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Abstract. We provide a version for operators of the Bishop–Phelps–Bollobás
theorem when the domain space is the complex space C0(L). In fact, we prove
that the pair (C0(L), Y ) will satisfy the Bishop–Phelps–Bollobás property for
operators for every Hausdorff locally compact space L and any C-uniformly
convex space. As a consequence, this holds for Y = Lp(µ) (1 ≤ p < ∞).

1. Introduction

The Bishop–Phelps theorem states the denseness of the subset of norm-attaining
functionals in the (topological) dual of a Banach space. Since the Bishop–Phelps
theorem was proved in the 1960s, some interesting papers provided versions of
this result for operators. Related to those results are the pioneering work by
Lindenstrauss [16], the somehow surprising result obtained by Bourgain [7], and
also results for concrete classical Banach spaces (see below). In full generality
there is no parallel version of the Bishop–Phelps theorem for operators even if the
domain space is c0 (see [16]). Lindenstrauss also provided in [16] some results of
denseness of the subset of norm-attaining operators by assuming some isometric
properties either on the domain or on the range space. We mention here two
concrete consequences of these results. If the domain space is `1 or the range
space is c0, every operator can be approximated by norm-attaining operators.
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First, Lindenstrauss [16] and later Bourgain [7] proved that certain isomorphic
assumptions on the domain space (reflexivity or even Radon–Nikodým property,
respectively) imply the denseness of the subset of norm-attaining operators in the
corresponding space of linear (bounded) operators. For classical Banach spaces,
we only mention some articles containing positive results for specific pairs (see, for
instance, [11], [19]) and one containing a counterexample (see [19]). The survey
[1] contains the main results on the topic and also longstanding open questions.

Recently, the authors of [2] dealt with “quantitative” versions of the Bishop–
Phelps theorem for operators. The motivating result is known nowadays as the
Bishop–Phelps–Bollobás theorem (see [6]), which has been a very useful tool to
study numerical ranges of operators (see, for instance, [6]). This result can be
stated as follows.

Let X be a Banach space and let 0 < ε < 1. Given x ∈ BX and x∗ ∈ SX∗ with
|1− x∗(x)| < ε2/4, there are elements y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1,
‖y − x‖ < ε and ‖y∗ − x∗‖ < ε.

Here X∗ denotes the (topological) dual of the Banach space X and SX its unit
sphere. We write BX to denote the closed unit ball of X.

Throughout the present article, for two Banach spaces X and Y , L(X,Y ) is
the space of linear bounded operators from X into Y . We recall that the pair
(X,Y ) has the Bishop–Phelps–Bollobás property for operators (or BPBp), if for
any ε > 0 there exists η(ε) > 0 such that, for any T ∈ SL(X,Y ), if x0 ∈ SX is such
that ‖Tx0‖ > 1 − η(ε), then there exist an element u0 ∈ SX and an operator
S ∈ SL(X,Y ) satisfying the following conditions:

‖Su0‖ = 1, ‖u0 − x0‖ < ε and ‖S − T‖ < ε.

While [2, Theorem 2.2] proved that, for any space Y satisfying the property β
of Lindenstrauss, the pair (X,Y ) has the BPBp for operators for every Banach
space X. For the domain space, there is no reasonably general property implying
a positive result. However, there are some positive results in concrete cases. For
instance, there is a characterization of the spaces Y such that the pair (`1, Y )
satisfies the BPBp (see [2]). As a consequence of this result, it is known that this
condition is satisfied by finite-dimensional spaces, uniformly convex spaces, C(K)
(K is some compact topological space) and L1(µ) (any measure µ).

Now we point out results stating that the pair (X,Y ) has the BPBp in the
case that the domain space is C0(L) (space of continuous functions on a locally
compact Hausdorff space L vanishing at infinity). Kim [13] proved that in the
real case the pair (c0, Y ) has the BPBp for operators whenever Y is uniformly
convex. The paper [3] contains also a positive result for the pair (C(K), C(S))
in the real case (K and S are compact Hausdorff spaces). Let us point out that
in the complex case it is still unknown if the subset of norm-attaining operators
from C(K) to C(S) is dense in L(C(K), C(S)). Recently, Kim, Lee, and Lin in [15]
proved that the pair (L∞(µ), Y ) has the BPBp whenever Y is a uniformly convex
space and µ is any positive measure. The authors also state the analogous result
in complex case for the pairs (c0, Y ) and (L∞(µ), Y ) (µ is any positive measure)
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whenever Y is a C-uniformly convex space. It also holds that the pair (C(K), Y )
has the BPBp in the real case for any uniformly convex space (see [14]).

In the present paper, we show that the pair (C0(L), Y ) satisfies the Bishop–
Phelps–Bollobás property for operators in the complex case for every locally
compact Hausdorff space L and for any C-uniformly convex (complex) space.
Let us note that this is an extension of the result in [15] for the complex case
in two ways. First, we consider any space C(K) instead of L∞(µ) as the domain
space and also we consider a strictly more general property on the range space,
namely, C-uniform convexity instead of uniform convexity. Our result extends
[2, Theorem 5.2] in a satisfactory way and the recent result in [15] for the case
that the domain space is L∞(µ). As a consequence, in the complex case the pair
(C(K), L1(µ)) has the BPBp for every compact Hausdorff space K and any mea-
sure µ.

Let us recall again that it is not trivial at all to obtain the result in the complex
case from the real case when the domain space is C(K). As we already pointed
out, it is an open problem whether or not the subset of norm-attaining operators
between complex spaces C(K) and C(S) is dense in L(C(K), C(S)). However, a
positive result for real C(K) spaces was proved many years ago (see [11]).

Let us notice that in the case that the range space is a uniform algebra, the
paper [8] provides positive results for the BPBp for the class of Asplund operators.

2. The result

Throughout this section, we consider only complex normed spaces. For a com-
plex Banach space Y , recall that the C-modulus of convexity δ is defined for every
ε > 0 by

δ(ε) = inf
{
sup

{
‖x+ λεy‖ − 1 : λ ∈ C, |λ| = 1

}
: x, y ∈ SY

}
.

Recall that the Banach space Y is C-uniformly convex if δ(ε) > 0 for every
ε > 0 (see [9]). Every uniformly convex complex space is C-uniformly convex
and the converse is not true. Globevnik proved that the complex space L1(µ) is
C-uniformly convex (see [9, Theorem 1]).

We will denote by D(0, 1) the closed unit disc in C. Let us notice that for
0 < s < t it is satisfied that sup{‖x+ λsy‖ : λ ∈ D(0, 1)} ≤ sup{‖x+ λty‖ : λ ∈
D(0, 1)}. Hence, δ is an increasing function and δ(t) ≤ t for every t > 0.

In the following, L will be a locally compact Hausdorff topological space and
C0(L) will be the space of continuous complex valued functions on L vanishing at
infinity.

It is convenient to state the next trivial result.

Lemma 2.1. Assume that λ,w ∈ D(0, 1), t ∈ ]0, 1[ and that Rewλ > 1− t. Then
|w − λ| <

√
2t.

As we already mentioned, the subset of norm-attaining operators between two
Banach spaces is not always dense in the corresponding space of operators in
the case that the domain space is C0(L). Let us notice that there are exam-
ples of spaces Y for which the pair (`2∞, Y ) does not have the Bishop–Phelps–
Bollobás property for operators (see [2, Theorem 4.1 and Proposition 3.9], [5,
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Corollary 3.3]). For these reasons, some restriction is needed on the range space
in order to obtain a BPBp result in case the domain space is C0(L).

Schachermayer [19] proved a Bishop–Phelps result in the real case for the sub-
space of weakly compact operators from any space C0(L) into any Banach space.
In [4], this result was extended to the complex case. The last result is one of
the tools that figures prominently in the proof of the main result. This is our
motivation for the next assertion, that might be known, and has interest in itself.

Proposition 2.2. Let Y be a C-uniformly convex Banach space and let L be any
locally compact Hausdorff space. Then every operator from C0(L) into Y is weakly
compact.

Proof. By the proof of the James distortion theorem (see, for instance, [17, Propo-
sition 2.e.3]), the space Y cannot contain a copy of c0 (the space of complex
sequences converging to zero, endowed with the usual norm). Otherwise, by con-
sidering a convenient multiple of the norm in Y , 9 9, that is still C-uniformly
convex, one can assume that the usual norm of the copy of c0 (‖ ‖) satisfies

α9x9 ≤ ‖x‖ ≤ 9x9, ∀x ∈ c0,

for some α > 0. By the proof of [17, Proposition 2.e.3], for any ε > 0 there is a
block basic sequence (yn) in Y formed from the usual basis of c0 satisfying

9yn9 = 1 ∀n ∈ N,
∣∣∣∣∣∣∣∣∣ ∞∑

k=1

anyn

∣∣∣∣∣∣∣∣∣ ≤ (1 + ε)2
∥∥(an)∥∥∞, ∀(an) ∈ c0

and ‖
∑∞

k=1 anyn‖ = ‖(an)‖∞ for every (an) ∈ c0. Clearly, the above condition
contradicts the C-uniform convexity of Y .

Now, in view of the Bessaga–Pelczyński selection principle, if the underlying
real space of a complex space contains a real space isomorphic to c0, then it
contains the complex space c0. So YR does not contain the real space c0, hence,
for any compact space K, every (real) operator from the space C(K) (real-valued
functions) into Y is weakly compact. As a consequence, every operator from the
complex space C(K) into Y is also weakly compact. From here it can be easily
deduced that every operator from C0(L) into Y is weakly compact, since C0(L) is
complemented in the space C(K), with K being the Alexandrov compactification
of L. Hence, every operator from C0(L) into Y can be extended to an operator
from C(K) into Y . �

For a locally compact Hausdorff topological space L, we denote by B(L) the
space of Borel measurable and bounded complex valued functions defined on L,
endowed with the sup norm. If B ⊂ L is a Borel measurable set, denote by PB

the projection PB : B(L) −→ B(L) given by PB(f) = fχB for any f ∈ B(L). Of
course, in view of the Riesz theorem, the space B(L) can be identified in a natural
way as a subspace of C0(L)∗∗. As a consequence, for an operator T ∈ L(C0(L), Y )
and a Borel set B ⊂ L, the composition T ∗∗PB makes sense.

Lemma 2.3. Let Y be a C-uniformly convex space with modulus of C-convexity
δ. Let L be a locally compact Hausdorff topological space and let A be a Borel
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subset of L. Assume that for some 0 < ε < 1 and T ∈ SL(C0(L),Y ), one has

‖T ∗∗PA‖ > 1− δ(ε)
1+δ(ε)

. Then ‖T ∗∗(I − PA)‖ ≤ ε.

Proof. Assume that T satisfies the assumptions of the statement. By Proposi-
tion 2.2, T is a weakly compact operator, so T ∗∗(C0(L))∗∗ ⊂ Y , and we consider

the subspace B(K) ⊂ C0(L)∗∗. We write η = δ(ε)
1+δ(ε)

. By the assumption there

exists f ∈ SB(L) such that f = PA(f) and ‖T ∗∗(f)‖ > 1 − η > 0. For every
g ∈ BB(L) we have ‖f + (I − PA)(g)‖ ≤ 1 and so ‖T ∗∗(f + λ(I − PA)g)‖ ≤ 1 for

every λ ∈ D(0, 1). That is, for any λ ∈ D(0, 1) we have∥∥∥ T ∗∗(f)

‖T ∗∗(f)‖
+ λ

T ∗∗(I − PA)(g)

‖T ∗∗(f)‖

∥∥∥ ≤ 1

‖T ∗∗(f)‖

<
1

1− η
= 1 + δ(ε).

As a consequence, ‖T ∗∗(I − PA)(g)‖ ≤ ε‖T ∗∗(f)‖ ≤ ε. Since g is any function in
BB(L), we deduce that ‖T ∗∗(I − PA)‖ ≤ ε. �

Theorem 2.4. The pair (C0(L), Y ) satisfies the Bishop–Phelps–Bollobás prop-
erty for operators for any locally compact Hausdorff topological space L and any
C-uniformly convex space Y . Moreover, the function η appearing in the Definition
of BPBp depends only on the C = modulus of convexity of Y .

Proof. Fix 0 < ε < 1 and let δ(ε) be the modulus of C-convexity of Y . We denote

η =
ε2δ( ε

9
)2

10945(1 + δ( ε
9
))2

and s =
η(2− ε)ε2

2(ε2 + 2 · 122)
.

Assume that T ∈ SL(C0(L),Y ) and f0 ∈ SC0(L) satisfy

‖Tf0‖ > 1− s.

Our goal is to find an operator S ∈ SL(C0(L),Y ) and g ∈ SC0(L) such that∥∥S(g)∥∥ = 1, ‖S − T‖ < ε, and ‖g − f0‖ < ε.

We can choose y∗1 ∈ SY ∗ such that

Re y∗1(Tf0) = ‖Tf0‖ > 1− s. (2.1)

We identify C0(L)∗ with the space M(L) of Borel regular complex measures on L
in view of the Riesz theorem. We write µ1 = T ∗(y∗1) ∈ M(L).

Now we give a very brief sketch of the proof. First we will show that on a large
measurable subset A of L, the function f0 is close to the conjugate of g1 =

dµ1

d|µ1| .

Then we approximate A by a compact subset B ⊂ A where g1 is continuous. Next
we use the denseness of the subset of norm-attaining operators from C(B) into
L1(µ) to obtain an operator S2 close of the restriction of T to C(B) and attaining
its norm at some continuous function on B. Finally, we extend the operator S2

to a new operator S defined on C0(L) and we obtain a function g satisfying the
desired conditions.
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Since µ1 is absolutely continuous with respect to its variation |µ1|, by the
Radon–Nikodým theorem there is a Borel measurable function g1 ∈ B(L) such
that |g1| = 1 and such that

µ1(f) =

∫
L

fg1 d|µ1|, ∀f ∈ C0(L).

We write β = ε2

2·122 and we denote by A the set given by

A =
{
t ∈ L : Re f0(t)g1(t) > 1− β

}
.

By Lemma 2.1, we have ∥∥(f0 − g1)χA

∥∥
∞ ≤

√
2β =

ε

12
. (2.2)

Clearly, A is also Borel measurable, and we know that

1− s < Re y∗1(Tf0)

= Reµ1(f0)

= Re

∫
L

f0g1 d|µ1|

= Re

∫
A

f0g1 d|µ1|+Re

∫
L\A

f0g1 d|µ1|

≤ |µ1|(A) + (1− β)|µ1|(L\A)
= |µ1|(L)− β|µ1|(L\A)
≤ 1− β|µ1|(L\A).

Hence,

|µ1|(L\A) ≤
s

β
=

η(2− ε)122

ε2 + 2 · 122
.

By Lusin’s theorem (see, for instance, [18, Theorem 2.23]) and by the inner
regularity of µ1 there is a compact set B ⊂ A such that the restriction of g1 to
B is continuous, and |µ1|(A\B) ≤ εη

2
, and so

|µ1|(L\B) ≤ |µ1|(L\A) + |µ1|(A\B) ≤ s

β
+

εη

2
.

From (2.1) and the previous estimate, we obtain

|µ1|(B) = |µ1|(L)− |µ1|(L\B) > 1− s− s

β
− εη

2
= 1− η. (2.3)

Hence,

‖T ∗∗PB‖ ≥ |µ1|(B)

> 1− η

> 1−
δ( ε

9
)

1 + δ( ε
9
)
.
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By applying Lemma 2.3, we deduce∥∥T ∗∗(I − PB)
∥∥ ≤ ε

9
. (2.4)

By Proposition 2.2, T is a weakly compact operator and so T ∗∗(C0(L)∗∗) ⊂ Y . So
we can define the operator S̃ ∈ L(C0(L), Y ) by

S̃(f) = T ∗∗(fχB) + ε1y
∗
1

(
T ∗∗(fχB)

)
T ∗∗(g1χB)

(
f ∈ C0(L)

)
,

where ε1 =
1
6

δ( ε
9
)

1+δ( ε
9
)
.

Let us note that S̃∗∗ = S̃∗∗PB, and we have

‖S̃‖ ≥
∣∣y∗1(S̃∗∗(g1χB)

)∣∣
=

∣∣y∗1(T ∗∗(g1χB)
)
+ ε1y

∗
1

(
T ∗∗(g1χB)

)
y∗1
(
T ∗∗(g1χB)

)∣∣
≥

∣∣y∗1(T ∗∗(g1χB)
)∣∣∣∣1 + ε1y

∗
1

(
T ∗∗(g1χB)

)∣∣
≥ |µ1|(B)

(
1 + ε1|µ1|(B)

)
> (1− η)

(
1 + ε1(1− η)

) [
by (2.3)

]
.

As a consequence,

1 ≤ 1− η + ε1(1− η)2 ≤ ‖S̃‖ ≤ 1 + ε1, (2.5)

and so ∣∣1− ‖S̃‖
∣∣ ≤ ε1. (2.6)

For every h ∈ C(B), we will denote by hχB the natural extension of h to L,
which is a Borel function on L. Let S1 be the operator given by

S1(h) = S̃∗∗(hχB)
(
h ∈ C(B)

)
,

which is clearly an operator from C(B) into Y . Since S̃∗∗ = S̃∗∗PB, it is clear that
‖S1‖ = ‖S̃‖. We know that B is a compact set and S̃ is weakly compact, and by
[4, Theorem 2] there is an operator S2 ∈ L(C(B), Y ) and h1 ∈ SC(B) satisfying
that

‖S̃‖ = ‖S2‖ =
∥∥S2(h1)

∥∥ and ‖S2 − S1‖ <
εη

2
. (2.7)

We can choose y∗2 ∈ SY ∗ such that

y∗2
(
S2(h1)

)
= ‖S2‖. (2.8)

By rotating the elements h1 and y∗2, if needed we can also assume that
y∗1(T

∗∗(h1χB)) ∈ R+
0 . In view of (2.7), the choice of y∗2, and by using that

y∗1(T
∗∗(h1χB)) ∈ R+

0 , we have

‖S̃‖ − εη

2
≤ Re y∗2

(
S1(h1)

)
= Re y∗2

(
S̃∗∗(h1χB)

)
= Re y∗2

(
T ∗∗(h1χB)

)
+ ε1Re y

∗
1

(
T ∗∗(h1χB)

)
y∗2
(
T ∗∗(g1χB)

)
≤ 1 + ε1Re y

∗
2

(
T ∗∗(g1χB)

)
.
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Combining this inequality with the estimate (2.5), we deduce that

Re y∗2
(
T ∗∗(g1χB)

)
≥ (1− η)2 − η(2 + ε)

2ε1
.

As a consequence, we obtain

Re y∗2
(
S̃∗∗(g1χB)

)
= Re y∗2

(
T ∗∗(g1χB)

)
+ ε1Re y

∗
1

(
T ∗∗(g1χB)

)
y∗2
(
T ∗∗(g1χB)

)
≥ (1− η)2 − η(2 + ε)

2ε1
+ ε1|µ1|(B)

(
(1− η)2 − η(2 + ε)

2ε1

)
≥

(
(1− η)2 − η(2 + ε)

2ε1

)(
1 + ε1(1− η)

) [
by (2.3)

]
.

So in view of (2.7) and (2.5), we have

Re y∗2
(
S2(g1|B)

)
≥ Re y∗2

(
S1(g1|B)

)
− ‖S2 − S1‖

≥ Re y∗2
(
S̃∗∗(g1χB)

)
− ‖S2 − S1‖

≥
(
(1− η)2 − η(2 + ε)

2ε1

)(
1 + ε1(1− η)

)
− ηε

2

≥
(
(1− η)2 − η(2 + ε)

2ε1

)(
1 + ε1(1− η)

)
− ηε‖S2‖

2
.

Let us write R2 = S2

‖S2‖ and µ2 = R∗
2(y

∗
2) ∈ M(B). Let g2 = dµ2

d|µ2| , and we can

assume that |g2| = 1. From the previous inequality, by using again (2.7) and (2.5),
we obtain

Re y∗2
(
R2(g1|B)

)
≥

((1− η)2 − η(2+ε)
2ε1

)(1 + ε1(1− η))

‖S2‖
− ηε

2

≥
((1− η)2 − η(2+ε)

2ε1
)(1 + ε1(1− η))

1 + ε1
− ηε

2

= 1−
2η − 2η2 + ε1(1− (1− η)3) + 2η+ηε

2ε1
+ ηε

2
(2 + ε1 − η)

1 + ε1

> 1− 6η − 2
η

ε1
− εη. (2.9)

We consider the measurable subset C of L given by

C =
{
t ∈ B : Re

(
g1(t) + h1(t)

)
g2(t) > 2− β

}
.

In view of (2.8) and (2.9), we have

2− 6η − 2
η

ε1
− εη < Reµ2(h1 + g1|B)

=

∫
C

Re(h1 + g1)g2 d|µ2|+
∫
B\C

Re(h1 + g1)g2 d|µ2|

≤ 2|µ2|(C) + (2− β)|µ2|(B\C)
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= 2|µ2|(B)− β|µ2|(B\C)

≤ 2− β|µ2|(B\C).

Hence,

|µ2|(B\C) ≤
6η + 2 η

ε1
+ εη

β
. (2.10)

On the other hand, in view of Lemma 2.1, we have∥∥(g1 − g2)χC

∥∥
∞ ≤

√
2β =

ε

12
and

∥∥(h1 − g2)χC

∥∥
∞ ≤

√
2β =

ε

12
.

From the previous inequality and (2.2), it follows that∥∥(h1 − f0)χC

∥∥
∞

≤
∥∥(h1 − g2)χC

∥∥
∞ +

∥∥(g2 − g1)χC

∥∥
∞ +

∥∥(g1 − f0)χC

∥∥
∞

≤ ε

4
. (2.11)

By the inner regularity of µ2 there is a compact set K1 ⊂ C such that

|µ2|(C\K1) <
ηε

2
. (2.12)

Let us note that

‖R∗∗
2 PK1‖ ≥ ‖y∗2R∗∗

2 PK1‖ = |µ2|(K1)

= |µ2|(B)− |µ2|(B\C)− |µ2|(C\K1)

≥ Re y∗2
(
R2(g1|B)

)
− |µ2|(B\C)− |µ2|(C\K1)

≥ Re y∗2
(
R2(g1|B)

)
− |µ2|(B\C)− ηε

2

[
by (2.12)

]
≥ 1− 6η − 2

η

ε1
− εη −

6η + 2 η
ε1
+ εη

β
− ηε

2

[
by (2.9) and (2.10)

]
> 1− 2

6η + 2 η
ε1
+ εη

β
− ηε

2

> 1−
δ( ε

9
)

1 + δ( ε
9
)
> 0.

Hence, K1 6= ∅.
In view of Lemma 2.3, we obtain∥∥R∗∗

2 (PB − PK1)
∥∥ ≤ ε

9
. (2.13)

We denote by T2 the element in L(C0(L), Y ) defined by

T2(f) = R2(f|B)
(
f ∈ C0(L)

)
.

Clearly, ‖T ∗∗
2 (I−PK1)‖ = ‖R∗∗

2 (PB−PK1)‖, and since it satisfied T ∗∗
2 (PB−PK1) =

T ∗∗
2 (I − PK1)PB in view of (2.13), we obtain∥∥T ∗∗

2 (PB − PK1)
∥∥ ≤ ε

9
. (2.14)
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We also write R(f) = T ∗∗(fχB) for every f ∈ C(B) and so we have∥∥(T ∗∗
2 − T ∗∗)PB

∥∥ = ‖R2 −R‖. (2.15)

By the definition of S1 we know that

‖S1 −R‖ ≤ ε1. (2.16)

Since K1 6= ∅, let us fix t0 ∈ K1. Since K1 ⊂ C, we have that |h1(t0)| >
1 − β > 1 − ε/2. So we can choose an open set V in B such that t0 ∈ V ⊂
{t ∈ B : |h1(t)| > 1 − ε/2} and a function v ∈ C(B) satisfying v(B) ⊂
[0, 1], v(t0) = 1 and supp v ⊂ V . So there are functions hi ∈ C(B) (i = 2, 3)
such that

h2(t) = h1(t) + v(t)
(
1−

∣∣h1(t)
∣∣) h1(t)

|h1(t)|
(t ∈ B)

and

h3(t) = h1(t)− v(t)
(
1−

∣∣h1(t)
∣∣) h1(t)

|h1(t)|
(t ∈ B).

It is clear that hi ∈ BC(B) for i = 2, 3 and h1 = 1
2
(h2 + h3). By using the fact

that the operator R2 attains its norm at h1, we clearly have that∥∥R2(h2)
∥∥ = 1 and

∣∣h2(t0)
∣∣ = 1. (2.17)

Since supp v ⊂ V ⊂ {t ∈ B : |h1(t)| > 1− ε/2}, we obtain for t ∈ V that∣∣h2(t)− h1(t)
∣∣ ≤ 1−

∣∣h1(t)
∣∣ < ε

2
.

For t ∈ B\V , h2(t) = h1(t) so ‖h2 − h1‖ < ε/2. In view of (2.11), we obtain

‖h2 − f0|C‖ ≤ ‖h2 − h1‖+ ‖h1 − f0|C‖

≤ ε

2
+

ε

4

=
3ε

4
. (2.18)

Since B ⊂ L is a compact subset, there is a function f2 ∈ C0(L) that extends
the function h2 to L (see, for instance, [10, Corollary 9.15 and Theorem 12.4],
[12, Theorems 17 and 18]). Since the function Φ : C −→ C given by Φ(z) = z if
|z| ≤ 1 and Φ(z) = z

|z| if |z| > 1 is continuous, by using Φ ◦ f2 instead of f2 if

needed, and the fact that h2 ∈ SC(B), we can also assume that f2 ∈ SC0(L). Since
f2 is an extension of h2, by using (2.18) there is an open set G ⊂ L such that
K1 ⊂ G and satisfying also that∥∥(f2 − f0)χG

∥∥
∞ <

7ε

8
. (2.19)

By Urysohn’s lemma, there is a function u ∈ C0(L) such that u(L) ⊂ [0, 1],
u|K1 = 1 and suppu ⊂ G. We define the function f3 by

f3 = uf2 + (1− u)f0,

that clearly belongs to BC0(L).
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Note also that

f3(t) = f2(t) = h2(t) ∀t ∈ K1, f3(t) = f0(t) ∀t ∈ L\G (2.20)

and that ∣∣f3(t)− f0(t)
∣∣ = u(t)

∣∣f2(t)− f0(t)
∣∣, ∀t ∈ G\K1.

In view of (2.19), we obtain

‖f3 − f0‖ < ε. (2.21)

We write λ0 = h2(t0) and we know that |λ0| = 1. Here we define the operator
S ∈ L(C0(L), Y ) given by

S(f) = R∗∗
2

(
(fχK1)|B

)
+ λ0f(t0)R

∗∗
2 (h2χB\K1)

(
f ∈ C0(L)

)
.

Since R2 is weakly compact, S is well defined. For every f ∈ BC0(L), we have that
|λ0f(t0)| ≤ 1 and so ∥∥(fχK1)|B + λ0f(t0)h2χB\K1

∥∥
∞ ≤ 1.

Since ‖R2‖ ≤ 1, then∥∥S(f)∥∥ =
∥∥R∗∗

2

(
(fχK1)|B + λ0f(t0)h2χB\K1

)∥∥ ≤ 1.

It is also satisfied that

S(f3) = R∗∗
2

(
(f3χK1)|B

)
+ λ0f3(t0)R

∗∗
2 (h2χB\K1)

= R∗∗
2 (h2)

[
by (2.20)

]
= R2(h2)

and, in view of (2.17), we obtain ‖S(f3)‖ = ‖R2(h2)‖ = 1. Hence, S ∈ SL(C0(L),Y )

and it attains its norm at f3. We also know that ‖f3 − f0‖ < ε by inequality
(2.21). It suffices to check that S is close to T . Indeed, we obtain the following
estimate:

‖S − T‖ ≤ ‖S∗∗ − T ∗∗PB‖+
∥∥T ∗∗(I − PB)

∥∥
≤ ‖T ∗∗

2 PK1 − T ∗∗PB‖+
∥∥R∗∗

2 (PB − PK1)
∥∥+

ε

9

[
by (2.4)

]
=

∥∥(T ∗∗
2 − T ∗∗)PB

∥∥+
∥∥T ∗∗

2 (PB − PK1)
∥∥+

2ε

9

[
by (2.13)

]
≤

∥∥(T ∗∗
2 − T ∗∗)PB

∥∥+
ε

3

[
by (2.14)

]
= ‖R2 −R‖+ ε

3

[
by (2.15)

]
≤ ‖R2 − S2‖+ ‖S2 − S1‖+ ‖S1 −R‖+ ε

3

≤
∣∣1− ‖S2‖

∣∣+ ηε

2
+ ε1 +

ε

3

[
by (2.7) and (2.16)

]
≤ 2ε1 +

ηε

2
+

ε

3
< ε

[
by (2.6) and (2.7)

]
. �

Since the complex spaces Lp(µ) (1 ≤ p < ∞) are C-uniformly convex, we
obtain the following result.
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Corollary 2.5. In the complex case, the pair (C0(L), Lp(µ)) has the Bishop–
Phelps–Bollobás property for operators for every Hausdorff locally compact
space L, every positive measure µ, and 1 ≤ p < ∞.

As we already mentioned, we extended in a nontrivial way a result by Kim,
Lee, and Lin [15, Theorem 6] where they consider any (complex) space L∞(ν) as
the domain space.

Open problem. In the real case it is not known whether or not the pair (c0, `1)
has the BPBp for operators.
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