

Banach J. Math. Anal. 10 (2016), no. 1, 48–70 http://dx.doi.org/10.1215/17358787-3163248 ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

DIRECT LIMIT TOPOLOGIES OF QUASI-UNIFORM SPACES AND PARATOPOLOGICAL GROUPS

FUCAI LIN,^{1*} LI-HONG XIE,² and JING ZHANG¹

Communicated by W. B. Moors

ABSTRACT. Given an increasing sequence $(X_n)_{n\in\omega}$ of quasi-uniform spaces and paratopological groups, we study the topology of the direct limits qu-lim X_n and pg-lim X_n of the sequence $(X_n)_{n\in\omega}$ in the categories of quasi-uniform spaces and paratopological groups, respectively. First, we prove that the quasiuniformity of the quasi-uniform direct limit qu-lim X_n is generated by some special family of quasi-pseudometrics. Then we discuss some properties of the direct limits pg-lim X_n . Finally, we give an explicit description of the topology of the direct limit pg-lim X_n under certain conditions on the sequence of paratopological groups $(X_n)_{n\in\omega}$. Moreover, some questions about direct limits of qu-lim X_n and pg-lim X_n are posed.

1. INTRODUCTION

The concept of direct limit is a basic one in functional analysis, and it has become widely used in algebra, topology, and other areas of mathematics, such as algebraic geometry and complex analysis, including the fundamental notion that a stalk of a sheaf uses direct limits. An important special case of the direct limit is

Copyright 2016 by the Tusi Mathematical Research Group.

Received Jun. 26, 2014; Accepted Apr. 7, 2015.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46A13; Secondary 22A05, 54B30, 54E15, 54H11.

Keywords. direct limit, quasi-uniform spaces, paratopological groups, quasi-pseudometric, semitopological groups.

the direct limit of a directed family of mathematical structures of the same type. The problem of explicitly describing the topological structure of the direct limit has been discussed in [2], [3], [5], [8], [9], [10], and [13]. In this paper, we mainly discuss the topologies on a tower of quasi-uniform spaces and paratopological groups.

A semitopological group G is a group G with a topology such that the product map of $G \times G$ into G is separately continuous. If G is a semitopological group and the inverse map of G onto itself associating x^{-1} with arbitrary $x \in G$ is continuous, then G is called a *quasitopological group*. A *paratopological group* G is a group G with a topology such that the product map of $G \times G$ into G is jointly continuous. If G is a paratopological group and the inverse map of G onto itself associating x^{-1} with arbitrary $x \in G$ is continuous, then G is called a *topological group*. However, there exists a paratopological group which is not a topological group; the Sorgenfrey line (see [6, Example 1.2.2]) is such an example.

Given a tower

$$X_0 \subset X_1 \subset X_2 \subset \cdots \subset X_n \subset \cdots$$

of topological spaces, the union $X = \bigcup_{n \in \omega} X_n$ endowed with the strongest topology making the inclusion maps $X_n \to X$, $n \in \omega$, continuous is called the *topolog*ical direct limit of the tower $(X_n)_{n \in \omega}$ and is denoted by t-lim X_n .

By a quasi-uniform space we mean the natural analogue of a uniform space obtained by dropping the symmetry axiom. We shall denote the quasi-uniformity of a quasi-uniform space X by \mathcal{QU}_X . The direct limit qu-lim X_n (resp., u-lim X_n) of a tower $(X_n)_{n\in\omega}$ of quasi-uniform spaces (resp., uniform spaces) is defined in a similar fashion as the countable union $X = \bigcup_{n\in\omega} X_n$ endowed with the strongest quasi-uniformity (resp., uniformity), making the inclusion maps $X_n \to X$, $n \in \omega$, quasi-uniformly continuous (resp., uniformly continuous).

The direct limit pg-lim G_n (resp., g-lim G_n) of a tower $(G_n)_{n\in\omega}$ of paratopological groups (resp., topological groups) is defined as the countable union $G = \bigcup_{n\in\omega} G_n$ endowed with the strongest topology that turns G into a paratopological group (resp., topological group) and makes the inclusion maps $G_n \to G$, $n \in \omega$, continuous.

This paper is organized as follows.

In Section 3, we prove that the quasi-uniformity of the quasi-uniform direct limit qu-lim X_n of the sequence $(X_n)_{n\in\omega}$ in the categories of quasi-uniform spaces is generated by some special family of quasi-pseudometrics. Moreover, for two towers $(X_n)_{n\in\omega}$ and $(Y_n)_{n\in\omega}$ of quasi-uniform spaces, we show that the topology of qu-lim $X_n \times$ qu-lim Y_n coincides with the topology of qu-lim $(X_n \times Y_n)$.

In Section 4, we discuss some properties of direct limits t-lim G_n and pg-lim G_n of the sequence $(G_n)_{n \in \omega}$ in the categories of paratopological groups. We show that if t-lim G_n is a paratopological group, then t-lim $G_n^* = (t-\lim G_n)^*$, where each $\overrightarrow{G_n}$ denotes the coarsest group topology on G_n which is finer than the original topology of G_n . In Section 5, we give an explicit description of the topology of the direct limit $\operatorname{pg-lim} G_n$ of the sequence $(G_n)_{n\in\omega}$ in the categories of paratopological groups under certain conditions on the sequence of paratopological groups $(G_n)_{n\in\omega}$. We prove that, under certain conditions on a tower of paratopological groups $(G_n)_{n\in\omega}$, the topology of the direct limit $\operatorname{pg-lim} G_n$ coincides with one (or all) four simply described topologies on the group $\overrightarrow{G} = \bigcup_{n\in\omega} G_n$. Moreover, we define the PPTA (passing through assumption in paratopological groups) property and other properties of the tower $(G_n)_{n\in\omega}$, guaranteeing that the topology of $\operatorname{pg-lim} G_n$ coincides with some kind of topology.

2. Preliminaries

Let X be a set. The family of all subsets of $X \times X$ has an algebraic structure related to the operation

$$U \circ V = \{ (x, z) \in X \times X : \text{there exists } y \in X \\ \text{such that } (x, y) \in U \text{ and } (y, z) \in V \}$$

for $U, V \subset X \times X$. Then the so-defined addition operation allows us to multiply subsets $U \subset X \times X$ by positive integers using the inductive formula $U = U^1$ and $U^{(n+1)} = U^n \circ U$ for n > 1. Moreover, for a subset U of $X \times X$, denote

$$U^{-1} = \{(x, y) : (y, x) \in U\}$$

For a sequence $(U_i)_{i \in \omega}$ of subsets of $X \times X$, put

$$\sum_{i\leq n} U_i = U_0 \circ \cdots \circ U_n$$

and

$$\sum_{i\in\omega} U_i = \bigcup_{n\in\omega} \sum_{i\leq n} U_i$$

For a point $x \in X$, a subset $A \subset X$, and $U \subset X \times X$, let

$$B(x,U) = \left\{ y \in X : (x,y) \in U \right\}$$

and

$$B(A,U) = \bigcup_{x \in A} B(x,U)$$

be the U-ball around x and A, respectively.

Definition 2.1. A quasi-uniformity on a set X is a filter \mathscr{U} on $X \times X$ such that (a) each member of \mathscr{U} contains the diagonal of $X \times X$ and (b) if $U \in \mathscr{U}$, then $V \circ V \subset U$ for some $V \in \mathscr{U}$. The pair (X, \mathscr{U}) is called a quasi-uniform space and the members of \mathscr{U} are called *entourages*.

By a tower of quasi-uniform spaces we shall understand any increasing sequence

$$X_0 \subset X_1 \subset X_2 \subset \cdots \subset X_n \subset \cdots$$

of quasi-uniform spaces.

Definition 2.2. A function $f: (X, \mathscr{U}) \to (Y, \mathscr{V})$ is called *quasi-uniformly continu*ous (resp., uniformly continuous) if, for each $V \in \mathscr{V}$, there exists an $U \in \mathscr{U}$ such that $(f(x), f(y)) \in V$ whenever $(x, y) \in U$, where \mathscr{U} and \mathscr{V} are quasi-uniformities (resp., uniformities) for X and Y, respectively.

Definition 2.3. A quasi-pseudometric d on a set X is a function from $X \times X$ into the set of nonnegative real numbers such that, for $x, y, z \in X$: (a) d(x, x) = 0and (b) $d(x, y) \leq d(x, z) + d(z, y)$.

Every quasi-pseudometric d on X generates a topology $\mathscr{F}(d)$ on X which has a base of the family of d-balls $\{B_d(x,r) : x \in X, r > 0\}$, where $B_d(x,r) = \{y \in X : d(x,y) < r\}$.

We denote by ω the first countable order and by \mathbb{N} the set of all natural numbers. The letter *e* denotes the neutral element of a group. The readers may consult [1], [4] and [6] for notations and terminology not explicitly given here.

3. TOPOLOGICAL DIRECT LIMIT OF QUASI-UNIFORM SPACES

A quasi-pseudometric on a quasi-uniform space X is called *quasi-uniform* if, for each $\varepsilon > 0$, the set

$$\{d < \varepsilon\} = \{(x, y) \in X \times X : d(x, y) < \varepsilon\}$$

belongs to the quasi-uniformity of X. By [7, p. 3], the family of \mathcal{QPM}_X of all quasi-uniform quasi-pseudometrics on a quasi-uniform space X generates the quasi-uniformity \mathcal{QU}_X of X in the sense that the sets $\{d < 1\}, d \in \mathcal{QPM}_X$, form a base of the quasi-uniformity \mathcal{QU}_X .

It follows from the definition of quasi-uniform direct limit that we have the following theorem.

Theorem 3.1. Let $(X_n)_{n \in \omega}$ be a tower of quasi-uniform spaces. Then a quasipseudometric d on the quasi-uniform space qu-lim X_n is quasi-uniform if and only if for each $n \in \omega$ the restriction $d|_{X_n \times X_n}$ is a quasi-uniform quasi-pseudometric on X_n .

For a tower $(X_n)_{n \in \omega}$ of sets and points $x, y \in X = \bigcup_{n \in \omega} X_n$, let $|x| = \min\{n \in \omega : x \in X_n\}$

and

 $|x,y| = \max\{|x|,|y|\}.$

The |x| is said to be the *height* of the point x in X.

Definition 3.2. Let $(d_n)_{n\in\omega} \in \prod_{n\in\omega} \mathcal{QPM}_{X_n}$. Then we say that a sequence of quasi-pseudometrics $(d_n)_{n\in\omega}$ is monotone if $d_n \leq d_{n+1}|X_n \times X_n$ for any $n \in \omega$. By the direct limit $d_{\infty} = \lim_{x \to \infty} d_n$ of a monotone sequence of quasi-pseudometrics $(d_n)_{n\in\omega}$, we understand the quasi-pseudometric on $X = \bigcup_{n\in\omega} X_n$ defined by the following formula:

$$d_{\infty}(x,y) = \lim_{\longrightarrow} d_n(x,y) = \inf\left\{\sum_{i=1}^n d_{|x_{i-1},x_i|}(x_{i-1},x_i) : x = x_0, x_1, \dots, x_n = y\right\}$$

on X.

Lemma 3.3. Let $(X_n)_{n\in\omega}$ be a tower of quasi-uniform spaces, and let $(d_n)_{n\in\omega} \in \prod_{n\in\omega} \mathcal{QPM}_{X_n}$ be monotone. For arbitrary points $x, y \in X$ and $\varepsilon > 0$, there exists a chain of points $x = x_0, x_1, \ldots, x_n = y$ such that

$$\sum_{i=1}^{n} d_{|x_{i-1},x_i|}(x_{i-1},x_i) < \lim_{\longrightarrow} d_n(x,y) + \varepsilon$$

$$\tag{1}$$

and $|x_i| < \max\{|x_{i-1}|, |x_i|\}$ for each 0 < i < n. The latter condition implies that $|x_0| > |x_1| > \cdots > |x_k| \le |x_{k+1}| < \cdots < |x_n|$ for some $0 \le k < n$.

Proof. Let $x = x_0, x_1, \ldots, x_n = y$ be a sequence satisfying (1) and having the smallest possible length n. Then the sequence $x = x_0, x_1, \ldots, x_n = y$ has the desired property.

Indeed, suppose that $|x_i| \ge \max\{|x_{i-1}|, |x_i|\}$ for some 0 < i < n. Since

$$d_{|x_{i-1},x_i|}(x_{i-1},x_i) + d_{|x_i,x_{i+1}|}(x_i,x_{i+1}) = d_{|x_i|}(x_{i-1},x_i) + d_{|x_i|}(x_i,x_{i+1})$$

$$\geq d_{|x_i|}(x_{i-1},x_{i+1})$$

$$\geq d_{|x_{i-1},x_{i+1}|}(x_{i-1},x_{i+1}),$$

we can delete the point x_i from the sequence x_0, x_1, \ldots, x_n , which will not enlarge the sum in (1). However, it will diminish the length of the sequence, which is a contradiction.

Let k be the smallest number such that $|x_k| = \min_{i \le n} |x_i|$. Then we have $|x_0| > |x_1| > \cdots > |x_k| \le |x_{k+1}| < \cdots < |x_n|$.

Lemma 3.4. Let $(X_n)_{n\in\omega}$ be a tower of quasi-uniform spaces. For an arbitrary monotone sequence of quasi-pseudometrics $(d_n)_{n\in\omega} \in \prod_{n\in\omega} \mathcal{QPM}_{X_n}$, the direct limit quasi-pseudometrics $\lim_{n \to \infty} d_n$ on qu-lim X_n is quasi-uniform.

Proof. Let $d_{\infty} = \lim_{\longrightarrow} d_n$. By Theorem 3.1, it is easy to see that the quasi-uniformity of the quasi-pseudometric d_{∞} is equivalent to the quasi-uniform continuity of the identity map qu- $\lim_{\longrightarrow} X_n \longrightarrow (X, d_{\infty})$. It follows from the definition of quasiuniform direct limit qu- $\lim_{\longrightarrow} X_n$ that the quasi-uniform continuity of the identity map qu- $\lim_{\longrightarrow} X_n \longrightarrow (X, d_{\infty})$ is equivalent to the quasi-uniform continuity of the inclusion embedding $X_n \longrightarrow (X, d_{\infty})$ for each $n \in \omega$. For each $n \in \omega$, since d_n is a quasi-uniform quasi-pseudometric and $(d_n)_{n \in \omega}$ is monotone, the inclusion embedding $X_n \longrightarrow (X, d_{\infty})$ is a quasi-uniform continuity. \Box

Lemma 3.5. Let (X, \mathcal{QU}_X) be a quasi-uniform space, and let M be a subset of X. Then every bounded quasi-pseudometric ρ on the set M, which is quasi-uniform with respect to \mathcal{QU}_M , is extendable to a bounded quasi-pseudometric σ on the set X, which is quasi-uniform with respect to \mathcal{QU}_X .

Proof. Without loss of generality, we may assume that $\rho < \frac{1}{2}$ for all $x, y \in M$. For each $i \in \mathbb{N}$, take a $V_i \in \mathcal{QU}_X$ such that

$$V_i \cap (M \times M) \subset \Big\{ (x, y) \in M \times M : \rho(x, y) < \frac{1}{2^i} \Big\},\$$

and take a quasi-uniform quasi-pseudometric σ_i on the set X bounded by 1 such that

$$\left\{ (x,y) \in X \times X : \sigma_i(x,y) < \frac{1}{4} \right\} \subset V_i$$

(see [7, p. 3] or [11]). Put

$$\sigma'(x,y) = 8\sum_{i=1}^{\infty} \frac{1}{2^i} \sigma_i(x,y).$$

Then it is easy to see that σ' is a quasi-pseudometric on X, which is quasi-uniform with respect to \mathcal{QU}_X . Next we shall show that $\rho(x, y) \leq \sigma'(x, y)$ for all $x, y \in M$. Indeed, for each $x, y \in M$, if $\rho(x, y) = 0$, then it is obvious. Hence we may assume that $\rho(x, y) \neq 0$. Then there exists an $i \in \mathbb{N}$ such that $\frac{1}{2^{i+1}} \leq \rho(x, y) < \frac{1}{2^i}$; hence $(x, y) \notin V_{i+1}$, which implies that $\sigma_{i+1}(x, y) \geq \frac{1}{4}$. Therefore, $\sigma'(x, y) \geq$ $8 \times \frac{1}{2^{i+1}}\sigma_{i+1}(x, y) \geq 8 \times \frac{1}{2^{i+1}} \times \frac{1}{4} = \frac{1}{2^i} > \rho(x, y)$.

For $x, y \in X$, let

$$\sigma''(x,y) = \inf \left\{ \sigma'(x,a) + \rho(a,b) + \sigma'(b,y) : a, b \in M \right\}$$

and

$$\sigma(x,y) = \min\{\sigma'(x,y), \sigma''(x,y)\}.$$

Since σ' is a quasi-uniform quasi-pseudometric on X, σ is a quasi-uniform quasipseudometric σ on the set X. Finally, we shall check $\sigma|_{M \times M} = \rho$. Indeed, it suffices to check that $\sigma'' = \rho$ on M. Fix arbitrary $x, y \in M$. Then we have

$$\sigma''(x,y) \le \sigma'(x,x) + \rho(x,y) + \sigma'(y,y) = \rho(x,y).$$

Moreover, for arbitrary $a, b \in M$, we have

$$\rho(x, y) \le \rho(x, a) + \rho(a, b) + \rho(b, y)$$
$$\le \sigma'(x, a) + \rho(a, b) + \sigma'(b, y).$$

which implies that $\rho(x, y) \leq \sigma''(x, y)$. Therefore, $\sigma'' = \rho$ on M.

Theorem 3.6. The quasi-uniformity of the quasi-uniform direct limit qu- $\lim_{\to} X_n$ of a tower of quasi-uniform spaces $(X_n)_{n \in \omega}$ is generated by the family of quasipseudometrics

$$\Big\{\lim_{\longrightarrow} d_n : (d_n)_{n \in \omega} \in \prod_{n \in \omega} \mathcal{QPM}_{X_n} \text{ is monotone} \Big\}.$$

Proof. Let $U \in \mathcal{QPM}_X$ be an entourage of the diagonal of the quasi-uniform space qu-lim X_n . By Lemma 3.4, for each monotone sequence of quasipseudometrics $(d_n)_{n\in\omega} \in \prod_{n\in\omega} \mathcal{QPM}_{X_n}$, the direct limit quasi-pseudometric $\lim_{\to} d_n$ on qu-lim X_n is quasi-uniform. Therefore, we need to find a monotone sequence of quasi-pseudometrics $(d_n)_{n\in\omega} \in \prod_{n\in\omega} \mathcal{QPM}_{X_n}$ such that $\{\lim_{\to} d_n < 1\} \subset U$.

Choose a sequence of entourages $(U_n)_{n\in\omega} \in (\mathcal{QPM}_X)^{\omega}$ such that $U_0^4 \subset U$ and $U_{n+1}^2 \subset U_n$ for each $n \in \omega$.

Claim 1. There exists a monotone sequence of quasi-pseudometrics $(d_n)_{n \in \omega} \in \prod_{n \in \omega} \mathcal{QPM}_{X_n}$ such that $\{d_n < 1\} \subset U_n$ for each $n \in \omega$.

Indeed, it follows from [7, p. 3] or [11] that, for each $k \in \omega$, there is a bounded quasi-uniform quasi-pseudometric ρ_k on X_k such that $\{\rho_k < 1\} \subset U_k$. By Lemma 3.5, for each $n \geq k$, the quasi-pseudometric ρ_k can be extended to a quasi-uniform quasi-pseudometric $\tilde{\rho}_{k,n}$ on the quasi-uniform space $X_n \supset X_k$. For each $n \in \omega$, let $d_n = \sum_{k \leq n} \tilde{\rho}_{k,n}$. Then $(d_n)_{n \in \omega}$ is a required monotone sequence of quasi-uniform quasi-pseudometrics.

By Claim 1, there exists a monotone sequence of quasi-pseudometrics $(d_n)_{n \in \omega} \in \prod_{n \in \omega} \mathcal{QPM}_{X_n}$ such that $\{d_n < 1\} \subset U_n$ for each $n \in \omega$. Let $d_{\infty} = \lim_{\longrightarrow} d_n$. Then we have $\{d_{\infty} < 1\} \subset U$.

Indeed, take any points $x, y \in X$ with $d_{\infty}(x, y) < 1$. By Lemma 3.3, there exists a sequence of points $x = x_0, x_1, \ldots, x_n = y$ such that

$$\sum_{i=1}^{n} d_{|x_{i-1}, x_i|}(x_{i-1}, x_i) < 1$$

and

$$|x_0| > |x_1| > \dots > |x_k| \le |x_{k+1}| < \dots < |x_n|$$

for some $0 \le k < n$. Note that, for each $i \le k$, we get $|x_{i-1}| \ge |x_i|$ and then

$$d_{|x_{i-1}|}(x_{i-1}, x_i) = d_{|x_{i-1}, x_i|}(x_{i-1}, x_i) < 1.$$

Therefore, the choice of the quasi-pseudometric $d_{|x_{i-1}|}$ guarantees that $(x_{i-1}, x_i) \in \{d_{|x_{i-1}|} < 1\} \subset U_{|x_{i-1}|}$.

For i > k, since $|x_{i-1}| \le |x_i|$, we have

$$d_{|x_i|}(x_{i-1}, x_i) = d_{|x_{i-1}, x_i|}(x_{i-1}, x_i) < 1,$$

which implies that $(x_{i-1}, x_i) \in U_{|x_i|}$. It follows from

$$|x_0| > |x_1| > \dots > |x_k| \le |x_{k+1}| < \dots < |x_n|$$

that

$$(x, y) \in U_{|x_0|} \circ \cdots \circ U_{|x_{k-1}|} \circ U_{|x_{k+1}|} \circ \cdots \circ U_{|x_n|}$$

$$\subset U_{k-1} \circ \cdots \circ U_0 \circ U_0 \circ \cdots \circ U_{n-k}$$

$$\subset U_0^4$$

$$\subset U.$$

Question 3.7. For towers $(X_n)_{n\in\omega}$, $(Y_n)_{n\in\omega}$ of quasi-uniform spaces, is the identity map id : qu-lim $(X_n \times Y_n) \longrightarrow$ qu-lim $X_n \times$ qu-lim Y_n a homeomorphism?

Let (X, \mathcal{QU}_X) be a quasi-uniform space. Denote \mathcal{QU}_X^* be the coarsest uniformity on X which is finer than \mathcal{QU}_X .

Theorem 3.8. Let $(X_n, \mathcal{QU}_{X_n})$ be a tower of quasi-uniform spaces, and let \mathcal{QU}_X be the quasi-uniformity of qu-lim X_n . Then \mathcal{QU}_X^* is the uniformity of u-lim Y_n , where each Y_n is the uniform space $(X_n, \mathcal{QU}_{X_n}^*)$. *Proof.* Let \mathcal{U}_X be the uniformity of u-lim Y_n . Obviously, we have $\mathcal{QU}_X^* \subset \mathcal{U}_X$. Next we shall prove that $\mathcal{U}_X \subset \mathcal{QU}_X^*$.

Let $U \in \mathcal{U}_X$. Obviously, we have $U \cap (X_n \times X_n) \in \mathcal{QU}^*_{X_n}$ for each $n \in \omega$. Next, we shall construct a sequence $\{V_n : n \in \omega\}$ of subsets of $X \times X$ such that the following conditions hold:

- (1) for each $n \in \omega$, $V_n \in \mathcal{QU}_{X_n}$;
- (2) for each $n \in \omega$, $V_n = V_{n+1} \cap (X_n \times X_n)$;
- (2) for each $n \in \omega$, $V_n \cap V_n^{-1} \subset U \cap (X_n \times X_n)$.

Indeed, since $U \cap (X_0 \times X_0) \in \mathcal{QU}_{X_0}^*$, there exists a $V_0 \in \mathcal{QU}_{X_0}$ such that $V_0 \cap V_0^{-1} \subset U \cap (X_0 \times X_0)$. Now, suppose we have defined V_0, V_1, \ldots, V_n . Since $V_n \cap V_n^{-1} \subset (X_{n+1} \times X_{n+1}) \cap U$ and $V_n \cap V_n^{-1} \in \mathcal{QU}_{X_n}^*$, there exists a symmetric subset $W \in \mathcal{QU}_{X_{n+1}}^*$ such that $V_n \cap V_n^{-1} = W \cap (X_n \times X_n)$ and $W \subset (X_{n+1} \times X_{n+1}) \cap U$. Moreover, since $V_n \in \mathcal{QU}_{X_n}$, there exists a $L \in \mathcal{QU}_{X_{n+1}}$ such that $L \cap (X_n \times X_n) = V_n$. Therefore, there exists an $O \subset L$ and $O \in \mathcal{QU}_{X_{n+1}}$ such that $O \cap O^{-1} \subset W$. Put $V_{n+1} = O \cup V_n$. Then $V_{n+1} \in \mathcal{QU}_{X_{n+1}}$ and $V_n = V_{n+1} \cap (X_n \times X_n)$. Moreover,

$$\begin{aligned} V_{n+1} \cap V_{n+1}^{-1} \\ &= (O \cup V_n) \cap (O^{-1} \cup V_n^{-1}) \\ &= (O \cap O^{-1}) \cup (O \cap V_n^{-1}) \cup (O^{-1} \cap V_n) \cup (V_n \cap V_n^{-1}) \\ &= (O \cap O^{-1}) \cup (O \cap (X_n \times X_n) \cap V_n^{-1}) \\ &\cup (O^{-1} \cap (X_n \times X_n) \cap V_n) \cup (V_n \cap V_n^{-1}) \\ &\subset (O \cap O^{-1}) \cup (L \cap (X_n \times X_n) \cap V_n^{-1}) \\ &\cup (L^{-1} \cap (X_n \times X_n) \cap V_n) \cup (V_n \cap V_n^{-1}) \\ &\subset (O \cap O^{-1}) \cup (V_n \cap V_n^{-1}) \\ &\subset W \cup (U \cap U_n) \\ &\subset U \cap (X_{n+1} \times X_{n+1}). \end{aligned}$$

Therefore, $\{V_n : n \in \omega\}$ satisfies (1)–(3).

Put $V = \bigcup_{n \in \omega} V_n$. Obviously, the set $V \in \mathcal{U}_X$, and hence $V \cap V^{-1} \in \mathcal{U}_X^*$. Obviously, we have

$$V \cap (-V) = \bigcup_{n \in \omega} (V_n \cap V_n^{-1}) \subset \bigcup_{n \in \omega} (U \cap (X_n \times X_n)) = U.$$

Therefore, we have $\mathcal{U}_X^* \subset \mathcal{QU}_X$. Then $\mathcal{U}_X^* = \mathcal{QU}_X$.

4. Some properties of topological direct limit of paratopological groups

Obviously, we have the following two theorems.

Theorem 4.1. Let $(G_n)_{n \in \mathbb{N}}$ be a tower of paratopological groups. Then the topological direct limit t-lim G_n is a semitopological group.

Remark 4.2. However, the multiplication t-lim $G_n \times \text{t-lim } G_n \ni (g,h) \longmapsto gh \in$ t-lim G_n is not necessarily jointly continuous (see [12, Example 1.2]).

Theorem 4.3. Let $(G_n)_{n \in \mathbb{N}}$ be a tower of paratopological groups, and let H be a paratopological group. If φ is an algebraic homomorphism of the group G = $\bigcup_{n \in \omega} G_n$ into H, then the following conditions are equivalent:

- (1) φ is continuous as a map from pg-lim G_n to H;
- (2) φ is continuous as a map from t-lim G_n to H.

Let (G, τ) be a paratopological group. Denote G^* by the coarsest group topology on the abstract group G which is finer than τ .

Theorem 4.4. Let $(G_n)_{n \in \mathbb{N}}$ be a tower of paratopological groups. If the topological direct limit t-lim G_n is a paratopological group, then t-lim $G_n^* = (t-\lim G_n)^*$.

Proof. Let τ , δ be the topologies of t-lim G_n and t-lim G_n^* , respectively. Obviously, we have $\tau^* \subset \delta$ by the definition of the topological direct limit t-lim G_n^* . Next, we shall prove that $\delta \subset \tau^*$. Let U be an open neighborhood of e in δ . Then each $U \cap G_n$ is open in G_n^* . Next, we shall construct a sequence $\{V_n : n \in \omega\}$ of subsets of G such that the following conditions hold:

- (1) for each $n \in \omega$, V_n is a neighborhood of e in G_n ;
- (2) for each $n \in \omega$, $V_n = V_{n+1} \cap G_n$; (3) for each $n \in \omega$, $V_n \cap V_n^{-1} \subset G_n \cap U$.

Indeed, since $U \cap G_0$ is open in G_0^* , there exists an open neighborhood V_0 of e in G_0 such that $V_0 \cap V_0^{-1} \subset G_0 \cap U$. Now, suppose we have defined V_0, V_1, \ldots, V_n . Since $V_n \cap V_n^{-1} \subset G_{n+1} \cap U$ and $V_n \cap V_n^{-1}$ is open in G_n^* , there exists a symmetric open neighborhood W of e in G_{n+1}^* such that $V_n \cap V_n^{-1} = W \cap G_n$ and $W \subset G_{n+1} \cap U$. Moreover, since V_n is open in G_n , there exists an open neighborhood L of e in G_{n+1} such that $L \cap G_n = V_n$. Therefore, there exists an open neighborhood $O \subset L$ of e in G_{n+1} such that $O \cap O^{-1} \subset W$. Put $V_{n+1} = O \cup V_n$. Then V_{n+1} is a neighborhood of e in G_{n+1} and $V_n = V_{n+1} \cap G_n$. Then we have

$$\begin{aligned} V_{n+1} \cap V_{n+1}^{-1} &= (O \cup V_n) \cap (O^{-1} \cup V_n^{-1}) \\ &= (O \cap O^{-1}) \cup (O \cap V_n^{-1}) \cup (O^{-1} \cap V_n) \cup (V_n \cap V_n^{-1}) \\ &= (O \cap O^{-1}) \cup (O \cap G_n \cap V_n^{-1}) \cup (O^{-1} \cap G_n \cap V_n) \cup (V_n \cap V_n^{-1}) \\ &\subset (O \cap O^{-1}) \cup (L \cap G_n \cap V_n^{-1}) \cup (L^{-1} \cap G_n \cap V_n) \cup (V_n \cap V_n^{-1}) \\ &\subset (O \cap O^{-1}) \cup (V_n \cap V_n^{-1}) \\ &\subset W \cup (U \cap U_n) \\ &\subset U \cap G_{n+1}. \end{aligned}$$

Therefore, $\{V_n : n \in \omega\}$ satisfies (1)–(3).

Put $V = \bigcup_{n \in \omega} V_n$. Obviously, the set V is a neighborhood of e in τ ; hence $V \cap V^{-1}$ is a neighborhood of e in τ^* . Obviously, we have

$$V \cap V^{-1} = \bigcup_{n \in \omega} (V_n \cap V_n^{-1}) \subset \bigcup_{n \in \omega} (U \cap G_n) = U.$$

56

Therefore, we have $\delta \subset \tau^*$. Then $\delta = \tau^*$; that is, t-lim $G_n^* = (\text{t-lim } G_n)^*$. \Box

Lemma 4.5 (see [5, Theorem Y]). Let $(G_n)_{n \in \mathbb{N}}$ be a tower of metrizable topological groups, where each G_n is closed in G_{n+1} . Then t-lim G_n is a topological group if and only if each G_n is locally compact or some G_n is open in all G_m , $m \ge n$.

Corollary 4.6. Let $(G_n)_{n \in \mathbb{N}}$ be a tower of T_0 first-countable paratopological groups, where each G_n is closed in G_{n+1} . If the topological direct limit t-lim G_n is a paratopological group, then each G_n^* is locally compact or some G_n^* is open in all G_m^* , $m \ge n$.

Proof. Obviously, each G_n^* is metrizable and each G_n^* is closed in G_{n+1}^* . By Lemma 4.5 and Theorem 4.4, the theorem holds.

Example 4.7. There exists a tower of T_0 first-countable paratopological groups $(G_n)_{n \in \mathbb{N}}$ such that each G_n is closed in G_{n+1} and the topological direct limit t-lim G_n is not a paratopological group.

Proof. For each $n \in \omega$, let $G_n = \underbrace{Q \times \cdots \times Q}_n$, where the rational number \mathbb{Q} endows with usual topology. Obviously, we can identify each G_n as a subset of G_{n+1} . Then each G_n is a metrizable topological groups and each G_n is closed in G_{n+1} . However, it follows from Lemma 4.5 that t-lim G_n is not a topological group, and hence it is not a paratopological group by Theorem 4.4.

Question 4.8. Let $(G_n)_{n \in \mathbb{N}}$ be a tower of paratopological groups. If the topological direct limit t-lim G_n^* is a topological group, is the topological direct limit t-lim G_n a paratopological group?

Question 4.9. Let $(G_n)_{n \in \mathbb{N}}$ be a tower of T_0 first-countable paratopological groups, where each G_n is closed in G_{n+1} . If the topological direct limit t-lim G_n^* is a topological group, is the topological direct limit t-lim G_n a paratopological group?

Finally, we discuss the direct product of two towers of paratopological groups. The following lemma is obvious.

Lemma 4.10. Let $(G_n)_{n\in\omega}$ be a tower of paratopological groups, and let L be a paratopological group. For each $n \in \omega$, if the map $\psi_n : G_n \longrightarrow L$ is a continuous homomorphism and $\psi_{n+1}|_{G_n} = \psi_n$, then the following homomorphism map

$$\psi : \operatorname{pg-lim} G_n \longrightarrow L, \qquad X \ni x \mapsto \psi_n(x),$$

where $n = \min\{n \in \omega : x \in G_n\}$, is continuous.

Theorem 4.11. Let $(G_n)_{n \in \omega}$, $(H_n)_{n \in \omega}$ be two towers of paratopological groups. Then the identity map id : $(\operatorname{pg-lim} G_n) \times (\operatorname{pg-lim} H_n) \longrightarrow \operatorname{pg-lim} (G_n \times H_n)$ is a homeomorphism. *Proof.* Obviously, the map id^{-1} : pg-lim $(G_n \times H_n) \longrightarrow (\operatorname{pg-lim} G_n) \times (\operatorname{pg-lim} H_n)$ is continuous. Let us prove the continuity of id.

We assert that the homomorphism $(\operatorname{pg-lim} G_n) \ni g \longmapsto (g, e_H) \in \operatorname{pg-lim} (G_n \times H_n)$ is continuous, where e_H denotes the neutral element of $\operatorname{pg-lim} H_n$.

To prove this, we apply Lemma 4.10 for $L = \operatorname{pg-lim}(G_n \times H_n)$. Indeed, for each $n \in \omega$, the canonical map $G_n \times H_n \ni (g_n, h_n) \longmapsto (g_n, h_n) \in L = \operatorname{pg-lim}(G_n \times H_n)$ is continuous by the definition of the topology of $\operatorname{pg-lim}(G_n \times H_n)$, and the embedding map $G_n \ni g_n \longmapsto (g_n, e_{H_n}) \in G_n \times H_n$ is also continuous. Therefore, the homomorphism $G_n \ni g_n \longmapsto (g_n, e_H) \in L$ is continuous. Hence, by Lemma 4.10, we get the asserted continuity.

Similarly, the homomorphism $(\operatorname{pg-lim} H_n) \ni h \longmapsto (e_G, h) \in \operatorname{pg-lim}(G_n \times H_n)$ is continuous, where e_G denotes the neutral element of pg-lim G_n . Then the map

$$\phi: \operatorname{pg-lim}_{\longrightarrow} G_n \times \operatorname{pg-lim}_{\longrightarrow} H_n \to \operatorname{pg-lim}_{\longrightarrow} (G_n \times H_n) \times \operatorname{pg-lim}_{\longrightarrow} (G_n \times H_n)$$

 $(g,h) \mapsto ((g,e_H),(e_G,h))$, is continuous. Moreover, the product map

$$\varphi: \operatorname{pg-lim}_{\longrightarrow}(G_n \times H_n) \times \operatorname{pg-lim}_{\longrightarrow}(G_n \times H_n) \to \operatorname{pg-lim}_{\longrightarrow}(G_n \times H_n),$$

 $((g,h), (g',h')) \longmapsto (gg',hh')$, is continuous since the topology of pg-lim $(G_n \times H_n)$ is a paratopological group topology. Therefore, the product of maps $\psi \cdot \varphi = \text{id is}$ continuous.

5. TOPOLOGICAL DIRECT LIMIT OF PARATOPOLOGICAL GROUPS

In this section, given a tower of paratopological groups

 $G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_n \subset \cdots,$

we define topologies on the group $G = \bigcup_{n \in \omega} G_n$.

Given a sequence of subsets $(U_n)_{n \in \omega}$ of the group G, where $e \in U_n$, for each $m \in \omega$, let

$$\prod_{\substack{0 \le n \le m}}^{\longrightarrow} U_n = U_0 U_1 \cdots U_m;$$
$$\prod_{\substack{0 \le n \le m}}^{\longleftarrow} U_n = U_m U_{m-1} \cdots U_0;$$
$$\prod_{\substack{0 \le n \le m}}^{\longleftrightarrow} U_n = U_m U_{m-1} \cdots U_0 U_0 U_1 \cdots U_m.$$

Then we consider the following direct product in G:

$$\prod_{n\in\omega}^{\rightarrow} U_n = \bigcup_{m\in\omega} \prod_{0\le n\le m}^{\rightarrow} U_n;$$

$$\prod_{n\in\omega} U_n = \bigcup_{m\in\omega} \prod_{0\le n\le m} U_n;$$
$$\underset{n\in\omega}{\longleftrightarrow} U_n = \bigcup_{m\in\omega} \prod_{0\le n\le m} U_n.$$

Note that

$$\left(\prod_{n\in\omega}^{\longrightarrow}U_n\right)^{-1} = \prod_{n\in\omega}^{\longleftarrow}U_n^{-1} \quad \text{and} \quad \prod_{n\in\omega}^{\longleftrightarrow}U_n = \left(\prod_{n\in\omega}^{\longleftarrow}U_n\right) \cdot \left(\prod_{n\in\omega}^{\longrightarrow}U_n\right).$$

In each paratopological group G_n , fix a base \mathscr{B}_n of open neighborhoods of the neutral element e. The topologies $\overrightarrow{\tau}, \overleftarrow{\tau}, \overleftarrow{\tau}, \overleftarrow{\tau}$ on the group G are generated by the bases, respectively:

$$\vec{\mathscr{B}} = \left\{ \left(\prod_{n \in \omega} \overrightarrow{U}_n \right) \cdot x : x \in G, (U_n)_{n \in \omega} \in \prod_{n \in \omega} \mathscr{B}_n \right\}; \\ \overleftarrow{\mathscr{B}} = \left\{ x \cdot \left(\prod_{n \in \omega} \overleftarrow{U}_n \right) : x \in G, (U_n)_{n \in \omega} \in \prod_{n \in \omega} \mathscr{B}_n \right\}; \\ \overrightarrow{\mathscr{B}} = \left\{ x \cdot \left(\prod_{n \in \omega} \overleftarrow{U}_n \right) \cdot y : x, y \in G, (U_n)_{n \in \omega} \in \prod_{n \in \omega} \mathscr{B}_n \right\}; \\ \overrightarrow{\mathscr{B}} = \left\{ x \cdot \left(\prod_{n \in \omega} \overleftarrow{U}_n \right) \cap \left(\prod_{n \in \omega} \overleftarrow{U}_n \right) \cdot y : x, y \in G, (U_n)_{n \in \omega} \in \prod_{n \in \omega} \mathscr{B}_n \right\}.$$

By \overrightarrow{G} , \overleftarrow{G} , \overleftarrow{G} , \overrightarrow{G} we denote the group G endowed with the topologies $\overrightarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$, $\overrightarrow{\tau}$, respectively. Obviously, \overrightarrow{G} , \overleftarrow{G} , \overleftarrow{G} , \overrightarrow{G} are semitopological groups having the families

$$\overrightarrow{\mathscr{B}}_{e} = \left\{ \prod_{n \in \omega} \overrightarrow{U}_{n} : (U_{n})_{n \in \omega} \in \prod_{n \in \omega} \mathscr{B}_{n} \right\},$$

$$\overleftarrow{\mathscr{B}}_{e} = \left\{ \prod_{n \in \omega} \overleftarrow{U}_{n} : (U_{n})_{n \in \omega} \in \prod_{n \in \omega} \mathscr{B}_{n} \right\},$$

$$\overrightarrow{\mathscr{B}}_{e} = \left\{ \prod_{n \in \omega} \overleftarrow{U}_{n} : (U_{n})_{n \in \omega} \in \prod_{n \in \omega} \mathscr{B}_{n} \right\},$$

$$\overrightarrow{\mathscr{B}}_{e} = \left\{ \left(\prod_{n \in \omega} \overleftarrow{U}_{n} \right) \cap \left(\prod_{n \in \omega} \overleftarrow{U}_{n} \right) : (U_{n})_{n \in \omega} \in \prod_{n \in \omega} \mathscr{B}_{n} \right\},$$

and are neighborhood bases at the neutral element e, respectively. **Theorem 5.1.** The identity map $\overleftrightarrow{G} \longrightarrow \operatorname{pg-lim}_{\longrightarrow} G_n$ is continuous. *Proof.* Obviously, \overleftrightarrow{G} and pg-lim G_n are semitopological groups. Therefore, it suffices to prove the continuity of the identity map $\overleftrightarrow{G} \longrightarrow \text{pg-lim} G_n$ at the neutral element e.

Take a neighborhood U of e in pg-lim G_n . By induction, construct a sequence of open neighborhoods V_n of e in pg-lim G_n such that $V_0^4 \subset U$ and $V_{n+1}^2 \subset V_n$ for each $n \in \omega$. Then, for each $m \in \omega$, we have

$$V_m^2 \cdot \left(\prod_{0 \le n < m}^{\leftarrow} V_n\right) \cdot \left(\prod_{0 \le n < m}^{\rightarrow} V_n\right) \cdot V_m^2 \subset U.$$

Indeed, for m = 0, this inclusion holds according to the choice of V_0 . Suppose that for some $m \in \omega$ the inclusion holds. Then we have

$$V_{m+1}^{2} \cdot \left(\prod_{0 \le n \le m} V_{n}\right) \cdot \left(\prod_{0 \le n \le m} V_{n}\right) \cdot V_{m+1}^{2}$$

$$= V_{m+1}^{2} \cdot V_{m} \cdot \left(\prod_{0 \le n < m} V_{n}\right) \cdot \left(\prod_{0 \le n < m} V_{n}\right) \cdot V_{m} \cdot V_{m+1}^{2}$$

$$\subset V_{m} \cdot V_{m} \cdot \left(\prod_{0 \le n < m} V_{n}\right) \cdot \left(\prod_{0 \le n < m} V_{n}\right) \cdot V_{m} \cdot V_{m}$$

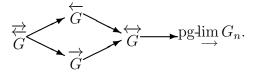
$$\subset U.$$

Therefore, we have

$$\left(\prod_{n\in\omega}^{\leftarrow} V_n\right)\cdot\left(\prod_{n\in\omega}^{\rightarrow} V_n\right) = \left(\bigcup_{m\in\omega}\prod_{0\leq n\leq m}^{\leftarrow} V_n\right)\cdot\left(\bigcup_{m\in\omega}\prod_{0\leq n\leq m}^{\rightarrow} V_n\right)\subset U.$$

Since $\overleftrightarrow{\prod}_{n \in \omega} V_n = (\widecheck{\prod}_{n \in \omega} V_n) \cdot (\overrightarrow{\prod}_{n \in \omega} V_n)$, we have $\overleftrightarrow{\prod}_{n \in \omega} V_n \subset U$. Therefore, the identity map $\overleftrightarrow{G} \longrightarrow$ pg-lim G_n is continuous.

Obviously, the following five semitopological groups are linked by continuous identity homomorphisms:



Theorem 5.2. The following conditions are equivalent:

- (1) \overrightarrow{G} and \overleftarrow{G} are paratopological groups; (2) \overrightarrow{G} is a paratopological group;

(3) the identity map $\overleftrightarrow{G} \longrightarrow \overleftrightarrow{G}$ is continuous; (4) the identity map $\overleftrightarrow{G} \longrightarrow \text{pg-lim} G_n$ is a homeomorphism.

Proof. (1) \Rightarrow (2). Suppose that \overrightarrow{G} and \overleftarrow{G} are paratopological groups. Next we shall prove that \overrightarrow{G} is a paratopological group.

Indeed, take a $(\prod_{n\in\omega}U_n)\cap(\prod_{n\in\omega}U_n)\in \mathscr{B}_e$. For each $m\in\omega$, since \overrightarrow{G} and \overleftarrow{G} are paratopological groups, there exists a $V_m\in\mathscr{B}_m$ such that $(\prod_{n\in\omega}V_n)^2\subset\prod_{n\in\omega}U_n$ and $(\prod_{n\in\omega}V_n)^2\subset\prod_{n\in\omega}U_n$, and hence

$$\left(\prod_{n\in\omega}^{\rightarrow}V_n\cap\prod_{n\in\omega}^{\leftarrow}V_n\right)^2\subset\left(\prod_{n\in\omega}^{\rightarrow}V_n\right)^2\cap\left(\prod_{n\in\omega}^{\leftarrow}V_n\right)^2\subset\left(\prod_{n\in\omega}^{\leftarrow}U_n\right)\cap\left(\prod_{n\in\omega}^{\rightarrow}U_n\right).$$

Therefore, \overrightarrow{G} is a paratopological group.

 $(2) \Rightarrow (4)$. Obviously, all the inclusion homomorphisms $G_n \longrightarrow \overleftarrow{G}$, $n \in \omega$, are continuous. Since \overleftarrow{G} is a paratopological group, it follows from the definition of pg-lim G_n that the identity map pg-lim $G_n \longrightarrow \overrightarrow{G}$ is continuous. By Theorem 5.1, the identity map $\overleftarrow{G} \longrightarrow \text{pg-lim} G_n$ is also continuous. Then the identity map $\overrightarrow{G} \longrightarrow \text{pg-lim} G_n$ is a homeomorphism.

 $(4) \Rightarrow (3)$. Let the identity map $\overleftarrow{G} \longrightarrow \text{pg-lim} G_n$ be a homeomorphism. Then the composition of two continuous maps

$$\stackrel{\longleftrightarrow}{G} \longrightarrow \operatorname{pg-lim}_{\longrightarrow} G_n \quad \text{and} \quad \operatorname{pg-lim}_{\longrightarrow} G_n \longrightarrow \stackrel{\rightleftharpoons}{G}$$

is continuous, and hence the identity map $\overleftrightarrow{G} \longrightarrow \overleftrightarrow{G}$ is continuous. (3) \Rightarrow (1). Let the identity map $\overleftrightarrow{G} \longrightarrow \overleftrightarrow{G}$ be a continuous map. Then $\overleftrightarrow{G} \longrightarrow \overleftrightarrow{G}$ is a homeomorphism. Therefore, the identity maps between semitopological groups $\overrightarrow{G}, \overleftarrow{G}, \overleftarrow{G}, \overleftarrow{G}$ are homeomorphisms. Moreover, the map $\overleftarrow{G} \times \overrightarrow{G} \longrightarrow \overrightarrow{G}$, $(x, y) \mapsto xy$ is continuous. Therefore, it is easy to see that the multiplication map $\overrightarrow{G} \times \overrightarrow{G} \longrightarrow \overrightarrow{G}, (x, y) \to xy$ is continuous.

Theorem 5.3. The semitopological group \overleftrightarrow{G} is a paratopological group if and only if the identity map $\overleftrightarrow{G} \longrightarrow \text{pg-lim} G_n$ is a homeomorphism.

Proof. Sufficiency. Let the identity map $\overleftrightarrow{G} \longrightarrow \operatorname{pg-lim} G_n$ be a homeomorphism. Then \overleftrightarrow{G} is a paratopological group because $\operatorname{pg-lim} G_n$ is a paratopological group by the definition of $\operatorname{pg-lim} G_n$.

The proof of necessity is similar to that of $(2) \Rightarrow (4)$ in Theorem 5.2.

Remark 5.4. Obviously, the equivalent conditions (1) through (4) in Theorem 5.2 imply that \overleftrightarrow{G} is a paratopological group.

Corollary 5.5. Let $(G_n)_{n \in \mathbb{N}}$ be a tower of abelian paratopological groups. Then the following conditions are equivalent:

- (1) \overrightarrow{G} is a paratopological group; (2) \overleftarrow{G} is a paratopological group; (3) \overrightarrow{G} is a paratopological group; (4) the identity map $\overleftrightarrow{G} \longrightarrow \overrightarrow{G}$ is continuous;
- (5) the identity map $\overrightarrow{G} \longrightarrow \text{pg-lim} G_n$ is a homeomorphism.

Next we shall introduce the properties of PPTA, balanced and bi-balanced, guaranteeing that the topology of the direct limit pg-lim G_n of a tower of paratopological groups $(G_n)_{n\in\omega}$ coincides with the topologies \overrightarrow{G} , \overrightarrow{G} , \overrightarrow{G} , and \overrightarrow{G} .

Definition 5.6. A tower of paratopological groups $(G_n)_{n \in \omega}$ is said to satisfy PPTA if each paratopological group G_n has a neighborhood base \mathscr{B}_n at the neutral element e, consisting of open neighborhoods of e in G_n , such that, for each $U \in \mathscr{B}_n$ and each neighborhood V of e in G_m with $m \ge n$, there is a neighborhood W of e in G_m such that $WU \subset UV$ and $UW \subset VU$.

Theorem 5.7. If a tower of paratopological groups $(G_n)_{n\in\omega}$ satisfies PPTA, then semitopological groups \overrightarrow{G} and \overleftarrow{G} are paratopological groups and hence conditions (1)-(4) of Theorem 5.2 hold. In particular, the topology of pg-lim G_n coincides with any of the topologies $\overrightarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$.

Proof. Since the tower of paratopological groups $(G_n)_{n \in \omega}$ satisfies PPTA, each paratopological group G_n has an open neighborhood base \mathscr{B}_n at e, consisting of an open neighborhood U in G_n , such that, for each $m \geq n$ and a neighborhood V of e in G_m , there is a neighborhood W of e in G_m such that $WU \subset UV$ and $UW \subset VU$.

By Theorem 5.2, we shall show that \overrightarrow{G} and \overleftarrow{G} are paratopological groups. Therefore, it suffices to check the continuity of the multiplication at the neutral element e for semitopological groups \overrightarrow{G} and \overleftarrow{G} , respectively. Let $\overrightarrow{\prod}_{n\in\omega}W_n \in \overset{\rightarrow}{\mathscr{B}}_e$ and $\overleftarrow{\prod}_{n\in\omega}W_n \in \overset{\leftarrow}{\mathscr{B}}_e$. Next, we find a neighborhood $\overrightarrow{\prod}_{n\in\omega}V_n \in \overset{\rightarrow}{\mathscr{B}}_e$ and $\overleftarrow{\prod}_{n\in\omega}V_n \in \overset{\leftarrow}{\mathscr{B}}_e$ such that

$$\left(\prod_{n\in\omega}V_n\right)^2\subset\prod_{n\in\omega}W_n$$
 and $\left(\prod_{n\in\omega}V_n\right)^2\subset\prod_{n\in\omega}W_n$

For each $n \in \omega$, we can find a neighborhood U_n of e in G_n such that $U_n^2 \subset W_n$. Put $V_n^{(0)} = U_n$ and, using PPTA, for each $0 < i \leq n$ find a neighborhood V_n^i of e in G_n such that

(a) $V_n^i \subset U_n$, and (a) V_n ⊂ U_n, and
(b) Vⁱ_nU_{n-i} ⊂ U_{n-i}Vⁱ⁻¹_n and U_{n-i}Vⁱ_n ⊂ Vⁱ⁻¹_nU_{n-i}. Note that, for i = n - k, the latter inclusion yields
(c) V^{n-k}_nU_k ⊂ U_kV^{n-k-1}_n and U_kV^{n-k}_n ⊂ V^{n-k-1}_nU_k. By induction on k we can deduce from (c) the following two inclusions:

(d) $(\overrightarrow{\prod}_{k < n \le m} V_n^{(n-k)}) \cdot U_k \subset U_k \cdot (\overrightarrow{\prod}_{k < n \le m} V_n^{(n-k-1)});$ (e) $U_k \cdot (\stackrel{\longleftarrow}{\prod}_{k < n \le m} V_n^{(n-k)}) \subset (\stackrel{\longleftarrow}{\prod}_{k < n \le m} V_n^{(n-k-1)}) \cdot U_k.$

Claim 2. For each m > 0, we have

$$\left(\prod_{n\leq m}^{\longrightarrow} V_n^{(n)}\right) \cdot \left(\prod_{n\leq m}^{\longrightarrow} U_n\right) \subset \prod_{n\leq m}^{\longrightarrow} W_n \quad and \quad \left(\prod_{n\leq m}^{\longleftarrow} U_n\right) \cdot \left(\prod_{n\leq m}^{\longleftarrow} V_n^{(n)}\right) \subset \prod_{n\leq m}^{\longleftarrow} W_n.$$

Indeed, for each nonnegative integer $k \leq m+1$, put

$$\overrightarrow{\prod_{k}} = \left(\prod_{0 \le n < k} \overset{\longrightarrow}{W_{n}} \right) \cdot \left(\prod_{k \le n \le m} \overset{\longrightarrow}{V_{n}^{(n-k)}} \right) \cdot \left(\prod_{k \le n \le m} \overset{\longrightarrow}{U_{n}} U_{n} \right)$$

and

$$\prod_{k}^{\leftarrow} = \left(\prod_{k \le n \le m}^{\leftarrow} U_n\right) \cdot \left(\prod_{k \le n \le m}^{\leftarrow} V_n^{(n-k)}\right) \cdot \left(\prod_{0 \le n < k}^{\leftarrow} W_n\right)$$

of paratopological group G_m . Then it is easy to see that Claim 2 holds if and only if $\overrightarrow{\prod}_0 \subset \overrightarrow{\prod}_{m+1}$ and $\overleftarrow{\prod}_0 \subset \overleftarrow{\prod}_{m+1}$. Next we shall show that $\overrightarrow{\prod}_k \subset \overrightarrow{\prod}_{k+1}$ and $\prod_{k} \subset \prod_{k+1} \text{ for each } k \leq m.$

Since $V_k^{(0)}U_k = U_kU_k \subset W_k$ and $U_kV_k^{(0)} = U_kU_k \subset W_k$, it follows from (d) and (e) that

$$\overrightarrow{\prod_{k}} = \left(\prod_{0 \le n < k} \overset{\rightarrow}{W_{n}} \right) \cdot \left(\prod_{k \le n \le m} \overset{\rightarrow}{V_{n}^{(n-k)}} \right) \cdot \left(\prod_{k \le n \le m} \overset{\rightarrow}{U_{n}} U_{n} \right)$$
$$= \left(\prod_{0 \le n < k} \overset{\rightarrow}{W_{n}} \right) \cdot V_{k}^{(0)} \cdot \left(\prod_{k < n \le m} \overset{\rightarrow}{V_{n}^{(n-k)}} \right) \cdot U_{k} \cdot \left(\prod_{k < n \le m} \overset{\rightarrow}{U_{n}} U_{n} \right)$$

$$\subset \left(\prod_{0 \le n < k} \overrightarrow{W_n} \right) \cdot V_k^{(0)} \cdot \left(U_k \cdot \prod_{k < n \le m} \overrightarrow{V_n^{(n-k-1)}}\right) \cdot \left(\prod_{k < n \le m} \overrightarrow{U_n}\right)$$

$$\subset \left(\prod_{0 \le n < k} \overrightarrow{W_n}\right) \cdot W_k \cdot \left(\prod_{k < n \le m} \overrightarrow{V_n^{(n-k-1)}}\right) \cdot \left(\prod_{k < n \le m} \overrightarrow{U_n}\right)$$

$$= \prod_{k+1} \overrightarrow{W_k}$$

and

$$\begin{split} & \bigoplus_{k}^{\leftarrow} = \left(\prod_{k \le n \le m}^{\leftarrow} U_n \right) \cdot \left(\prod_{k \le n \le m}^{\leftarrow} V_n^{(n-k)} \right) \cdot \left(\prod_{0 \le n < k}^{\leftarrow} W_n \right) \\ & = \left(\prod_{k < n \le m}^{\leftarrow} U_n \right) \cdot U_k \cdot \left(\prod_{k < n \le m}^{\leftarrow} V_n^{(n-k)} \right) \cdot V_k^{(0)} \cdot \left(\prod_{0 \le n < k}^{\leftarrow} W_n \right) \\ & \subset \left(\prod_{k < n \le m}^{\leftarrow} U_n \right) \cdot \left(\prod_{k < n \le m}^{\leftarrow} V_n^{(n-k-1)} \right) \cdot U_k \cdot V_k^{(0)} \cdot \left(\prod_{0 \le n < k}^{\leftarrow} W_n \right) \\ & \subset \left(\prod_{k < n \le m}^{\leftarrow} U_n \right) \cdot \left(\prod_{k < n \le m}^{\leftarrow} V_n^{(n-k-1)} \right) \cdot W_k \cdot \left(\prod_{0 \le n < k}^{\leftarrow} W_n \right) \\ & = \bigoplus_{k+1}^{\leftarrow} . \end{split}$$

Therefore, Claim 2 holds.

Since $V_n^{(n)} \subset U_n$, it follows from Claim 2 that the following Claim 3 holds.

Claim 3. $(\overrightarrow{\prod}_{n\in\omega}V_n^{(n)})^2\subset \overrightarrow{\prod}_{n\in\omega}W_n \text{ and } (\overleftarrow{\prod}_{n\in\omega}V_n^{(n)})^2\subset \overleftarrow{\prod}_{n\in\omega}W_n.$

By Claim 3 and Theorem 5.2, semitopological groups \overrightarrow{G} and \overleftarrow{G} are paratopological groups and hence conditions (1) through (4) of Theorem 5.2 hold. In particular, the topology of pg-lim G_n coincides with any of the topologies $\overrightarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$ by Theorems 5.2 and 5.3.

Definition 5.8. A subset U of a group G is said to be H-invariant for a subgroup $H \subset G$ if $xUx^{-1} = U$ for all $x \in H$.

Note that, for any subset $U \subset G$, the set

$$\sqrt[H]{U} = \{ x \in G : x^H \subset U \}$$

is the largest H-invariant subset of U, where $x^H = \{hxh^{-1} : h \in H\}$ denotes the conjugacy class of a point $x \in G$.

Definition 5.9. A triple (G, H, L) of paratopological groups $L \subset H \subset G$ is called balanced if, for any neighborhood V of e in H and neighborhood U of e in G, the products $V \cdot \sqrt[L]{U}$ and $\sqrt[L]{U} \cdot V$ are neighborhoods of e in G.

64

Definition 5.10. A tower of paratopological groups $(G_n)_{n \in \omega}$ is said to be balanced if each triple (G_{n+2}, G_{n+1}, G_n) is balanced for each $n \in \omega$.

Theorem 5.11. If a tower of paratopological groups $(G_n)_{n\in\omega}$ is balanced, then semitopological groups \overrightarrow{G} and \overleftarrow{G} are paratopological groups and hence conditions (1)-(4) of Theorem 5.2 hold. In particular, the topology of pg-lim G_n coincides with any of the topologies $\overrightarrow{\tau}, \overleftarrow{\tau}, \overleftarrow{\tau}, \overleftarrow{\tau}$.

Proof. Obviously, it suffices to check the continuity of the multiplication at the neutral element e for semitopological groups \overrightarrow{G} and \overleftarrow{G} , respectively.

Let $\overrightarrow{\prod}_{n\in\omega}U_n\in \overrightarrow{\mathscr{B}}_e$ and $\overleftarrow{\prod}_{n\in\omega}U_n\in \overrightarrow{\mathscr{B}}_e$. For each $n\in\omega$, take a neighborhood W_n of e in G_n such that $W_n\cdot W_n\subset U_n$. Let

$$Z_n = \sqrt[G_{n-2}]{W_n} = \{ x \in G_n : x^{G_{n-2}} \subset W_n \}$$

be the largest G_{n-2} -invariant subset of W_n , where we assume that $G_k = \{e\}$ for k < 0.

Put $V_0 = U_0 \cap W_1$, and let V_1 be a neighborhood of e in G_1 such that $V_1^2 \subset W_1$. Then, for each $n \geq 2$, by induction take a neighborhood V_n of e in G_n so that

- (f) $V_n^2 \subset V_{n-1} \cdot Z_n \cap Z_n \cdot V_{n-1}$, and
- (g) $V_n \subset W_{n+1}$.

For each $n \in \omega$, since (G_n, G_{n-1}, G_{n-2}) is balanced, condition (f) can be satisfied.

Claim 4. For each $m \ge 2$, we have

$$\left(\prod_{n\leq m} V_n\right)\cdot \left(\prod_{n\leq m} V_n\right)\subset \prod_{n\leq m} U_n \quad and \quad \left(\prod_{n\leq m} V_n\right)\cdot \left(\prod_{n\leq m} V_n\right)\subset \prod_{n\leq m} U_n.$$

Indeed, for each nonnegative integer $k \leq m$, put

$$\prod_{k} = \left(\prod_{n \le m-k} V_n\right) \cdot V_{m-k+1}^2 \cdot \left(\prod_{n \le m-k} V_n\right) \cdot \left(\prod_{m-k < n < m} Z_{n+1} V_n\right) \cdot V_m$$

and

$$\prod_{k} = V_m \cdot \left(\prod_{m-k < n < m} V_n Z_{n+1}\right) \cdot \left(\prod_{n \le m-k} V_n\right) \cdot V_{m-k+1}^2 \cdot \left(\prod_{n \le m-k} V_n\right)$$

of paratopological group G_m . Next we shall show that $\prod_k \subset \prod_{k+1}$ and $\prod_k \subset \prod_{k+1}$ for each $k \leq m$.

Then it follows from (f) and (g) that we have

$$\overrightarrow{\prod_{k}} = \left(\prod_{n \le m-k} \overrightarrow{V_{n}} \right) \cdot \overrightarrow{V_{m-k+1}} \cdot \left(\prod_{n \le m-k} \overrightarrow{V_{n}} \right) \cdot \left(\prod_{m-k < n < m} \overrightarrow{Z_{n+1}} \overrightarrow{V_{n}} \right) \cdot \overrightarrow{V_{m}}$$
$$\subset \left(\prod_{n \le m-k} \overrightarrow{V_{n}} \right) \cdot \overrightarrow{V_{m-k}} \cdot \overrightarrow{Z_{m-k+1}} \cdot \left(\prod_{n < m-k} \overrightarrow{V_{n}} \right) \cdot \overrightarrow{V_{m-k}} \cdot \left(\prod_{m-k < n < m} \overrightarrow{Z_{n+1}} \overrightarrow{V_{n}} \right) \cdot \overrightarrow{V_{m}}$$

$$= \left(\prod_{n < m-k} \overrightarrow{V_n} \cdot V_{m-k}^2 \cdot \left(\prod_{n < m-k} \overrightarrow{V_n} \cdot Z_{m-k+1} \cdot V_{m-k} \cdot \left(\prod_{m-k < n < m} \overrightarrow{Z_{n+1}} V_n\right) \cdot V_m\right)\right)$$
$$= \left(\prod_{n < m-k} \overrightarrow{V_n} \cdot V_{m-k}^2 \cdot \left(\prod_{n < m-k} \overrightarrow{V_n} \cdot \left(\prod_{m-k \le n < m} \overrightarrow{Z_{n+1}} V_n\right) \cdot V_m\right)\right)$$
$$= \prod_{k+1} \overrightarrow{V_k}$$

and

$$\begin{split} & \bigoplus_{k}^{\leftarrow} = V_m \cdot \left(\prod_{m-k < n < m}^{\leftarrow} V_n Z_{n+1} \right) \cdot \left(\prod_{n \le m-k}^{\leftarrow} V_n \right) \cdot V_{m-k+1}^2 \cdot \left(\prod_{n \le m-k}^{\leftarrow} V_n \right) \\ & \subset V_m \cdot \left(\prod_{m-k < n < m}^{\leftarrow} V_n Z_{n+1} \right) \cdot V_{m-k} \cdot \left(\prod_{n < m-k}^{\leftarrow} V_n \right) \cdot Z_{m-k+1} \cdot V_{m-k} \cdot \left(\prod_{n \le m-k}^{\leftarrow} V_n \right) \\ & = V_m \cdot \left(\prod_{m-k < n < m}^{\leftarrow} V_n Z_{n+1} \right) \cdot V_{m-k} \cdot Z_{m-k+1} \cdot \left(\prod_{n < m-k}^{\leftarrow} V_n \right) \cdot V_{m-k}^2 \cdot \left(\prod_{n < m-k}^{\leftarrow} V_n \right) \\ & = V_m \cdot \left(\prod_{m-k \le n < m}^{\leftarrow} V_n Z_{n+1} \right) \cdot \left(\prod_{n < m-k}^{\leftarrow} V_n \right) \cdot V_{m-k}^2 \cdot \left(\prod_{n < m-k}^{\leftarrow} V_n \right) \\ & = \prod_{k+1}^{\leftarrow} \cdot \end{split}$$

Therefore, we have

$$\left(\prod_{n\leq m} V_n\right)^2 \subset \left(\prod_{n\leq m-1} V_n\right) \cdot V_m^2 \cdot \left(\prod_{n\leq m} V_n\right)$$
$$= \prod_{1}^{\rightarrow}$$
$$\subset \prod_{m}^{\rightarrow}$$
$$= V_0 V_1^2 V_0 \cdot \left(\prod_{0< n< m} Z_{n+1} V_n\right) \cdot V_m$$
$$\subset U_0 W_1 W_1 \cdot \left(\prod_{0< n< m} W_{n+1} W_{+1}\right) \cdot W_{m+1}$$
$$\subset U_0 U_1 \cdot \left(\prod_{0< n< m} U_{n+1}\right) \cdot U_{m+1} = \prod_{n\leq m+1}^{\rightarrow} U_n$$

$$\left(\prod_{n\leq m}^{\leftarrow} V_n\right)^2 \subset \left(\prod_{n\leq m}^{\leftarrow} V_n\right) \cdot V_m^2 \cdot \left(\prod_{n\leq m-1}^{\leftarrow} V_n\right)$$
$$= \prod_{1}^{\leftarrow}$$
$$\subset \prod_{m}^{\leftarrow}$$
$$= V_m \cdot \left(\prod_{0< n< m}^{\leftarrow} V_n Z_{n+1}\right) \cdot V_0 V_1^2 V_0$$
$$\subset W_{m+1} \cdot \left(\prod_{0< n< m}^{\leftarrow} W_{n+1} W_{+1}\right) \cdot W_1 W_1 U_0$$
$$\subset U_{m+1} \cdot \left(\prod_{0< n< m}^{\leftarrow} U_{n+1}\right) \cdot U_1 U_0$$
$$= \prod_{n\leq m+1}^{\leftarrow} U_n.$$

By Claim 4, it is easy to see that $(\overrightarrow{\prod}_{n\in\omega}V_n) \cdot (\overrightarrow{\prod}_{n\in\omega}V_n) \subset \overrightarrow{\prod}_{n\in\omega}U_n$ and $(\overrightarrow{\prod}_{n\in\omega}V_n) \cdot (\overleftarrow{\prod}_{n\in\omega}V_n) \subset \overleftarrow{\prod}_{n\in\omega}U_n$. $\rightarrow \leftarrow$

Therefore, semitopological groups \overrightarrow{G} and \overleftarrow{G} are paratopological groups and hence conditions (1)–(4) of Theorem 5.2 hold. In particular, the topology of pg-lim G_n coincides with any of the topologies $\overrightarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$, $\overleftarrow{\tau}$, $\overrightarrow{\tau}$ by Theorems 5.2 and $\overrightarrow{5.3}$.

Definition 5.12. A triple (G, H, L) of paratopological groups $L \subset H \subset G$ is called bi-balanced if, for each neighborhood V of e in H and U of e in G, the product $\sqrt[L]{U} \cdot V \cdot \sqrt[L]{U}$ is a neighborhood of e in G.

A tower of paratopological groups $(G_n)_{n \in \omega}$ is called *bi-balanced* if each triple (G_{n+2}, G_{n+1}, G_n) is bi-balanced for each $n \in \omega$.

Theorem 5.13. If a tower of paratopological groups $(G_n)_{n\in\omega}$ is bi-balanced, then the identity map $\overleftrightarrow{G} \longrightarrow \operatorname{pg-lim} G_n$ is a homeomorphism and hence the topology of $\operatorname{pg-lim} G_n$ coincides with the topology $\overleftrightarrow{\tau}$.

Proof. By Theorem 5.3, it suffices to show that \overleftrightarrow{G} is a paratopological group. Therefore, it suffices to check the continuity of multiplication of the neutral element. Let $\widecheck{\prod}_{n\in\omega}W_n \in \overleftrightarrow{\mathcal{B}}_e$. Then we shall find a $\widecheck{\prod}_{n\in\omega}V_n \in \overleftrightarrow{\mathcal{B}}_e$ such that $(\widecheck{\prod}_{n\in\omega}V_n)^2 \subset \widecheck{\prod}_{n\in\omega}W_n$. For each $n \in \omega$, there exists a neighborhood U_n of e in G_n such that $U_n^2 \subset W_n$, and let $Z_n = {}^{G_n} \sqrt[-2]{U_n}$ be the largest G_{n-2} -invariant subset of U_n , where we assume that $G_k = \{e\}$ for k < 0. Let $O_0 = W_0$. By induction for each $n \in \mathbb{N}$, since each set $Z_n O_{n-1} Z_n$ is a neighborhood of e in G_n , we can take a neighborhood $O_n \subset U_n$ of e in G_n such that $O_n^3 \subset Z_n O_{n-1} Z_n$. For each $n \in \omega$, put $V_n = G_n \cap O_{n+1}$.

Claim 5. For each $m \in \omega$, we have $(\prod_{n < m} V_n)^2 \subset \prod_{n \leq m} W_n$.

For m = 0, this inclusion is obvious. Suppose that the inclusion in Claim 5 has been proved for some $m = l \in \omega$. Next, we shall prove it for m = l + 1. For each nonnegative k < m = l + 1, put

$$\prod_{k} = \left(\prod_{k \le n < m} V_n Z_{n+1}\right) \cdot \left(\prod_{n < k} V_n\right) \cdot O_k \cdot \left(\prod_{n < k} V_n\right) \cdot \left(\prod_{k \le n < m} Z_{n+1} V_n\right)$$

of paratopological group G_m . Then we have $\prod_{k+1} \subset \prod_k$. Indeed, we have

Then it follows that

$$\left(\prod_{n < m} \stackrel{\leftrightarrow}{V_n}\right)^2 \subset \left(\prod_{n < m} \stackrel{\leftrightarrow}{V_n} V_n\right) \cdot O_m \cdot \left(\prod_{n < m} \stackrel{\leftrightarrow}{V_n} V_n\right)$$

$$= \prod_m$$

$$\subset \prod_0$$

$$= \left(\prod_{n < m} \stackrel{\leftarrow}{V_n Z_{n+1}}\right) \cdot O_0 \cdot \left(\prod_{n < m} \stackrel{\rightarrow}{Z_{n+1} V_n}\right)$$

$$\subset \left(\prod_{n < m} \stackrel{\leftarrow}{U_{n+1}^2}\right) \cdot O_0 \cdot \left(\prod_{n < m} \stackrel{\rightarrow}{U_{n+1}^2}\right)$$

$$\subset \left(\prod_{n < m} \stackrel{\leftarrow}{W_{n+1}}\right) \cdot W_0^2 \cdot \left(\prod_{n < m} \stackrel{\rightarrow}{W_{n+1}}\right)$$

$$= \prod_{n < m} \stackrel{\leftrightarrow}{W_n}.$$

By Claim 5, it is easy to see that $(\stackrel{\longleftrightarrow}{\prod}_{n\in\omega}V_n)\cdot(\stackrel{\longleftrightarrow}{\prod}_{n\in\omega}V_n)\subset \stackrel{\longleftrightarrow}{\prod}_{n\in\omega}W_n$. Therefore, $\stackrel{\longleftrightarrow}{G}$ is a paratopological group.

Remark 5.14. (1) In [3], the authors proved that the properties of PPTA and balanced are independent.

(2) It is clear that each balanced triple of paratopological groups is bi-balanced. The converse implication is not true (see [3, Example 5.3]).

Acknowledgments. The first author is supported by the National Natural Science Foundation of China (nos. 11201414, 11471153), the Natural Science Foundation of Fujian Province (no. 2012J05013) of China, and the Training Programme Foundation for Excellent Youth Researching Talents of Fujian's Universities (no. JA13190). The second author is supported by the project of Young Creative Talents of Guangdong Province (no. 2014KQNCX161), the PhD Start-up Fund of the Natural Science Foundation of Guangdong Province (no. 2014A030310187), and the Science Foundation for Young Teachers of Wuyi University (no. 2013zk03). The third author is supported by the Training Programme Foundation for Excellent Youth Researching Talents of Minnan Normal University (no. MJ14001).

We also wish to thank the reviewers for their detailed list of corrections and suggestions for improving the paper.

References

 A. V. Arhangel'skiĭ and M. Tkachenko, Topological Groups and Related Structures, Atlantis Stud. Math. 1, Atlantis Press, Hackensack, N.J., 2008. MR2433295. DOI 10.2991/978-94-91216-35-0. 51

- T. Banakh and D. Repovš, Topological structure of direct limits in the category of uniform spaces, Topology Appl. 157 (2010), no. 6, 1091–1100. MR2593721. DOI 10.1016/j.topol.2010.01.010. 49
- T. Banakh and D. Repovš, Direct limit topologies in the categories of topological groups and of uniform spaces, Tohoku Math. J. 64 (2012), no. 1, 1–24. MR2911130. DOI 10.2748/tmj/1332767338. 49, 69
- N. Bourbaki, Eléments de mathématique, Livre V, Espaces vectoriels topologiques, Hermann, Paris, 1953–1955. 51
- T. Edamatsu, On the bamboo-shoot topology of certain inductive limits of topological groups, J. Math. Tyoto Univ. **39** (1999), no. 4, 715–724. MR1740201. 49, 57
- R. Engelking, *General Topology*, 2nd ed., Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989. MR1039321. 49, 51
- P. Fletcher and W. F. Lindgren, *Quasi-Uniform Spaces*, Lecture Notes Pure Appl. Math. 77, Marcel Dekker, New York, 1982. MR0660063. 51, 53, 54
- H. Glöckner, Direct limit Lie groups and manifolds, J. Math. Kyoto Univ. 43 (2003), no. 1, 2–26. MR2028699. 49
- 9. H. Glöckner, Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal. 245 (2007), no. 1, 19–61. MR2310802. DOI 10.1016/j.jfa.2006.12.018. 49
- T. Hirai, H. Shimomura, N. Tatsuuma, and E. Hirai, *Inductive limits of topologies, their direct products, and problems related to algebraic structures*, J. Math. Kyoto Univ. **41** (2001), no. 3, 475–505. MR1878717. 49
- F. Lin, Topological monomorphisms between free paratopological groups, Bull. Belg. Math. Soc. Simon Stevin 19 (2012), no. 3, 507–521. MR3027357. 53, 54
- N. Tatsuuma, H. Shimomura, and T. Hirai, On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms, J. Math. Kyoto Univ. 38 (1998), 551–578. MR1661157. 56
- A. Yamasaki, Inductive limit of general linear groups, J. Math. Kyoto Univ. 38 (1998), no. 4, 769–779. MR1670011. 49

¹School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, P. R. China.

E-mail address: linfucai2008@aliyun.com *E-mail address*: zhangjing86@126.com

²School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, P. R. China.

E-mail address: xielihong2011@yahoo.cn