
Banach J. Math. Anal. 10 (2016), no. 2, 400–414

http://dx.doi.org/10.1215/17358787-3495759

ISSN: 1735-8787 (electronic)

http://projecteuclid.org/bjma

NONCONVEX PROXIMAL NORMAL STRUCTURE IN CONVEX
METRIC SPACES

MOOSA GABELEH* and OLIVIER OLELA OTAFUDU

To Professor Jamshid Moori on the occasion of his 70th birthday

Communicated by W. B. Moors

Abstract. Given that A and B are two nonempty subsets of the convex
metric space (X, d,W), a mapping T : A ∪ B → A ∪ B is noncyclic relatively
nonexpansive, provided that T (A) ⊆ A, T (B) ⊆ B, and d(Tx, Ty) ≤ d(x, y)
for all (x, y) ∈ A×B. A point (p, q) ∈ A×B is called a best proximity pair for
the mapping T if p = Tp, q = Tq, and d(p, q) = dist(A,B). In this work, we
study the existence of best proximity pairs for noncyclic relatively nonexpansive
mappings by using the notion of nonconvex proximal normal structure. In this
way, we generalize a main result of Eldred, Kirk, and Veeramani. We also
establish a common best proximity pair theorem for a commuting family of
noncyclic relatively nonexpansive mappings in the setting of convex metric
spaces, and as an application we conclude a common fixed-point theorem.

1. Introduction

Let (A,B) be a pair of subsets of a metric space (X, d). A mapping T : A ∪
B → A ∪ B is said to be noncyclic provided that T (A) ⊆ A and T (B) ⊆ B.
A point (p, q) ∈ A × B is called a best proximity pair if p = Tp, q = Tq, and
d(p, q) = dist(A,B) is satisfied, where dist(A,B) := inf{d(x, y) : (x, y) ∈ A×B}.
Eldred, Kirk, and Veeramani [4] proved the existence of a best proximity pair for
a relatively nonexpansive mapping using the geometric notion of proximal normal
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structure. They also obtained the following theorem in uniformly convex Banach
spaces.

Theorem 1.1 (see [4, Corollary 2.2]). Let A and B be two nonempty, bounded,
closed, and convex subsets of a uniformly convex Banach space X, and let T :
A ∪ B → A ∪ B be a noncyclic relatively nonexpansive mapping; that is, T is
noncyclic and ‖Tx − Ty‖ ≤ ‖x − y‖ for all (x, y) ∈ A × B. Then T has a best
proximity pair.

We mention that Theorem 1.1 is based on the fact that every nonempty,
bounded, closed, and convex pair of subsets of a uniformly convex Banach space
X has a proximal normal structure, and so the result follows from Theorem 2.2
of [4] (see also [6] for a different approach to the same problem).

This paper is organized as follows: in Section 2, we recall some definitions, con-
cepts, and previous results that we will need. In Section 3, we introduce a geomet-
ric notion of a nonconvex proximal normal structure and use it to investigate the
existence of best proximity pairs for noncyclic relatively nonexpansive mappings
in the setting of convex metric spaces. In this way, we obtain a generalization of
Theorem 1.1. Finally, in Section 4, we establish a common best proximity pair
theorem for a commuting family of noncyclic relatively nonexpansive mappings.

2. Preliminaries

Throughout this paper, we shall say that a pair (A,B) of subsets of a metric
space (X, d) satisfies a property if both A and B satisfy that property. For exam-
ple, (A,B) is closed if and only if both A and B are closed; (A,B) ⊆ (C,D) ⇔
A ⊆ C, andB ⊆ D. We shall also adopt the notation

δx(A) = sup
{
d(x, y) : y ∈ A

}
for all x ∈ X,

δ(A,B) = sup
{
δx(B) : x ∈ A

}
,

diam(A) = δ(A,A),

D(x,A) = dist
(
{x}, A

)
, for all x ∈ X.

Given that (A,B) is a pair of nonempty subsets of a metric space, then its prox-
imal pair is the pair (A0, B0) given by

A0 =
{
x ∈ A : d(x, y′) = dist(A,B) for some y′ ∈ B

}
,

B0 =
{
y ∈ B : d(x′, y) = dist(A,B) for some x′ ∈ A

}
.

Proximal pairs may be empty, but, in particular, if (A,B) is a nonempty and
compact pair in a metric space (X, d), then (A0, B0) is nonempty. A pair of sets
(A,B) is said to be proximinal if A = A0 and B = B0.

In [10], Takahashi introduced the notion of convexity in metric spaces as follows.

Definition 2.1. Let (X, d) be a metric space, and let I := [0, 1]. A mapping
W : X × X × I → X is said to be a convex structure on X provided that, for
each (x, y, λ) ∈ X ×X × I and u ∈ X,

d
(
u,W(x, y, λ)

)
≤ λd(u, x) + (1− λ)d(u, y).
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A metric space (X, d) together with a convex structure W is called a convex
metric space, which is denoted by (X, d,W). A Banach space and each of its
convex subsets are convex metric spaces. But a Frechet space is not necessarily a
convex metric space. The other examples of convex metric spaces which are not
imbedded in any Banach space can be found in [10].

Definition 2.2. A subset K of a convex metric space (X, d,W) is said to be a
convex set, provided that W(x, y, λ) ∈ K for all x, y ∈ K and λ ∈ I.

Proposition 2.3. Let {Kα}α∈A be a family of convex subsets ofX. Then
⋂

α∈A Kα

is also a convex subset of X.

Definition 2.4. A convex metric space (X, d,W) is said to have property (C) if
every bounded decreasing net of nonempty, closed, and convex subsets of X has
a nonempty intersection.

For example, every weakly compact convex subset of a Banach space has prop-
erty (C).

Let A be a nonempty subset of a convex metric space (X, d,W). We denote by
B(x; r) the closed ball with center x ∈ X and radius r > 0. Also, the closed and
convex hull of a set A will be denoted by con(A) and defined as below:

con(A) :=
⋂

{C : C is a closed and convex subset of X such that C ⊇ A}.

The following lemmas will be used in our coming discussion.

Lemma 2.5 ([8, Lemma 4.1]). Let A be a nonempty subset of a convex metric
space (X, d,W). Then

δx(A) = δx
(
con(A)

)
, ∀x ∈ X.

Lemma 2.6 ([1, Lemma 3.7]). Let (K1, K2) be a nonempty pair of subsets of a
convex metric space (X, d,W). Then δ(K1, K2) = δ(con(K1), con(K2)).

Definition 2.7 ([7, Definition 2.13]). Let (A,B) be a nonempty pair of subsets
of a metric space (X, d). We say that the pair (A,B) is a proximal compactness
pair, provided that every net ({xα}, {yα}) of A×B satisfying the condition that
d(xα, yα) → dist(A,B) has a convergent subnet in A×B.

It is clear that if (A,B) is a compact pair in a metric space (X, d), then (A,B)
is a proximal compactness pair.

Definition 2.8. A Banach space X is said to be

(i) uniformly convex if there exists a strictly increasing function δ : (0, 2] →
[0, 1] such that the following implication holds for all x, y, p ∈ X, R > 0
and r ∈ [0, 2R]:

‖x− p‖ ≤ R,

‖y − p‖ ≤ R,

‖x− y‖ ≥ r

⇒
∥∥∥x+ y

2
− p

∥∥∥ ≤
(
1− δ

( r

R

))
R;
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(ii) strictly convex if the following implication holds for all x, y, p ∈ X and
R > 0: 

‖x− p‖ ≤ R,

‖y − p‖ ≤ R,

x 6= y

⇒
∥∥∥x+ y

2
− p

∥∥∥ < R.

At the end of this section, we recall the notion of proximal normal structure,
which is an extension of normal structure (see [2]).

Definition 2.9 ([4, Definition 1.2]). A convex pair (A,B) in a Banach space X
is said to have proximal normal structure (PNS) if for any bounded, closed, and
convex proximal pair (K1, K2) ⊆ (A,B), for which dist(K1, K2) = dist(A,B) and
δ(K1, K2) > dist(K1, K2), there exists (x1, x2) ∈ K1 ×K2 such that

max
{
δx1(K2), δx2(K1)

}
< δ(K1, K2).

Note that if in the above definition A = B, then (A,B) has PNS if and only if
the set A has a normal structure in the sense of Brodskĭı and Mil′man [2].

It was announced in [4] that every nonempty, bounded, closed, and convex
pair of subsets of a uniformly convex Banach space X has PNS (see [4, Propo-
sition 2.1]). The following theorem guarantees the existence of a best proximity
pair for noncyclic relatively nonexpansive mappings.

Theorem 2.10 ([4, Theorem 2.2]). Let (A,B) be a nonempty, weakly compact,
and convex pair in a strictly convex Banach space X. Let T : A ∪B → A ∪B be
a noncyclic relatively nonexpansive mapping. If the pair (A,B) has PNS, then T
has a best proximity pair.

Remark 2.11. If in Theorem 2.10 A = B, then we do not need the condition of
strict convexity of the Banach space X. In this case, we give Kirk’s [9] fixed-point
theorem. Let A be a nonempty, weakly compact, and convex subset of a Banach
space X, and let T : A → A be a nonexpansive self-mapping; that is,

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ A.

If A has the normal structure, then T has a fixed point.

3. Existence results of best proximity pairs

We begin our main results of this section with the following notions.

Definition 3.1. A convex metric space (X, d,W) is said to be a strictly convex
metric space, provided that for every r > 0, x1, x2 and y ∈ X with d(x1, y) ≤ r,
d(x2, y) ≤ r, and x1 6= x2 we have

d
(
W

(
x1, x2,

1

2

)
, y
)
< r.

It is clear that every strictly convex Banach space is a strictly convex metric
space.
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Definition 3.2. Let (A,B) be a pair of nonempty subsets of a convex metric space
(X, d,W), and let T : A ∪ B → A ∪ B be a noncyclic mapping. The pair (A,B)
is said to be a T -regular pair provided that(

W
(
x, Tx,

1

2

)
,W

(
y, Ty,

1

2

))
∈ A×B, ∀(x, y) ∈ A×B.

Note that if A = B, then the set A is said to be a T -regular set (see [11] for
Banach spaces). We also note that every convex pair of subsets of X is a T -regular
pair for any noncyclic mapping T defined on the union of the considered pair.
The next example shows that the reverse implication does not hold.

Example 3.3. Consider X = R with the usual metric and usual convex structure
W(x, y, λ) = λx + (1− λ)y. Let A = Q ∩ [−1, 0], and let B = Qc ∩ [1, 2]. Define
T : A ∪B → A ∪B with

T (x) =

{
x, if x ∈ A,√
x, if x ∈ B.

Then T is noncyclic and it is easy to see that the pair (A,B) is a T -regular pair;
that is, (x+Tx

2
, y+Ty

2
) ∈ A×B for all (x, y) ∈ A×B.

Definition 3.4. Let (A,B) be a nonempty, bounded, and closed pair in a convex
metric space (X, d,W), and let T : A∪B → A∪B be a noncyclic mapping. (A,B)
is said to be a T -regular reflexive pair provided that (A,B) is T -regular and any
descending chain consisting of nonempty, closed, and T -regular pairs which are
subsets of (A,B) have a nonempty intersection.

Note that if (A,B) is a nonempty and compact pair in (X, d,W), then (A,B)
is T -regular reflexive.

Let us illustrate this notion with the following example.

Example 3.5. Consider the nonreflexive Banach space X = l1 with the canonical
basis {en} and the usual convex structure. Let A = B = {xen : −1 ≤ x ≤
1, n ∈ N}, and define T : A → A with Tx = −x. Note that A is nonconvex and
also is not weakly compact. Besides, A is T -regular reflexive. In fact, for each
x ∈ A we have W(x, Tx, 1

2
) = x+Tx

2
= 0 ∈ A; that is, (A,B) is a T -regular pair.

Moreover, if {(Ej, Fj)} is a descending chain of nonempty, closed, and T -regular
pairs which are subsets of (A,B), then (0, 0) ∈ (

⋂
j Ej,

⋂
j Fj). Therefore, (A,B)

is a T -regular reflexive pair.

The following lemma will be used in the sequel.

Lemma 3.6. Let (A,B) be a nonempty, bounded, and closed pair in a convex
metric space (X, d,W), and let T : A∪B → A∪B be a noncyclic relatively non-
expansive mapping such that (A,B) is a T -regular reflexive pair. Then (A0, B0)
is a nonempty, closed, and T -regular pair.

Proof. For all n ∈ N put

An :=
{
x ∈ A : D(x,B) ≤ dist(A,B) +

1

n

}
,

Bn :=
{
y ∈ B : D(y, A) ≤ dist(A,B) +

1

n

}
.
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Thus, (An, Bn) is a nonempty, bounded, and closed pair for each n ∈ N. Let
x ∈ An. Then D(x,B) ≤ dist(A,B) + 1

n
. We now have

D(Tx,B) ≤ D(Tx, TB) = inf
y∈B

d(Tx, Ty)

≤ inf
y∈B

d(x, y) = D(x,B) ≤ dist(A,B) +
1

n
;

that is, Tx ∈ An. Therefore, T (An) ⊆ An. Similarly, we can see that T (Bn) ⊆ Bn,
and so T is noncyclic on An ∪ Bn for all n ∈ N. Besides, (An, Bn) is a T -regular
pair; indeed, if x ∈ An, then for each y ∈ B we have

d
(
W

(
x, Tx,

1

2

)
, y
)
≤ 1

2
d(x, y) +

1

2
d(Tx, y),

which implies that

D
(
W

(
x, Tx,

1

2

)
, B

)
≤ 1

2
D(x,B) +

1

2
D(Tx,B) ≤ dist(A,B) +

1

n
.

Hence, W(x, Tx, 1
2
) ∈ An. By a similar way, W(y, Ty, 1

2
) ∈ Bn for any y ∈ B.

Thereby, (An, Bn) is a T -regular pair for all n ∈ N. Note that A0 =
⋂

n≥1An,
B0 =

⋂
n≥1Bn. Since (A,B) is a T -regular reflexive pair, (A0, B0) is a nonempty

and also closed pair. On the other hand, if (x, y) ∈ A0×B0, then (x, y) ∈ An×Bn

for all n ∈ N, and since (An, Bn) is a T -regular pair, (W(x, Tx, 1
2
),W(y, Ty, 1

2
)) ∈

An ×Bn for all n ∈ N, which implies that (W(x, Tx, 1
2
),W(y, Ty, 1

2
)) ∈ A0 ×B0;

that is, (A0, B0) is a T -regular pair. �

Next we shall state the first main result of this section.

Theorem 3.7. Let (A,B) be a nonempty, bounded, and closed pair in a strictly
convex metric space (X, d,W), and let T : A ∪ B → A ∪ B be a generalized
noncyclic contraction; that is, T is noncyclic and

d(Tx, Ty) ≤ rmax
{
d(x, y), d(x, Ty), d(y, Tx)

}
+ (1− r) dist(A,B),

for some r ∈ [0, 1) and for all (x, y) ∈ A × B. If (A,B) is a T -regular reflexive
pair, then T has a best proximity pair.

Proof. Let Σ denote the collection of all nonempty, bounded, and closed pairs
(E,F ) ⊆ (A,B) such that T is noncyclic on E ∪ F and (E,F ) is a T -regular
pair. By Lemma 3.6, (A0, B0) is a nonempty, closed, and T -regular pair, and so
(A0, B0) ∈ Σ 6= ∅. Also, Σ is partially ordered with respect to reverse inclu-
sion; that is, (E1, F1) ≤ (E2, F2) ⇔ (E2, F2) ⊆ (E1, F1). Let {(Ej, Fj)}j be a
descending chain in Σ and E =

⋂
j Ej, F =

⋂
j Fj. Since (A,B) is T -regular re-

flexive, (E,F ) is a nonempty pair. Moreover, (E,F ) is closed, and it is easy
to see that T is noncyclic on E ∪ F . Now, suppose (x, y) ∈ E × F . Thus,
(x, y) ∈ Ej × Fj for all j. By the fact that each pair (Ej, Fj) is T -regular, we ob-
tain (W(x, Tx, 1

2
),W(y, Ty, 1

2
)) ∈ Ej×Fj for any j, and so (W(x, Tx, 1

2
),W(y, Ty,

1
2
)) ∈ E × F ; that is, (E,F ) is T -regular, which implies that (E,F ) ∈ Σ. It now

follows from Zorn’s lemma that Σ has a minimal element, say (K1, K2). Let

L1 := con
(
T (K1)

)
∩K1 and L2 := con

(
T (K2)

)
∩K2.
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Then (L1, L2) is a closed pair. Also, T is noncyclic on L1 ∪ L2. Besides, if
(x, y) ∈ L1 × L2, then (Tx, Ty) ∈ con(T (K1)) × con(T (K2)). Since both the
pairs (con(T (K1)), con(T (K2))) and (K1, K2) are T -regular, we have(

W
(
x, Tx,

1

2

)
,W

(
y, Ty,

1

2

))
∈ L1 × L2,

and so (L1, L2) is T -regular. Now, from the minimality of (K1, K2) we obtain
L1 = K1 and L2 = K2. Therefore, (K1, K2) ⊆ (con(T (K1)), con(T (K2))); hence,(

con(K1), con(K2)
)
⊆ (con

(
T (K1)

)
, con

(
T (K2)

)
⊆

(
con(K1), con(K2)

)
,

which concludes that con(K1) = con(T (K1)) and con(K2) = con(T (K2)). Let
x ∈ K1 be an arbitrary element. For all y ∈ K2 we have

d(Tx, Ty) ≤ rmax
{
d(x, y), d(x, Ty), d(Tx, y)

}
+ (1− r) dist(A,B)

≤ rδ(K1, K2) + (1− r) dist(A,B).

Now, if we set ρ := rδ(K1, K2) + (1 − r) dist(A,B), then we have T (K2) ⊆
B(Tx; ρ). Thus, con(K2) = con(T (K2)) ⊆ B(Tx; ρ). It follows from Lemma 2.5
that

δTx(K2) = δTx

(
con(K2)

)
≤ ρ, ∀x ∈ K1.

By using Lemma 2.6, we obtain

δ(K1, K2) = δ
(
con(K1), con(K2)

)
= δ

(
con

(
T (K1)

)
, con

(
T (K2)

))
= δ

(
T (K1), T (K2)

)
≤ δ

(
T (K1), K2

)
= sup

x∈K1

δTx(K2) ≤ ρ

so that δ(K1, K2) = dist(A,B), which concludes that d(p, q) = dist(A,B) for all
(p, q) ∈ K1 ×K2. On the other hand, both p and q are fixed points of T ; indeed,
if p 6= Tp, then W(p, Tp, 1

2
) ∈ K1 from the T -regularity of (K1, K2). We have

d(p, q) = d(Tp, q) = dist(A,B). Since X is a strictly convex metric space, we
obtain

dist(A,B) ≤ d
(
W

(
p, Tp,

1

2

)
, q
)
< dist(A,B),

which is a contradiction, and so p = Tp. Similarly, q = Tq, and this completes
the proof of the theorem. �

The next result is a straightforward consequence of Theorem 3.7.

Corollary 3.8 ([5, Theorem 3.10]). Let (A,B) be a nonempty, weakly compact,
and convex pair in a strictly convex Banach space X. Suppose T : A∪B → A∪B
is a generalized noncyclic contraction mapping. Then T has a best proximity pair.

Example 3.9. Let X := [−1, 1], and define a metric d on X by

d(x, y) =

{
0, if x = y,

|x|+ |y|, if x 6= y.

Define W : X ×X × I → X with

W(x, y, λ) = λmin
{
|x|, |y|

}
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for each x, y ∈ X and λ ∈ I. We show that W is a convex structure on X. Let
x, y ∈ X, and let λ ∈ I. We may assume that |x| ≤ |y|. Then for each u ∈ X we
have

d
(
u,W(x, y, λ)

)
= |u|+ λmin

{
|x|, |y|

}
= |u|+ λ|x| ≤ |u|+ |x|

= λ
(
|u|+ |x|

)
+ (1− λ)

(
|u|+ |x|

)
≤ λ

(
|u|+ |x|

)
+ (1− λ)

(
|u|+ |y|

)
= λd(u, x) + (1− λ)d(u, y).

This implies that (X, d,W) is a convex metric space. We now show that the
convex metric space (X, d,W) is strictly convex. Suppose x, y, z ∈ X such that
x 6= y and d(x, z) ≤ r and d(y, z) ≤ r so that |x| + |z| ≤ r and |y| + |z| ≤ r.
Therefore,

d
(
W

(
x, y,

1

2

)
, z
)
=

1

2
min

{
|x|, |y|

}
+ |z| < |x|+ |z| ≤ r,

and this follows the strict convexity of X. Let A = { 1
n

: n ≥ 2} ∪ {0} and

B = {
√
2
n

: n ≥ 2} ∪ {0}, and define the noncyclic mapping T : A ∪ B → A ∪ B
with

Tx =

{
x2, if x ∈ A,
√
2

n2 , if x ∈ B, x =
√
2
n
.

Then (A,B) is a T -regular pair; indeed, if ( 1
n
,
√
2

m
) ∈ A × B for some integers

m,n ≥ 2, then we have(
W

( 1
n
,
1

n2
,
1

2

)
,W

(√2

m
,

√
2

m2
,
1

2

))
=

( 1

2n2
,

√
2

2m2

)
∈ A×B.

Besides, (A,B) is T -regular reflexive. In fact, for every T -regular pair (E,F ) ⊆
(A,B) and (x, y) ∈ E × F , from the T -regularity of (E,F ) we conclude that( 1

22k−1n2k
,

√
2

22k−1m2k

)
∈ (E,F ), ∀k ∈ N,

which implies that (0, 0) ∈ E ×F for any T -regular pair (E,F ) ⊆ (A,B), and so
(A,B) is T -regular reflexive. On the other hand, for (x, y) ∈ A × B with x = 1

n

and y =
√
2

m
for integers m,n ≥ 2, we have

d(Tx, Ty) =
1

n2
+

√
2

m2
≤ 1

2

( 1
n
+

√
2

m

)
=

1

2
d(x, y);

that is, T is a generalized noncyclic contraction. Thereby, all of the assumptions
of Theorem 3.7 hold, and T has a best proximity pair which is the point (0, 0) ∈
A×B.

Motivated by Definition 2.9, we introduce the notion of nonconvex proximal
normal structure as below.
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Definition 3.10. Let (A,B) be a nonempty pair of subsets of the convex met-
ric space (X, d,W), and let T : A ∪ B → A ∪ B be a noncyclic mapping so
that (A,B) is a T -regular pair. We say that (A,B) has nonconvex proximal
normal structure (NPNS) provided that for any bounded, closed, proximinal,
and T -regular pair (K1, K2) ⊆ (A,B), for which dist(K1, K2) = dist(A,B) and
δ(K1, K2) > dist(K1, K2), there exists (x, y) ∈ K1 ×K2 with its proximal point
(x′, y′) ∈ K1 ×K2 (i.e., d(x, y′) = d(x′, y) = dist(K1, K2)) such that

max
{
δx(K2), δy′(K1), δx′(K2), δy(K1)

}
< δ(K1, K2).

It is worth noting that NPNS ; PNS. Let us illustrate this fact with the next
example.

Example 3.11. Consider the Banach space X = l∞ with canonical basis {en}n∈N,
and let A = {xen : −1 ≤ x ≤ 1, n ∈ N}. Note that A is not convex, and so
the notion of normal structure for the set A is absurd. Now, define the mapping
T : A → A with T (xen) = −xen. Obviously, A is T -regular. Moreover, A is
T -regular reflexive because, for every nonempty and closed subset K of A which
is T -regular, we have p := 0 = W(x, Tx, 1

2
) ∈ K for any x ∈ K. On the other

hand, if diam(K) > 0, by the fact that T is a self-mapping on K, then there
exists xen ∈ K for some x ∈ [−1, 1] and n ∈ N so that Tx = −xen ∈ K. We now
have δp(K) = supxen∈K ‖xen‖ and

diam(K) ≥ 2 sup
xen∈K

‖xen‖ = 2δp(K).

Thus, δp(K) ≤ 1
2
diam(K); that is, A has NPNS.

The following theorem, which is an extension of Theorem 1.1, is the second
main result of this section.

Theorem 3.12. Let (A,B) be a nonempty, bounded, and closed pair in a strictly
convex metric space (X, d,W), and let T : A∪B → A∪B be a noncyclic relatively
nonexpansive mapping such that (A,B) is a T -regular reflexive pair. If (A,B) is
a proximal compactness pair and has NPNS, then T has a best proximity pair.

Proof. Suppose that F denotes the collection of all nonempty, closed, and T -regular
pairs (E,F ) which are subsets of (A,B) and d(x, y) = dist(A,B) for some
(x, y) ∈ E×F . By Lemma 3.6, (A0, B0) is a nonempty, closed, and T -regular pair,
and so (A0, B0) ∈ F. Let {(Ej, Fj)}j be a descending chain in F. Set E :=

⋂
Ej

and F :=
⋂

Fj. A similar argument of Theorem 3.7 implies that (E,F ) is
a nonempty, bounded, closed, and T -regular pair. Also, if (xj, yj) ∈ Ej × Fj

such that d(xj, yj) = dist(A,B), then, by the fact that (A,B) has proximal
compactness, {(xj, yj)} has a convergent subsequence, say {(xji , yji)}, for which
xji → x ∈ A and yji → y ∈ B. Thus,

d(x, y) = lim
i
d(xji , yji) = dist(A,B).

Therefore, there exists an element (x, y) ∈ E × F such that d(x, y) = dist(A,B)
so that every increasing chain in F is bounded above with respect to the reverse
inclusion relation, and by using Zorn’s lemma we obtain a minimal element for F,
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say (K1, K2). We note that since (K10 , K20) is a nonempty, closed, and T -regular
subset of (K1, K2) and dist(K10 , K20) = dist(K1, K2)(= dist(A,B)), we must have
K1 = K10 and K2 = K20 by the minimality of (K1, K2); that is, (K1, K2) is a
proximinal pair. Moreover, by an equivalent argument of Theorem 3.7, we have
con(K1) = con(T (K1)) and con(K2) = con(T (K2)). We now consider the two
following cases.

Case 1: δ(K1, K2) = dist(K1, K2)(= dist(A,B)).
Then the result follows from the equivalent argument of Theorem 3.7.
Case 2: δ(K1, K2) > dist(K1, K2).
Since (A,B) has NPNS, there exists a point (p, q) ∈ K1×K2 with its proximal

point (p′, q′) ∈ K1 ×K2 and λ ∈ (0, 1) such that

max
{
δp(K2), δq′(K1), δq(K1), δp′(K2)

}
≤ λδ(K1, K2).

Put

H1 :=
{
x ∈ K1 : δx(K2) ≤ λδ(K1, K2)

}
,

H2 :=
{
y ∈ K2 : δy(K1) ≤ λδ(K1, K2)

}
.

Then (p, q′), (p′, q) ∈ H1×H2, and so (H1, H2) is a nonempty and closed subset of
(K1, K2) with dist(H1, H2) = dist(K1, K2). Also, if x ∈ H1, then, by Lemma 2.5
and the relative nonexpansiveness of T ,

δTx(K2) = δTx

(
con(K2)

)
= δTx

(
con

(
T (K2)

))
= δTx

(
T (K2)

)
≤ δx(K2) ≤ λδ(K1, K2),

which implies that Tx ∈ H1. Thus, T (H1) ⊆ H1. Similarly, T (H2) ⊆ H2, and
so T is noncyclic on H1 ∪H2. Moreover, (H1, H2) is a T -regular pair. In fact, if
x ∈ H1, then for any y ∈ K2 we have

d
(
W

(
x, Tx,

1

2

)
, y
)
≤ 1

2

[
d(x, y) + d(Tx, y)

]
≤ 1

2

[
δx(K2) + δTx(K2)

]
≤ λδ(K1, K2),

which concludes that W(x, Tx, 1
2
) ∈ H1. Equivalently, W(y, Ty, 1

2
) ∈ H2 for all

y ∈ H2. It now follows from the minimality of (K1, K2) that H1 = K1 and
H2 = K2. Thereby, δx(K2) ≤ λδ(K1, K2) for all x ∈ K1, which implies that

δ(K1, K2) = sup
x∈K1

δx(K2) ≤ λδ(K1, K2),

which is a contradiction. �

Here, we give an improved version of Theorem 1.1.

Theorem 3.13. Let (A,B) be a nonempty, bounded, and weakly closed pair in
a uniformly convex Banach space X, and let T : A ∪ B → A ∪ B be a noncyclic
relatively nonexpansive mapping such that (A,B) is a T -regular pair. Then T has
a best proximity pair.
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Proof. Let Γ be the collection of all nonempty, weakly closed, and T -regular
pairs (E,F ) ⊆ (A,B) such that dist(E,F ) = dist(A,B). Then (A0, B0) ∈ Γ.
Since (A,B) is weakly compact, every descending chain in Γ has a nonempty
intersection, and so, by a similar argument of Theorem 3.7,Γ has a minimal
element such as (K1, K2), which is a nonempty, weakly closed, and T -regular
pair, and we have dist(K1, K2) = dist(A,B). Suppose that T does not have a
best proximity pair. We get a contradiction by showing that (A,B) has NPNS.
Let (H1, H2) ⊆ (A,B) be a nonempty, closed, proximinal, and T -regular pair for
which dist(H1, H2) = dist(A,B) and δ(H1, H2) > dist(H1, H2). Suppose (p, q) ∈
H1×H2, and let (p′, q′) ∈ H1×H2 be such that ‖p−q′‖ = ‖p′−q‖ = dist(H1, H2).
Since T is noncyclic relatively nonexpansive, we have

‖Tp− Tq′‖ ≤ ‖p− q′‖ = dist(H1, H2).

From the strict convexity of X, we must have p 6= Tp and q′ 6= Tq′. Also, since
(H1, H2) is a T -regular pair, (p+Tp

2
, q

′+Tq′

2
) ∈ H1 ×H2. We have

dist(A,B) ≤
∥∥∥p+ Tp

2
− q′ + Tq′

2

∥∥∥ ≤ 1

2

[
‖p− q′‖+ ‖Tp− Tq′‖

]
≤ dist(A,B).

Put R := δ(H1, H2) and r := min{‖p−Tp‖, ‖q′ −Tq′‖}. For any y ∈ H2 we have
‖p− y‖ ≤ R,

‖Tp− y‖ ≤ R,

‖p− Tp‖ ≥ r.

Uniform convexity of X concludes that ‖p+Tp
2

− y‖ ≤ (1− δ( r
R
))R for all y ∈ H2;

hence, δ p+Tp
2

(K2) ≤ (1− δ( r
R
))R < R. Similarly, we can see that δ q′+Tq′

2

(H1) < R.

Equivalently, for the pair (p
′+Tp′

2
, q+Tq

2
) ∈ H1 ×H2 we have

δ p′+Tp′
2

(H2) < R, δ q+Tq
2

(H1) < R.

Now, if we set u := p+Tp
2

, u′ := p′+Tp′

2
and v := q+Tq

2
, v′ := q′+Tq′

2
, then (u, v) is a

member of H1 ×H2 with its proximal point (u′, v′) ∈ H1 ×H2, and we have

max
{
δu(H2), δv(H1), δu′(H2), δv′(H1)

}
< δ(H1, H2).

This implies that (A,B) has NPNS and the result follows. �

In a special case, we conclude the following generalization of the Browder fixed-
point theorem (see [3]).

Corollary 3.14. Let A be a nonempty, bounded, and closed subset of a uniformly
convex Banach space X, and let T : A → A be a nonexpansive mapping such that
A is T -regular. Then T has a fixed point.

Let us illustrate Theorem 3.13 with the following example.

Example 3.15. Given k ∈ [0, 1], let A = {(1 + k)e2n : n ∈ N} and B = {(1 +
k)e2m−1 : m ∈ N} be subsets of a uniformly convex Banach space l2. It is clear that
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(A,B) is a bounded, closed, and nonconvex pair in X and we have dist(A,B) =√
2. Define the noncyclic mapping T : A ∪B → A ∪B with

T
(
(1 + k)e2n

)
= (1 + k2)e2n, T

(
(1 + k)e2m−1

)
= (1 + k3)e2m−1.

Then (A,B) is a T -regular pair; indeed, if (x, y) = ((1 + k)e2n, (1 + k′)e2m−1) ∈
A×B, then

x+ Tx

2
=

(1 + k)e2n + (1 + k2)e2n
2

=
[
1 +

k + k2

2

]
e2n ∈ A,

y + Ty

2
=

(1 + k′)e2m−1 + (1 + k′3)e2m−1

2
=

[
1 +

k′ + k′3

2

]
e2m−1 ∈ B.

Furthermore,

‖Tx− Ty‖ =
∥∥(1 + k2)e2n − (1 + k′3)e2m−1

∥∥ =
[
(1 + k2)2 + (1 + k′3)2

] 1
2

≤
[
(1 + k2)2 + (1 + k′2)2

] 1
2 ≤

[
(1 + k)2 + (1 + k′)2

] 1
2 = ‖x− y‖;

that is, T is a noncyclic relatively nonexpansive mapping. Thus, Theorem 3.13
guarantees the existence of a best proximity pair for the mapping T . Note that
for any m,n ∈ N, (e2n, e2m−1) is a best proximity pair of T . It is worth noting that
the existence of best proximity pairs of T cannot be concluded from Theorem 1.1
due to Eldred, Kirk, and Veeramani.

4. A common best proximity pair theorem

In this section we establish a common best proximity pair theorem for a com-
muting family of noncyclic relatively nonexpansive mappings in strictly convex
metric spaces. We begin with the following notion.

Definition 4.1. Let A be a nonempty subset in a convex metric space (X, d,W),
and let T : A → A be a mapping. We say that T is semiaffine, provided that

T
(
W

(
x, y,

1

2

))
= W

(
Tx, Ty,

1

2

)
for any x, y ∈ A.

Let T : A ∪ B → A ∪ B be a noncyclic mapping, where (A,B) is a nonempty
pair of subsets of a convex metric space (X, d,W). In what follows, we shall adopt
the following notation:

FA(T ) := {x ∈ A : Tx = x} & FB(T ) := {y ∈ B : Ty = y},
ProxA×B(T ) :=

{
(x, y) ∈ A×B : Tx = x, Ty = y and d(x, y) = dist(A,B)

}
.

We now state our main result of this section.

Theorem 4.2. Let (A,B) be a nonempty, bounded, closed, and proximal com-
pactness pair in a strictly convex metric space (X, d,W). Suppose that I is a
commuting family of noncyclic relatively nonexpansive mappings defined on A∪B
such that for any T ∈ I both T |A and T |B are continuous and semiaffine self-
mappings. If (A,B) is a T -regular reflexive pair for each T ∈ I and (A,B) has
NPNS, then the family has a common best proximity pair.
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Proof. It follows fromLemma 3.6 that (A0, B0) is a nonempty, closed, and T -regular
pair for any T ∈ I. We divide the proof of the theorem into the following steps:

• ProxA×B(T ) is nonempty for each T ∈ I and

ProxA×B(T ) ⊆
(
FA(T ) ∩ A0

)
×

(
FB(T ) ∩B0

)
, ∀T ∈ I.

Proof. By Theorem 3.12 the result follows.

• Let T, S be two elements of I. Then (FA(T ) ∩ A0,FB(T ) ∩ B0) is a
nonempty, bounded, closed, and S-regular pair.

Proof. Since ProxA×B(T ) is nonempty, (FA(T )∩A0,FB(T )∩B0) is also a nonempty
pair. Let {xn} be a sequence in FA(T ) ∩ A0 such that xn → p. Thus, Txn = xn

for all n ∈ N and there exists yn ∈ B0 so that d(xn, yn) = dist(A,B). We have

d(xn, T yn) = d(xn, yn) = dist(A,B), ∀n ∈ N,

which implies that Tyn = yn for any n ∈ N by the strict convexity of the convex
metric space (X, d,W). Since (A,B) is a proximal compactness pair, there exists
a subsequence {(xni

, yni
)} of the sequence {(xn, yn)} such that (xni

, yni
) → (p, q).

It now follows from the continuity of T |A that

p = lim
i
xni

= lim
i
T (xni

) = Tp.

Similarly, by the continuity of T |B, we have Tq = q. Also,

d(p, q) = lim
i
d(xni

, yni
) = dist(A,B).

Therefore, (p, q) ∈ ProxA×B(T ) ⊆ (FA(T ) ∩ A0) × (FB(T ) ∩ B0); that is, p ∈
FA(T ) ∩ A0, and so FA(T ) ∩ A0 is closed. By a similar manner, we can see that
FB(T )∩B0 is also closed. We now prove that the pair (FA(T )∩A0)×(FB(T )∩B0)
is an S-regular pair. Let x ∈ FA(T )∩A0. Since S(A0) ⊆ A0, Sx ∈ A0. Moreover,
TSx = STx = Sx, and so Sx ∈ FA(T )∩A0. Thus, S(FA(T )∩A0) ⊆ FA(T )∩A0.
Similarly, S(FB(T ) ∩ B0) ⊆ FB(T ) ∩ B0, and hence S is noncyclic on (FA(T ) ∩
A0) ∪ (FB(T ) ∩ B0). Besides, for (x, y) ∈ FA(T ) ∩ A0 × FB(T ) ∩ B0 by the fact
that both T |A and T |B are semiaffine, we have

T
(
W

(
x, Sx,

1

2

))
= W

(
Tx, TSx,

1

2

)
= W

(
x, STx,

1

2

)
= W

(
x, Sx,

1

2

)
,

and, equivalently, T (W(y, Sy, 1
2
)) = W(y, Sy, 1

2
). Thereby,(

W
(
x, Sx,

1

2

)
,W

(
y, Sy,

1

2

))
∈
(
FA(T ) ∩ A0

)
×
(
FB(T ) ∩B0

)
,

and so (FA(T ) ∩ A0,FB(T ) ∩B0) is S-regular.

• S and T have a common best proximity pair.

Proof. By the above discussion, S : (FA(T ) ∩ A0) ∪ (FB(T ) ∩ B0) → (FA(T ) ∩
A0)∪(FB(T )∩B0) is a noncyclic relatively nonexpansive mapping, and (FA(T )∩
A0,FB(T ) ∩ B0) is an S-regular reflexive pair and has NPNS. This implies that
S has a best proximity pair in (FA(T )∩A0)× (FB(T )∩B0) from Theorem 3.12.
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Therefore, there exists a point (p, q) ∈ (FA(T ) ∩ A0) × (FB(T ) ∩ B0) such that
p = Sp, q = Sq, and d(p, q) = dist(A,B). Also, we have p = Tp, q = Tq; hence,

(p, q) ∈ ProxA×B(T ) ∩ ProxA×B(S) 6= ∅.

• Every finite family {Tj}nj=1 of I has a common best proximity pair.

Proof. The previous argument concludes that ProxA×B(T1) ∩ ProxA×B(T2) 6= ∅.
We now have that

T3 :
(( 2⋂

i=1

FA(Ti)
)
∩ A0

)
∪
(( 2⋂

i=1

FB(Ti)
)
∩B0

)
→

(( 2⋂
i=1

FA(Ti)
)
∩ A0

)
∪
(( 2⋂

i=1

FB(Ti)
)
∩B0

)
is noncyclic relatively nonexpansive, and ((

⋂2
i=1FA(Ti))∩A0, (

⋂2
i=1FB(Ti))∩B0)

is a T3-regular reflexive pair and has NPNS. Thus,
⋂3

j=1 ProxA×B(Tj) is nonempty.
Continuing this process, we obtain

n⋂
j=1

ProxA×B(Tj) 6= ∅.

• The family I has a common best proximity pair.

Proof. Since every finite family of I has a common best proximity pair, we
conclude that the family {(FA(T ) ∩ A0,FB(T ) ∩ B0)}T∈I consists of nonempty,
bounded, closed, and S-regular pairs, for any S ∈ I has the finite intersection
property. By the fact that (A,B) is a T -regular reflexive pair for any T ∈ I,
we must have (

⋂
T∈I(FA(T )∩A0),

⋂
T∈I(FB(T )∩B0)) as a nonempty and closed

pair. Thus, ⋂
T∈I

ProxA×B(T ) 6= ∅.
�

The next corollaries are deduced immediately from Theorem 4.2.

Corollary 4.3. Let (A,B) be a nonempty, bounded, and closed pair in a uni-
formly convex Banach space X. Suppose that I is a commuting family of non-
cyclic relatively nonexpansive mappings defined on A∪B such that for any T ∈ I
both T |A and T |B are continuous and semiaffine self-mappings, and let (A,B) be
a T -regular pair for any T ∈ I. Then the family has a common best proximity
pair.

Corollary 4.4. Let A be a nonempty, bounded, and closed subset of a uniformly
convex Banach space X. Suppose that I is a commuting family of nonexpansive
self-mappings defined on A such that any T ∈ I is semiaffine. If A is T -regular
for any T ∈ I, then the family has a common fixed point.
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