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Lévy processes: Concentration function and
heat kernel bounds
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We investigate densities of vaguely continuous convolution semigroups of probability measures on the
Euclidean space. We expose that many typical conditions on the characteristic exponent repeatedly used in
the literature of the subject are equivalent to the behaviour of the maximum of the density as a function of
time variable. We also prove qualitative lower estimates under mild assumptions on the corresponding jump
measure and the characteristic exponent.
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1. Introduction

Over the last years we observe a growing interest in studying analytic and probabilistic properties
of Lévy processes. It stems from a fact that they constitute a rich class of stochastic models which
have many applications in finance, physics, biology and other fields. The present paper is devoted
to a question of finding bounds to the transition density (the heat kernel) of a Lévy process.

We first briefly introduce the general framework and after that, together with a few examples,
we describe our motivations. Let d ∈ N and Y = (Yt )t≥0 be a Lévy process in R

d [34]. Recall
that there is a well known one-to-one correspondence between Lévy processes in R

d and vaguely
continuous convolution semigroups of probability measures (Pt )t≥0 on R

d . Due to the presence
of the convolution structure, it is convenient to use Fourier transform in order to study Y . Indeed,
the celebrated Lévy–Khintchine formula says that the characteristic exponent � of Y defined by

Eei〈x,Yt 〉 =
∫
Rd

ei〈x,y〉Pt (dy) = e−t�(x), x ∈R
d ,

equals

�(x) = 〈x,Ax〉 − i〈x, b〉 −
∫
Rd

(
ei〈x,z〉 − 1 − i〈x, z〉1|z|<1

)
N(dz),

where A is a symmetric non-negative definite matrix, b ∈ R
d and N(dz) is a Lévy measure, that

is, a measure satisfying

N
({0}) = 0,

∫
Rd

(
1 ∧ |z|2)N(dz) < ∞.
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The triplet (A,N,b) is called the generating triplet of Y . From that general perspective our aim
is to discuss the existence, and even more, to establish certain estimates of the transition density
p(t, x) of Yt . Equivalently, it is a question of the absolute continuity of Pt (dx) with respect to
the Lebesgue measure, and a problem of estimating its Radon-Nikodym derivative. It is rather a
standard practice to use the characteristics describing continuous and jump part of a Lévy process
in order to formulate assumptions and state results. To this end for r > 0, we define

h(r) = r−2‖A‖ +
∫
Rd

(
1 ∧ |x|2

r2

)
N(dx),

and

K(r) = r−2‖A‖ + r−2
∫

|x|<r

|x|2N(dx).

The function h is called the concentration function. It is significant from the point of view of
analysis and probability. We comment on that in a few lines. Note that |e−t�(x)| = e−t Re[�(x)]
and if e−t�(x) is absolutely integrable, then we can invert the Fourier transform and represent the
transition density as follows,

p(t, x) = (2π)−d

∫
Rd

e−i〈x,z〉e−t�(z) dz.

Readily, the real part of � equals Re[�(x)] = 〈x,Ax〉 + ∫
Rd (1 − cos〈x, z〉)N(dz). Next we

consider its radial, continuous and non-decreasing majorant defined by

�∗(r) = sup
|z|≤r

Re
[
�(z)

]
, r > 0.

From [16], Lemma 4, we have

1

8(1 + 2d)
h(1/r) ≤ �∗(r) ≤ 2h(1/r), r > 0. (1)

Thus h is a more tractable version of �∗. See Lemma 2.1 for basic properties of h. On the other
hand, there exists a constant c > 0, depending only on the dimension d , such that (see [33])

c−1/h(r) ≤ E
[
S(r)

] ≤ c/h(r), r > 0,

where S(r) = inf{t : |Yt − tbr | > r} and

br = b +
∫
Rd

z(1|z|<r − 1|z|<1)N(dz). (2)

Intuitively, h describes the average expansion of the process in the space. For other results relat-
ing h to probabilistic quantities of Lévy processes see, for instance, [6].

A natural question is whether the function h may also be used to control the distribution of
the process, that is the transition density p(t, x). Among many examples for which this is the
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case one reports the Wiener process and isotropic α-stable processes α ∈ (0,2). Before giving a
precise formulation let us note that these are two types of Lévy processes that exhibit radically
different behaviour on the level of realizations – continuous/càldàg trajectories – and in terms of
the decay rate of the transition density at infinity – exponential/power-type decay. Namely, if we
denote by g(t, x) and pα(t, x) the corresponding transition densities, we have that for all t > 0
and x ∈ R

d (see [4] and [42]),

g(t, x) = (2πt)−d/2e− |x|2
2t , pα(t, x) ≈ min

{
t−d/α, t |x|−d−α

}
.

By f ≈ g, we mean that the quotient f/g is bounded between two positive constants. Despite the
differences, these processes share certain common or at least similar properties. Their transition
densities can be expressed by the inverse Fourier transform with the respective characteristic
exponents |x|2 and |x|α , the corresponding functions h(r) are up to multiplicative constants equal
to r−2 and r−α , while the inverse h−1 evaluated at 1/t is t1/2 and t1/α , respectively. Further, for
all t > 0,

sup
x∈Rd

g(t, x) = g(t,0) = ct−d/2 = c
[
h−1(1/t)

]−d
,

sup
x∈Rd

pα(t, x) = pα(t,0) = ct−d/α = c
[
h−1(1/t)

]−d
.

The above equalities, understood as inequalities “≤”, are known as the on-diagonal upper
bounds, and they are crucial in the theory of symmetric processes on metric measure spaces
[1,2,8,9,11] as well as on R

d [29,35]. They may further lead to near- and off-diagonal bounds
when accompanied by additional assumptions [13]. Putting aside this context, we observe that
the transition densities of the Wiener process and isotropic α-stable processes satisfy

sup
x∈Rd

p(t, x) ≤ c
[
h−1(1/t)

]−d
, (3)

which yields the desired control by h. The validity of (3) for a given Lévy process is the prin-
cipal subject of our study. In this connection, in Section 3 we consecutively reveal numerous
descriptions of (3), which are expressed via conditions that relate the transition density p, the
characteristic exponent � and functions �∗, h and K . Many of them are derived from the litera-
ture where they typically serve as a starting point for further investigation of particular subclasses
of Lévy processes. Therefore the equivalences we obtain not only enhance the comprehension of
(3) itself, but also provide a clarification of the existing results and enable significant reduction
of assumptions [24,25,27,39]. In particular, we propose the following characterisation which ex-
poses two key features that describe Lévy processes satisfying (3). Roughly these are scaling and
comparability of projections.

A Lévy process in R
d has a transition density p(t, x) satisfying (3) for all t ∈ (0,1] and some

fixed constant c > 0 if and only if the average expansion given by h(r) fulfils certain weak scaling
condition at zero, and each of the projections of the process on a one-dimensional subspace of
R

d locally expands in the same manner as the original process, moreover this comparability
should be uniform under the choice of the projection.
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A rigorous formulation of this result may be found in Lemma 3.11. We note that the description
becomes more transparent if d = 1, since any projection equals the original process, the scaling
turns to be the determining feature (see Remark 3.2). For example, any α-stable process with
α ∈ (0,2) in one dimension satisfies (3). In particular, α-stable subordinators α ∈ (0,1) consti-
tute an example for which (3) holds. These are one-dimensional Lévy processes which lack any
symmetry as their distributions are supported on the right half-line. Therefore, even though the
two previously discussed examples are rotation invariant (hence symmetric) unimodal Lévy pro-
cesses [34], Definitions 14.12 and 23.2, neither the invariance (or symmetry) nor the unimodality
is necessary for (3). It is also known that they are not sufficient. For instance, in [17] the authors
considered such processes with transition densities satisfying

sup
x∈Rd

p(t, x) = lim
x→0

p(t, x) = ∞, t ∈ (0,1).

However, if a Lévy process is rotation invariant, a similar to the one dimensional phenomenon
occurs, and (3) becomes equivalent to the scaling (see Remark 3.3, cf. [5], Proposition 19, Corol-
lary 20). For other positive examples, we refer the reader for instance to [10,12,15,19–21,23,30,
31,37,41,43]. We emphasise that with the results of the present paper it is easier to classify which
of the Lévy processes discussed in the literature fall into the class satisfying (3).

We will now show that (3) may fail for a decent symmetric process. Let Xα1 , Xα2 , Xα3 be
independent one-dimensional symmetric stable processes with α1, α2, α3 ∈ (0,2) and consider
Yt = (X

α1
t ,X

α2
t ,X

α3
t ). The transition density of Yt equals

p(t, x) = pα1(t, x1)pα2(t, x2)pα3(t, x3),

where x = (x1, x2, x3) ∈ R
3. Consequently,

sup
x∈R3

p(t, x) = p(t,0) = ct−1/α1−1/α2−1/α3 , t > 0,

while h is comparable with r−max{α1,α2,α3} for r ∈ (0,1) and with r−min{α1,α2,α3} if r ≥ 1. Thus,
if α1 < α2 < α3, the quantity [h−1(1/t)]−3 does not provide an upper bound for supx∈R3 p(t, x).
In such case projections of Y on the coordinate axes have average expansions that do not com-
pare. The function h, which measures the expansion of the original process over balls, does not
detect such nuances in the behaviour and hence it does not carry necessary information to con-
trol the distribution. More sensitive but perhaps also much more complicated objects than h, like
those proposed in [22], would have to be introduced to include this kind of examples into the
discussion. This is beyond the scope of that paper.

Finally, the results of Section 3 show that (3) is related to lower estimates. In particular, it
implies

p(t, x + �) ≥ c
[
h−1(1/t)

]−d
,

for a specific range of t > 0, x ∈ R
d and a proper choice of a shift � ∈ R

d . The aforemen-
tioned result of [33] relating the average expansion with h suggests that � should incorporate
the quantity (2) to grasp the internal shift of the process caused by the constant drift b and the non-
symmetry of the Lévy measure N(dz). It appears that � should also sense where the maximum
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of the density is attained. More extensive discussion is pursued at the beginning of Section 5.
Recall that a Lévy process is symmetric if and only if b = 0 and N(dz) is a symmetric measure,
and then if the transition density exists it attains its maximum at the origin. This substantially
facilitates the analysis for symmetric Lévy processes. Qualitative results for non-symmetric once
are less present in the literature, mostly performed in a generality that allows only rather implicit
estimates [24,27,28] or carried out for very peculiar cases [18,26,32,38].

We note that h(0+) < ∞ (h is bounded) if and only if A = 0 and N(Rd) < ∞, i.e., the cor-
responding Lévy process is a compound Poisson process (with drift). Most of the conditions
discussed in the paper automatically preclude Y from being such a process. Nevertheless, to
avoid unnecessary considerations we assume in the whole paper that h(0+) = ∞.

The remainder of the paper is organized as follows. In Section 2, we collect fundamental
properties of functions K and h. In Section 3, we prove the equivalence of several conditions for
small time and separately for large time. In Section 4, we propose an auxiliary decomposition of
a Lévy process. Section 5 is dedicated to the lower estimates of the transition density. Examples
and further applications are given in Section 6.

We conclude this section by setting the notation. Throughout the article, ωd = 2πd/2/�(d/2)

is the surface measure of the unit sphere in R
d . Br is a ball of radius r centred at the origin.

By c(d, . . .), we denote a generic positive constant that depends only on the listed parameters
d, . . . . We write f (x) ≈ g(x), or simply f ≈ g, if there is a constant c ∈ [1,∞) independent
of x such that c−1f (x) ≤ g(x) ≤ cf (x). As usual a ∧ b = min{a, b} and a ∨ b = max{a, b}. In
some proofs, we use a short notation of the weak lower scaling condition (at infinity), that is, for
φ : (0,∞) → [0,∞] we say that φ satisfies WLSC(α, θ, c) or φ ∈ WLSC(α, θ, c) if there are
α ∈ R, θ ≥ 0 and c ∈ (0,1] such that

φ(λr) ≥ cλαφ(r), λ ≥ 1, r > θ.

Borel sets in R
d will be denoted by B(Rd). A Borel measure ν on R

d is called symmetric if
ν(A) = ν(−A) for every A ∈ B(Rd).

2. Preliminaries – Functions K and h

In this section, we discuss a Lévy process Y in R
d with a generating triplet (A,N,b). The

following properties are often used without further comment.

Lemma 2.1. We have

1. limr→∞ h(r) = limr→∞ K(r) = 0,
2. h is continuous and strictly decreasing,
3. r2K(r) and r2h(r) are non-decreasing,
4. λ2K(λr) ≤ K(r) and λ2h(λr) ≤ h(r), λ ≤ 1, r > 0,
5.

√
λh−1(λu) ≤ h−1(u), λ ≥ 1, u > 0.

6. For all r > 0, ∫
|z|≥r

N(dz) ≤ h(r) and
∫

|z|<r

|z|2N(dz) ≤ r2h(r).
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Proof. The first property follows from the dominated convergence theorem and K ≤ h. Similarly
we get the continuity of h. Next, since we assume that h(0+) = ∞, we get either that ‖A‖ �= 0
or N(Rd) = ∞ (hence for every l > 0 there is 0 < k < l such that

∫
k<|x|<l

N(dx) > 0). Each
of them guarantees that h decreases in a strict sense. The remaining parts follow easily from the
definition of K and h. �

Lemma 2.2. For all 0 < a1 < a2 ≤ ∞ we have

h(a2) − h(a1) = −
∫ a2

a1

2K(r)r−1 dr.

Proof. It suffices to consider the non-local part for a1 = a > 0 and a2 = ∞. By Fubini’s theorem,∫ ∞

a

2r−3
∫

|x|<r

|x|2N(dx)dr =
∫
Rd

|x|2
∫ ∞

a∨|x|
2r−3 drN(dx) =

∫
Rd

|x|2(a ∨ |x|)−2
N(dx).

The last expression is equal to h(a), which ends the proof. �

Lemma 2.3. Let αh ∈ (0,2], Ch ∈ [1,∞) and θh ∈ (0,∞]. The following are equivalent.

(A1) For all λ ≤ 1 and r < θh,

h(r) ≤ Chλ
αhh(λr).

(A2) For all λ ≥ 1 and u > h(θh),

h−1(u) ≤ (Chλ)1/αhh−1(λu).

Further, consider

(A3) There is c ∈ (0,1] such that for all λ ≥ 1 and r > 1/θh,

�∗(λr) ≥ cλαh�∗(r).

(A4) There is c > 0 such that for all r < θh,

h(r) ≤ cK(r).

(A5) There are c > 0 and θ ∈ (0,∞] such that for all λ ≤ 1 and r < θ ,

K(r) ≤ cλαhK(λr).

Then, (A1) gives (A3) with c = 1/(cdCh), cd = 16(1 + 2d), while (A3) gives (A1) with
Ch = cd/c. (A1) implies (A4) with c = c(αh,Ch). (A4) implies (A1) with αh = 2/c and
Ch = 1. (A1) gives (A5) with c = c(αh,Ch) and θ = θh. (A5) implies (A1) with Ch = c and
θh = h−1(2h(θ)).
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Proof. We show that (A2) gives (A1). The converse implication is proved in the same manner.
Let u = h(r). Then r < θh is the same as u > h(θh). If λ ∈ (0,C

−1/αh

h ) we let s = (Chλ
αh)−1 ≥ 1

and by (A2) we get

h(λr) = h
(
(Chs)

−1/αhh−1(u)
) ≥ su = (

Chλ
αh

)−1
h(r).

If λ ∈ [C−1/αh

h ,1], then (Chλ
αh)−1 ≤ 1 and by the monotonicity of h,

h(λr) ≥ h(r) ≥ (
Chλ

αh
)−1

h(r).

The equivalence of (A1) and (A3) follows from (1). We show the equivalence of (A1) and (A4).
By (A1) we have h(s) ≤ 1

2h(λ0s) for s < θh and λ0 = 1/(2Ch)
1/αh < 1. By Lemma 2.2,

K(s) ≥ 2

λ−2
0 − 1

∫ s

λ0s

r2K(r)
dr

r3
= 1

λ−2
0 − 1

(
h(λ0s) − h(s)

) ≥ 1/2

λ−2
0 − 1

h(λ0s) ≥ 1

λ−2
0 − 1

h(s).

Conversely, again by Lemma 2.2 we get for 0 < r1 < r2 < θh,

h(r2) − h(r1) ≤ −(2/c)

∫ r2

r1

h(s)s−1 ds,

which implies that h(r)r2/c is non-increasing for r < θh, and ends this part of the proof. From
(A1) we get (A5) by using (A4). Now, if we assume (A5), then for λ ≤ 1 and r < h−1(2h(θ)),

1

2
h(r) = h(r) − h(θ) =

∫ θ

r

K(s)s−1 ds ≤ cλαh

∫ θ

r

K(λs)s−1 ds

≤ cλαh

∫ λθ

λr

K(u)u−1 du ≤ cλαhh(λr). �

Lemma 2.4. Assume that for some T , c1, c2 > 0 we have∫
Rd

e−c1t Re[�(z)] dz ≤ c2
[
h−1(1/t)

]−d
, 0 < t < T .

Then (A1) holds for some αh ∈ (0,2], Ch ∈ [1,∞) and θh = h−1(1/T ). Moreover, αh and Ch

can be chosen to depend only on d , c1 and c2.

Proof. By (1)∫
Rd

e−c1t Re[�(z)] dz ≥
∫

|z|<1/h−1(2/t)

e−c12th(1/|z|) dz ≥ e−c12th(h−1(2/t))ωd

[
h−1(2/t)

]−d

= e−4c1ωd

[
h−1(2/t)

]−d
.
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Thus for c0 = (c2e
4c1/ωd)1/d we have h−1(1/t) ≤ c0h

−1(2/t), t < T . Letting c = max{c0,
√

2},
σ = log2(c) and considering 2n−1 ≤ λ < 2n, n ∈N, we get for t < T ,

h−1(1/t) ≤ cλσ h−1(λ/t).

The statement follows from Lemma 2.3. �

Note that in Lemmas 2.3 and 2.4 we deal with the behaviour of the function h at the origin (or
globally if θh = ∞ therein). Without proofs we give counterparts for the behaviour at infinity.

Lemma 2.5. Let αh ∈ (0,2], ch ∈ (0,1] and θh ∈ [0,∞). The following are equivalent.

(B1) For all λ ≥ 1 and r > θh,

chλ
αhh(λr) ≤ h(r).

(B2) For all λ ≤ 1 and u < h(θh),

(chλ)1/αhh−1(λu) ≤ h−1(u).

Further, consider

(B3) There is c ∈ [1,∞) such that for all λ ≤ 1 and r < 1/θh,

�∗(λr) ≤ cλαh�∗(r).

(B4) There is c > 0 and θ ∈ [0,∞) such that for all r > θ ,

h(r) ≤ cK(r).

(B5) There are c > 0 and θ ∈ [0,∞) such that for all λ ≥ 1 and r > θ ,

cλαhK(λr) ≤ K(r).

Then, (B1) gives (B3) with c = cd/ch, cd = 16(1+2d), while (B3) gives (B1) with ch = 1/(cdc).
(B1) implies (B4) with c = c(αh, ch) and θ = (ch/2)−1/αhθh. (B4) implies (B1) with αh = 2/c,
ch = 1 and θh = θ . (B1) gives (B5) with c = c(αh, ch) and θ = (ch/2)−1/αhθh. (B5) implies
(B1) with ch = c and θh = θ .

Lemma 2.6. Assume that for some T , c1, c2 > 0 we have∫
Rd

e−c1t Re[�(z)] dz ≤ c2
[
h−1(1/t)

]−d
, t > T .

Then (B1) holds for some αh ∈ (0,2], ch ∈ (0,1] and θh = h−1(2/T ). Moreover, αh and ch can
be chosen to depend only on d , c1 and c2.

Here are more general formulae that relate other objects to
∫
|z|≥r

N(dz) = N(Bc
r ).
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Lemma 2.7. Let f : [0,∞) → [0,∞) be differentiable, f (0) = 0, f ′ ≥ 0 and f ′ ∈ L1
loc([0,∞)).

For all r > 0, ∫
|z|<r

f
(|z|)N(dz) =

∫ r

0
f ′(s)N

(
Bc

s

)
ds − f (r)N

(
Bc

r

)
, (4)∫

|z|≥r

f
(|z|)N(dz) =

∫ ∞

0
f ′(s)N

(
Bc

r∨s

)
ds. (5)

Proof. We have (4) by∫
|z|<r

f
(|z|)N(dz) =

∫
Rd

1|z|<r

(∫ ∞

0
1s≤|z|f ′(s) ds

)
N(dz)

=
∫ r

0
f ′(s)

(∫
Rd

1s≤|z|<rN(dz)

)
ds

=
∫ r

0
f ′(s)

(∫
Rd

1s≤|z|N(dz)

)
ds −

∫ r

0
f ′(s)

(∫
|z|≥r

N(dz)

)
ds.

The equality (5) follows from∫
|z|≥r

f
(|z|)N(dz) =

∫
Rd

1r≤|z|
(∫ ∞

0
1s≤|z|f ′(s) ds

)
N(dz). �

Putting f (s) = s2 in (4) gives the following formula.

Corollary 2.8. For all r > 0,

h(r) = r−2‖A‖ + r−2
∫ r

0
2sN

(
Bc

s

)
ds.

Lemma 2.9. Let (A1) hold with αh ≥ 1. If A = 0, then
∫
|z|<1 |z|N(dz) = ∞.

Proof. By (4) with f (s) = s we have
∫
|z|<1 |z|N(dz) = ∫ 1

0 N(Bc
s ) ds−N(Bc

1). By Corollary 2.8,

we get rh(r) ≤ 2
∫ r

0 N(Bc
s ) ds. By our assumption the left-hand side of the latter is bounded from

below by a positive constant, so
∫ r

0 N(Bc
s ) ds = ∞ and the proof is complete. �

Lemma 2.10. Let (A1) hold with αh > 1. Then∫
r≤|z|<θh

|z|N(dz) ≤ 2Ch

αh − 1
rh(r), r > 0.
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Proof. By (5) with f (s) = s and the Lévy measure 1|z|<θh
N(dz),∫

r≤|z|<θh

|z|N(dz) =
∫ θh

0

∫
|z|≥r∨s

N(dz) ds ≤
∫ θh

0
h(r ∨ s) ds

≤ rh(r) +
∫ θh

r

h(s) ds ≤ rh(r) +
∫ θh

r

Ch(r/s)
αhh(r) ds. �

Corollary 2.11. Let (A1) hold with αh > 1. Then there is a constant c = c(d,αh,Ch) such that
for all 0 < r < θh,

|br − b| ≤ c

θh ∧ 1
max

{
r, r2}h(r).

Proof. If r ≥ 1, then |br − b| ≤ r2h(r). Let r ≤ 1. We have

|br − b| ≤
∫

r≤|z|<1
|z|N(dz) ≤

∫
r≤|z|<θh

|z|N(dz) +
∫

|z|≥θh∧1
N(dz).

By (A1) we get ∫
|z|≥θh∧1

N(dz) ≤ h(θh ∧ 1) ≤ Ch

(
r/(θh ∧ 1)

)
h(r),

which ends the proof by Lemma 2.10. �

We end this section with a technical comment on (A1) and (B1).

Remark 2.12. If θh < ∞ in (A1), we can stretch the range of scaling to r < R < ∞ at the
expense of the constant Ch. Indeed, by continuity of h, for θh ≤ r < R,

h(r) ≤ h(θh) ≤ Chλ
αhh(λθh) ≤ Ch(r/θh)

2λαhh(λr) ≤ Ch(R/θh)
2λαhh(λr).

Similarly, if θh > 0 in (B1), we extend the range to 0 < R < r by reducing the constant ch. We
have for R < r ≤ θh,

h(r) ≥ h(θh) ≥ chλ
αhh(λθh) ≥ ch(r/θh)

2λαhh(λr) ≥ ch(R/θh)
2λαhh(λr).

3. General Lévy processes

In this section, we discuss a Lévy process Y in R
d with a generating triplet (A,N,b).

3.1. Equivalent conditions – Small time

We introduce and comment on eight conditions (C1)–(C8), which are common in the literature.
For (C2) and (C5) see [24,35,39], for (C3) see [5], and for (C4) see [27,28].
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Theorem 3.1. Let Y be a Lévy process. The following are equivalent.

(C1) The density p(t, x) of Yt exists and there are T1 ∈ (0,∞], c1 > 0 such that for all t < T1,

sup
x∈Rd

p(t, x) ≤ c1
[
h−1(1/t)

]−d
.

(C2) There are T2 ∈ (0,∞], c2 > 0 such that for all t < T2,∫
Rd

e−t Re[�(z)] dz ≤ c2
[
h−1(1/t)

]−d
.

(C3) There are T3 ∈ (0,∞], c3 ∈ (0,1] and α3 ∈ (0,2] such that for all |x| > 1/T3,

c3�
∗(|x|) ≤ Re

[
�(x)

]
and �∗(λr) ≥ c3λ

α3�∗(r), λ ≥ 1, r > 1/T3.

(C4) There are T4 ∈ (0,∞], c4 ∈ [1,∞) such that for all |x| > 1/T4,

�∗(|x|) ≤ c4

(
〈x,Ax〉 +

∫
|〈x,z〉|<1

∣∣〈x, z〉∣∣2
N(dz)

)
.

Moreover, if Ti = ∞ for some i = 1, . . . ,4, then Ti = ∞ for all i = 1, . . . ,4.

Proof. (C2) =⇒ (C1). Follows immediately by the inverse Fourier transform.
(C1) =⇒ (C2). Note that p(t/2, ·) ∈ L1(Rd) ∩ L∞(Rd) ⊂ L2(Rd) for every t > 0. Thus

e−(t/2)�(·) ∈ L2(Rd) or equivalently |e−(t/2)�(·)|2 = e−t Re[�(·)] ∈ L1(Rd). In particular, p(t, ·) ∈
C0(R

d) holds by the Riemann–Lebesgue lemma. Now, let Z = Y 1 − Y 2, where Y 1 and Y 2 are
two independent copies of Y . Then Z has 2 Re[�(x)] as the characteristic exponent and a density
pZ(t, ·) ∈ C0(R

d) such that for all x ∈R
d ,

pZ(t, x) =
∫
Rd

p(t, x − y)p(t, y) dy = (2π)−d

∫
Rd

e−i〈x,z〉e−2t Re[�(z)] dz.

Consequently, we get for t < T1∫
Rd

e−(2t)Re[�(z)] dz ≤ c1
[
h−1(1/t)

]−d = c1
[
h−1(2/(2t)

)]−d
,

and the statement follows by Lemmas 2.4 and 2.3 with c2 = c2(d, c1) and T2 = T1/2.
(C2) =⇒ (C4). The case of d = 1 is simpler and follows from Lemma 2.4, (A4) and (1). We

focus on d ≥ 2. For x �= 0 let v = x/|x| and 
1z = 〈v, z〉v be a projection on the linear subspace
V = {λv : λ ∈ R} of Rd . We consider a projection Z1 = 
1Y of the Lévy process Y on V and
the corresponding objects �1, K1 and h1. By [34], Proposition 11.10,

�1(z) = �(
1z), z ∈R
d,

K1(r) = r−2‖
1A
1‖ + r−2
∫

|
1z|<r

|
1z|2N(dz),
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h1(r) = r−2‖
1A
1‖ +
∫
Rd

(
1 ∧ |
1z|2

r2

)
N(dz).

Note that

K1
(
1/|x|) = 〈x,Ax〉 +

∫
|〈x,z〉|<1

∣∣〈x, z〉∣∣2
N(dz).

Therefore it suffices to show that for all r < T4 (see (1)),

2h(r) ≤ c4K1(r), (6)

with c4 > 0 independent of the choice of x, or equivalently of the choice of the projection 
1.
Similarly, we define Z2 = 
2Y and we get �2, K2 and h2 for a projection 
2 on the linear
subspace V ⊥ = {y ∈R

d : 〈y, v〉 = 0}. We let {v, v2, . . . , vd} to be an orthonormal basis (with the
usual scalar product) such that v2, . . . , vd ∈ V ⊥. Then x = ξv + ξ2v2 + · · · + ξdvd , where ξ ∈R,
ξ̄ = (ξ2, . . . , ξd) ∈ R

d−1, and we write x = (ξ, ξ̄ ). Since Re[�(x)] is a characteristic exponent
we have by [3], Proposition 7.15, that√

Re
[
�(ξ, ξ̄ )

] ≤
√

Re
[
�(ξ,0)

] +
√

Re
[
�(0, ξ̄ )

] =
√

Re
[
�1(ξ,0)

] +
√

Re
[
�2(0, ξ̄ )

]
.

Thus Re[�(ξ, ξ̄ )] ≤ 2 Re[�1(ξ,0)] + 2 Re[�2(0, ξ̄ )]. In particular, see (7), both �1 and �2 are
unbounded, so Z1 and Z2 are not compound Poisson processes (with drift), therefore h1 and h2
are unbounded and strictly decreasing. Further, by (1) for t < T2,

c2
[
h−1(1/t)

]−d ≥
∫
Rd

e−t Re[�(z)] dz ≥
(∫

R

e−2t Re[�1(ξ,0)] dξ

)(∫
Rd−1

e−2t Re[�2(0,ξ̄ )] dξ̄

)
≥

(∫
|ξ |<1/h−1

1 (1/t)

e−4th1(1/|ξ |) dξ

)(∫
|ξ̄ |<1/h−1

2 (1/t)

e−4th2(1/|ξ̄ |) dξ̄

)
(7)

≥ e−8ωd−1
[
h−1

1 (1/t)
]−1[

h−1
2 (1/t)

]−(d−1)
.

Directly from the definition we have h2 ≤ h, which implies h−1
2 ≤ h−1 and with the above gives

h−1(u) ≤ c0h
−1
1 (u), u > 1/T2,

with c0 = max{1, (c2e
8/ωd−1)}. This implies by monotonicity of r2h1(r) that

h(r) ≤ h1(r/c0) ≤ c2
0h1(r), r < h−1(1/T2).

By Lemma 2.4 h satisfies (A1) with some αh = αh(d, c2), Ch = Ch(d, c2) and θh = h−1(1/T2).
Consequently, since h1 and h are comparable (h1 ≤ h always holds), h1 satisfies (A1) with αh,
c2

0Ch and θh. Lemma 2.3 for h1 assures (6) with c4 = c4(d, c2) and T4 = h−1(1/T2).
(C4) =⇒ (C3). Note that 1 − cos(r) ≥ (1 − cos(1))r2 for |r| < 1. Thus, together with the

assumption we have for |x| > 1/T4,

Re
[
�(x)

] ≥ 〈x,Ax〉 + (
1 − cos(1)

) ∫
|〈x,z〉|<1

∣∣〈x, z〉∣∣2
N(dz) ≥ 1 − cos(1)

c4
�∗(|x|).
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It remains to show that �∗ ∈ WLSC, or equivalently that (A1) holds for h. We take v ∈ R
d such

that |v| = 1 and we let 
1 to be a projection on the linear subspace V = {λv : λ ∈ R} of Rd . We
consider a projection Z1 = 
1Y of the Lévy process Y on V and the corresponding objects K1
and h1. Note that for r > 0,

K1(r) = 〈
(v/r),A(v/r)

〉 + ∫
|〈(v/r),z〉|<1

∣∣〈(v/r), z
〉∣∣2

N(dz),

and therefore by (1) and our assumption for r < T4,

h1(r) ≤ h(r) ≤ c48(1 + 2d)K1(r) ≤ c48(1 + 2d)h1(r).

Using Lemma 2.3 we get (A1) for h1 with αh1 = αh1(d, c4), Ch1 = 1 and θh1 = T4. Since h1
and h are comparable we conclude (A1) for h. Finally, the result holds with α3 = α3(d, c4),
c3 = c3(d, c4) and T3 = T4.

(C3) =⇒ (C2). By (1) and our assumption Re[�(x)] ≥ c[h(1/|x|) − h(T3)] for all x ∈ R
d

with c = c(d, c3) ≤ 1. Next, by Lemma 2.3 (A1) holds with αh = α3, θh = T3 and Ch = cd/c3,
cd = 16(1 + 2d). In particular, h−1(1/(ct)) ≥ (cc3/cd)1/α3h−1(1/t) for t < 1/h(T3). Further,
h(1/r) is increasing and satisfies WLSC(α3,1/T3, c3/cd). Then by [5], Lemma 16, for t <

1/h(T3),∫
Rd

e−t Re[�(z)] dz ≤ ecth(T3)

∫
Rd

e−cth(1/|z|) dz ≤ Cecth(T3)
[
h−1(1/(ct)

)]−d ≤ c2
[
h−1(1/t)

]−d
.

To sum up, (C2) holds with c2 = c2(d,α3, c3) and T2 = 1/h(T3). �

Remark 3.2. If d = 1, the conditions (C1)–(C4) are tantamount to conditions (A1)–(A4). Fur-
thermore, T3 = θh and α3 = αh. Indeed, in such case (C4) reduces to (A4) with θh = T4 and c

related to c4 according to (1).

Remark 3.3. If Y is rotation invariant (see [34], Definition 14.12), then the conditions (C1)–
(C4) are tantamount to conditions (A1)–(A4). Furthermore, T3 = θh and α3 = αh.

The latter is a consequence of the following two results (see [34], Exercise 18.3).

Lemma 3.4. We have det(A) �= 0 if and only if (C3) holds and A �= 0. If det(A) �= 0 and∫
Rd |x|2N(dx) < ∞, then (C3) holds with T3 = ∞.

Proof. We first prove that under (C3) the condition A �= 0 implies det(A) �= 0. Indeed, if that
was not the case we would have Ax = 0 for some |x| = 1 and then by (1) with cd = 16(1 + 2d),

c3h(r)r2 ≤ (cd/2)Re
[
�(x/r)

]
r2 = (cd/2)r2

∫
Rd

(
1 − cos

(〈x/r, z〉))N(dz)

≤ cd

∫
Rd

(
r2 ∧ |z|2)N(dz),
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which leads to a contradiction since the latter tends to zero as r → 0+. On the other hand, if
det(A) �= 0, since A is non-negative definite, there is c > 0 such that 〈x,Ax〉 ≥ c|x|2. We also
have ‖A‖ ≤ h(r)r2 ≤ h(R)R2 =: κ for r < R, thus h satisfies (A1) with αh = 2, θh = R and by
(1) we get Re[�(x)] ≥ 〈x,Ax〉 ≥ (c/κ)h(1/|x|) ≥ (c/(2κ))�∗(|x|) for |x| > 1/R. Then (C3)

holds with α3 = 2, T3 = R by Lemma 2.3. If additionally
∫
Rd |x|2N(dx) < ∞, the above is true

with κ = ‖A‖ + ∫
Rd |x|2N(dx) and R = ∞. �

Lemma 3.5. If A = 0, N(dz) ≈ N0(dz) and b ∈ R
d , where N0 is rotation invariant, then the

conditions (C1)–(C4) are equivalent to conditions (A1)–(A4). Furthermore, T3 = θh and α3 =
αh.

Proof. Plainly, (C3) implies (A3). On the other hand,∫
|〈x,z〉|<1

∣∣〈x, z〉∣∣2
N0(dz) = |x|2

∫
|zi |<1/|x|

|zi |2N0(dz)

≥ |x|2
∫

|z|<1/|x|
|zi |2N0(dz), i = 1, . . . , d.

Thus (A3) (actually (A4)) and (1) give for all |x| > 1/θh,

�∗(|x|) ≤ 2h
(
1/|x|) ≤ 2cK

(
1/|x|) ≤ c′

∫
|〈x,z〉|<1

∣∣〈x, z〉∣∣2
N(dz) ≤ c′′ Re

[
�(x)

]
,

which complements conditions for (C3). �

From the next result we see that (C2) implies bounds for moments of higher orders, i.e.,
bounds for the spatial derivatives of the density.

Proposition 3.6. The conditions of Theorem 3.1 are equivalent with:

(C5) There is T5 ∈ (0,∞] such that for some (every) m ∈N there is c5 > 0 and for all t < T5,∫
Rd

|z|me−t Re[�(z)] dz ≤ c5
[
h−1(1/t)

]−d−m
.

Moreover, (C3) implies (C5) with c5 = c5(d,m,α3, c3) and T5 = 1/h(T3).

Proof. First we show that (C3) gives (C5) for every m ∈ N. By (1) and our assumption there is
c = c(d, c3) ≤ 1 such that for all t > 0,∫

Rd

|z|me−t Re[�(z)] dz ≤ ecth(T3)

∫
Rd\{0}

|z|me−cth(1/|z|) dz

= ecth(T3)ωd

∫ ∞

0
e−cth(1/r)rm+d−1 dr

= ecth(T3)
ωd

ωm+d

∫
Rm+d\{0}

e−cth(1/|ξ |) dξ.
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Let cd = 16(1+2d). By Lemma 2.3 h(1/r) satisfies WLSC(α3,1/T3, c3/cd) and h−1(1/(ct)) ≥
(cc3/cd)1/α3h−1(1/t) for t < 1/h(T3). By [5], Lemma 16, for all t < 1/h(T3),∫

Rm+d\{0}
e−cth(1/|ξ |) dξ ≤ C

[
h−1(1/(ct)

)]−d−m ≤ c5
[
h−1(1/t)

]−d−m
.

Here c5 = c5(d,m,α3, c3). It remains to prove that if (C5) holds for some m ∈ N, then (C2) also
holds. Indeed, (C2) follows by∫

Rd

e−t Re[�(z)] dz ≤
∫

|z|≤1/h−1(1/t)

dz + [
h−1(1/t)

]m ∫
|z|>1/h−1(1/t)

|z|me−t Re[�(z)] dz. �

Observe that for all r1, r2 > 0 we have

|br1 − br2 | ≤
∫

r1∧r2≤|z|<r1∨r2

|z|N(dz) ≤ (r1 ∨ r2)h(r1 ∧ r2). (8)

Lemma 3.7. The conditions of Theorem 3.1 imply that

(Im) The density p(t, x) of Yt exists and there are T ∈ (0,∞], c ∈ [1,∞) such that for every
t < T there exists |xt | ≤ ch−1(1/t) so that for every |y| ≤ (1/c)h−1(1/t),

p(t, y + xt + tb[h−1(1/t)]) ≥ (1/c)
[
h−1(1/t)

]−d
.

Moreover, (C3) implies (Im) with c = c(d,α3, c3) and T = 1/h(T3/c). If T3 < ∞ in (C3), then
(Im) holds for every T > 0 with c = c(d,α3, c3, T3, T ,h).

Proof. We note that there is a0 = a0(d,α3, c3) ≥ 1 such that for λ := a0h
−1(1/t) < T3 we have

P(|Yt − tbλ| ≥ λ) ≤ 1/2. Indeed, by [33], page 954, there is c = c(d) such that for r = λ,

P
(|Yt − tbλ| ≥ r

) ≤ ct

(
r−1

∣∣∣∣(b − bλ) +
∫
Rd

z(1|z|<r − 1|z|<1)N(dz)

∣∣∣∣ + h(r)

)
= cth(r),

and applying Lemma 2.3 we get h(r) = h(λ) ≤ (cd/c3)a
−α3
0 h(λ/a0) = (cd/c3)a

−α3
0 t−1. Then

1/2 ≤ 1 − P
(|Yt − tbλ| ≥ λ

) =
∫

|x−tbλ|<λ

p(t, x)dx ≤ ωdλd sup
|x|<λ

[
p(t, x + tbλ)

]
. (9)

Therefore, by the continuity of p, whenever λ < T3, then there exists |ξt | ≤ λ such that p(t, ξt +
tbλ) ≥ 1/(2ωd)λ−d . Further, by (C5) there is c5 = c5(d,α3, c3) such that supx∈Rd |∇xp(t, x)| ≤
c5/(2ωd)λ−d−1 for every t < 1/h(T3). This gives for λ < T3 and |y| ≤ 1/(2c5)λ,

p(t, ξt + tbλ + y) ≥ p(t, ξt + tbλ) − |y| sup
x∈Rd

∣∣∇xp(t, x)
∣∣ ≥ 1/(4ωd)λ−d .

Then for every t < 1/h(T3/a0), xt = ξt + t (bλ − b[h−1(1/t)]) and every |y| ≤ a0/(2c5)h
−1(1/t),

p(t, xt + tb[h−1(1/t)] + y) = p(t, ξt + tbλ + y) ≥ 1/(4ωd)
[
a0h

−1(1/t)
]−d

.
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Note that |xt | ≤ 2a0h
−1(1/t), because by (8) we have t |bλ − b[h−1(1/t)]| ≤ λ. Now we prove the

last sentence of the statement. It suffices to show that if (Im) hods with T > 0 and c ≥ 1, then
it also holds with 2T and a modified c, where the modification depends only on d , α3, c3, T3,
T , h. Let T ≤ t < 2T and xt = 2xt/2 − tb[h−1(1/t)] + tb[h−1(2/t)]. Then by Chapman–Kolmogorov
equation,

p(t, y + xt + tb[h−1(1/t)])

≥
∫

|z|<(1/c)h−1(2/t)

p
(
t/2, y − z + xt/2 + (t/2)b[h−1(2/t)]

)
× p

(
t/2, z + xt/2 + (t/2)b[h−1(2/t)]

)
dz

≥
∫

|z|<(1/c)h−1(2/t)

p
(
t/2, y − z + xt/2 + (t/2)b[h−1(2/t)]

)
dz(1/c)

[
h−1(2/t)

]−d
.

By the monotonicity of h−1 there is c̄ = c̄(T ,h) such that h−1(u) ≤ c̄h−1(2u) if 1/(2T ) <

u ≤ 1/T . Then for |y| ≤ 1/(2cc̄)h−1(1/t) and |z| < 1/(2c)h−1(2/t) we have |y − z| ≤
(1/c)h−1(2/t), thus∫

|z|<(1/c)h−1(2/t)

p
(
t/2, y − z + xt/2 + (t/2)b[h−1(2/t)]

)
dz ≥ (1/c)ωd(2c)−d .

Note that |xt | ≤ 2(c + 1)h−1(1/t) by the bound of |xt/2| and (8). The proof is complete. �

Here are two consequences of merging Lemma 3.7 with the condition (C1) (note that (C6)

implies (C1) by integrating over a ball of radius (1/c6)h
−1(1/t)).

Corollary 3.8. The conditions of Theorem 3.1 are equivalent with

(C6) The density p(t, x) of Yt exists and there are T6 ∈ (0,∞], c6 ∈ [1,∞) such that for
every t < T6 there exists |xt | ≤ c6h

−1(1/t) so that for every |y| ≤ (1/c6)h
−1(1/t),

p(t, y + xt + tb[h−1(1/t)]) ≥ (1/c6) sup
x∈Rd

p(t, x).

Moreover, (C3) implies (C6) with c6 = c6(d,α3, c3) and T6 = 1/h(T3/c6). If T3 < ∞ in (C3),
then (C6) holds for every T6 > 0 with c6 = c6(d,α3, c3, T3, T6, h).

The next corollary, which is in the spirit of (C1), gives another connection with the existing
literature, cf. [28], Theorem 2.1.

Corollary 3.9. The conditions of Theorem 3.1 are equivalent with

(C7) The density p(t, x) of Yt exists and there are T7 ∈ (0,∞], c7 ∈ [1,∞) such that for all
t < T7,

c−1
7

[
h−1(1/t)

]−d ≤ sup
x∈Rd

p(t, x) ≤ c7
[
h−1(1/t)

]−d
.
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Moreover, (C3) implies (C7) with c7 = c7(d,α3, c3) and T7 = 1/h(T3/c7). If T3 < ∞ in (C3),
then (C7) holds for every T7 > 0 with c7 = c7(d,α3, c3, T3, T7, h).

We elucidate a crucial difference between a general (possibly non-symmetric) case and the
situation when b = 0 and N(dz) is symmetric.

Remark 3.10. If Y is a symmetric Lévy process we have br = 0 for all r > 0 and moreover
we can take xt = 0 in the statements of Lemma 3.7 and Corollary 3.8. Therefore the two results
provide a lower (near-diagonal) bound for p(t, y). Indeed, in the proof of (9) we have

sup
|x|<λ

[
p(t, x + tbλ)

] = p(t,0)

and we may take ξt = 0 and thus also xt = 0.

There are at least several ways how to reformulate the condition (C3), only using (1) and
Lemma 2.3, to discover more about its meaning. We will present one such reformulation which
formalizes the description of (3) presented in the introduction.

Lemma 3.11. The conditions of Theorem 3.1 are equivalent with

(C8) There are T8 ∈ (0,∞], c8 ∈ [1,∞) and α8 ∈ (0,2] such that for every projection 
1 on
a one-dimensional subspace of Rd ,

h(r) ≤ c8h1(r) and h(r) ≤ c8λ
α8h(λr), λ ≤ 1, r < T8.

where h1 corresponds to a projected Lévy process 
1Y .

Proof. Note that we always have h1 ≤ h, since h1(r) = r−2‖
1A
1‖ + ∫
Rd (1 ∧ |
1z|2

r2 )N(dz)

[34], Proposition 11.10. We first prove (C8) =⇒ (C3). Due to Lemma 2.3 it suffices to focus
on the first part of (C3). Let x ∈ R

d , x �= 0, and consider 
1 to be a projection on a subspace
spanned by v = x/|x|. Since h and h1 are comparable on r < T8 we get (A4) for h1, which
together with (1) gives for |x| > 1/T8,

�∗(|x|) ≤ 2h
(
1/|x|) ≤ 2c8h1

(
1/|x|) ≤ 2c8c(α8, c8)K1

(
1/|x|)

= 2c8c(α8, c8)

(
〈x,Ax〉 +

∫
|〈x,z〉|<1

∣∣〈x, z〉∣∣2
N(dz)

)
≤ 2c8c(α8, c8)Re

[
�(x)

]
.

Thus (C3) holds with c3 = c3(d,α8, c8), T3 = T8, α3 = α8. Now we establish (C3) =⇒ (C8).
Let v ∈ R

d , |v| = 1, be such that 
1 projects on a subspace spanned by v. We denote by �1 the
characteristic exponent of 
1Y . Recall that �1(z) = �(
1z). Then for r < T8 we set x = rv to
get

c3�
∗(r) ≤ Re

[
�(x)

] = Re
[
�1(x)

] ≤ �∗
1 (r),

which by (1) proves (C8) with c8 = c8(d, c3), T8 = T3 and α8 = α3. �
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3.2. Equivalent conditions – Large time

Our next result resembles Theorem 3.1, except that here we analyse the density for large time.
The main difference is that in the third and the fourth condition below we add a priori that from
some point in time onwards the characteristic function is absolutely integrable.

Theorem 3.12. Let Y be a Lévy process. The following are equivalent.

(D1) There are T1, c1 > 0 such that the density p(t, x) of Yt exists for all t > T1 and

sup
x∈Rd

p(t, x) ≤ c1
[
h−1(1/t)

]−d
.

(D2) There are T2, c2 > 0 such that for all t > T2,∫
Rd

e−t Re[�(z)] dz ≤ c2
[
h−1(1/t)

]−d
.

(D3) There are T3 > 0, c3 ∈ (0,1] and α3 ∈ (0,2] such that for all |x| < 1/T3,

c3�
∗(|x|) ≤ Re

[
�(x)

]
and �∗(λr) ≤ (1/c3)λ

α3�∗(r), λ ≤ 1, r < 1/T3.

We have e−t0� ∈ L1(Rd) for some t0 > 0.
(D4) There are T4 > 0, c4 ∈ [1,∞) such that for all |x| < 1/T4,

�∗(|x|) ≤ c4

(
〈x,Ax〉 +

∫
|〈x,z〉|<1

∣∣〈x, z〉∣∣2
N(dz)

)
.

We have e−t0� ∈ L1(Rd) for some t0 > 0.

Proof. (D2) =⇒ (D1) is direct. (D1) =⇒ (D2) with c2 = c2(d, c1) and T2 = 4T1, (D2) =⇒
(D4) with c4 = c4(d, c2) and T4 = c(d, c2)h

−1(1/T2), and (D4) =⇒ (D3) with α3 = α3(d, c4),
c3 = c3(d, c4) and T3 = T4, by proofs similar to that of Theorem 3.1, where Lemmas 2.3 and 2.4
are replaced by Lemmas 2.5 and 2.6. Details are omitted. We prove that (D3) =⇒ (D2). By (1)
and our assumption there is c = c(d, c3) such that∫

Rd

e−t Re[�(z)] dz ≤
∫

|z|<1/T3

e−cth(1/|z|) dz +
∫

|z|≥1/T3

e−t Re[�(z)] dz =: I1 + I2.

Now, define

h̃(r) =
{

r−α3T
α3
3 h(T3), r ≤ T3,

h(r), r > T3.

It’s not hard to verify that the function f (r) = h̃(1/r) satisfies WLSC(α3,0, c3/cd) and therefore
by [5], Lemma 16,

I1 ≤
∫
Rd

e−ctf (|z|) dz ≤ c̃
[
f −1(1/t)

]d = c̃
[
h̃−1(1/t)

]−d = c̃
[
h−1(1/t)

]−d
, t > 1/h(T3).
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Next, for t > 2t0 we have

I2 =
∫

|z|≥1/T3

e−t Re[�(z)] dz ≤ sup
|z|≥1/T3

(
e−(t/2)Re[�(z)])∫

Rd

e−t0 Re[�(z)] dz.

Since e−t0� ∈ L1(Rd), then p(t0, x) exists. Thus by Riemann-Lebesgue lemma, e−t0� ∈
C0(R

d). In particular, lim|x|→∞ Re[�(x)] = ∞. The latter implies that Re[�(x)] �= 0 if x �= 0
(otherwise we would have Re[�(kx)] = 0 for some x �= 0 and all k ∈ N). Then by continuity of
�(x),

sup
|z|≥1/T3

(
e−(t/2)Re[�(z)]) = (

e− inf|z|≥1/T3 (1/2)Re[�(z)])t = ct
0, where c0 ∈ (0,1).

Finally, ct
0 is bounded up to multiplicative constant by [h−1(1/t)]−d (see (B2)). This ends the

proof. �

4. Decomposition

Let Y be a Lévy process in R
d with a generating triplet (0,N,b) and assume that (C3) holds.

The aim of this section is to decompose Y into Z1.λ and Z2.λ is such a way that it can be used to
investigate its density. The idea is to some extent motivated by [32]. We introduce an auxiliary
Lévy measure ν satisfying for some a1 ∈ (0,1],

a1ν(dx) ≤ N(dx),

and for some a2 ∈ [1,∞) and all |x| > 1/T3,

Re
[
�(x)

] ≤ a2 Re
[
�ν(x)

]
.

Here �ν corresponds to (0, ν,0). We similarly write hν . For λ > 0 consider the following Lévy
measures

N1.λ(dx) := N(dx) − a1

2
ν|Bλ(dx), N2.λ(dx) := a1

2
ν|Bλ(dx).

We let Z1.λ and Z2.λ be Lévy processes with generating triplets (0,N1.λ, b) and (0,N2.λ,0),
respectively. By analogy we write �1.λ, h1.λ, p1.λ, b1.λ

r and �2.λ, h2.λ, p2.λ, b2.λ
r . We collect

technical inequalities that will be used without further comment.

Remark 4.1.

(i) For x ∈R
d ,

a1

2
Re

[
�ν(x)

] ≤ 1

2
Re

[
�(x)

] ≤ Re
[
�1.λ(x)

] ≤ Re
[
�(x)

]
.

(ii) For |x| > 1/T3,

a1c3�
∗
ν

(|x|) ≤ c3�
∗(|x|) ≤ Re

[
�(x)

] ≤ a2 Re
[
�ν(x)

] ≤ a2�
∗
ν

(|x|).
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(iii) For r > 0,

a1hν(r) ≤ h(r),

and for r < T3,

h(r) ≤ a2(cd/c3)hν(r),

holds with cd = 16(1 + 2d) by (ii) and (1).
(iv) The function �ν satisfies (C3) with Tν = T3, cν = (c2

3a1)/a2 and αν = α3.

The first result resembles in its formulation and in the proof Lemma 3.7 applied to Z1.λ, but it
is tuned to a new approach and involves auxiliary objects like hν .

Lemma 4.2. There are constants a0 = a0(d,α3, c3, a2) ≥ 1 and cp1 = cp1(d,α3, c3, a1, a2) such
that for every λ := a0h

−1
ν (1/t) < T3 there exists |x̄t | ≤ λ for which

inf|y|≤cp1 λ

[
p1.λ

(
t, y + x̄t + tb1.λ

λ

)] ≥ 1/(4ωd)λ−d .

Proof. Step 1. There is a constant a0 = a0(d,α3, c3, a2) ≥ 1 such that for λ := a0h
−1
ν (1/t) < T3,

P
(∣∣Z1.λ

t − tb1.λ
λ

∣∣ ≥ λ
) ≤ 1/2.

Indeed, by [33], page 954, there is c = c(d) such that for r = λ,

P
(∣∣Z1.λ

t − tb1.λ
λ

∣∣ ≥ r
) ≤ ct

(
r−1

∣∣∣∣(b − b1.λ
λ

) +
∫
Rd

z(1|z|<r − 1|z|<1)N1.λ(dz)

∣∣∣∣ + h1.λ(r)

)
= cth1.λ(r) ≤ cth(r).

Applying Lemma 2.3, we get

h(r) ≤ (cd/c3)(1/a0)
α3h

(
(1/a0)r

) ≤ a2(cd/c3)
2a

−α3
0 hν(r/a0) = a2(cd/c3)

2a
−α3
0 t−1.

Now, the inequality follows with a0 = (2ca2(cd/c3)
2)1/α3 .

Step 2. We note that for λ < T3 there exists |x̄t | ≤ λ such that

p1.λ

(
t, x̄t + tb1.λ

λ

) ≥ 1/(2ωd)λ−d .

It clearly follows from the continuity of p1.λ and

1/2 ≤ 1 − P
(∣∣Z1.λ

t − tb1.λ
λ

∣∣ ≥ λ
) =

∫
|x−tb1.λ

λ |<λ

p1.λ(t, x)dx ≤ ωdλd sup
|x|<λ

[
p1.λ

(
t, x + tb1.λ

λ

)]
.

Step 3. We claim that there exists a constant cst3 = cst3(d,α3, c3, a1, a2) such that for every
t < 1/hν(T3) we have

sup
x∈Rd

∣∣∇xp1.λ(t, x)
∣∣ ≤ cst3/(2ωd)λ−d−1.
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Since �ν satisfies (C3), by (C5) there is c′
ν = c′

ν(d,αν, cν) such that for every t < 1/hν(Tν),∫
Rd

|z|e−t Re[�1.λ(z)] dz ≤
∫
Rd

|z|e−(a1/2)t Re[�ν(z)] dz ≤ c′
ν

[
h−1

ν

(
2/(a1t)

)]−d−1

≤ c′
ν

[(
a1cν/(2cd)

)1/αν h−1
ν (1/t)

]−d−1
.

The last inequality follows from Lemma 2.3.
Step 4. The statement of the lemma now follows. Indeed, by Step 2. and Step 3. we have for

every |y| ≤ 1/(2cst3)λ,

p1.λ

(
t, y + x̄t + tb1.λ

λ

) ≥ p1.λ

(
t, x̄t + tb1.λ

λ

) − |y| sup
x∈Rd

∣∣∇xp1.λ(t, x)
∣∣ ≥ 1/(4ωd)λ−d . �

In what follows we study Z2.λ.

Lemma 4.3. Let a0 be like in Lemma 4.2. There is a constant cp2 = cp2(d,α3, c3, a1, a2) ≥ 1
such that for every λ := a0h

−1
ν (1/t) < T3 and |x| ≥ cp2λ

−1,

Re
[
�ν(x)

] ≤ (4/a1)Re
[
�2.λ(x)

]
.

Further, �2.λ satisfies (C3) with T = λ/cp2 , c = c(c3, a1, a2) and α = α3.

Proof. Step 5. We observe that

Re
[
�ν(x)

] = (2/a1)Re
[
�2.λ(x)

] +
∫

|z|≥λ

(
1 − cos

(〈x, z〉))ν(dz)

≤ (2/a1)Re
[
�2.λ(x)

] + 2hν(λ).

Using (1) and (C3) for �∗
ν , for |x| ≥ 1/λ > 1/Tν we have

2hν(λ) ≤ cd�∗
ν (1/λ) ≤ (cd/cν)

(|x|λ)−αν �∗
ν

(|x|) ≤
(

a2cd

a1c3cν

)(|x|λ)−αν Re
[
�ν(x)

]
.

Finally, we choose cp2 such that 2hν(λ) ≤ (1/2)Re[�ν(x)]. The last sentence follows from the
comparability of Re[�ν(x)] and Re[�2.λ(x)] (see the definition of N2.λ). �

In the next result, we put Z1.λ and Z2.λ together to obtain estimates for the process Y . Given
T ∈ (0,∞], a, r > 0 consider a family of infinitely divisible probability measures,

X (T , a, r) := {
μ : μ is the distribution of

(
Z2.λ

t − tb2.λ
λ

)
/λ + y

for some λ := ah−1
ν (1/t) < T and |y| ≤ r

}
. (10)

We note that X is completely described by the choice of (T , a, r) and a1, ν.
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Proposition 4.4. Let a0, cp1 and λ be like in Lemma 4.2. Take θ1, θ2 > 0 and r0 = 1 + θ1 + θ2.
For all t < 1/hν(T3/a0) and |x| ≤ θ1h

−1
ν (1/t),

p(t, x + �t) ≥ 1/(4ωd)
[
a0h

−1
ν (1/t)

]−d inf
μ∈X (T3,a0,r0)

μ(Bcp1
),

whenever �t ∈ R
d satisfies |tbλ − �t | ≤ θ2λ for λ < T3.

Proof. Step 6. Note that � = �1.λ + �2.λ and bλ = b1.λ
λ + b2.λ

λ . By Lemma 4.2, we have for
σt := x − x̄t − tbλ + �t ,

p(t, x + �t) =
∫
Rd

p1.λ(t, x + �t − z)p2.λ(t, z) dz

=
∫
Rd

p1.λ

(
t, y + x̄t + tb1.λ

λ

)
p2.λ

(
t, σt + tb2.λ

λ − y
)
dy

≥
∫

|y|≤cp1 λ

1/(4ωd)λ−dp2.λ

(
t, σt + tb2.λ

λ − y
)
dy

= 1/(4ωd)λ−d
P
(∣∣Z2.λ

t − tb2.λ
λ − σt

∣∣ ≤ cp1λ
)
.

By Lemma 4.2 and our assumptions |σt | ≤ r0λ. This ends the proof. �

In comparison to Lemma 3.7, Proposition 4.4 suggests an explicit shift in the space coordinate
and gives a choice of the shift within certain class (see also (8)). On the other hand, it still
leaves the crucial question of the positivity of infμ∈X (T3,a0,r0) μ(Bcp1

) unresolved. In the next
three lemmas, we begin the investigation of X (T , a, r). The issue of the positivity is eventually
addressed in Section 5.

Lemma 4.5. Let a0 be like in Lemma 4.2. Then X (T3, a0, r) is tight for every r > 0.

Proof. Step 7. By [33] there is c = c(d) such that for every μ ∈X (T3, a0, r) and R > 1 + r ,

μ
(
Bc

R

) = P
(∣∣(Z2.λ

t − tb2.λ
λ

)
/λ + y

∣∣ ≥ R
) ≤ P

(∣∣(Z2.λ
t − tb2.λ

λ

)∣∣ ≥ (R − r)λ
)

≤ ct

(
(R − r)−1λ−1

∣∣∣∣−b2.λ
λ +

∫
Rd

z(1|z|<r − 1|z|<1)N2.λ(dz)

∣∣∣∣ + h2.λ

(
(R − r)λ

))
= cth2.λ

(
(R − r)λ

) = ct (a1/2)(R − r)−2
∫

|z|<λ

(|z|2/λ2)ν(dz)

≤ ct
(a1/2)

(R − r)2
hν(λ) ≤ c

(a1/2)

(R − r)2
,

which gives the claim. �
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Lemma 4.6. Let a0 be like in Lemma 4.2. There is a constant cp3 = cp3(d,α3, c3, a1, a2) such
that for every μ ∈ X (T3, a0, r) and r > 0,∫

Rd

∣∣μ̂(z)
∣∣dz ≤ cp3 .

Proof. Step 8. The characteristic exponent of μ ∈ X equals −i〈x, y − tb2.λ
λ /λ〉 + t�2.λ(x/λ).

Since �ν satisfies (C3), by (C2) there is c′
ν = c′

ν(d,αν, cν) such that for λ = a0h
−1
ν (1/t) < T3

we have ∫
Rd

∣∣μ̂(z)
∣∣dz =

∫
Rd

e−t Re[�2.λ(z/λ)] dz = λd

∫
Rd

e−t Re[�2.λ(z)] dz

≤ λd

∫
|z|≤cp2 λ−1

dz + λd

∫
Rd

e−(t/cp2 )Re[�ν(z)] dz

≤ ωdcd
p2

+ c′
νλ

d
[
h−1

ν (cp2/t)
]−d ≤ ωdcd

p2
+ c′

νa
d
0 (cp2cd/cν)

d/αν .

The last inequality follows from Lemma 2.3. �

Lemma 4.7. Let a0 be like in Lemma 4.2. For every r, r1 > 0 there exists an infinitely divisible
probability measure μ0 such that

inf
μ∈X (T3,a0,r)

μ(Br1) ≥ μ0(Br1),

The measure μ0 is a weak limit of a sequence μn ∈ X (T3, a0, r) and it is absolutely continuous
with a continuous density

g0(x) = (2π)−d

∫
Rd

e−i〈x,z〉μ̂0(z) dz.

Proof. Step 9. Let μn be a sequence realizing the infimum. By Lemma 4.5 and Prokhorov’s
theorem, we can assume that μn converges weakly to a probability measure μ0. Thus, since
Br is open, the inequality holds and μ0 is infinitely divisible, see [34], Theorem 8.7. By [34],
Proposition 2.5(xii) and (vi), Lemma 4.6 and Fatou’s lemma, we get

∫
Rd |μ̂0(z)|dz ≤ cp3 . This

ends the proof. �

5. Lower bounds

In this section, we discuss a Lévy process Y in R
d with a generating triplet (A,N,b). The

analysis of the upper bounds of transition densities carried out in Section 3 led to lower bounds
in Lemma 3.7, Corollaries 3.8 and 3.9. As explained in Remark 3.10, Lemma 3.7 applied to
symmetric Lévy processes gives the so called near-diagonal lower bounds. The situation becomes
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more complicated if the symmetry is spoiled, and an obscure shift by unknown xt appears. This
is a potential obstacle for further applications. We propose the following correction to remove
this problem: show that at the expense of a constant one can freely choose θ > 0 for which
the estimates are valid with any y ∈ R

d satisfying |y| ≤ θh−1(1/t). This in turn will make it
possible to remove xt by the choice of θ and y. Obviously, such approach will fail in general
even under (C3), with α-stable subordinators as counterexamples (see Remark 5.4), therefore
additional restrictions will be needed.

First we concentrate on the case with non-zero Gaussian part. Note that the Gaussian compo-
nent of h equals r−2‖A‖. Thus, if A is non-zero, it will dominate locally. This is reflected in the
next result.

Proposition 5.1. Assume that (C3) holds and A �= 0. Then for all T , θ > 0 there is c̃ =
c̃(d,A,N,T , θ) > 0 such that for all 0 < t < T and |x| ≤ θ

√
t ,

p(t, x + tb√
t ) ≥ c̃t−d/2.

If additionally
∫
Rd |x|2N(dx) < ∞, then we can take T = ∞ with c̃ > 0.

Proof. We consider two Lévy processes Z1 and Z2 that correspond to ( 1
2A,N,b) and ( 1

2A,0,0),
respectively. By Lemma 3.4, the condition (C3) holds for �1. Lemma 3.7 assures that there is
a constant c = c(d,A,N,T ) ≥ 1 such that for every t < T there is |xt | ≤ ch−1

1 (1/t) so that
for every |y| ≤ (1/c)h−1

1 (1/t) we have p1(t, y + xt + tb[h−1
1 (1/t)]) ≥ (1/c)[h−1

1 (1/t)]−d . Since
� = �1 + �2 we get

p(t, x + tb√
t ) =

∫
Rd

p1(t, x + tb√
t − z)p2(t, z) dz

=
∫
Rd

p1(t, y + xt + tb[h−1
1 (1/t)])p2(t, σt − y)dy

≥ (1/c)
[
h−1

1 (1/t)
]−d

P
(∣∣Z2

t − σt

∣∣ ≤ (1/c)h−1
1 (1/t)

)
,

where σt := x − xt + tb√
t − tb[h−1

1 (1/t)]. Now, for r ≤ R := h−1
1 (1/T ) we have 1

2‖A‖ ≤
h1(r)r

2 ≤ h1(R)R2 =: κ , which by putting r = h−1
1 (1/t), implies for t < 1/h1(R) = T ,

1/κ ≤ t/
[
h−1

1 (1/t)
]2 ≤ 2/‖A‖.

By (8), we get for t < T that

t |b√
t − b[h−1

1 (1/t)]| ≤ (1 ∨ κ)
(
1 ∨ (

2/‖A‖)1/2)
h−1

1 (1/t) and |x| ≤ θ
(
2/‖A‖)1/2

h−1
1 (1/t).
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Thus, |σt | ≤ m1h
−1
1 (1/t) with m1 = m1(d,A,N,T , θ). Note that by Lemma 3.4 the density of

Z2
t equals p2(t, x) = (2πt)−d/2(det(A))−1/2 exp{−〈x,A−1x〉/(2t)}. Then

P
(∣∣Z2

t − σt

∣∣ ≤ (1/c)h−1
1 (1/t)

)
=

∫
|z−σt /h−1

1 (1/t)|≤1/c

p2
(
t/

[
h−1

1 (1/t)
]2

, z
)
dz

≥ inf|y|≤m1

∫
|z−y|≤1/c

(
2κ/‖A‖)−d/2

p2(1/κ, z) dz = m2 > 0.

Eventually, for all t < T and |x| ≤ θ
√

t ,

p(t, x + tb√
t ) ≥ (m2/c)

[
h−1

1 (1/t)
]−d ≥ (m2/c)

(‖A‖/2
)1/2

t−d/2.

If
∫
Rd |x|2N(dx) < ∞, the above is valid for all t > 0 with κ = ‖A‖/2 + ∫

Rd |x|2N(dx). �

Now we focus on the case with zero Gaussian part. We record that processes satisfying as-
sumptions of Proposition 5.1 have a non-zero symmetric (Gaussian) part and their trajectories
are of infinite variation [34], Theorem 21.9. We will exploit these two features of processes sep-
arately, combine them with the decomposition of Section 4 and obtain non-local counterparts of
Proposition 5.1.

We start by engaging a symmetric Lévy measure νs(dx). The assumptions and the claim are
stated by means of �s and hs that correspond to the generating triplet (0, νs,0). The result
extends part of [24], Theorem 2, and in our setting improves [28], Theorem 2.3, [27], Theorem 1.

Theorem 5.2. Assume that (C3) holds and A = 0. Suppose there is a1 ∈ (0,1] such that

a1νs(dx) ≤ N(dx),

and a2 ∈ [1,∞) such that for every |x| > 1/T3,

Re
[
�(x)

] ≤ a2 Re
[
�s(x)

]
.

Then for all T , θ > 0 there is a constant c̃ = c̃(d,α3, c3, T3, a1, a2, νs, T , θ) > 0 such that for all
0 < t < T and |x| ≤ θh−1

s (1/t),

p(t, x + tb[h−1
s (1/t)]) ≥ c̃

[
h−1

s (1/t)
]−d

.

If T3 = ∞, then we can take T = ∞ with c̃ > 0.

Proof. Consider the decomposition of Y introduced in Section 4 with ν = νs . We will apply
Proposition 4.4 to conclude the statement of the theorem, but first we prove an auxiliary result,
which complements preparatory Steps 1–9 used in proofs of Lemmas 4.2, 4.3, Proposition 4.4
and Lemmas 4.6, 4.5 and 4.7.
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Step 10. Let a0 be taken from Lemma 4.2. We show that for every r, r1 > 0,

inf
μ∈X (T3,a0,r)

μ(Br1) = cst10 > 0,

and cst10 = cst10(T3, a0, a1, r, r1, νs). Recall that X (T , a, r) is defined in (10). Note also that
tb2.λ

λ = 0 and Z2.λ
t is symmetric. Let μn, μ0 and g0(x) be like in Lemma 4.7. Let yn be such

that μn is the distribution of Z2.λ
t /λ + yn. Since |yn| ≤ r , by choosing a subsequent, we can

assume that yn converges to y0. Then μ̃0(dx) = μ0(dx + y0) is a symmetric infinitely divisible
probability measure, as a weak limit of symmetric μn(dx + yn), with a continuous symmetric
density

g̃0(x) = g0(x + y0),

and hence

sup
x∈Rd

g̃0(x) = g̃0(0) ≥ g̃0(x) ≥ ε for all |x| ≤ ε,

and sufficiently small ε > 0. Since the support of μ̃0(dx) is a group (see [7] or [36], Theorem 3),
then it has to equal to R

d . Therefore μ0(Br1) = μ̃0(Br1 −y0) > 0. This ends the proof of Step 10.
Now, the following is true.

Claim. For every θ > 0 there are a0 = a0(d,α3, c3, a2) and c̃1 = c̃1(d,α3, c3, T3, a1, a2, νs,

θ) > 0 such that for all 0 < t < 1/hs(T3/a0) and |x| ≤ θh−1
s (1/t),

p(t, x + tb[h−1
s (1/t)]) ≥ c̃1

[
h−1

s (1/t)
]−d

.

If T3 = ∞, we also have c̃1 > 0.

Indeed, it holds by Proposition 4.4 with θ1 = θ , θ2 = 16(1 + 2d)a2 and �t = tb[h−1
s (1/t)], the

application of (8) and Step 10. with r = r0, r1 = cp1 .
We prove the final statement by extending the time horizon. In view of the Claim, we only

have to consider the case T3 < ∞. Let t0 = (1/2)/hs(T3/a0) with a0 = a0(d,α3, c3, a2) ≥ 1
taken from the Claim. It suffices to examine t ∈ [kt0, (k + 1)t0), k ∈ N. For k = 1 the statement
holds by the Claim. We show by induction that the statement is true for all k ≥ 2. By Chapman–
Kolmogorov equation, we have for x̄ := x + tb[h−1

s (1/t)] − t0b[h−1
s (1/t0)] − (t − t0)b[h−1

s (1/(t−t0))],

p(t, x + tb[h−1
s (1/t)])

≥
∫

|y|<h−1
s (1/t0)

p
(
t − t0, y + (t − t0)b[h−1

s (1/(t−t0))]
)
p(t0, x̄ − y + t0b[h−1

s (1/t0)]) dy.

In what follows, we find the upper bound of |x̄ − y|. By (8) and t0 ≤ t − t0 we have∣∣tb[h−1
s (1/t)] − t0b[h−1

s (1/t0)] − (t − t0)b[h−1
s (1/(t−t0))]

∣∣
= ∣∣(t − t0)(b[h−1

s (1/t)] − b[h−1
s (1/(t−t0))]) + t0(b[h−1

s (1/t)] − b[h−1
s (1/t0)])

∣∣
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≤ h−1
s (1/t)

[
(t − t0)h

(
h−1

s

(
1/(t − t0)

)) + t0h
(
h−1

s (1/t0)
)]

≤ h−1
s (1/t)th

(
h−1

s (1/t0)
) ≤ h−1

s (1/t)(k + 1)a2(cd/c3),

while

h−1
s (1/t) ≤ h−1

s

(
1/

[
(k + 1)t0

])
.

Therefore, |x̄ − y| ≤ θ1h
−1
s (1/t0), where θ1 = θ1(d,α3, c3, T3, a1, a2, νs, k, θ), if only |x| ≤

θh−1
s (1/t) and |y| ≤ h−1

s (1/t0). Then by the Claim,

p(t0, x̄ − y + t0b[h−1
s (1/t0)]) ≥ c̃1

[
h−1

s (1/t0)
]−d

.

Since t − t0 ∈ [(k−1)t0, kt0) and |y| < h−1
s (1/t0) ≤ h−1

s (1/(t − t0)), by the induction hypothesis,

p
(
t − t0, y + (t − t0)b[h−1

s (1/(t−t0))]
) ≥ c̃k−1

[
h−1

s

(
1/(t − t0)

)]−d
.

Finally,

p(t, x + tb[h−1
s (1/t)]) ≥ c̃1ωdc̃k−1

[
h−1

s

(
1/(t − t0)

)]−d ≥ c̃k

[
h−1

s (1/t)
]−d

. �

In the next result, we consider processes that necessarily have trajectories of infinite variation,
see Lemmas 2.9 and [34], Theorem 21.9. The functions �ν and hν correspond to the generating
triplet (0, ν,0).

Theorem 5.3. Assume that (C3) holds with α3 ≥ 1 and A = 0. Suppose there is a1 ∈ (0,1] such
that

a1ν(dx) ≤ N(dx),

and a2 ∈ [1,∞) such that for every |x| > 1/T3,

Re
[
�(x)

] ≤ a2 Re
[
�ν(x)

]
.

Then for all T , θ > 0 there is a constant c̃ = c̃(d,α3, c3, T3, a1, a2, ν, T , θ) > 0 such that for all
0 < t < T and |x| ≤ θh−1

ν (1/t),

p(t, x + tb[h−1
ν (1/t)]) ≥ c̃

[
h−1

ν (1/t)
]−d

.

If T3 = ∞, then we can take T = ∞ with c̃ > 0.

Proof. Consider the decomposition of Y introduced in Section 4. Then the proof is the same as
that of Theorem 5.2, only the justification of Step 10. is different, because instead of using the
symmetry of ν we take advantage of the assumption that α3 ≥ 1.

Step 10. Let a0 be taken from Lemma 4.2. We show that for every r, r1 > 0,

inf
μ∈X (T3,a0,r)

μ(Br1) = cst10 > 0,
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with cst10 = cst10(T3, a0, a1, r, r1, ν). Let μn, μ0 and g0(x) be like in Lemma 4.7. We denote
by �n(x) and �0(x) the characteristic exponents corresponding to μn and μ0. By [34], (8.11),
we have that Re[�n(x)] converges to Re[�0(x)] and �∗

n converges to �∗
0 . Since Re[�n(x)] =

t Re[�2.λ(x/λ)] and �∗
n(r) = t�∗

2.λ(r/λ), by Lemma 4.3 we get that (C3) holds for �0 with
T0 = cp2 , c0 = c0(c3, a1, a2) and α0 = α3 ≥ 1. If it happens that �0 has non-zero Gaussian part,
then Lemma 3.4 guarantees that the support of the measure μ0 equals Rd , which ends the proof
in that case. Suppose that �0 has zero Gaussian part and denote by N0(dz) the corresponding
Lévy measure. We will justify that for every x ∈ R

d , x �= 0,∫
|z|<1

∣∣〈x, z〉∣∣N0(dz) = ∞. (11)

Let 
1 be a projection on a subspace spanned by x/|x|. Then∫
|z|<1

∣∣〈x/|x|, z〉∣∣N0(dz) ≥
∫

|
1z|<1
|
1z|N0(dz) − N0

(
Bc

1

) =
∫

|z|<1
|z|N1(dz) − N0

(
Bc

1

)
,

where N1(dz) is a Lévy measure of an infinitely divisible distribution that is the 
1 projection
of μ0 (see [34], Proposition 11.10). We denote by h1 the concentration function for N1(dz).
By (C3) for �0 and Lemma 3.11 we get (A1) for h1 with αh1 ≥ 1. Then (11) follows from
Lemma 2.9. Finally, by [40], Corollary on page 232, or [36], Theorem 3, the support of μ0 is Rd .
This ends the proof. �

Remark 5.4.

(i) One of the main improvements of Theorem 5.2 and 5.3 in comparison to known results
is that we can arbitrarily choose θ > 0. We take advantage of that in Proposition 6.1.

(ii) The assumption a1νs(dz) ≤ N(dz) of Theorem 5.2 cannot by replaced by a weaker con-
dition a1 Re[�s(x)] ≤ Re[�(x)], because the latter and other assumptions of the theorem
are satisfied for α-stable subordinators (take �s to be the characteristic exponent of the
isotropic α-stable process), but the statement is not true for that process. Namely, if θ > 0
is large enough, then p(t, x + tb[h−1

s (1/t)]) = 0 for some 0 < t < T and x ∈ R satisfying

|x| ≤ θh−1
s (1/t).

(iii) The assumption Re[�(x)] ≤ a2 Re[�s(x)] of Theorem 5.2 holds if a stronger condition
N(dz) ≤ a2νs(dz) is satisfied, but the latter is much more restrictive (see also Example 1).

(iv) It is essential for applications in forthcoming papers that constants in the results of The-
orems 5.2 and 5.3 are uniform for the whole class of Lévy processes if only certain
parameters do not change.

6. Examples and applications

We apply Theorem 5.2 to a Lévy process Y in R
d which is the sum of the (symmetric) cylindrical

α-stable process and any arbitrarily chosen independent α-stable process α ∈ (0,2).



Lévy processes: Concentration function and heat kernel bounds 3219

Example 1. Let b ∈R
d and define N(dz) = νs(dz) + νa(dz), where for α ∈ (0,2),

νs(dz) =Aα

d∑
k=1

|zk|−1−α dzk

d∏
i=1
i �=k

δ{0}(dzi), z = (z1, . . . , zd),

and

νa(B) ≈
∫

S

λ(dξ)

∫ ∞

0
1B(rξ)

dr

r1+α
, B ∈ B

(
R

d
)
. (12)

Here Aα = 2α�((1 + α)/2)/(π1/2|�(−α/2)|), S = {x ∈ R
d : |x| = 1} and λ is a finite measure

on S. Then Theorem 5.2 applies to a Lévy process Y with the generating triplet (0,N,b). Indeed,
first note that νs is a special case of νa with λ having properly chosen atoms on the sphere and

ha(r) ≈ r−αλ(S), r > 0. (13)

Therefore, by νs(dz) ≤ N(dz) and (1) we get

d−α/2|x|α ≤ |x1|α + · · · + |xd |α = Re
[
�s(x)

] ≤ Re
[
�(x)

] ≤ �∗(x) ≤ 2h
(
1/|x|) ≤ c|x|α,

for c that depends only on α and λ. This shows that the assumptions of Theorem 5.2 are satisfied.
In particular (C3) holds and T3 = ∞. We emphasize that for such N one can rarely expect to have
N(dz) ≤ cνs(dz) for some constant c. The latter as an assumption would dramatically reduce
admissible measures λ.

It has been announced in the introduction that any α-stable process α ∈ (0,2) in one dimension
satisfies (C3). It follows from Remark 3.2 and (13).

Example 2. Let d = 1 and Y be a Lévy process with the generating triplet (0,N,0), where

N(dx) = |x|−21x<0 dx.

Note that N(dx) is of the form (12) with α = 1 and λ(dξ) = δ{−1}(dξ), that is, Y is a (one-sided)
1-stable process. Then

P
(
Yt ∈ (−∞,0)

) −→ 0, as t → 0+.

Indeed, using the notation of [14], Theorem 1, we have M(x) = T (x) = −D(x) = x−1, A(x) =
−1 − ln(x) and U(x) = 2x. Thus, A(x)/

√
U(x)M(x) → +∞ as x → 0+.

The above example explains a restriction to α3 > 1 in the following result.

Proposition 6.1. Assume that (C3) holds with α3 > 1.

(i) For all T , θ > 0 there is a constant c̃ = c̃(d,α3, c3, T3,A,N,T , θ, |b|) such that for all
0 < t < T and |x| ≤ θh−1(1/t),

p(t, x) ≥ c̃
[
h−1(1/t)

]−d
.
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(ii) For λ > 0 let

Cλ = {
x ∈R

d : xd > λ|x̃|, x̃ = (x1, . . . , xd−1,0)
}
.

For every T > 0 there is a constant c = c(d,α3, c3, T3,A,N,T , |b|, λ) such that for every
orthogonal matrix O and for all 0 < t < T ,

P(Xt ∈ OCλ) ≥ c > 0.

Proof. Let A = 0. By Remark 2.12 and Corollary 2.11 there is θ1 = θ1(d,α3, c3, T3, h,T ) such
that t |b[h−1(1/t)] − b| ≤ θ1h

−1(1/t) for all t < T . Using Remark 2.12 and (A2) we also get
for θ2 = θ2(c3, T3, h,T , |b|) and all t < T , that |tb| ≤ θ2h

−1(1/t). Let |x| ≤ θh−1(1/t). Then
x̄ = x − tb[h−1(1/t)] satisfies |x̄| ≤ θ̄h−1(1/t) for all t < T with θ̄ = θ + θ1 + θ2. By Theorem 5.3
with ν = N and a1 = a2 = 1 there is c̃ = c̃(d,α3, c3, T3,N,T , |b|) so that

p(t, x) = p(t, x̄ + tb[h−1(1/t)]) ≥ c̃
[
h−1(1/t)

]−d
.

Finally,

P(Xt ∈ OCλ) ≥
∫

OCλ∩B
h−1(1/t)

p(t, x) dx ≥ c̃
[
h−1(1/t)

]−d |OCλ ∩ Bh−1(1/t)| = c > 0.

Similarly, if A �= 0, we use comparability of h(r) and r−2, replace h−1(1/t) by
√

t and apply
Proposition 5.1. �

Define the first exit time from an open set D by τD = inf{t > 0 : Xt ∈ Dc}.

Corollary 6.2. Assume that (C3) holds with α3 > 1. Let an open and bounded set D ⊂R
d have

the outer cone property. Then every point from Dc is regular for D, that is, Px(τD = 0) = 1 for
every x ∈ Dc.

Proof. By the right continuity of paths Xt we may and do assume that x ∈ ∂D. We have
P

x(τD ≤ t) ≥ P
x(Xt ∈ Dc) for every t > 0. By the outer cone property and Proposition 6.1

we get Px(τD ≤ t) ≥ c, t < T . This implies that Px(τD = 0) ≥ c > 0. Applying Blumenthal’s
0 − 1 law ends the proof. �
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