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Coupling and perturbation techniques for
categorical time series
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We present a general approach for studying autoregressive categorical time series models with dependence
of infinite order and defined conditional on an exogenous covariate process. To this end, we adapt a coupling
approach, developed in the literature for bounding the relaxation speed of a chain with complete connections
and from which we derive a perturbation result for non-homogenous versions of such chains. We then study
stationarity, ergodicity and dependence properties of some chains with complete connections and exogenous
covariates. As a consequence, we obtain a general framework for studying some observation-driven time
series models used both in statistics and econometrics but without theoretical support.
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1. Introduction

Categorical time series are widely encountered in various fields. For instance, in climate analy-
sis, Guanche et al. [24] studied the dynamic of weather types, Hao et al. [25] the prediction of
drought periods. In finance, Russell and Engle [41] or Rydberg and Shephard [42] studied the
dynamic of price movements. In economics, Kauppi and Saikkonen [29] consider the prediction
of recession periods. Several type of models used for modeling categorical time series can be
found in the survey of Fokianos and Kedem [20]. Though lots of time series models have been
developed in the literature, it is difficult to find a general framework for which inclusion of ex-
ogenous covariates is mathematically justified. This is one of the important differences between
the theoretical results found in time series analysis and the models used by the practitioners
which most of the time, are based on exogenous covariates. A notable exception is the contribu-
tion of Kaufmann [28] who considered estimation in autoregressive logistic type models when
deterministic regressors are included in the dynamic. More recently, Fokianos and Truquet [22]
considered general Markov models with random covariates. However, most of the categorical
time series models used in practice are “observation-driven” (see below for a definition), espe-
cially in econometrics. Fokianos and Truquet [22] also considered this class of non-Markovian
processes but without covariates and it seems that a general approach for studying a wide class
of categorical time series models with exogenous covariates is still not available. In this paper,
we provide such a framework by using a formalism introduced for studying a general class of
finite-state stochastic processes, the chains with complete connections. These processes, initially
considered by Doeblin and Fortet [15], have an interest in probability theory, statistical mechan-
ics or ergodic theory. See in particular Harris [26], Iosifescu and Grigorescu [27], Bressaud et al.
[1,2], Fernandez and Galves [18] and Comets et al. [8] for many of their theoretical properties.
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Chains with complete connections also contain stochastic chains with memory of variable length
as a special case, the latter class, initially introduced by Rissanen [40] for data compression, has
also applications in linguistic, see Galves et al. [23] or for protein classification, see, for instance,
Busch et al. [3].

In this paper, we also consider such chains with complete connections but defined conditional
on a covariate process. More precisely, we want to study stochastic processes (Yt )t∈Z defined by

P
(
Yt = y|Y−

t−1,X
−
t

)= q
(
y|Y−

t−1,X
−
t

)
, y ∈ E, (1)

where (Xt )t∈Z is a covariate process taking values in R
d , E is a finite set and q is a transition

kernel. We will extensively use the notation x−
t = (xt , xt−1, . . .) for a sequence (xt )t∈Z. Without

additional assumptions on the two processes X and Y , (1) is difficult to study theoretically. We
will assume further that

P
(
Yt = y|Y−

t−1,X
)= P

(
Yt = y|Y−

t−1,X
−
t

)
, X := (Xt )t∈Z. (2)

If condition (2) is satisfied, (Yt )t∈Z is, conditional on X, a time-inhomogenous chain with com-
plete connections and transition kernels {q(·|·,X−

t ) : t ∈ Z}. Condition (2) also means that Yt

is independent of (Xt+1,Xt+2, . . .) conditional on ((Yj−1,Xj ))j≤t . In econometrics, the latter
conditional independence assumptions is called strict exogeneity. Initially introduced by Sims
[43] for linear models, the concept of strict exogeneity was extended by Chamberlain [5] to
categorical time series. Chamberlain [5] also showed that under additional regularity conditions,
strict exogeneity is equivalent to non-Granger causality, which means that Xt+1 is independent of
Yt , Yt−1, . . . , conditional on Xt,Xt−1, . . . . This roughly means that the covariate process evolves
in a totally autonomous way and that, given all the information available up to time t , past values
of the outcome will not influence future values of the covariates. Let us also mention that such
strict exogeneity condition is a standard assumption in Markov-switching models, for which the
dynamic of the time series under study is defined conditional on an unobserved Markov chain X.
In probability theory, this exogeneity notion appears implicitly in the literature of stochastic
processes in random environments. Finite-state Markov chains in random environments are a
particular case of stochastic processes satisfying (1) and (2). They are studied for instance, in
Cogburn [7] and Kifer [30] but no result seems to be available for chains with complete connec-
tions. Strict exogeneity has of course some limitations for time series analysis, it is a rather strong
assumption. However, it is easier to formulate a general theory in this context, other conditional
distributions such as Xt+1|Y−

t ,X−
t need not to be specified.

Stochastic processes defined by (1) are of course of theoretical interest but for applications
to time series analysis, one of the challenging problem is to find parsimonious versions of (1).
One important class of models are called observation-driven, following the classification pro-
posed by Cox et al. [9]. For model (1), an observation-driven model is obtained assuming that
q(·|Yt−1,X

−
t ) = q(·|μt) with

μt = G(μt−1, . . . ,μt−q, Yt−1, . . . , Yt−p,Xt ). (3)

Without exogenous covariates, observation-driven models were widely studied, in particular for
count time series. See in particular Fokianos et al. [21], Neumann [36], Woodard et al. [46], Douc
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et al. [16]. These models are mainly studied using Markov chain techniques due to the Markov
properties of the process (Yt ,μt ). However, as pointed out in Woodard et al. [46] or Douc et
al. [16], for discrete time series, such Markov chains do not satisfy irreducibility properties. In
particular the latent variable μt is not discrete and not necessarily absolutely continuous. More
sophisticated techniques have then been developed to study existence of stationary distributions.
Such contributions are often limited to the case p = q = 1 and do not consider the problem
of exogenous covariates. In contrast, for the special case of categorical time series, one can
develop a much more general approach, considering observation-driven models as a particular
case of infinite dependence. This approach was recently used by Fokianos and Truquet [22].
However, inclusion of exogenous covariates is a more tricky problem and has not been considered
before for model (3) or (1). More generally, despite its fundamental importance for practical
applications, the problem of covariates inclusion is often ignored in the time series literature,
except for linear models. In Section 4, we make a review of many observation-driven models
proposed in econometrics for the study of categorical time series and that can be studied under
our general framework.

A crucial point for studying our models is to control how fast the process (Yt ) in (1) loses
memory of its initial values. For homogenous chains, Bressaud et al. [1] developed a nice result
based on the maximal coupling. We will adapt their result to our context, which will be crucial
for defining our models and studying many of their properties.

Another important problem addressed in this paper concerns dependence properties of the
process, which are essential to control the behavior of partial sums. While chains with complete
connections satisfies φ-mixing properties under rather general assumptions (see Fokianos and
Truquet [22]), finding dependence properties for the joint process (Yt ,Xt ) in (1) is quite chal-
lenging. For the example of observation-driven models, such properties are important to control
the behavior of partial sums of type 1

n

∑n
t=1 f (Y−

t ,X−
t ,μ−

t ). Our aim here is to avoid to prove
the so-called “quenched” results found in the literature of processes in random environments,
see, for instance, Kifer [31] for a central limit theorem of this type for Markov chains in random
environments, and which consist in studying the limiting behavior of the partial sums conditional
on the environment X(ω). In contrast in this paper, we explain how to get β-mixing properties
and τ -dependence (see Section 5 for a definition) for this joint process, leading the possibility to
use various invariance principle and deviation inequalities for the aforementioned partial sums.
To this end, we will use a coupling approach. If a “good” coupling for the covariate process X

exists, one can define a coupling of Y conditional on X, with two paths having different transition
kernels that will be adjacent at infinity. This is why we will derive in Section 2 a perturbation
result for chains with complete connections, obtained via coupling. Such a result also has of
independent interest.

The paper is organized as follows. In Section 2, we state a general result for non-homogenous
chain with complete connections. In particular, we generalize a result of Bressaud et al. [1] for
controlling the relaxation speed of such chains and we also compare the dynamic of two such
chains possessing different transition kernels. In Section 3, we give some conditions on the tran-
sition kernel q(·|·) that guaranty existence and uniqueness of a stationary and ergodic solution
for the problem (1). Many examples are given in Section 4, with a detailed treatment of some
observation-driven models used in the econometric literature. Section 5 is devoted to the de-
pendence properties of the solution, absolute regularity or τ -dependence. We mention several
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possible applications of our results in statistics in Section 6. The proofs of our results are post-
poned to Section 7. Finally, an auxiliary lemma for observation-driven models is given in an
Appendix. Proofs of some of our results can be found in the supplementary material Truquet
[44].

2. Perturbation of chains with complete connections

We denote by N the set of natural integers {0,1, . . .} and N
∗ = N \ {0}. For a finite set F , we

will denote by P(F ) is the set of all subsets of F . Moreover, if ν1 and ν2 are two probability
measures on F , the total variation distance between ν1 and ν2 is defined by

dTV(ν1, ν2) = 1

2

∑
f ∈F

∣∣ν1(f ) − ν2(f )
∣∣.

We remind the following expression

dTV(ν1, ν2) = inf
{
P(U �= V ) : U ∼ ν1,V ∼ ν2

}
.

Moreover one can define two random variables U and V such that the infinimum is attained.
A such pair (U,V ) is called a maximal coupling, since its distribution maximizes the probability
of the diagonal. See den Hollander [14], page 15 for an explicit construction of such coupling
and for a proof of the previous equality. For y, y ∈ EN and a positive integer m, we write y

m= y

if yi = yi for 0 ≤ i ≤ m − 1. Finally we denote by B(X ) the borel sigma-algebra associated to a
topological space X .

2.1. A general result

Throughout the section, we will denote by E a finite set. Let also X be a Polish space. For any x ∈
X , we consider two sequences (qx

t )t∈Z and (qx
t )t∈Z of probability kernels from (EN,P(E)⊗N)

to (E,P(E)). For our applications to time series, the case qx
t = q(·|x−

t ) will be of interest. The
two following assumptions will be needed.

A1. The applications (y, z, x) �→ qx
t (y|z) and (y, z, x) �→ qx

t (y|z) are measurable and take pos-
itive values.

A2. Setting

bm := sup
t∈Z

sup
x∈X

sup
y

m=y

dTV
(
qx
t (·|y), qx

t (·|y)
)
,

we have b0 < 1 and limm→∞ bm = 0.
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Let us now introduce some additional notations. In what follows, we fix t0 ∈ Z. For z ∈ EN

and x ∈ X , we denote by Qt0,x,z the probability distribution on (EN,P(E)⊗N) defined by

Qt0,x,z

(
n∏

i=1

{yi} ×
∞∏

i=n+1

E

)
=

n∏
i=1

qx
t0+i

(
yi |y−

i−1

)
with the convention y−j = zj for j ≥ 0. The measure Qt0,x,z coincides with the joint distribution
of Yt0+1, Yt0+2, . . . given Yt0 , Yt0−1, . . . for a chain (Yt )t∈Z defined from the sequence of transition
kernels (qx

t )t∈Z. We define Qt0,x,z in the same way, replacing the transition kernels qx
t with qx

t

in the previous expression.

Lemma 1. Assume that Assumptions A1–A2 hold true. Then for any x ∈ X and any couple
(z, z) ∈ EN × EN, there exists a probability measure Q̃t0,x,z,z on (EN

∗ × EN
∗
,P(E)⊗N

∗ ⊗
P(E)⊗N

∗
) such that the three following conditions are satisfied.

1. For A,B ∈P(E)⊗N
∗
, we have

Q̃t0,x,z,z

(
A × EN

∗)= Qt0,x,z(A), Q̃t0,x,z,z

(
EN

∗ × B
)= Qt0,x,z(B). (4)

2. For t ≥ 1,

Q̃t0,x,z,z

({
(y, y) ∈ EN

∗ × EN
∗ : yt �= yt

})
≤ b∗

t−1 + sup
s∈EN

dTV
(
qx
t+t0

(·|s), qx
t+t0

(·|s))
+

t−2∑
�=0

b∗
� sup

s∈EN

dTV
(
qx
t+t0−�−1(·|s), qx

t+t0−�−1(·|s)
)
, (5)

where b∗
0 = b0 and for n ≥ 1, b∗

n is equal to P(S
(b)
n = 0) where (S

(b)
n )n≥0 is a time-

homogeneous Markov chain, starting at 0 and with transition matrix P defined by

P(i, i + 1) = 1 − bi, P (i,0) = bi, i ∈ N.

3. For all C ∈ P(E)⊗N
∗ ⊗P(E)⊗N

∗
, the mapping (x, z, z) �→ Q̃t0,x,z,z(C) is measurable as

a mapping from (X × EN × EN,B(X ) ⊗P(E)⊗N ⊗P(E)⊗N) to ([0,1],B([0,1])).

Notes.

1. From Lemma 1, we get a coupling of two chains defined from different transition kernels qx
t

or qx
t and initialized with arbitrary past sequences. A control of the total variation distance

between the finite dimensional distributions of two such chains can be deduced. For i ∈ N
∗,

we denote by yi (resp. yi ) the mapping from EN
∗ × EN

∗
to E defined by yi(w,w) =

wi (resp. yi(w,w) = wi ), w,w ∈ EN
∗
. Let 1 ≤ s ≤ �. If Q

(s,�)
t0,x,z and Q

(s,�)

t0,x,z denote the
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restriction of Qt0,x,z (resp. Qt0,x,z) to σ(yi : s ≤ i ≤ �), we have

dTV
(
Q

(s,�)
t0,x,z,Q

(s,�)

t0,x,z

) ≤ Q̃t0,x,z,z(yt �= yt ; for some s ≤ t ≤ �)

≤
�∑

t=s

Q̃t0,x,z,z(yt �= yt ) (6)

and the total variation distance can be then bounded from (5).
2. When the qx

t ≡ qx
t ≡ q and setting Q̃t0,x,z,z = Q̃t0,z,z, Lemma 1 shows that

Q̃t0,z,z(yt �= yt ) ≤ b∗
t−t0−1

and we simply get control of the total variation distance between the marginals at time t ,
when a time-homogeneous chain with complete connections is initialized with two differ-
ent sequences. Such result has been proved by Bressaud et al. [1] under a log-continuity
assumption for the transition kernel q . Since we use an assumption slightly weaker in S2,
we will rewrite a detailed proof for the previous bound using our assumptions.

3. Assumption A2 implies a uniform control for the total variation distance between two ker-
nels having their first m-past values equal. This total variation distance decreases to 0 when
m → 0. In the literature of homogenous chains with complete connections, the coefficient
bm is called the variation of order m of the kernel. See Fernandez and Maillard [19] for a
discussion about the role of these coefficients for proving uniqueness properties of station-
ary measures associated to the transition kernel. The decrease of these coefficients measure
the loss of memory with respect to values far away in the past.

Next, we provide a perturbation result for homogeneous chains with complete connections,
that is, qt ≡ q and qt ≡ q for all integer t . This result will not be used in the rest of the paper.
However, it extends a standard perturbation result for finite-state Markov chains and has then
an independent interest. If

∑
m≥1 bm < ∞ then

∑
m≥1 b∗

m < ∞ (see the supplementary mate-
rial, Lemma 4). In this case, b∗

m → 0 and there exists a stationary chain (Yk)k∈Z with complete
connection and transition kernel q . Moreover, the stationary distribution of such chain is unique.
Existence and unicity can hold under slightly weaker conditions that will not be discussed here.
See Bressaud et al. [1], Remark 1. We will also assume that the transition kernel q satisfies As-
sumptions A1–A2 with summable coefficients bm. By setting t0 = 0 and letting t going to −∞
in Lemma 1, we obtain the following result.

Corollary 1. Assume that
∑

m≥1(bm +bm) < ∞ and let π (π resp.) be the marginal distribution
of the chain with transition kernel q (q resp.). Then

dTV(π,π) ≤
(

1 +
∑
m≥0

b∗
m

)
· sup
y∈EN

dTV
(
q(·|y), q(·|y)

)
.

Corollary 1 shows that the marginal distribution of the chain is a Lipschitz functional of its
transition kernel. Let us specialize this result to the Markov case, that is, q(·|·) is a stochas-
tic matrix on E. In this case, bm = 0 for m ≥ 1 and it is easily seen that b∗

m = bm
0 . We obtain
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1 +∑m≥0 b∗
m = (1 − b0)

−1. We then recover a basic result for the perturbation of Markov chain
using the ergodicity coefficient b0 of the Markov chain with transition q . See, for instance, Mitro-
phanov [35], Theorem 3.2.

3. Stationary categorical time series models with covariates

In this section, we consider a finite set E with cardinality N . We will consider a stationary
covariate process X = (Xt )t∈Z taking values in (Rd, | · |) where | · | is a norm on R

d . Let (Yt )t∈Z
a time series taking values in E and such that

P
(
Yt = w|Y−

t−1,X
)= q

(
w|Y−

t−1,X
−
t

)
, t ∈ Z. (7)

We assume that for every t ∈ Z, the mapping (w,y, x) �→ q(w|y, x−
t ) is measurable, as a map-

ping from E × EN ×D to (0,1), where D ∈ B(Rd)⊗Z is such that P(X ∈ D) = 1. Moreover, we
impose

∑
w∈E q(w|y, x) = 1 for all (y, x) ∈ EN ×D.

3.1. Existence of a stationary and ergodic solution

The following assumptions will be needed.

S1. The covariate process X = (Xt )t∈Z stationary and ergodic.

S2. Setting for m ≥ 0,

bm = sup
{
dTV
(
q
(·|y, x−

t

)
, q
(·|y′, x−

t

)) : (y, y′, x
) ∈ EN × EN ×D, t ∈ Z, y

m= y′},
we have b0 < 1 and

∑
m≥0 bm < ∞.

Note. Assumption S2 guarantees that
∑

m≥0 b∗
m < ∞, where the b∗

m’s are related to the b′
ms as

described in Lemma 1. A proof can be found in Bressaud et al. [1], Proposition 2. See also the
supplementary material, Lemma 4. Basically, the decrease of the sequence (b∗

m)m≥0 is of the
same order as the sequence (bm)m≥0. It should be noted that we impose a control of the total
variation distances which is uniform with respect to the path of the covariate process X. We did
not find a solution for removing this assumption. However, as we will see in the examples, when
the contribution of the covariates is additive in some generalized linear models, this assumption
is often satisfied even if the covariate process is unbounded.

Theorem 1. Assume that the Assumptions S1–S2 hold true.

1. There then exists a stochastic processes (Yt )t∈Z satisfying (7). The probability distribution
of the pair (Y,X) is unique. Moreover for any bounded measurable function h : EN → R,
we have

E
[
h
(
Y−

t

)|X]= E
[
h
(
Y−

t

)|X−
t

]
.

2. The bivariate process ((Yt ,Xt ))t∈Z is stationary and ergodic.
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Note. As shown in Section 4, Theorem 1 can be applied to many examples of categorical time
series models found in the literature. In its present form, such a result cannot be applied to count-
able infinite state spaces. In the infinite countable case, existence and uniqueness of stationary
measures for classical chains with complete connections is more difficult to get. In particular, a
standard uniqueness criterion is based on some oscillation coefficients that differ from the b′

ms
coefficients and Dobrushin’s contraction condition. See the recent contribution of Chazottes et
al. [6] and the references therein for a discussion. For infinite state spaces, Dobrushin’s unique-
ness condition generally imposes serious restrictions on the transition kernel q . Moreover, such
a condition is not necessarily satisfied by the examples given in the next section.

4. Examples

We now provide many examples of categorical time series models satisfying our assumptions.
We study in particular some observation-driven models proposed in the literature, which are
parsimonious and of interest for applications in statistics.

4.1. Generalized linear model for binary time series

Here we assume that E = {0,1}. We consider the following binary time series model defined by

P
(
Yt = 1|Y−

t−1,X
)= F(μt ), μt =

∞∑
j=1

ajYt−j + γ ′Xt, (8)

where F is a cumulative distribution function, (aj )j≥1 is a summable sequence of real numbers
and γ ∈ R

d . Model (8) extends the model considered by Comets et al. [8] which does not contain
exogenous regressors.

Proposition 1. Assume that F is Lipschitz, takes values in (0,1),
∑

j≥1 j |aj | < ∞ and X sat-
isfies Assumption S1. There then exists a unique stationary process (Yt )t∈Z satisfying (8). More-
over, the bivariate process ((Yt ,Xt ))t∈Z is stationary and ergodic.

Model (9) is of theoretical interest but in practice observation-driven models lead to parsimo-
nious representations of such dynamics. Let us consider the following version.

P
(
Yt = 1|Y−

t−1,X
)= F(μt ), μt =

q∑
j=1

βjμt−j +
p∑

k=1

αkYt−k + γ ′Xt, (9)

where F is a cumulative distribution function α1, . . . , αp,β1, . . . , βq ∈ R and γ ∈ R
d . We get

the following result.

Proposition 2. Assume that F takes values in (0,1), is positive everywhere and Lipschitz and
that the covariate process X satisfies S1 and E log+ |X1| < ∞. Assume further that the roots of
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the polynomial

P(z) = 1 −
q∑

j=1

βj z
j

are outside the unit disc. There then exists a unique stationary solution to (9). Moreover, the
process ((Yt ,Xt ))t∈Z is stationary and ergodic.

Notes.

1. A classical choice for F is the Gaussian c.d.f. (probit model) or the logistic c.d.f. (logistic
model). Model of type (9) have been proposed but without a theoretical support by Kauppi
and Saikkonen [29], Rydberg and Shephard [42] or Russell and Engle [41] for analyzing
price changes or predicting recessions. When β1 = · · · = βq = 0, a theory for the dynamic
probit model can be found in de Jong and Woutersen [10] or in Fokianos and Truquet
[22] who studied more general Markov models specified conditionally to some covariates.
When there is no covariates, stationarity conditions for model (9) are given in Fokianos
and Truquet [22]. Our results then extend these previous contributions and also give a
theoretical basis to some models used in econometrics.

2. It is also possible to consider models with interactions between past values of the response
and covariates. However, in general, application of Theorem 1 requires boundedness of
the process (μt )t∈Z in (9). For simplicity, let us assume that d = 1 and that the process
is (conditionally to X) a first-order time-inhomogeneous Markov chain (called a Markov
chain with covariates in what follows) with μt = g(Yt−1,Xt ), g : E × R → R being a
measurable function. Then

b0 = sup
z∈R

dTV
(
q(·|1, z), q(·|0, z)

)= sup
z∈R

∣∣F (g(1, z)
)− F

(
g(0, z)

)∣∣.
Assumption S2 is valid provided the second link function g is bounded. When g is not
bounded, Assumption S2 is still valid when for any z ∈ R, g(0, z) and g(1, z) have
the same sign but this restriction seems to be quite artificial. More generally, if μt =
g(Yt−1, . . . , Yt−p,Xt ) with g : Ep ×R

d → R is measurable and bounded, Assumption S2
is satisfied with b0 < 1 and bm = 0 if m ≥ p. We point out that these results are less sharp
than that of Fokianos and Truquet [22], where existence and uniqueness of a stationary and
ergodic solution for a Markov chain with covariates was obtained without this bounded-
ness assumption. However, Theorem 1 is compatible with non Markov processes and then
observation-driven models which are more difficult to study.

We still consider the binary case as in (9) with a nonlinear latent process μt and with one lag
for simplicity. For a function g : R �→ R, we assume that

μt = g(μt−1) + αYt−1 + γ ′Xt . (10)

Such type of model has been proposed by Russell and Engle [41] for analyzing financial transac-
tions prices setting g(s) = βs − αF(s). Note that with the last specification, if |β| < 1, λt writes
as a linear combination of the martingale differences Yt−j − F(λt−j ), j ≥ 1.



3258 L. Truquet

Proposition 3. Assume that F takes values in (0,1), is Lipschitz and g is Lipschitz with

|g(s) − g
(
s′)| ≤ κ|s − s′|, (

s, s′) ∈ R
2

for some κ ∈ (0,1). Assume further that the process X satisfies Assumption S1 and
E log+ |X0| < ∞. There exists a unique stationary process (Yt )t∈Z satisfying (10). Moreover,
the process ((Xt , Yt ))t∈Z is stationary and ergodic.

4.2. Multinomial logistic autoregressions

We now provide a multinomial extension of the previous model. We consider the case of a state
space E = {0, . . . ,N − 1} for an integer N ≥ 2. For i = 1, . . . ,N − 1, assume that

P
(
Yt = i|Y−

t−1,X
−
t

)= exp(μi,t )

1 +∑N−1
j=1 exp(μj,t )

,

μt =
q∑

j=1

Bjμt−j +
p∑

�=1

A�Y t−i + �Xt ,

(11)

the B ′
j s and the A′

�s being matrices of size (N − 1) × (N − 1), � a matrix of size (N − 1) × d .

Moreover, Y t−i takes the kth column of the identity matrix IN−1 if Yt−i takes the value k. In
what follows, we denote by det(B) the determinant of a square matrix B . We have the following
result. A proof is given in the supplementary material.

Proposition 4. Assume that the covariate process X satisfies S1 and E log+ |X1| < ∞. Assume
further that the roots of the polynomial

P(z) = det

(
IN−1 −

q∑
j=1

Bjz
j

)

are outside the unit disc. There then exists a unique stationary solution to (11). Moreover, the
process ((Yt ,Xt ))t∈Z is stationary and ergodic.

Note. This type of multinomial model is considered in Russell and Engle [41]. Let us point out
that as for the multinomial regression, a modality of reference is chosen, here 0. In practice,
the choice of this modality is often arbitrary and it is an undesirable property to have a model
depending on this choice. Non-sensitivity to this choice requires that the differences μi,t − μj,t

for i �= j can be obtained via a change in the parameters of the specification of μi,t . This is the
case if Bj = βj IN−1 in (11), a condition also leading to a more parsimonious model. As for
the binary case, more complex models can be obtained by including some interactions between
past values of the response and the covariates. As already mentioned for binary models, to check
our assumptions, it is in general necessary to assume boundedness of this interaction and then
boundedness of the process μt .
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4.3. Discrete choice models

Here, we assume that E = {1, . . . ,N}. We want to consider stationary solutions of

Yt = (1μi,t+εi,t>0)1≤i≤N, μt =
q∑

j=1

Bjμt−j +
p∑

k=1

AjYt−j + �Xt, (12)

where � is a matrix of size N ×d and A1, . . . ,Ap,B1, . . . ,Bq are square matrices of size N ×N .
Such model is proposed for instance in Manner et al. [33], Candelon et al. [4] or Nyberg [37] for
application to financial crisis, business cycles or recession dynamics. We will show it is possible
to construct stationary paths for the dynamic (12) when the two process X and ε are independent.
More precisely, setting for some c ∈ R

N and I ⊂ E,

CI (c) =
⋂
i∈I

{εi,0 > −ci} ∩
⋂

i∈E\I
{εi,0 ≤ −ci},

we consider stationary processes (Yt )t∈Z solution of

P
(
Yt = 1I |Y−

t−1,X
)= μ

(
CI (μt )

)
, μ = Pε0 , (13)

where 1I is a vector of RN with a coordinate i equal to 1 if i ∈ I and 0 otherwise. The following
result is proved in the supplementary material.

Proposition 5. Assume that X satisfies A1 with E log+ |X0| < ∞, ε0 have a distribution with
a full support RN and a Lipschitz c.d.f. Assume further that the roots of the polynomial P(z) =
det(IN −∑q

j=1 Bjz
j ) are outside the unit disc. There then exists a unique stationary solution to

the recursive equations (12), (13). Moreover, the process ((Yt ,Xt ))t∈Z is stationary and ergodic.

5. Measures of stochastic dependence

We will now study some dependence properties for chains with complete connections and ex-
ogenous covariates. In particular, such properties will be valid for the examples introduced in
the previous section. Many dependence coefficients have been introduced in the literature. See
Dedecker et al. [11] for a survey. The notion of strong mixing is probably one of most used for
statistical applications. Doukhan [17] is a classical reference on this topic. However, strong mix-
ing conditions are not always easy to check for a bivariate process of type Vt = (Yt ,Xt ). Under
our assumptions, it is possible to show that the conditional probabilities Y |X = x satisfy φ-
mixing conditions. See Fokianos and Truquet [22] for a discussion in the homogeneous case, the
arguments are the same here. However, there is no straightforward link between conditional and
unconditional mixing. The notion of conditional mixing is considered for instance in Rao [39].
Yuan and Lei [48] give some counterexamples showing that conditional mixing properties do not
necessarily entail unconditional strong mixing properties. Moreover, there exist autoregressive
processes (Xt )t∈Z that do not satisfy any strong mixing conditions and alternative dependence



3260 L. Truquet

coefficients have been proposed in the literature such as the functional dependence of Wu [47],
adapted to Bernoulli shifts or the τ -dependence coefficients introduced by Dedecker and Prieur
[12] and generalized in Dedecker and Prieur [13]. The latter dependence condition can be used
as an alternative to the usual mixing conditions, since the usual deviations inequalities and in-
variance principles are available for partial sums of τ -dependent sequences. See, for instance,
Dedecker and Prieur [12] and Merlevède et al. [34]. In this section, we will use our results for
bounding either the coefficients of absolute regularity or τ -dependence, depending on the as-
sumption made on the covariate process. Since we already pointed out the difficulty of getting
unconditional dependence properties from that of conditional distributions, we will assume ex-
istence of a particular coupling of the covariate process instead of a particular weak dependence
condition.

5.1. Absolute regularity and τ -dependence coefficients

For a stationary process (Vt )t∈Z taking values in E ×R
d and n ∈N

∗, we set

βV (n) = E

[
sup
A

∣∣P((Vn,Vn+1, . . .) ∈ A|F0
)− P

(
(Vn,Vn+1, . . .) ∈ A

)∣∣],
where F0 = σ(Vi : i ≤ 0). We say that (Vt )t∈Z is absolutely regular or β-mixing if
limn→∞ βV (n) = 0.

Next we recall the definition of the coefficients of τ -dependence. On E = E×R
d , we consider

the distance γ defined by

γ
(
v, v′)= 1v1 �=v′

1
+ |v′

2 − v2|.
We also define the following set of Lipschitz functions:

L� =
{
f : E� → R s.t. Lip(f ) := sup

w �=w′∈E
�

|f (w1, . . . ,w�) − f (w′
1, . . . ,w

′
�)|∑�

i=1 γ (wi,w
′
i )

< ∞
}
.

Finally, for a point v0 ∈ E, we set

P0,� =
{

μ probability measure on E
� :
∫ �∑

j=1

γ (vj , v0)μ(dv1, . . . , dv�) < ∞
}

.

Note that the set P0,� does not depend on the point v0. Next, for μ,ν ∈P0,�, we define

W1,�(μ, ν) = sup
f ∈L�

{∫
f dμ −

∫
f dν : Lip(f ) ≤ 1

}
.

Remember that from Kantorovich’s duality, we have

W1,�(μ, ν) = inf

{∫ �∑
j=1

γ
(
vj , v

′
j

)
�
(
dv1, . . . , dv�, dv′

1, . . . , dv′
�

)}
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where the infinimum is taken on the set of probability measures � on E
� × E

�
having marginals

μ and ν.
For t ∈ Z, let Vt = (Yt ,Xt ) and Ft = σ(Vj : j ≤ t). For an integer � ≥ 1 and j1 < · · · < j� in

Z, set J = {j1, . . . , j�} and

UJ = (Vj1 ,Vj2, . . . , Vj�
).

According to Dedecker and Prieur [13], we define τ -dependence coefficients between UJ and
F0 by

τ(F0,UJ ) = EW1,�(PUJ |F′ ,PUJ
),

where PUJ |F0 denotes the conditional distribution of UJ given F0. We then define for some
integers k ≥ 1 and n ≥ 1,

τ (k)(n) = max
1≤�≤k

1

�
sup
{
τ(F0,Uj1,...,j�

), n ≤ j1 < · · · < j�

}
,

and τV (n) = supk≥1 τ (k)(n).
Note that the initial definition of the τ -dependence coefficients defined in Dedecker and Prieur

[12] were defined when the distance γ is the �1-metric. However, as E is a finite set, the two
metrics are equivalent. Indeed, one can always code the elements of the finite set E as vectors
of the canonical basis of RN (N is the number of elements of E) and in this case, we have, for
x, y ∈ E,

1

2

N∑
i=1

|xi − yi | = 1x �=y.

Then one can assume that the process (Vt )t∈Z takes values in R
N+d and choose γ as the corre-

sponding �1-metric. In this case, Dedecker and Prieur [12] developed various limiting theorem
for partial sums, when τV (n) → 0. Let us also mention that such dependence coefficients were
generalized in Dedecker and Prieur [13], when the state space (E,γ ) is a general Polish space.

5.2. Control of dependence coefficients

For bounding the dependence coefficients defined in the previous section, we will assume a
representation of the form Xt = g(St ), where (St )t∈Z is a stationary Markov chain taking values
in a Polish space S and g : S → R

d is a measurable function. We will denote by γ a metric on
R

d that will be either the discrete metric, that is, γ (x1, x2) = 1x1 �=x2 , or the �1-metric, that is,
γ (x1, x2) = |x2 − x1| :=∑d

i=1 |xi,1 − xi,2| for xj = (x1,j , . . . , xd,j ) ∈R
d , j = 1,2.

We introduce the probability kernel P from (S,B(S)) to (SN
∗
,B(SN

∗
)) and such for s0 ∈

S , P(s0, ·) is the distribution of (St )t≥1 conditional on S0 = s0. Let also π be the invariant
probability of the chain. We set �∗ = SN

∗ × SN
∗
. For t ∈ N

∗, we denote by S1,t : � → S and
S2,t : �∗ → S the coordinate applications S1,t ((s, s)) = st and S2,t ((s, s)) = st .
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S1′. We assume that there exists a probability kernel P̃ from (S2,B(S2)) to (�∗,B(�∗)) such
that P̃ ((s0, s0), ·) is a coupling of P(s0, ·) and P(s0, ·) and

at =:=
∫

dπ(s0) dπ(s0)Ẽs0,s0

[
γ
(
g(S1,t ), g(S2,t )

)]
satisfies limt→∞ at = 0. Ẽs0,s0 denotes the expectation under P̃ ((s0, s0), ·).

S3. There exists a sequence (em)m∈N such that
∑

m≥1 em < ∞ and for all (y, z, z′) ∈ GN ×
EN × EN,

dTV
(
q(·|y, z), q

(·|y, z′))≤∑
i≥0

ei |zi − z′
i |.

Notes.

1. Assumption S1′ guarantees the existence of a coupling of the chain with two independent
initial states and for which the the distance between the future states goes to zero on average
at infinity.

2. Assume that γ is induced by the �1-norm on R
d and the covariate process X is a Bernoulli

shift. We remind that a process X is called a a Bernoulli shift if there exists a measurable
space �, a random sequence ε ∈ �Z of i.i.d. random variables and a measurable mapping
g : �N → G such that

Xt = g(εt , εt−1, . . .), t ∈ Z.

We point out that such a representation is valid for many time series models found in the
literature from linear processes of ARMA type to GARCH processes. In this case, we set
St = (εt , εt−1, . . .) which takes values in S = �N. Here, the kernel P̃ in Assumption S1′
can be defined as the probability distribution of (ε(s0), ε(s0)) where for s ∈ �N, ε

(s)
t = εt

for t ≥ 1 and ε
(s)
t = s−t for t ≤ 0. In this case, we have the expression at = E(|Xt − Xt |)

where t ≥ 1,

Xt = g
(
εt , . . . , ε1, ε

′
0, ε

′−1, . . .
)

and ε′ is an independent copy of ε. A martingale argument shows that the condition
limt→∞ at = 0 is automatically satisfied.

3. When γ (x1, x2) = 1x1 �=x2 , Assumption S1′ is implied by the existence of a so-called suc-
cessful coupling of two chains with different initial values. See Lindvall [32] for a discus-
sion of existence of successful coupling for Markov chains and in particular Theorem 14.10
which shows an equivalence with the weak ergodicity property of the Markov chain. Exis-
tence of a successful coupling means that there exists a probability kernel P̃ , defined as in
Assumption S1′ and such that

P̃
(
(s0, s0), {∃n0 ∈N : S1,n = S2,n, n ≥ n0}

)= 1.
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Then the condition limt→∞ at = 0 is automatically satisfied for such kernel. Indeed, we
have

Ẽs0,s0

[
γ
(
g(S1,t ), g(S2,t )

)]≤ P̃

(
(s0, s0),

⋃
i≥t

{S1,i �= S2,i}
)

→ 0.

and we get at → 0 from Lebesgue’s theorem.
4. One can also assume that St = (εt , εt−1, . . .) where (εt )t∈Z is a homogenous chain with

complete connections satisfying Assumption S2. Using Lemma 1, one can check Assump-
tion S1′ when g(St ) = h(εt , . . . , εt−k) for some integer k and function h.

In what follows, we denote by L
p the Lebesgue space of random variables taking values in

R
d and possessing a moment of order p (or bounded a.s. if p = ∞) and ‖ · ‖p the corresponding

norm.

Theorem 2. Assume that Assumptions S1–S1′ and S2–S3 hold true.

1. Assume that γ is the discrete metric and that X0 ∈ L
p for some p ∈ [1,∞]. Set q = p

p−1

and ct = max(1,2‖X0‖p)a
1/q
t . Then, for n ∈ N

∗, we have

βV (n) ≤
∑
j≥n

gj ,

with gj = b∗
j−1 + cj + κj +∑j−2

i=0 b∗
i κj−i−1 and κj =∑j−1

s=0 escj−s + 2
∑

s≥j esE[|X0|].
2. Assume that γ is induced by the �1-norm. Then, for n ∈N

∗, we have

τV (n) ≤ sup
j≥n

hj ,

with hj = b∗
j−1 + aj + κj +∑j−2

i=0 b∗
i κj−i−1, κj =∑j−1

s=0 esaj−s + 2
∑

s≥j esE[|X0|].

Notes.

1. Note that under our assumptions, limi→∞ hi = 0 and then limn→∞ τV (n) = 0. This is
essentially due to the fact that if (un)n≥0 is a summable sequence of nonnegative real
numbers and (vn)n∈N a sequence of nonnegative real numbers converging to 0, then
limn→∞

∑n
i=0 uivn−i = 0.

2. Under the assumptions of Theorem 2, the process V is absolutely regular provided that∑
j≥1 gj < ∞. This is the case if

∑
j≥1 jej < ∞ and

∑
j≥0 cj < ∞.

3. To get a precise rate of convergence for the dependence coefficients, it is necessary to
control the decay of b∗

m when m → ∞. Lemma 4 given in the supplementary material
provides some results. In particular, when bm = O(m−k) for some k ∈ N

∗, we also have
b∗
m = O(m−k).

Next we give a result focused on observation-driven models. Our conditions will be specified
for the examples already mentioned in Section 4
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Corollary 2. Assume that Assumptions S1–S1′ hold true. Suppose that q(·|Y−
t−1,X

−
t ) = q̌(·|λt )

is Lipschitz in λt with λt = GYt−1,Xt (λt−1) and the assumptions of Lemma 2 are satisfied.

1. Assume that S1′ holds true for the discrete metric. If ai = O(i−κ ) with κ > q , X0 ∈ Lp and
p−1 + q−1 = 1, we have βV (n) = O(n−κ/q+1) and the process V is absolutely regular. If
ai = O(ρi) for some ρ ∈ (0,1), then βV (n) = O(ρn) for some ρ ∈ (0,1).

2. Assume that S1′ holds true for the �1-metric. If ai = O(i−κ) with κ > 1, we have τV (n) =
O(n−κ). If ai = O(ρi) for some ρ ∈ (0,1), then τV (n) = O(ρn) for some ρ ∈ (0,1).

Note. These dependence coefficients are useful to derive limit theorems or deviation inequalities
for some partial sums of the form

Sn = 1

n

n∑
t=1

Wt, Wt := f (Vt ,Vt−1, . . .), Vt = (Yt ,Xt )

for some suitable real-valued functions f , such as some smooth functionals of (Yt−j ,μt−j )j≥0,
where μ denotes the latent process of observation-driven models satisfying our assumptions. We
point out that, due to the discrete nature of the process (Yt )t∈Z, the process (Wt )t∈Z is not neces-
sarily absolutely regular. Neumann [36] studied this problem for the latent process of a Poisson
autoregressive process. However, limit theorems for Sn can be still be obtained in approximating
Wt by some functionals only depending on finitely many Vt−j , j ≥ 0. On the other hand, it is
still possible to control directly the τ -dependence coefficients of (Wt )t when the function f is
smooth enough. See Section 2 in the supplementary material.

6. Perspectives in statistics

Let us now give some possible applications of our results to statistical inference in the models
presented in Section 4.

1. The first problem concerns parametric estimation which has been extensively studied for
other observation-driven models. Usually, only ergodicity is necessary to get consistency
and asymptotic normality of the conditional likelihood estimator. For instance, Douc et al.
[16] studied this problem when some general observation-driven models are well speci-
fied and misspecified. Then one could obtain similar results for our models satisfying the
Assumptions S1–S2. Let us also mention that models of infinite order can be considered,
such as (8), with a parametric form for the parameters aj = aj (θ) and a decay in the de-
pendence which is not exponential (in contrast to observation-driven models). For instance,
aj (θ) = θ1j

−θ2 with θ2 > 2.
2. The second problem concerns discrete choice models as in (12) and the estimation of the

distribution of ε0 modeled via a parametric copula, as in Manner et al. [33]. For instance,
the distribution of εt can be marginally Gaussian or logistic and we obtain a multivariate
version of the univariate probit or logistic binary model. Our results can then be used to
study the asymptotic properties of the maximum likelihood estimator given in their paper.
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3. The third problem concerns semi-parametric estimation in our models. Recently, Park et
al. [38] investigated a related nonparametric problem but for finite-order models. Let us
describe an approach for the binary time series models given in Section 4. Our aim is to
estimate the function F as well as a vector θ of autoregressive parameters. One can then
maximize

θ �→
n∑

t=1

[
Yt log F̂θ

(
μt(θ)

)+ (1 − Yt ) log
(
1 − F̂θ

(
μt(θ)

))]
,

with

F̂θ (z) =
∑n

t=1 YtKh(z − μt(θ))∑n
t=1 Kh(z − μt(θ))

and K is a kernel, h > 0 a bandwidth parameter and Kh = h−1K(·/h). If θ̂ is such
maximizer, P(Yt = 1|Y−

t−1,X
−
t ) can be estimated by F̂

θ̂
(μt (θ̂ )). The dependence prop-

erties stated in Section 5 will be essential to derive asymptotic properties of this estimator.
With respect to the problem considered in Park et al. [38], the main interest of this semi-
parametric approach is that one can use much more lags values for the response and the
covariates in order to predict the Yt ’s.

7. Proofs of the results

7.1. Proof of Lemma 1

Without loss of generality, we will assume that t0 = 0, the general case will follow by replacing t

by t − t0 in the bound we will derive. We then remove the index t0 from all our notations. We will
apply the technique of maximal coupling already used by Bressaud et al. [1] for getting a bound
on the relaxation speed of chains with complete connections. We defer the reader to Bressaud et
al. [1], Equation 4.9 for a precise definition of the maximal coupling of two probability measures
α and α on the finite set E. In what follows, we will simply use the fact that there exists a
probability measure α×̃α on E × E such that

α×̃α
({

(y, y) ∈ E2 : y �= y
})= dTV(α,α).

For a sequence ω = (ωi,j )i,j≥0 ∈ EN×N
∗
, we denote, for (j, k) ∈ N × N

∗, by ωj,1:k the vector
(ωj,1, . . . ,ωj,k) ∈ Ek . We then set

�
(k)
0,1(ω0,1:k) =

k∏
t=1

qx
t

(
ω0,t |ω−

0,t−1

)
.

In the previous expressions and the next ones, we always use the convention ω0,−i = zi and
ωj,−i = zi for i ≥ 0 and j ≥ 1. �

(k)
0,1 defines a probability measure on Ek . Next, we define k
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probability kernels �
(k)
1 , . . . ,�

(k)
k on Ek in the following way.

�
(k)
1 (ω1,1:k|ω0,1:k) =

∏k
t=1[qx

t (·|ω−
0,t−1)×̃qx

t (·|ω−
1,t−1)](ω0,t ,ω1,t )

�
(k)
0,1(ω0,1:k)

.

If 2 ≤ j ≤ k, the kernel �
(k)
j is defined by the equality

�
(k)
j (ωj+1,1:k|ωj,1:k) ×

j−1∏
t=1

qx
t

(
ωj,t |ω−

j,t−1

) · k∏
t=j

qx
t

(
ωj,t |ω−

j,t−1

)

=
j−1∏
t=1

[
qx

t

(·|ω−
j,t−1

)×̃qx
t

(·|ω−
j+1,t−1

)]
(ωj,t ,ωj+1,t )

× [qx
j

(·|ω−
j,j−1

)×̃qx
j

(·|ω−
j+1,j−1

)]
(ωj,j ,ωj+1,j )

×
k∏

t=j+1

[
qx
t

(·|ω−
j,t−1

)×̃qx
t

(·|ω−
j+1,t−1

)]
(ωj,t ,ωj+1,t ).

Finally, we define a probability measure P
(k)
x,z,z on (Ek)k+1 by

P
(k)
x,z,z(ω0,1:k, . . . ,ωk+1,1:k) = �

(k)
0,1(ω0,1:k ×

k∏
j=0

�
(k)
j (ωj+1,1:k|ωj,1:k).

Let us give an interpretation of the measure P
(k)
x,z,z. This measure is the probability distribution of

the k + 1 first coordinates of a Markov chain on the state space Ek . Each coordinate of the chain
can be seen as a path of a chain with complete connection.

• �
(k)
0,1 is the distribution of k successive coordinates of a chain with complete connection with

initialization z−i for i ≤ 0 and transition kernels qx
1 , . . . , qx

k .
• The joint distribution of the first path and the second path is obtained by applying iteratively

the maximal coupling to the transition kernels (qx
t , qx

t ) from time t = 1 to time t = k. The
second path is initialized with z−i for i ≤ 0. The second path has then the same transition
kernels as the first path but a different initialization.

• For 1 ≤ j ≤ k, the j th path is initialized with z−i , i ≤ 0 and has transition kernels
qx

1, . . . , qx
j−1, q

x
j , . . . , qx

k . The path j +1 is obtained as the path j , except that at time t = j ,
the kernel qx

t is replaced with the kernel qx
t . The joint probability distribution of the paths

j and j + 1 is obtained by applying iteratively the maximal coupling to these transition
kernels.

Our approach is equivalent to make several couplings of two successive paths having either a
different initialization or one transition kernel changing across the time and then “gluing” all the
paths to define a joint probability distribution on (Ek)k+1. Our definition of this joint probability
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Figure 1. Description of the coupling when k = 3. �i , which denotes the coupling between the path i − 1
and the path i, is obtained by applying iteratively the maximal coupling over the time index t . For i = 0,
only the distribution of past values (t ≤ 0) is changed ((Z−1,j )j≤0 and (Z0,j )j≤0 are assumed to be in-
dependent) whereas for i = 1,2,3, only one conditional distribution is modified between two successive
paths. The gluing technique allows to define all the paths on the same probability space by using the con-
ditional distribution of the coupling measures. The two green lines correspond to the two paths (yt ) and
(yt ).

measure is classical in coupling theory and can be seen as a particular application of the so-
called gluing lemma. See Villani [45], Chapter 1. It is much easier to visualize such a coupling
graphically. Figure 1 gives a description of this coupling scheme when k = 3.

Next, let us observe that (x, z, z) �→ P
(k)
x,z,z is measurable. This is a consequence of the defini-

tion of P
(k)
x,z,z and of the explicit expression of the maximal coupling of two discrete probability

measures in term of the marginals. Measurability of the previous mapping then follows from
Assumption A1. We now mention that the sequence (P

(k)
x,z,z)k≥1 satisfies Kolmogorov’s compat-

ibility conditions. Indeed, one can show that

P
(k)
x,z,z(ω0,1:k, . . . ,ωk+1,1:k) =

∑
ωk+2,1:k+1∈Ek+1

∑
ω0:k+1,k+1∈Ek+2

P
(k+1)
x,z,z (ω0,1:k+1, . . . ,ωk+2,1:k+1).

From the Kolmogorov extension theorem, there exists a unique probability measure Px,z,z

on EN×N
∗

compatible with this sequence. Note that, for any A ∈ P(E)N×N
∗
, the mapping

(x, z, z) �→ Px,z,z(A) is still measurable. This was already justified when A is a cylinder set.
Extension of the measurability for A arbitrary follows from a monotone class argument.

Now for ω ∈ EN×N
∗

and j ≥ −1, k ≥ 1, we define Zj,k(ω) = ωj+1,k . We define the prob-
ability distribution Q̃x,z,z as the pushforward measure of Px,z,z obtained from ((Z−1,t )t≥1,

(Zt,t )t≥1). Note that, from our construction with the maximal coupling, we have automatically
Zk,t = Zt,t for k ≥ t ≥ 0, Px,z,z a.s. Indeed, when the two past sequences are equal, the maximal
coupling generates two identical random variables. We then deduce that (Zt,t )t≥1 has transition
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kernels (qx
t )t≥1. This proves (4). Let us now prove the bound (5). Let t be a positive integer. We

denote by Ex,z,z the mathematical expectation under Px,z,z. From the triangular inequality, we
have

Q̃x,z,z

({yt �= yt }
)= Px,z,z(Z−1,t �= Zt,t ) ≤

t−1∑
k=−1

Px,z,z(Zk,t �= Zk+1,t ). (14)

If k = −1, one can use Lemma 3 given in the supplementary material to get

Px,z,z(Z−1,t �= Z0,t ) ≤ b∗
t−1.

Indeed Z−1,· and Z0,· are constructed using the maximal coupling and when t ≥ 1, the transition
kernel for the two paths equals qx

t (·|·). Lemma 3 is in fact a variation of a result given in Bressaud
et al. [1] for controlling the relaxation speed of a homogenous chain with complete connections.
A detailed proof of this lemma is given in the supplementary material. If t = k + 1 ≥ 1, we have
from the definition of the maximal coupling and from our construction

Px,z,z(Zk,t �= Zk+1,t ) = Ex,z,z

[
Px,z,z

(
Zk,t �= Zk+1,t |σ(Zk,t−j ,Zk+1,t−j ; j ≥ 1)

)]
≤ sup

w∈EN

dTV
(
qx
t (·|w),qx

t (·|w)
)
.

Next, if t ≥ k + 2 ≥ 2, we have

Px,z,z(Zk,t �= Zk+1,t )

= Ex,z,z

[
Px,z,z

(
Zk,t �= Zk+1,t |σ(Zk,k+1−j ,Zk+1,k+1−j ; j ≥ 0)

)
1Zk,k+1 �=Zk+1,k+1

]
≤ b∗

t−k−2Px,z,z(Zk,k+1 �= Zk+1,k+1)

≤ b∗
t−k−2 sup

w∈EN

dTV
(
qx
k+1(·|w),qx

k+1(·|w)
)
.

Let us comment the previous bounds. The first equality follows from the fact that on the event
{Zk,k+1 = Zk+1,k+1}, we automatically have Zk,j = Zk+1,j for j ≥ k + 1. This is due to
the maximal coupling and to the fact that, from our construction, we have Zk,j = Zk+1,j for
j ≤ k. The second bound follows from Lemma 3 and the fact that for s = k + 2, . . . , t , the two
paths Zk,· and Zk+1,· have the same transition kernels qx

s (·|·), s ≥ 1. Finally, the third bound
follows from the definition of the maximal coupling. The bound (5) follows from (14) and our
previous bounds. Finally, the third point of the lemma follows from the measurability properties
of (x, z, z) �→ Px,z,z. The proof of Lemma 1 is now complete.

7.2. Proof of Theorem 1

1. Let (�,A,P) be a probability space on which the covariate process X is defined. For
simplicity, we assume that � = GZ is the canonical space of the paths. We then have
Xt(ω) = ωt for all (t,ω) ∈ Z× �. Existence of a stochastic process (Yt )t∈Z satisfying (7)
is understood as follows. We consider an enlargement (�,A,P) of the initial probability
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space with � = EZ ×�, A =P(E)⊗Z ⊗A. For all (y,ω, t) ∈ �×Z, we set Yt (y,ω) = y,
X′

t (y,ω) = Xt(ω) and P is the probability measure such that P(X′ ∈ EZ ×B) = P(X ∈ B)

for all B ∈ A and for which (7) is satisfied, replacing X with X′. For getting unique-
ness, we prove the following property. If (�′,A′,P′) is another probability space on which
two processes X′ and Y are defined and satisfy P

′(X′ ∈ B) = P(X ∈ B) and (7), then
P

′((Y ′,X′) ∈ A) = P((Y,X) ∈ A) for all A ∈ P(E)⊗Z ⊗B(G)⊗Z.
To show these properties, we will construct, for each x ∈ D, a family of finite-

dimensional probability distributions {νI
x : I = {s + 1, . . . , s + n}; (s, n) ∈ Z × N

∗} such
that for all I , νI

x is a probability measure on EI and satisfies the compatibility conditions
of the Kolmogorov’s extension theorem. To this end, we will use the coupling result of
Lemma 1 and more precisely the control in total variation given in (6). Let us consider a set
I = {s + 1, . . . , s + n} of n successive integers and two elements z, z of EN. For an integer
i ≥ 2, set t0 = s − i and for t ≥ t0 + 1 and y ∈ EZ,

qx
t

(
y0|y−

−1

)= qx
t

(
y0|y−

−1

)= q
(
y0|y−

−1, x
−
t (ω)

)
.

We define a probability measure νI
x,i,z by

νI
x,i,z(ys+1, . . . , ys+n) =

∫ ∑
yt0+1,...,ys

s+n∏
t=t0+1

qx
t

(
yt |y−

t−1

)
δz

(
dy−

t0

)
.

Using (6), we have

dTV
(
νI
x,i,z, ν

I
x,i,z

)≤ n−1∑
�=0

b∗
i+�.

Assumption S2 guarantees the summability of the b∗
m’s and hence that b∗

m → 0. Moreover,
the previous bound does not depend on the couple (z, z) and goes to zero when i → ∞,
one can show that the sequence (νI

x,i,z)i≥2 is a Cauchy sequence in the simplex of RNn
and

has a limit which does not depend on z. We then set

νI
x = lim

i→∞νI
x,i,z. (15)

The compatibility conditions on the family of finite dimensional distributions

G = {νI
x : I = {s + 1, . . . , s + n}, (s, n) ∈ Z×N

∗}
follows from the fact that for any i ≥ 2 and I = {s + 1, . . . , s + n},∑

ys+n+1∈E

ν
I∪{s+n+1}
x,z,i (ys+1, . . . , ys+n+1) = νI

x,z,i (ys+1, . . . , ys+n),

∑
ys∈E

ν
I∪{s}
x,z,i (ys, . . . , ys+n) = νI

x,z,i+1(ys+1, . . . , ys+n).
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The Kolmogorov’s extension theorem guarantees existence and unicity of a probability
measure νx on (EZ,P(E)Z) compatible with the family G. We then � = EZ × � and for
ω = (y,ω) ∈ �, P(dω) = νX(ω)(dy)P(dω) and Yt (ω) = yt for t ∈ Z. We point out that
measurability of the mapping x �→ νx(A) can be shown first when A is a cylinder set and
then for an arbitrary A ∈ P(E)⊗Z using a monotone class argument.

2. Next, we show that the process (Yt )t∈Z defined in the previous point satisfies (7). This is
equivalent to show that the probability measure νx defined in the previous point is compat-
ible with the sequence (qx

t )t . We keep the notations of the previous point. Fix k ∈ N
∗. Let

ε ∈ (0,1) and h : E → R+ and g : Ek → R+ be some functions taking nonnegative values
and bounded by one. Let y be an arbitrary element of E. From our assumptions, there exists
and integer m > k such that bm ≤ ε if m ≥ k. Set

qx
m,t (yt |yt−1:t−m) = qx

t (yt |yt−1, . . . , yt−m,y, y, . . .).

We also set I = {t − k, . . . , t}, Im = {t − m, . . . , t − 1} and we choose i > m − k large
enough such that

dTV
(
νI
x , νI

x,z,i

)+ dTV
(
νIm
x , ν

Im

x,z,k+i−m

)≤ ε.

We have∣∣∣∣∫ h(yt )g(yt−1, . . . , yt−k)
[
dνI

x (yt−k, . . . , yt ) − dνI
x,z,i (yt−k, . . . , yt )

]∣∣∣∣≤ ε.

Next we set qx
m,th(yt−1, . . . , yt−m) =∑yt∈E h(yt )q

x
m,t (yt |yt−1:t−m) and

Am =
∫

qx
m,th(yt−1, . . . , yt−m)g(yt−1, . . . , yt−k) dν

Im

x,z,k+i−m(yt−m, . . . , yt−1).

We have ∣∣∣∣Am −
∫

h(yt )g(yt−1, . . . , yt−k) dνI
x,z,i (yt−k, . . . , yt )

∣∣∣∣≤ bm ≤ ε.

Moreover∣∣∣∣Am −
∫

qx
m,th(yt−1, . . . , yt−m)g(yt−1, . . . , yt−k) dνIm

x (yt−m, . . . , yt−1)

∣∣∣∣≤ ε.

Using the fact that, ∣∣qx
m,th(yt−1, . . . , yt−m) − qx

t h
(
y−
t−1

)∣∣≤ bm ≤ ε,

we get ∣∣∣∣∫ h(yt )g(yt−1, . . . , yt−k) dνI
x (dyt , . . . , dyt−k)

−
∫

qx
t h
(
y−
t−1

)
g(yt−1, . . . , yt−k) dνx(y)

∣∣∣∣≤ 4ε.
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This proves that∫
h(yt )g(yt−1, . . . , yt−k) dνI

x (yt−k, . . . , yt ) =
∫

qx
t h
(
y−
t−1

)
g(yt−1, . . . , yt−k) dνx(y).

From a monotone class argument, we obtain (7).
3. The equality between the two conditional expectations in point 1 of Theorem 1 is a conse-

quence of the expression of νx and qx
t (which only depends of x−

t ).
4. Let us now show that the process (Vt )t∈Z defined by Vt = (Yt ,Xt ) is stationary. It should

be noticed first that if It = {t + 1, . . . , t + n} for t ∈ Z, then from the definition of the
finite-dimensional distributions, we have

νIt
x = ν

I0
τ t x

a.s.

where τ tx = (xt+j )j∈Z. We then get for a measurable and bounded function h : En ×
D →R,

Eh
(
Yt+1, . . . , Yt+n, τ

tX
) =

∑
y1,...,yn∈E

∫
h
(
y1, . . . , yn, τ

tX(ω)
)
ν

It

X(ω)(y1, . . . , yn) dP(ω)

=
∑

y1,...,yn∈E

∫
h
(
y1, . . . , yn, τ

tX(ω)
)
ν

I0
τ tX(ω)

(y1, . . . , yn) dP(ω)

=
∑

y1,...,yn

∫
h
(
y1, . . . , yn,X(ω)

)
ν

I0
X(ω)(y1, . . . , yn) dP(ω)

= Eh(Y1, . . . , Yn,X).

This shows the stationarity of the process (Vt )t∈Z.
5. Next, let us show uniqueness. Let ((Y ′

t ,X
′
t ))t∈Z be a stationary process satisfying the same

assumptions. Setting zi = Y ′−
t−i , we know that from (15), we have a.s.,

lim
i→∞P

′(Y ′
t+1 = y1, . . . , Y

′
t+n = yn|σ

(
X′, Y ′

t−j : j ≥ i
)) = lim

i→∞ν
It

X′,i,zi
(y1, . . . , yn)

= ν
It

X′(y1, . . . , yn).

Hence for any measurable and bounded function h, we have

E
′h
(
Y ′

t+1, . . . , Y
′
t+n,X

′) = lim
i→∞E

′[
E

′(h(Y ′
t+1, . . . , Y

′
t+n,X

′)|σ (X′, Y ′
t−j : j ≥ i

))]
=

∑
y1,...,yn

E
′[νIt

X′(y1, . . . , yn)h
(
y1, . . . , yn,X

′)]
=

∑
y1,...,yn

E
[
ν

It

X(y1, . . . , yn)h(y1, . . . , yn,X)
]

= Eh(Yt+1, . . . , Yt+n,X).

The second equality follows from the Lebesgue theorem.
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6. For t ∈ Z, we remind that Vt = (Yt ,Xt ). We now prove the ergodicity property for the
process (Vt )t∈Z. To this end, we adapt the direct proof of Kifer [30] who proved ergodic
properties of some Markov chains in random environments. Set μ = PX , the probability
distribution of X under P. Remind that the measure νx constructed in point 1. is the prob-
ability distribution of Y given X = x and we will denote by Ex the corresponding mathe-
matical expectation. We will first consider the measure ν

(0)
x , the probability distribution of

(Yt )t≥0 given that X = x and show that the measure dγ (y, x) = dν
(0)
x (y) dμ(x) is ergodic

for the operator (θ, τ ).(y, x) = (θy, τx) where for y ∈ EN, θ(y) = (yt+1)t∈N and τ has
been already defined as the shift operator on (Rd)Z. For t ∈ Z, (t ∈ N resp.), we denote by
yt the coordinate mapping from EZ (EN resp.) to E, i.e. yt (z) = zt for z ∈ EZ (z ∈ EN

resp.). Let B ∈ P(E)⊗N, k ∈ N, n an integer greater than k and w0, . . . ,wk ∈ E. We have

ν(0)
x

(
y0 = w0, . . . , yk = wk,y ∈ θ−nB

) = νx

(
y0 = w0, . . . , yk = wk, (yt )t≥0 ∈ θ−nB

)
= Ex

[
k∏

i=0

1yi=wi
× νx

(
(yt )t≥0 ∈ θ−nB|y−

k

)]
.

Using Lemma 1 and the control of the total variation distance mentioned in the point 1. of
the Notes, we also have∣∣νx

(
(yt )t≥0 ∈ θ−nB|y−

k

)− ν(0)
x

(
θ−nB

)∣∣ ≤ sup
z,z

dTV
(
Q

(n−k+1,∞)
k,x,z ,Q

(n−k+1,∞)
k,x,z

)
≤

∞∑
i=1

b∗
n−k+i−1

n→∞→ 0.

Note also that ν
(0)
x (θ−nB) = ν

(0)
τnx(B). We then get

lim
n→∞ sup

B∈P(E)⊗N

∣∣ν(0)
x

(
A ∩ τ−nB

)− ν(0)
x (A)ν

(0)
τnx(B)

∣∣= 0, (16)

when A is a cylinder set. Using approximation by finite unions of disjoint cylinder sets,
one can extend (16) to an arbitrary Borel set A ∈P(E)⊗N. Now let I be an invariant set in
EN × D, i.e. (θ, τ )−1I = I . It remains to show that γ (I) ∈ {0,1}. We already mentioned
in point 4., the equality ν

(0)
x (θ−1A) = ν

(0)
τx (A) when A is a cylinder set. This equality can

be extended to any Borel set A. If Ix = {y ∈ EN : (y, x) ∈ I}, we have θ−1Ix = Iτ−1x .
From (16), we then deduce that

ν(0)
x

(
Ix
)− ν(0)

x

(
Ix
)2 = ν(0)

x

(
Ix ∩ θ−nIτnx

)− ν(0)
x

(
Ix
)
ν

(0)
τnx

(
Iτnx

)
→ 0.

This shows that f (x) := ν
(0)
x (Ix) ∈ {0,1} for all x. Since f (τx) = f (x), ergodicity of X

entails that we μ({f = 1}) ∈ {0,1} and then γ (I) ∈ {0,1}. This shows that γ is ergodic
for (θ, τ ) and in particular that the process (Vt )t∈N is ergodic. But this also entails ergodic
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properties for the two-sided sequence (Vt )t∈Z, see for instance Theorem 31 in Douc et al.
[16] for a proof.

7.3. Proof of Proposition 1

The result is a consequence of Theorem 1. First we have bm ≤ L
∑

j≥m |aj | with L the Lipschitz
constant of F . Our assumptions entails summability of the b′

ms. The crucial point is to check the
condition b0 < 1. Since the first term in the argument of F is bounded, condition b0 < 1 will
follow if we show that for any c > 0,

sup
|y|≤c,z∈R

∣∣F(y + z) − F(z)
∣∣< 1. (17)

Note first that F has a limit at ±∞. Hence, sup|y|≤c,|z|>M F(y + z) < 1/4 if M is large enough.
For such M , we also have 0 < inf|y|≤c,|z|≤M F(y + z) ≤ sup|y|≤c,|z|≤M F(y + z) < 1. We then
automatically have (17) and then b0 < 1.

7.4. Proof of Proposition 2

Setting λt = (μt , . . . ,μt−q+1)
′, any solution of the problem (9) satisfies the recursions λt =

Aλt−1 + bt with

A =
(

β1 . . . βq

Iq−1 0q−1,1

)
, bt =

⎛⎜⎝
p∑

k=1

αkYt−k + γ ′Xt

Oq−1,1

⎞⎟⎠ ,

where 0q−1,1 is a column vector of 0 and Iq−1 is the identity matrix of size (q − 1) × (q − 1).
Our assumptions guaranty that the spectral radius of A is less than 1. For a given operator norm
‖ · ‖, there then exists r ∈ N

∗ such that κ := ‖Ar‖ < 1. One can then apply Lemma 2 to show
that any stationary solution (Yt )t∈Z satisfying (9) is a chain with complete connections and such
that bm = O(κm/r ). To finalize the proof, one can apply Theorem 1. One only need to check that
b0 < 1. We observe that q(1|y−

t−1, x
−
t ) is of the form F(

∑∞
j=1 ηjyt−j +∑∞

k=0 δ′
kXt−k) for some

summable sequences (ηj )j≥1 and (δj )j≥0. Since the first term in the argument of F is bounded,
condition b0 < 1 follows exactly as in the proof of Proposition 1, using (17). Theorem 1 entails
the result.

7.5. Proof of Proposition 3

As in the proof of Proposition 2, we use Lemma 2 which shows that any solution of (10) is a chain
with complete connections for which the coefficients bm decay geometrically fast. To show S2,
it remains to show the condition b0 < 1. Lemma 2 shows that supt,x,y,y |λy,x

t − λ
y,x
t | = O(1).

Hence, condition b0 < 1 is implied by (17). Theorem 1 leads to the result.
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7.6. Proof of Theorem 2

Using Theorem 1, one can define the process Y conditional on S, instead of conditional on X. The
resulting process will be the unique stochastic process satisfies (7). To this end, we simply change
the set D by the set D0 = {s ∈ SZ : (g(st ))t∈Z ∈ D}. One can then consider that the distribution
of the Markov chain S is supported on D0. Secondly, for bounding βV (n) or τV (n), one can
replace the sigma-field F0 by a larger one. This follows from the properties of the conditional
expectations. Let μ be the probability distribution of S−

0 . We also denote by Ks−
0

the probability

distribution of Y−
0 conditional on S = s. Note that from Theorem 1, this conditional distribution

only depends on s−
0 .

For (t,w, z, s, s) ∈ Z× E × EN ×D0 ×D0 and x = x(s, s) = ((g(st ))t∈Z, (g(st ))t∈Z), we set

qx
t (w|z) = q

(
w|z, g(st )

−), qx
t (w|z) = q

(
w|z, g(st )

−).
Next setting s+

1 = (s1, s2, . . .) and y+
1 = (y1, y2, . . .) for any (s, y) ∈ D0 × EN, we consider a

probability measure P on � = SZ × SZ × EZ × EZ endowed with its Borel σ -field and defined
by

P(ds, ds, dy, dy)

= μ
(
ds−

0

)
μ
(
ds−

0

)
Ks−

0

(
dy−

0

)
Ks−

0

(
dy−

0

)
P̃
(
(s0, s0),

(
ds+

1 , ds+
1

))
Q̃0,x(s,s),z,z

(
dy+

1 , dy+
1

)
.

We remind that P̃ is defined in Assumption S1′ and Q̃ is defined in Lemma 1. On �, we will
still denote, for t ∈ Z, the coordinate applications by Yt , Y t , St , St . Let us also point out that the
measure

P̃
(
(s0, s0),

(
ds+

1 , ds+
1

))
Q̃0,x(s,s),z,z

(
dy+

1 , dy+
1

)
is a coupling of two conditional distributions, the distribution of ((Yt , St ))t≥1 conditional on
Yj = yj , Sj = sj for j ≤ 0 and the distribution of ((Yt , St ))t≥1 conditional on Yj = yj , Sj =
sj for j ≤ 0. Next we set G0 = σ((Yj , Sj ) : j ≤ 0) and G0 = σ((Y j , Sj ) : j ≤ 0). Let J =
{j1, . . . , j�} ⊂N

∗. Note that the two sigma-fields G0 and G0 are independent.

1. For the absolute regularity coefficients, we use the bounds

βV (n) ≤ E

[
sup
A

∣∣P((Vn,Vn+1, . . .) ∈ A|G0
)− P

(
(V n,V n+1, . . .) ∈ A|G0

)∣∣]
≤
∑
t≥n

E
[
P(Vn �= V n|G0 ∨ G0)

]
.

Next, using Lemma 1 and Assumption S3, we have

P
(
Yt �= Y t |G0 ∨ G0 ∨ σ

(
S+

1 , S
+
1

)) ≤ sup
z−

0 ,z−
0

Q̃0,x(S,S),z−
0 ,z−

0

({yt �= yt }
)

≤ b∗
t−1 + sup

g∈EN

dTV
(
q
(·|g,S−

t

)
, q
(·|g,S

−
t

))
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+
t−2∑
�=0

b∗
� sup

g∈EN

dTV
(
q
(·|g,S−

t−�−1

)
, q
(·|g,S

−
t−�−1

))

≤ b∗
t−1 +

∑
i≥0

eiGt−i +
t−2∑
�=0

b∗
�

∞∑
i=0

eiGt−�−i−1,

where for any t ∈ Z, Gt = |g(St ) − g(St )|. Using Holder inequality, we have

E(Gt ) = E
[∣∣g(St ) − g(St )

∣∣1g(St )�=g(St )

]≤ 2‖X0‖pP
(
g(St ) �= g(St )

)1/q
.

From the definition of the coupling, we have P(g(St ) �= g(St )) = at where at is defined in
S1′. Since,

P(Vn �= V n|G0 ∨ G0) ≤ P(Yt �= Y t |G0 ∨ G0) + P(g(St ) �= g
(
St |σ(S0, S0)

)
and at = P(g(St ) �= g(St )) ≤ ct , the bound for βV (n) follows after integrating the previous
inequalities.

2. We have

τ(F0,UJ ) ≤ E
[
W1,�(PUJ |F0,PUJ |F0

)
]
,

with UJ = (V j1, . . . , V j�
) and V t = (Y t , g(St )) for t ∈ Z. Using our coupling we have

W1,�(PUJ |G0 ,PUJ |G0
)

≤
�∑

i=1

[
P(Yji

�= Y ji
|G0 ∨ G0) +E

(∣∣g(Sji
) − g(Sji

)
∣∣|σ(S0, S0)

)]
≤ � sup

t≥n

[
P(Yt �= Y t |G0 ∨ G0) +E

(∣∣g(St ) − g(St )
∣∣|σ(S0, S0)

)]
.

From the definition of our coupling and Assumption S1′, we have

E
[|g(St ) − g(St )

]≤ at .

Next, one can bound P(Yt �= Y t ) as in the previous point and we have directly E(Gt ) = at .
The proposed upper-bound for τV (n) easily follows.

7.7. Proof of Corollary 2

From Lemma 2, the coefficients bi decay exponentially and from Lemma 4 given in the sup-
plementary material, so do the corresponding coefficients b∗

i . Moreover, the coefficients ei in
Assumption S3 also decay exponentially fast. For a polynomial decay, we have gj = O(j−κ/q)

and hj = O(j−κ) in Theorem 2. The result of the corollary then follows.
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Appendix

The proof of the following lemma can be found in the supplementary material.

Lemma 2. Let (Xt )t∈Z be a stationary process taking values in R
d , (yt )t∈Z a sequence of point

in E and {Gy,x : (y, x) ∈ E × R
d} a family of applications from R

k to R
k satisfying the three

following assumptions.

1. There exists L ≥ 1 such that for (y, y′, x, x′, z, z′) ∈ E2 ×R
2d ×R

2k ,∣∣Gy,x(z) − Gy′,x′
(
z′)∣∣≤ L

[
1y �=y′ + |x − x′| + |z − z′|].

2. There exist a positive integer r and a real number κ ∈ (0,1) such that for all (y1, . . . , yr ) ∈
Er , (x1, . . . , xr ) ∈R

dr and (s, s′) ∈R
2k ,∣∣Gy1,x1 ◦ · · · ◦ Gyr,xr (s) − Gy1,x1 ◦ · · · ◦ Gyr,xr

(
s′)∣∣≤ κ|s − s′|.

3. E log+ |X1| < ∞.

Then the following conclusions hold true.

• Setting D = {x ∈ (Rd)N :∑∞
i=0 κi/r |xi | < ∞}, we have P(X ∈D) = 1.

• For t ∈ Z, n ∈ N
∗, y ∈ EZ and x ∈ D, set λ

(y,x)
n,t = Gyt−1,xt ◦ · · · ◦ Gyt−n−1,xt−n(0). Then

for any t ∈ Z, the sequence (λ
(y,x)
n,t )n≥1 converges to an element of Rk denoted by λ

(y,x)
t .

Moreover, there exists H : EN ×D →R
k such that λt = H(y−

t−1, x
−
t ).

• Let y ∈ EZ and x ∈ (Rk)Z. If (λt )t∈Z is a sequence in R
k , such that lim inft→−∞ |λt | < ∞

and λt = Gyt−1,xt (λt−1) for all t ∈ Z, then λt = λ
(y,x)
t for all t ∈ Z, where λ

(x,y)
t is defined

in the previous question.
• Keeping the notations given in the previous point, we have for an integer m ≥ 1

sup
x∈D

sup
yi=y′

i ,−m+1≤i≤0

∣∣λ(y,x)

0 − λ
(y′,x)

0

∣∣= O
(
κm/r

)
.

• We have

∣∣H (y−
t−1, x

−
t

)− H
(
y−
t−1, x

−
t

)∣∣≤ ∞∑
j=0

κj

r∑
i=1

Li |xt−jr−i+1 − xt−jr−i+1|.

• We assume that ((Yt ,Xt ))t∈Z is a stationary process taking values in E × R
d . Then

a stationary process (λt )t∈Z satisfies the recursions λt = GYt−1,Xt (λt−1) if and only if
λt = H(Y−

t−1,X
−
t ), where H is defined in the second point.

Supplementary Material

Supplement to “Coupling and perturbation techniques for categorical time series” (DOI:
10.3150/20-BEJ1225SUPP; .pdf). We provide additional proofs that are not given in the paper.

https://doi.org/10.3150/20-BEJ1225SUPP
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