R_{1}+A R_{2}\right)^{t}+2\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)$.
(b) U has two distinct eigenvalues, and $P_{0}(A)$ is equal to one of the following:
(i) $\sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)-2 \sum_{\substack{i, j=1 \\ i \neq j}}^{p} R_{i}^{t} A R_{j}$;
(ii) $\sum_{\substack{i, j=1 \\ i \neq j}}^{p} R_{i}^{t} A R_{j}$.
(c) U has three distinct eigenvalues and only one has multiplicity greater than 1. Then $P_{0}(A)$ is equal to one of the following:
(i) $A R_{1}+R_{1}^{t} A-R_{1}^{t} A R_{2}-R_{2}^{t} A R_{1}$;
(ii) $A-\left(A R_{1}+A R_{2}\right)+\left(A R_{1}+A R_{2}\right)^{t}+2\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)$.

Remark 4.5. In the case when $n=4$, we were not able to find the structure of the $G 3 P P_{0}$. Note that if P is $G B P$ on $\mathbb{K}_{4}(\mathbb{F})$, where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}, then the scalar associated with P is -1 (see Proposition 5.2 in [9]).

Since the proof of the above theorem is long, we divide it into lemmas and propositions.

Let $P_{0}+\lambda_{1} P_{1}+\lambda_{2} P_{2}=T$, where $T(A)=U^{t} A U$ for some $U \in U\left(\mathbb{C}^{n}\right)$. Suppose that U has m distinct eigenvalues, say, $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$.

We will first prove that the unitary matrix U has two or three distinct eigenvalues. If U has three distinct eigenvalues, then only one can have multiplicity greater than 1. In all the possible cases we will identify the structure of the G3Ps P_{0}. As we will see later, we use the spectral theorem for normal matrices, which states that any normal matrix A is unitary diagonalizable; that is, there exists a $W \in U\left(\mathbb{C}^{n}\right)$ such that $A=W^{*} D W$, where D is a diagonal matrix.

Let us set some notation. Let $\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right\} \quad\left(k \leq n\right.$ and $\mu_{i} \neq \mu_{j}$ with $\left.i \neq j\right)$ be the eigenvalues of U with multiplicities $n_{1}, \ldots, n_{k}\left(n_{i} \geq 1\right)$, respectively. Remark 4.1 states that $\mu_{i} \mu_{j}(i \neq j)$ is an eigenvalue of T. We observe that $k>1$, since otherwise $U=\mu I$ and $T=\mu^{2} I$. We also observe that if $k=2$, then $n_{i} \geq 2$ for $i=1,2$.

Lemma 4.6. If $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ are k distinct eigenvalues of U, then $k=2$ or $k=3$.

Proof. Suppose $k \geq 4$. Then $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$ are all distinct. We have that $\mu_{1} \mu_{2}$, $\mu_{1} \mu_{3}, \mu_{1} \mu_{4}$ are also distinct and eigenvalues of T. This implies that

$$
\mu_{2} \mu_{3}=\mu_{1} \mu_{4}, \quad \mu_{2} \mu_{4}=\mu_{1} \mu_{3}, \quad \text { and } \quad \mu_{3} \mu_{4}=\mu_{1} \mu_{2}
$$

Therefore,

$$
\mu_{2} \mu_{3}^{2}=\mu_{1} \mu_{3} \mu_{4}=\mu_{2} \mu_{4}^{2} \quad \text { and } \quad \mu_{3}=-\mu_{4}
$$

Further, $\mu_{3}^{2} \mu_{4}=\mu_{2}^{2} \mu_{4}$, implying that $\mu_{3}=-\mu_{2}$. This leads to an absurdity since $\mu_{2} \neq \mu_{4}$. This shows that $k \leq 3$ and completes the proof.
Lemma 4.7. If $k=3$, then the unitary matrix U can have only one eigenvalue with multiplicity greater than 1.

Proof. Suppose otherwise that μ_{1}, μ_{2}, and μ_{3} are eigenvalues of U such that $n_{i}>1$ $\forall i=1,2,3$. Then the set $A=\left\{\mu_{1}^{2}, \mu_{1} \mu_{2}, \mu_{1} \mu_{3}, \mu_{2}^{2}, \mu_{2} \mu_{3}, \mu_{3}^{2}\right\}$ consists of eigenvalues
of T. Proceeding exactly as in Step I of Theorem 3.2, we have that λ_{1}, λ_{2} are cube roots of unity. This is impossible since $\lambda_{1}+\lambda_{2} \neq-1$.

Now, suppose that $n_{i}>1$ for $i=1,2$. Then $A=\left\{\mu_{1}^{2}, \mu_{1} \mu_{2}, \mu_{1} \mu_{3}, \mu_{2}^{2}, \mu_{2} \mu_{3}\right\}$ and $\mu_{1}^{2}=\mu_{2} \mu_{3}, \mu_{2}^{2}=\mu_{1} \mu_{3}$. This implies that $\mu_{1}^{2} \mu_{2}^{2}=\mu_{1} \mu_{2} \mu_{3}^{2}$ or $\mu_{3}^{2}=\mu_{1} \mu_{2}$, and we are back to the previous case. This completes the proof.

Now, we find the structure of P_{0} in all the possible cases.
Proposition 4.8. With the assumptions of Theorem 4.4, suppose that the unitary matrix U has three distinct eigenvalues each with multiplicity 1. Then there exist $R_{i}=R_{i}^{*}=R_{i}^{2}$ in $\mathbb{M}_{n}(\mathbb{C}), i=1,2$ with $R_{i} R_{j}=0$ for $i \neq j$, and $R_{i}^{t} A R_{i}=0$ for all $A \in K_{n}(\mathbb{C})$ such that

$$
P_{0}(A)=A-\left(A R_{1}+A R_{2}\right)+\left(A R_{1}+A R_{2}\right)^{t}+2\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)
$$

Proof. Suppose that μ_{1}, μ_{2}, and μ_{3} are the eigenvalues of U. Since $n_{i}=1, \forall i=$ $1,2,3$, we have $n=3$. Moreover, the spectrum of T will be $\left\{\mu_{1} \mu_{2}, \mu_{1} \mu_{3}, \mu_{2} \mu_{3}\right\}$, which is equal to $\left\{1, \lambda_{1}, \lambda_{2}\right\}$.

Without loss of generality, we can assume that $\mu_{1} \mu_{2}=1, \mu_{1} \mu_{3}=\lambda_{1}$, and $\mu_{2} \mu_{3}=\lambda_{2}$. By the spectral theorem for normal matrices, there exists a unitary matrix W such that

$$
\begin{aligned}
U & =W^{*} \operatorname{diag}\left(\mu_{1}, \mu_{2}, \mu_{3}\right) W=W^{*}\left(\mu_{1} E_{11}+\mu_{2} E_{22}+\mu_{3} E_{33}\right) W \\
& =W^{*}\left(\mu_{1} E_{11}+\mu_{2} E_{22}+\mu_{3}\left(I-E_{11}-E_{22}\right)\right) W
\end{aligned}
$$

Let $R_{i}=W^{*} E_{i i} W, i=1,2$. Then we have $R_{i}^{t}=W^{t} E_{i i} \bar{W}$. This implies that

$$
U=\mu_{3} I+\left(\mu_{1}-\mu_{3}\right) R_{1}+\left(\mu_{2}-\mu_{3}\right) R_{2} .
$$

We observe that $E_{i i} A E_{i i}=0$ for all $A \in K_{n}(\mathbb{C})$, and hence we get $R_{1}^{t} A R_{1}=$ $R_{2}^{t} A R_{2}=0$. Now, we have

$$
\begin{aligned}
T(A)= & U^{t} A U \\
= & {\left[\mu_{3} A+\left(\mu_{1}-\mu_{3}\right) R_{1}^{t} A+\left(\mu_{2}-\mu_{3}\right) R_{2}^{t} A\right] } \\
& \times\left[\mu_{3} I+\left(\mu_{1}-\mu_{3}\right) R_{1}+\left(\mu_{2}-\mu_{3}\right) R_{2}\right] \\
= & \mu_{3}^{2} A+\mu_{3}\left(\mu_{1}-\mu_{3}\right)\left(A R_{1}+R_{1}^{t} A\right)+\mu_{3}\left(\mu_{2}-\mu_{3}\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& +\left(\mu_{1}-\mu_{3}\right)\left(\mu_{2}-\mu_{3}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right) \\
= & \lambda_{1} \lambda_{2} A+\lambda_{1}\left(1-\lambda_{2}\right)\left(A R_{1}+R_{1}^{t} A\right)+\lambda_{2}\left(1-\lambda_{1}\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& +\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right) .
\end{aligned}
$$

Similarly, we can show that

$$
\begin{aligned}
T^{2}(A)= & \mu_{3}^{4} A+\mu_{3}^{2}\left(\mu_{1}^{2}-\mu_{3}^{2}\right)\left(A R_{1}+R_{1}^{t} A\right)+\mu_{3}^{2}\left(\mu_{2}^{2}-\mu_{3}^{2}\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& +\left(\mu_{1}^{2}-\mu_{3}^{2}\right)\left(\mu_{2}^{2}-\mu_{3}^{2}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right) \\
= & \lambda_{1}^{2} \lambda_{2}^{2} A+\lambda_{1}^{2}\left(1-\lambda_{2}^{2}\right)\left(A R_{1}+R_{1}^{t} A\right)+\lambda_{2}^{2}\left(1-\lambda_{1}^{2}\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& +\left(1-\lambda_{1}^{2}\right)\left(1-\lambda_{2}^{2}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
P_{0}(A) & =\frac{T^{2}(A)-\left(\lambda_{1}+\lambda_{2}\right) T(A)+\lambda_{1} \lambda_{2} A}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)} \\
& =\lambda_{1} \lambda_{2}\left[A-A R_{1}-R_{1}^{t} A-A R_{2}-R_{2}^{t} A\right]+\left(1+\lambda_{1} \lambda_{2}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)
\end{aligned}
$$

Computing $P_{0}^{2}(A)$ and using the fact that P_{0} is a projection, we get $\lambda_{1} \lambda_{2}=1$. Therefore,

$$
P_{0}(A)=A-\left(A R_{1}+A R_{2}\right)+\left(A R_{1}+A R_{2}\right)^{t}+2\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)
$$

This completes the proof of assertion (a) of Theorem 4.4
Proposition 4.9. With the assumptions of Theorem 4.4, suppose that U has two distinct eigenvalues. Then $P_{0}(A)$ is equal to one of the following:
(a) $\sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)-2 \sum_{\substack{i, j=1 \\ i \neq j}}^{p} R_{i}^{t} A R_{j}$;
(b) $\sum_{\substack{i, j=1 \\ i \neq j}}^{p} R_{i}^{t} A R_{j}$.

Proof. Suppose that μ_{1} and μ_{2} are the two distinct eigenvalues of U with $n_{i} \geq 2$. Thus, the spectrum of T is $\left\{\mu_{1}^{2}, \mu_{2}^{2}, \mu_{1} \mu_{2}\right\}=\left\{1, \lambda_{1}, \lambda_{2}\right\}$.

If $\mu_{1}^{2}=\lambda_{1}, \mu_{2}^{2}=\lambda_{2}$, and $\mu_{1} \mu_{2}=1$, then we get $\lambda_{1} \lambda_{2}=1$.
If $\mu_{1}^{2}=1, \mu_{2}^{2}=\lambda_{2}$, and $\mu_{1} \mu_{2}=\lambda_{1}$, then we get $\lambda_{2}=\lambda_{1}^{2}$.
Consequently, the eigenvalues of U will have one of the following patterns:
(a) $\sqrt{\lambda_{1}}, \sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \sqrt{\lambda_{2}}, \ldots, \sqrt{\lambda_{2}}$,
(b) $-\sqrt{\lambda_{1}},-\sqrt{\lambda_{1}}, \ldots,-\sqrt{\lambda_{1}},-\sqrt{\lambda_{2}},-\sqrt{\lambda_{2}}, \ldots,-\sqrt{\lambda_{2}}$,
(c) $1,1, \ldots, 1, \lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}$, or
(d) $-1,-1, \ldots,-1,-\lambda_{1},-\lambda_{1}, \ldots,-\lambda_{1}$.

Now, there exists a unitary matrix W such that

$$
U=W^{*} \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{1}, \mu_{2}, \ldots, \mu_{2}\right) W
$$

Suppose the multiplicities of μ_{1} and μ_{2} are p and q, respectively. Then we have

$$
\begin{aligned}
U & =W^{*}\left(\mu_{1} E_{11}+\cdots+\mu_{1} E_{p p}+\mu_{2} E_{p+1 p+1}+\cdots+\mu_{2} E_{n n}\right) W \\
& =W^{*}\left(\mu_{1} E_{11}+\cdots+\mu_{1} E_{p p}+\mu_{2}\left(I-E_{11}-\cdots-E_{p p}\right)\right) W \\
& =\mu_{2} I+\left(\mu_{1}-\mu_{2}\right) W^{*}\left(E_{11}+\cdots+E_{p p}\right) W .
\end{aligned}
$$

Let $R_{i}=W^{*} E_{i i} W, i=1, \ldots, p$ so that we get

$$
U=\mu_{2} I+\left(\mu_{1}-\mu_{2}\right)\left(R_{1}+\cdots+R_{p}\right)
$$

As we observed earlier, $R_{i}^{t} A R_{i}=0$ for all $A \in K_{n}(\mathbb{C})$. Consequently, we have

$$
\begin{aligned}
T(A) & =U^{t} A U \\
& =\left[\mu_{2} A+\left(\mu_{1}-\mu_{2}\right)\left(R_{1}^{t} A+\cdots+R_{p}^{t} A\right)\right]\left[\mu_{2} I+\left(\mu_{1}-\mu_{2}\right)\left(R_{1}+\cdots+R_{p}\right)\right] \\
& =\mu_{2}^{2} A+\mu_{2}\left(\mu_{1}-\mu_{2}\right) \sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)+\left(\mu_{1}-\mu_{2}\right)^{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{p} R_{i}^{t} A R_{j} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
T^{2}(A) & =\left[\mu_{2}^{2} A+\left(\mu_{1}^{2}-\mu_{2}^{2}\right)\left(R_{1}^{t} A+\cdots+R_{p}^{t} A\right)\right]\left[\mu_{2}^{2} I+\left(\mu_{1}^{2}-\mu_{2}^{2}\right)\left(R_{1}+\cdots+R_{p}\right)\right] \\
& =\mu_{2}^{4} A+\mu_{2}^{2}\left(\mu_{1}^{2}-\mu_{2}^{2}\right) \sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)+\left(\mu_{1}^{2}-\mu_{2}^{2}\right)^{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{p} R_{i}^{t} A R_{j} .
\end{aligned}
$$

If (a) or (b) holds, then the expressions of $T(A)$ and $T^{2}(A)$ become

$$
\begin{aligned}
T(A) & =\lambda_{2} A+\left(1-\lambda_{2}\right) \sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)+\left(\lambda_{1}+\lambda_{2}-2\right) \sum_{\substack{i, j=1 \\
i \neq j}}^{p} R_{i}^{t} A R_{j}, \\
T^{2}(A) & =\lambda_{2}^{2} A+\left(1-\lambda_{2}^{2}\right) \sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)+\left(\lambda_{1}^{2}+\lambda_{2}^{2}-2\right) \sum_{\substack{i, j=1 \\
i \neq j}}^{p} R_{i}^{t} A R_{j} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
P_{0}(A) & =\frac{T^{2}(A)-\left(\lambda_{1}+\lambda_{2}\right) T(A)+\lambda_{1} \lambda_{2} A}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)} \\
& =\sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)-2 \sum_{\substack{i, j=1 \\
i \neq j}}^{p} R_{i}^{t} A R_{j}
\end{aligned}
$$

If (c) or (d) holds, then the expressions of $T(A)$ and $T^{2}(A)$ are

$$
\begin{aligned}
T(A) & =\lambda_{1}^{2} A+\left(\lambda_{1}-\lambda_{1}^{2}\right) \sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)+\left(1-\lambda_{1}\right)^{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{p} R_{i}^{t} A R_{j}, \\
T^{2}(A) & =\lambda_{1}^{4} A+\left(\lambda_{1}^{2}-\lambda_{1}^{4}\right) \sum_{i=1}^{p}\left(A R_{i}+R_{i}^{t} A\right)+\left(1-\lambda_{1}^{2}\right)^{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{p} R_{i}^{t} A R_{j} .
\end{aligned}
$$

Now, we have

$$
P_{0}(A)=\sum_{\substack{i, j=1 \\ i \neq j}}^{p} R_{i}^{t} A R_{j} .
$$

This completes the proof of assertion (b) of Theorem 4.4.
Proposition 4.10. With the assumptions of Theorem 4.4, suppose that U has three distinct eigenvalues and only one with multiplicity greater than 1. Then $P_{0}(A)$ is equal to one of the following:
(a) $A R_{1}+R_{1}^{t} A-R_{1}^{t} A R_{2}-R_{2}^{t} A R_{1}$;
(b) $A-\left(A R_{1}+A R_{2}\right)+\left(A R_{1}+A R_{2}\right)^{t}+2\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)$.

Proof. Suppose that U has three distinct eigenvalues, say, $\mu_{1}, \mu_{2}, \mu_{3}$ with $n_{1}>1$. Thus, the spectrum of T will be

$$
\left\{\mu_{1}^{2}, \mu_{1} \mu_{2}, \mu_{2} \mu_{3}, \mu_{1} \mu_{3}\right\}=\left\{1, \lambda_{1}, \lambda_{2}\right\} .
$$

This is possible only if $\mu_{1}^{2}=\mu_{2} \mu_{3}$. As a result, there are two possibilities:
(i) $\mu_{1}^{2}=\lambda_{1}, \mu_{1} \mu_{2}=1, \mu_{1} \mu_{3}=\lambda_{2}$, and
(ii) $\mu_{1}^{2}=1, \mu_{1} \mu_{2}=\lambda_{1}, \mu_{1} \mu_{3}=\lambda_{2}$.

If (i) holds, then $\lambda_{1}^{2}=\mu_{1}^{2} \mu_{1}^{2}=\mu_{1}^{2} \mu_{2} \mu_{3}=\lambda_{2}$.
If (ii) holds, then $\lambda_{1} \lambda_{2}=\mu_{1} \mu_{2} \mu_{1} \mu_{3}=\mu_{1}^{2} \mu_{2} \mu_{3}=\mu_{1}^{4}=1$.
Consequently, the eigenvalues of U will have one of the following patterns:
(a) $\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{1}}, \frac{1}{\sqrt{\lambda_{1}}}, \frac{\lambda_{2}}{\sqrt{\lambda_{1}}}$,
(b) $-\sqrt{\lambda_{1}}, \ldots,-\sqrt{\lambda_{1}},-\frac{1}{\sqrt{\lambda_{1}}},-\frac{\lambda_{2}}{\sqrt{\lambda_{1}}}$,
(c) $1, \ldots, 1, \lambda_{1}, \lambda_{2}$, or
(d) $-1, \ldots,-1,-\lambda_{1},-\lambda_{2}$.

Thus, there exists a unitary matrix W such that

$$
\begin{aligned}
U & =W^{*} \operatorname{diag}\left(\mu_{2}, \mu_{3}, \mu_{1}, \ldots, \mu_{1}\right) W \\
& =W^{*}\left[\mu_{2} E_{11}+\mu_{3} E_{22}+\mu_{1}\left(I-E_{11}-E_{22}\right)\right] W
\end{aligned}
$$

Using the previous notation, we get

$$
\begin{aligned}
U & =\mu_{2} R_{1}+\mu_{3} R_{2}+\mu_{1}\left(I-R_{1}-R_{2}\right) \\
& =\mu_{1} I+\left(\mu_{2}-\mu_{1}\right) R_{1}+\left(\mu_{3}-\mu_{1}\right) R_{2}
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
T(A)= & U^{t} A U \\
= & {\left[\mu_{1} A+\left(\mu_{2}-\mu_{1}\right) R_{1}^{t} A+\left(\mu_{3}-\mu_{1}\right) R_{2}^{t} A\right] } \\
& \times\left[\mu_{1} I+\left(\mu_{2}-\mu_{1}\right) R_{1}+\left(\mu_{3}-\mu_{1}\right) R_{2}\right] \\
= & \mu_{1}^{2} A+\mu_{1}\left(\mu_{2}-\mu_{1}\right)\left(A R_{1}+R_{1}^{t} A\right)+\mu_{1}\left(\mu_{3}-\mu_{1}\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& +\left(\mu_{2}-\mu_{1}\right)\left(\mu_{3}-\mu_{1}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
T^{2}(A)= & \mu_{1}^{4} A+\mu_{1}^{2}\left(\mu_{2}^{2}-\mu_{1}^{2}\right)\left(A R_{1}+R_{1}^{t} A\right)+\mu_{1}^{2}\left(\mu_{3}^{2}-\mu_{1}^{2}\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& +\left(\mu_{2}^{2}-\mu_{1}^{2}\right)\left(\mu_{3}^{2}-\mu_{1}^{2}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right) .
\end{aligned}
$$

If (a) or (b) holds, then we have

$$
\begin{aligned}
T(A)= & \lambda_{1} A+\left(1-\lambda_{1}\right)\left(A R_{1}+R_{1}^{t} A\right)+\left(\lambda_{1}^{2}-\lambda_{1}\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& -\left(1-\lambda_{1}\right)^{2}\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
T^{2}(A)= & \lambda_{1}^{2} A+\left(1-\lambda_{1}^{2}\right)\left(A R_{1}+R_{1}^{t} A\right)+\left(\lambda_{1}^{4}-\lambda_{1}^{2}\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& -\left(1-\lambda_{1}^{2}\right)^{2}\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)
\end{aligned}
$$

Therefore, $P_{0}(A)$ will have the form

$$
A \longmapsto A R_{1}+R_{1}^{t} A-R_{1}^{t} A R_{2}-R_{2}^{t} A R_{1} .
$$

If (c) or (d) holds, then we have

$$
\begin{aligned}
T(A)= & A+\left(\lambda_{1}-1\right)\left(A R_{1}+R_{1}^{t} A\right)+\left(\lambda_{2}-1\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& +\left(2-\lambda_{1}-\lambda_{2}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
T^{2}(A)= & A+\left(\lambda_{1}^{2}-1\right)\left(A R_{1}+R_{1}^{t} A\right)+\left(\lambda_{2}^{2}-1\right)\left(A R_{2}+R_{2}^{t} A\right) \\
& +\left(2-\lambda_{1}^{2}-\lambda_{2}^{2}\right)\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right) .
\end{aligned}
$$

Therefore, $P_{0}(A)$ will have the form

$$
A \longmapsto A-\left(A R_{1}+A R_{2}\right)+\left(A R_{1}+A R_{2}\right)^{t}+2\left(R_{1}^{t} A R_{2}+R_{2}^{t} A R_{1}\right)
$$

This completes the proof of assertion (c) of Theorem 4.4.
Hence, the proof of Theorem 4.4 is complete.

5. Remarks

It is interesting to note here that the techniques used above to describe G3Ps in the spaces of complex symmetric and skew-symmetric matrices may be used to describe $G n P \mathrm{~s}$ as well for $n>3$. However, as is evident from the proofs, the number of cases to be considered becomes increasingly larger and larger with greater values of n.

As pointed out in Remark 4.5, the structure of $G 3 P$ on $K_{n}(\mathbb{C})$ is still unknown when $n=4$. We end this paper by stating the following conjecture.

Conjecture 5.1. Let $\|\cdot\|$ be a unitary congruence invariant norm on $K_{4}(\mathbb{C})$, and let P_{0} be a G3P. Then the scalars associated with P_{0} are cube roots of unity.

Acknowledgments. I offer my gratitude to Dr. Sudipta Dutta for many insightful discussions throughout the preparation of this paper. I also would like to thank the referee for his or her careful review and valuable comments, which provided insights that helped to improve the paper. The referee made many suggestions that helped make the proofs precise and more elegant. The present versions of the proofs of Lemmas 4.6 and 4.7 are actually due to the referee.

References

1. A. B. Abubaker, F. Botelho, and J. Jamison, Representation of generalized bi-circular projections on Banach spaces, Acta Sci. Math. (Szeged) 80 (2014), nos. 3-4, 591-601. Zbl pre06384159. MR3307048. DOI 10.14232/actasm-012-060-2. 452
2. A. B. Abubaker and S. Dutta, Projections in the convex hull of three surjective isometries on $C(\Omega)$, J. Math. Anal. Appl. 379 (2011), no. 2, 878-888. Zbl 1216.47001. MR2784368. DOI 10.1016/j.jmaa.2011.02.025. 452, 454
3. A. B. Abubaker and S. Dutta, Structures of generalized 3-circular projections for symmetric norms, Proc. Indian Acad. Sci. Math. Sci. published electronically 2 April 2016. DOI 10.1007/s12044-016-0280-9. 452, 453
4. S. J. Bernau and H. E. Lacey, Bicontractive projections and reordering of L_{p}-spaces, Pacific J. Math. 69 (1977), no. 2, 291-302. Zbl 0351.46005. MR0487416. 452
5. F. Botelho and J. Jamison, Generalized bi-circular projections on minimal ideals of operators, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1397-1402. Zbl 1135.47013. MR2367112. DOI 10.1090/S0002-9939-07-09134-4. 452
6. F. Botelho and J. Jamison, Generalized bi-circular projections on $C(\Omega, X)$, Rocky Mountain J. Math. 40 (2010), no. 1, 77-83. Zbl 1190.47021. MR2607109. DOI 10.1216/ RMJ-2010-40-1-77. 452
7. F. Botelho and J. Jamison, Algebraic reflexivity of sets of bounded operators on vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), no. 12, 3337-3342. Zbl 1190.47034. MR2639287. DOI 10.1016/j.laa.2010.01.026. 452
8. S. Dutta and T. S. S. R. K. Rao, Algebraic reflexivity of some subsets of the isometry group, Linear Algebra Appl. 429 (2008), no. 7, 1522-1527. Zbl 1153.47061. MR2444339. DOI 10.1016/j.laa.2008.04.024. 452
9. M. Fošner, D. Ilišević, and C. K. Li, G-invariant norms and bicircular projections, Linear Algebra Appl. 420 (2007), nos. 2-3, 596-608. Zbl 1110.15025. MR2278235. DOI 10.1016/ j.laa.2006.08.014. 451, 452, 455, 457, 459
10. R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge Univ. Press, Cambridge, 2013. MR2978290. 453
11. D. Ilišević, Generalized bicircular projections on $J B^{*}$-triples, Linear Algebra Appl. 432 (2010), no. 5, 1267-1276. Zbl 1192.46065. MR2577624. DOI 10.1016/j.laa.2009.10.037. 452
12. R. King, Generalized bi-circular projections on certain Hardy spaces, J. Math. Anal. Appl. 408 (2013), no. 1, 35-39. Zbl pre06408438. MR3079944. DOI 10.1016/j.jmaa.2013.05.057. 452
13. H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Grundlehren Math. Wiss. 208, Springer, New York, 1974. MR0493279. 452
14. C. K. Li, "Some aspects of the theory of norms" in Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993), Linear Algebra Appl. 212-213 (1994), 71-100. MR1306973. DOI 10.1016/0024-3795(94)90397-2. 453
15. C. K. Li, Norms, isometries, and isometry Groups, Amer. Math. Monthly 107 (2000), no. 4, 334-340. Zbl 1049.46004. MR1763059. DOI 10.2307/2589178. 452
16. A. Lima, Intersection properties of balls in spaces of compact operators, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 35-65. Zbl 0347.46018. MR0511813. 452
17. P. K. Lin, Generalized bi-circular projections, J. Math. Anal. Appl. 340 (2008), no. 1, 1-4. Zbl 1145.47019. MR2376132. DOI 10.1016/j.jmaa.2007.07.017. 452
18. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 112 (1964), no. 48. MR0179580. 452

Department of Applied Sciences, Indian Institute of Information Technology Allahabad, India.

E-mail address: abdullahmath@gmail.com

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Mar. 16, 2015; Accepted Aug. 17, 2015.
 2010 Mathematics Subject Classification. Primary 46B20; Secondary 47L05.
 Keywords. spectral theorem, isometry, generalized 3-circular projection, unitary congruence invariant norm.

