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Area anomaly in the rough path Brownian
scaling limit of hidden Markov walks
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We study the convergence in rough path topology of a certain class of discrete processes, the hidden Markov
walks, to a Brownian motion with an area anomaly. This area anomaly, which is a new object, keeps track of
the time-correlation of the discrete models and brings into light the question of embeddings of discrete pro-
cesses into continuous time. We also identify an underlying combinatorial structure in the hidden Markov
walks, which turns out to be a generalization of the occupation time from the classical ergodic theorem in
the spirit of rough paths.
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1. Introduction

1.1. The context

Rough paths theory was introduced by T. Lyons in 1998 (see, for example, Lyons [16], Lyons,
Caruana and Levy [17]) in order to provide a deterministic setting to stochastic differential equa-
tions (SDEs) of the type

dyt = f (yt )[dxt ],
where (yt )t is a path in a finite-dimensional vector space V ′, (xt )t is a path in another finite-
dimensional vector space V with Hölder regularity α < 1 (which is often the case for stochastic
processes) and f : V ′ → Hom(V,V ′) is a smooth map. Whenever the classical Young integra-
tion (Young [19]) fails (which is the case for α < 1/2), paths may be lifted (in a non-unique
way) to a larger more abstract space, the rough path space, for which existence, uniqueness and
continuity of the solution map hold and become easier to prove.

The rough path space of level k ≥ 1 corresponds to paths with values in

T
(k)
1 (V ) = V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗k

and a finite-variation path x : [0, T ] → V is lifted to a path S(γ ) : [0, T ] → T
(k)

1 (V ), called the
step-k signature of the path, through the formulae:

S(x)(t) = (
S1(x)(t), . . . , Sk(x)(t)

)
,
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Sj (x)(t) =
∫

0<s1<···<sj <t

dxs1 ⊗ dxs2 ⊗ · · · ⊗ dxsj .

The coefficients of the signature satisfy a set of algebraic relations (shuffle product and concate-
nation product) and of analytic bounds (depending on the Hölder regularity 1/2 < α of x), which
will be detailed below. For a regularity α < 1/2, some of the integrals above are not well-defined
any more but the algebraic relations and the analytic bounds are kept as a new definition of the
signature, and therefore also defines formally the iterated integrals.

Some examples of rough paths. The space of rough paths of level 2, for example, contains the
enhanced Brownian motion (Friz and Victoir [9], Breuillard, Friz and Huesmann [4])

t �→ (
Bt , (1/2)Bt ⊗ Bt + A

Lévy
t

)
, (1)

where (Bt )t is a V -valued Brownian motion and A
Lévy
t its Lévy area (with values in V ∧V ). The

Brownian motion has regularity 1/2− and its Lévy area is defined through the usual stochastic
calculus by

A
Lévy
t = 1

2

∫
0<s1<s2<t

(dBs1 ⊗ dBs2 − dBs2 ⊗ dBs1),

where the stochastic integration may be either in the Itô or Stratonovich sense.
The space of rough paths also contains less trivial objects such as two-dimensional area bub-

bles (Lejay and Lyons [13]), defined as the limit signature of the sequence of paths

xn(t) = 1√
n

(
cos(nt), sin(nt)

)
,

which turns around (0,0) faster as n increases. The signature is given by ((0,0), (t/2)e1 ∧ e2)

(where (e1, e2) is the canonical basis of R2): the first level is constant at (0,0), which corresponds
to a constant path at (0,0), whereas the second level corresponds to an accumulation of area at
constant speed. This shows that the rough path space contain more information than the usual
path space about the microscopic structure of approximations.

A quick look at the rough path space also shows that a combination of the two previous exam-
ples, that is, the signature

S(B)(t) = (
Bt , (1/2)Bt ⊗ Bt + A

Lévy
t + t�

)
, (2)

where (Bt ) is a two-dimensional Brownian motion and � is a fixed element of V ∧ V , is a valid
rough path. From the point of view of stochastic integration however, this object is new since the
construction of the Lévy area does not depend on the choice of Itô or Stratonovich integration
and thus the � term is not an artefact of the choice of the stochastic integral. Thus, one may
wonder whether this type of objects is relevant for applications and continuous time limits of
discrete models.
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Continuous time limit of discrete models in the rough path space: Existing results. A first result
is the generalization of Donsker theorem for i.i.d. random variables by Breuillard et al. [4],
which, without surprise, gives the convergence in rough path topology to the enhanced Brownian
motion (1) under suitable finite moment hypotheses.

A first result of convergence to (2) with non-zero � was obtained in Lopusanschi and Simon
[15]. It relies mostly on a geometric construction of periodic graphs and a non-reversible random
walk dynamics on the graph. The idea is the following: at the scale of the period of the graph, the
dynamics looks like the one of a random walk but, at the smallest scale of the periodic pattern,
windings may occur and contribute to the area anomaly �.

The generalization to hidden Markov walks. The present paper presents a much more general
construction of discrete time models converging to (2) in the rough path topology. In particular,
the construction does not rely anymore on geometric properties, is purely probabilistic and the
emergence of a non-zero � relies only on probabilistic short time correlations of the discrete time
model.

Many discrete models may enter the present settings and exhibit a non-zero area anomaly in
the limit. It was indeed a surprise to us that no such result have been previously considered in
the literature, despite the vast literature about stochastic integration, continuous-time limits and
rough paths.

The motivation for considering hidden Markov walks as defined below is multiple. When
considering limits such as (2), it is very tempting to consider ad hoc models obtained by a dis-
cretization of the limit but it does not shed any new light on the model and one of our purposes
was to avoid such an approach. The central limit theorem and its process extension, Donsker
theorem, show that obtaining anomalous behaviour around a normal law/Brownian motion from
Markov models requires a fine tuning of the correlations at the discrete level. This is precisely
what the present paper describes through hidden Markov walk.

Moreover, hidden Markov walks are simple objects from the point of view of numerical sim-
ulations and thus the present construction may lead to interesting discrete approximations, as for
example in Davie [7], Liu and Tindel [14].

Finally, the proofs of the results presented below introduce new objects in the study of discrete
time Markov chains: iterated occupation times, which are a discrete analogue of iterated integrals
and signature of the rough path theory. These iterated occupation times satisfy algebraic relations,
such as quasi-shuffle and concatenation, and are of independent interest in the general theory of
Markov chains.

1.2. Formulation of the results

1.2.1. Hidden Markov walks and the first theorem

We first define the discrete time model we will consider throughout the paper and we choose to
call it hidden Markov walk, which is a particular case of hidden Markov chain as introduced in
Baum and Petrie [2].

Definition 1.1 (Hidden Markov walk). Let E be a countable set and V a finite dimensional
real vector space. A hidden Markov walk is a process (Rn,Xn)n∈N on E × V such that:
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1. the process (Rn)n∈N is a Markov chain on E;
2. conditionally on the process (Rn), the increments Fn = Xn+1 − Xn are independent and

have marginal laws such that, for any Borel set A of V , any n ∈N and any r ∈ E, it holds:

P
(
Fn ∈ A|σ(R)

) = P(Fn ∈ A|Rn), (3)

P(Fn ∈ A|Rn = r) = P(F1 ∈ A|R1 = r). (4)

The process (Rn,Fn)n∈N corresponds to the usual definition of a hidden Markov chain. The
additional vector space structure of V allows one to consider the (Fn) as increments and to add
them to obtain the process (Xn).

A classical way of embedding the discrete process (Xn)n∈N in continuous time is the so-called
Donsker embedding.

Definition 1.2 (Donsker embedding). Let N ∈ N and V be a vector space. Let (xn)0≤n≤N be a
V -valued sequence. The Donsker embedding ιN (x) is the path ιN (x) : [0,1] → V such that, for
any 0 ≤ k < N and any s ∈ [0,1],

ιN (x)

(
(1 − s)

k

N
+ s

k + 1

N

)
= (1 − s)xk + sxk+1,

which interpolates linearly between the (xn) and accelerate time by a factor N .

We also define, for any real number s > 0, the dilation operators:

δs : T (n)
1 (V ) → T

(n)
1 (V ),

u1 ⊗ · · · ⊗ ul �→ sl(u1 ⊗ · · · ⊗ ul),

where the (ui)1≤i≤l are vectors of V and l an integer smaller than n.
We may now state our first theorem of convergence to an anomalous enhanced Brownian

motion. The precise definition of the topological rough paths space Cα([0,1],G2(V )) is given in
Section 2.1.

Theorem 1.1. Let (Rn,Xn)n∈N be a hidden Markov walk on E×V such that, for a fixed r0 ∈ E,

(i) X0 = 0 a.s. and R0 = r0 a.s.
(ii) the Markov chain (Rn) is irreducible and positive recurrent, with invariant probability ν,

and the first return time

T1 = inf{n ≥ 1;Rn = R0} (5)

has finite moments of all orders.
(iii) the increments Fn = Xn+1 − Xn satisfy, for all p ∈ N,

sup
r∈E

E
[‖F1‖p|R1 = r

]
< ∞ (6)
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(iv) the walk (Xn) is centred, that is satisfies∑
r∈E

ν(r)E[F1|R1 = r] = 0V . (7)

Then, for any 1/3 < α < 1/2, the sequence of G2(V )-valued continuous time processes (δN−1/2 ◦
S ◦ ιN (X)(t))t∈[0,1] (where S is the signature of the path) converges in law in the rough path
topology of C0,α-Höl([0,1],G2(V )) to the enhanced Brownian motion (as defined in (2)) with
covariance matrix C and anomalous area drift �. Moreover, the limit law does not depend on
the choice of the initial law of R0.

Explicit formulae for C and � are presented in (29), (30), (45a) and (45b).

The enhanced Brownian motion obtained in the limit is not the standard one, with identity
covariance matrix and zero area drift, but has a covariance E[B(i)

t B
(j)
t ] = Cij t and an area

E[A(ij)
t ] = t�ij (the standard Lévy area is centred). As detailed during the proof of the theo-

rem and in Section 2.3.2, the main ingredient for the existence of a non-zero �ij is the fact that
the area covered during one excursion of the Markov chain (Rn) may be not centered and we
have:

Er0

[
A

(ij)
T1

] = �ijEr0[T1], (8)

where T1 is the length of the excursion ans A
(ij)
T1

is the area covered by the discrete walk Xn

between 0 and T1.
The first hypothesis is not restrictive at all since there is global translation invariance. The

irreducibility of (Rn) is not restrictive since one may always restrict E to one of its irreducible
component. The hypotheses of positive recurrence and of finite moments of T1 are important
for the proofs but are trivially satisfied whenever E is finite. The hypothesis on the moments
of the increments is already required in Breuillard, Friz and Huesmann [4] to obtain rough
path convergence of random walks. The assumption on centring is not restrictive: the centring
is important to describe TCL-like fluctuations around the law-of-large-number asymptotics of
Xn.

1.2.2. Iterated occupation times

Definition and basic algebraic properties. The proof of Theorem 1.1 uses extensively condi-
tional expectations with respect to the process σ(R) and the hidden Markov structure reduces
iterated integrals with values in tensor products of the space V to combinatorial quantities re-
lated to the single process (Rn)n∈N. It appears that these combinatorial quantities also have a
nice algebraic structure and interesting asymptotics.

Definition 1.3 (Iterated occupation time of a sequence). Let E be a set and let (xn)0≤n<N be
a sequence of elements of E. For any k ≥ 1 and any sequence u = (u1, . . . , uk) ∈ Ek , the iterated
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occupation time of (xn) at u is defined as:

Lu(x) = card
{
(i1, . . . , ik) ∈ {0, . . . ,N − 1}k;

i1 < i2 < · · · < ik and xi1 = u1, xi2 = u2, . . . , xik = uk

}
(9)

and, if k = 0, the empty sequence is noted ε and by convention Lε(x) = 1.

For k = 1, Lu(x) counts the number of times the sequence x visits u, hence the name of
iterated occupation times for larger k. Another writing of (9) makes the relation with iterated
integrals clearer:

Lu(x) =
∑

0≤i1<···<ik<N

1xi1=u1 · · ·1xik
=uk

. (10)

The iterated sum structure endows the iterated occupation times with both a concatenation struc-
ture and a quasi-shuffle structure.

Property 1.1 (Concatenation structure). Let (xn)0≤n<N be a finite sequence of elements of E

of length N . Let u = (u1, . . . , uk) ∈ Ek for some k. Let M be an integer smaller than N . Then it
holds

Lu1···uk
(x) =

k∑
p=0

Lu1···up

(
(xn)0≤n<M

)
Lup+1···uk

(
(xn)M≤n<N

)
, (11)

where, by convention, Lε(x) = 1 for ε the zero length sequence.

The quasi-shuffle property requires some additional combinatorial definitions. There are vari-
ous approaches to quasi-shuffles and the interested reader may refer to Hoffman [11], Hoffman
and Ihara [12] for more results on this notion.

Definition 1.4 (Quasi-shuffle product). Let E be a set and let A(E) be the algebraic direct sum

A(E) =
⊕
k≥0

⊕
u∈Ek

Ru

(for k = 0, the empty sequence is written ε) endowed with the shift operators a · u defined for
a ∈ E and u = (u1, . . . , uk) ∈ Ek by

a · u = (a,u1, . . . , uk).

The quasi-shuffle product is defined recursively on the canonical basis by:

ε ε = ε,

(a · u) ε = a · u,

ε (b · v) = b · v,
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(a · u) (b · v) = a · (u (b · v)
) + b · ((a · u) v

)
,

+ 1a=ba · (u v)

and extended to A(E) by linearity.
To any finite sum a = ∑

p cpup with elements up ∈ ⋃
k Ek , the definition of the iterated

occupation time Lu(x) of a sequence is extended by:

La(x) =
∑
p

cpLup(x) (12)

and is thus a linear application A(E) →R.

When the sequences u1 and u2 have no element in common, the set of quasi-shuffles u1 u2
is equal to the classical shuffle of the two sequences. We now express the fact that the linear map
L• : A(E) →R is a morphism of algebra for the quasi-shuffle product.

Proposition 1.1. Let (xn)0≤n<N be a finite sequence of elements of E. For any k, l ≥ 1 and any
sequences u = (u1, . . . , uk) ∈ Ek and v = (v1, . . . , vl) ∈ El , it holds:

Lu(x)Lv(x) = L
u v

(x), (13)

where the r.h.s has to interpreted in A(E) through the extension (12).

Checking the following identity for k = l = 1 is left as a warm-up exercise for the complete
proof in Section 2.3.1

L(u1)(x)L(v1)(x) = L(u1v1)(x) + L(v1u1)(x) +
{

L(u1)(x) if u1 = v1,

0 else.

The replacement of shuffles of iterated integrals by quasi-shuffles of iterated sums is related to the
fact that the Lebesgue measure puts zero mass on singlets nor on d − 1-dimensional subspaces
of Rd .

From hidden Markov paths to iterated occupation times. As announced, the Definition 1.1 of
hidden Markov walks fits nicely with the framework of iterated occupation times.

Property 1.2. Let (Rn,Xn) be a hidden Markov walk on E × V . Let N ∈ N and XN : [0,1] →
V be the piecewise linear path XN = ιN (X). Then, under suitable integrability hypothesis for
the existence of the conditional expectation, there exist deterministic coefficients (fu)u∈E in V ,
(cu)u∈E in V ⊗ V and (bu,v)u,v∈E in V ⊗ V such that

E

[∫ 1

0
dXN(s)|σ(R)

]
=

∑
u∈E

fuLu

(
(Rn)0≤n<N

)
,
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E

[∫
0<s1<s2<1

dXN(s1) ⊗ dXN(s2)|σ(R)

]
=

∑
u∈E

cuLu

(
(Rn)0≤n<N

)
+

∑
(u,v)∈E

bu,vLuv

(
(Rn)0≤n<N

)
and more generally such decompositions on iterated occupation time hold for higher iterated
integrals.

One checks that iterated integrals of level two are mapped to iterated occupation times of both
level one and level two: the absence of coherent grading is related to the fact that iterated integrals
satisfy a shuffle property whereas iterated sums satisfy only a quasi-shuffle property.

Description of C and �. There are explicit expressions for the deterministic coefficients C and
� of Theorems 1.1 and 1.2 that are easy to derive but that we choose to skip here. Section 2.3.2
is dedicated to such computations giving in particular explicit expressions relating iterated occu-
pation times with C and �.

Generalized ergodic theorem for iterated occupation times. Following the same type of proof
as in Section 2.2 based on excursion theory of Markov chain, one can prove the following asymp-
totic property.

Proposition 1.2. Let (Rn)n∈N be a Markov chain on a countable space E such that it
is irreducible and positive recurrent, with invariant probability ν. Then, for any sequence
(u1, . . . , uk) ∈ Ek ,

Lu1···uk
((Rn)0≤n<N)

Nk

a.s.,L1−−−−→
N→∞

ν(u1)ν(u2) · · ·ν(uk)

k! . (14)

This result looks uninteresting at first sight and corresponds to the discrete equivalent of the
convergence of δN−1 ◦ S ◦ ιN (X) to a zero limit due to the centring of the increments and the law
of large number. A more interesting asymptotic result for iterated occupation times consists in
considering fluctuations around the a.s. limit (14). This is done partially in Section 2.3.3, even if
it would be interesting to have a more general study of iterated occupation times.

1.2.3. The general question of embeddings

Theorem 1.1 already encompasses a wide variety of discrete models but we formulate below a
generalization of it by observing the two following facts.

First, the Definition 1.1 of hidden Markov walk requires only that V is a semi-group in order
to build Xn = F0 · F1 · · · · · Fn−1 out of its increments Fn and that it embeds nicely in G2(V ) in
order to formulate the theorem.

Besides, the choice of Donsker embedding is particular since it is one of the simplest embed-
dings one may consider on V but one may choose more useful embeddings if the discrete model
already has its own geometrical embedding (see, for example, the round-about model described
in Section 1.3).
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We thus generalize the Definition 1.1 to the case of general embeddings.

Definition 1.5. Let E be a countable set and V a finite-dimensional vector space. A hidden
Markov path ((Rn,Fn)n∈N, (Xt )t∈R+) with regularity α is a process such that:

(i) the process (Rn)n∈N is a Markov chain on E;
(ii) the r.v. Fn have values in C0,α-Höl([0,1],G2(V ))

(iii) conditionally on the process (Rn), the increments Fn are independent and have marginal
laws such that, for any Borel set A, any n ∈N and any r ∈ E,

P
(
Fn ∈ A|σ(R)

) = P(Fn ∈ A|Rn), (15)

P(Fn ∈ A|Rn = r) = P(F1 ∈ A|R1 = r) (16)

and moreover Fn(0) = 0G2(V ) a.s.;
(iv) the process (Xt ) is obtained by concatenating the increments Fn, that is, for any n ∈ N,

for any t ∈ [n,n + 1[,

Xt = F0(1) · · ·Fn−1(1) · · ·Fn(t − n), (17)

where · is the product in G2(V ).

Given this generalized definition, Theorem 1.1 admits the following generalization.

Theorem 1.2. Let E be a countable set and V a finite-dimensional vector space. Let r0 ∈ E. Let
((Rn,Fn)n∈N, (Xt )t∈R+) be a hidden Markov path such that:

(i) X0 = 0G2(V ) a.s. and R0 = r0 a.s.
(ii) the Markov chain (Rn) is irreducible and positive recurrent, with invariant probability ν,

and the first return time T1 = inf{n ≥ 1;Rn = R0} has finite moments for all integer p:

Er0

[
T

p

1

]
< ∞ (18)

(iii) the increments Fn take values in
⋂

1
3 <β< 1

2
C0,β-Höl([0,1],G2(V )) and satisfy, for all

p ∈N, the bound

sup
r∈E

sup
1
3 <β< 1

2

E
[
dβ(F1,0G2(V ))

p|R1 = r
]
< ∞ (19)

(iv) the walk (Xt ) is centred, that is, satisfies∑
r∈E

ν(r)E
[
π1

(
F1(1)

)|R1 = r
] = 0V , (20)

where π1(u) is the component in V of u ∈ G2(V ) ⊂ V ⊕ (V ⊗ V ).
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Then, for any 1/3 < α < 1/2, the sequence of processes (δN−1/2(XNt ))t∈[0,1] converges in law in
the rough path topology of C0,α-Höl([0,1],G2(V )) to the enhanced Brownian motion (as defined
in (2)) with covariance matrix C and area anomaly � ∈ V ∧ V given in (29) and (30), for any
1/3 < α < 1/2. Moreover, the limit law does not depend on the choice of r0.

In particular, one verifies easily that Theorem 1.1 is a consequence of Theorem 1.2 by choosing
the linear interpolation:

Fn(t) = exp(tFn) = (tFn,0) ∈ V ⊕ (V ∧ V ) � G2(V ) (21)

(see Section 2.1 for the exact definition of the Lie group G2(V )). More generally, hypothesis (19)
is satisfied as soon as the embeddings are smooth or Lipschitz and the increments have finite
moments.

As for Theorem 1.1, the area anomaly � obtained in (45b) is related to the area of the walk
(Xn) covered during one excursion of the process (Rn). There may be now two contributions:
one of them is related to the fact that the Fn may contain an area drift (this is the new part due to
the nonlinear embeddings) and one of them is related to the area produced by correlations during
one excursion.

1.3. Examples and heuristics

We present in this section various models to illustrate the previous theorems. The explicit formu-
lae for C and � are given below in equations (45a) and (45b).

A random walk in C with rotating increments. Let ω = e2iπ/L be a root of unity with L ≥ 3. Let
(Uk)k∈N be a sequence of i.i.d. real random variables with finite moments of all order. Identifying
canonically C with R

2, the process (Xn)n∈N defined by X0 = 0 and, for any n ≥ 1

Xn =
n−1∑
k=0

ωkUk

is a hidden Markov walk. Indeed, one may choose E = Z/LZ and the deterministic dynamics
Rn = n mod L. The increment Fn = ωRnUn depends only on Rn and of r.v. independent of the
process (Rn). The first return time is constant T1 = L and thus E0[T p

1 ] = Lp < ∞. Moreover,
one has the following computations.

E0[XT1 ] =
(

L−1∑
k=0

ωk

)
E[X1] = 0,

Cij = 1

L
E0

[
X

(i)
T1

X
(j)
T1

] = Var(X1)

2
δij ,

� = cos(π/L)

4 sin(π/L)
E[X1]2

(
0 −1
1 0

)
.
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In the present case, the return time has an almost sure value and thus we may improve the proof
of Theorem 1.2 in order to relax the finite moment hypothesis on the Uk .

Spending time turning around. A case described by Theorem 1.2 but not by Theorem 1.1 is
given by the following construction. We fix E = {1,0}. If Rn = 1, then a centred random vector
Un is chosen and the path increment is the straight line:

Fn(t) = (tUn,0). (22)

If Rn = 0, then the path increment is a circle c(t) = r(cos(2πt)− 1, sin(2πt)). The covered area
at time 1 is thus πr2 and Fn(1) = (0,πr2) where R

2 ∧R
2 is identified to R.

The process Rn is a Markov chain with transition matrix

Q =
(

1 − a a

b 1 − b

)
in the basis (1,0). Theorem 1.2 can be applied. An excursion corresponds to the sequence of
states 1 or 100 · · ·0 where the number of 0 is a geometric law (starting at 1) and one obtains:

C = 1

E1[T1]E1[XT1 ⊗ XT1] = b

a + b
E[U1 ⊗ U1],

� = πr2 a

a + b
.

If b goes to zero, one recovers the area bubbles mentioned in the Introduction. If a goes to 0,
there are no circles and one recovers the classical random walk.

Diamond and round-about models: The question of correlations and embeddings. We introduce
two other models that illustrate Theorem 1.2 in Figure 1. Both models have the same space
E = {1,2, . . . ,8}. A value r ∈ E corresponds to a unique type of edges on a Z2-periodic graph. In
both models, the edges have the same increments in the plane R2 but differ by their embeddings:
in the diamond model, all the embeddings are straight lines whereas, in the round-about model,
part of the edges are circle arcs, which cover a non-zero area.

At the end of an arrow, there is exactly two out-coming edges, one plain and one dashed. The
dashed out-coming edge is chosen with probability p and the plain one with probability 1 − p.

If p ≥ 1/2, the walk tends to be trapped in the diamonds/round-abouts and thus accumulates
a covered area, which in the continuous limit, contributes to the area anomaly �. In the diamond
model, all the contributions to � are of these type. In the round-about model, there is an additional
contribution to � corresponding to the area covered by the circle arcs.

2. Mathematical tools and proofs

2.1. The rough path space and its topology

All our notations and definitions follow closely the ones introduced in Breuillard, Friz and Hues-
mann [4] and Friz and Victoir [9] and thus we sketch only the tools needed for the proofs. The
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Figure 1. Diamond (left) and round-about (right) models on Z2-periodic patterns. At each vertex, there is
exactly two incoming and two out-coming edges, one plain and one dashed. The dashed out-coming edge
is chosen with probability p and the plain one with probability 1 − p. The space state E corresponds to
the types of arrow. The difference between the two cases corresponds to the curved dashed arrow: in the
roundabout model, the increment is the same but with an additional covered area.

space G2(V ) is the subset of T
(2)
1 (V ) = V ⊕ (V ⊗ V ) of elements (v,M) such that there exists

a smooth path x : [0,1] → V whose signature S(x)(1) is equal to (v,M). It is easy to see that
G2(V ) is a subgroup isomorphic to V ⊕ V ∧ V since the symmetric part of M has to be equal to
(1/2)v ⊗ v and thus can be skipped from the description. The group law is defined as

(a,A) · (b,B) = (
a + b,A + B + (1/2)(a ⊗ b − b ⊗ a)

)
and the inverse is given by (a,A)−1 = (−a,−A). We define the two canonical projections:

π1 : G2(V ) → V, π2 : G2(V ) → V ∧ V,

(a,A) �→ a, (a,A) �→ A.

The Carnot–Caratheodory norm ‖u‖ of an element u is the infimum of the lengths1 of smooth
paths x such that S(x)(1) = u and it induces a distance on G2(V ) through d(u1, u2) = ‖u1 ·u−1

2 ‖,
making G2(V ) a geodesic space.

Given two smooth paths x1, x2 : [0,1] → V such that x1(0) = x2(0) = 0V , we introduce, for
any α ∈ (1/3,1/2), the distance:

dα(x1, x2) = sup
(s,t)∈[0,1]2

‖S2(x1)(s, t) · S2(x2)(s, t)
−1‖

|t − s|α , (23)

where S2(x)(s, t) = S2(x)(t) · S2(x)(s)−1 is the G2(V )-valued increment of the signature.

1V is assumed to be Euclidean.
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The dα-closure of the set of signatures (S(x)) of smooth paths x at finite distance from the
signature of the constant zero path is the Polish space (for dα)

C0,α-Höl([0,1],G2(V )
)
. (24)

In practice, the study of convergence in law of processes in the topology of this rough path
space is made easier by two useful tools: equivalence of norms and Kolmogorov–Centsov tight-
ness criterion. First, there is equivalence of norms on G2(V ) between the Carnot–Caratheodory
norm ‖(a,A)‖ defined through geodesics and the norm ‖(a,A)‖′ defined by:

∥∥(a,A)
∥∥′ =

d∑
i=1

∣∣π(i)
1 (a)

∣∣ +
∑

1≤i<j≤d

∣∣π(ij)

2 (A)
∣∣1/2

, (25)

where π
(i)
1 (a) and π

(ij)

2 (A) are the components of a and A in a given basis. Bounding dα(x1, x2)

thus only requires suitable bounds on every coefficient of the components of the paths.
All the tightness criteria required by our theorem deal with 1/3 < α < 1/2 and thus, following

Breuillard, Friz and Huesmann [4], tightness of a sequence of processes ((X(N)(t))t∈[0,1])N≥1 in
a fixed C0,α-Höl([0,1],G2(V )) requires only that there exists p ≥ 1 such that α ≤ (2p − 1)/(4p)

and there exists C such that for any s, t ∈ [0,1], it holds:

sup
N≥1

E
[∥∥X(N)(t) · X(N)(s)−1

∥∥4p] ≤ C|t − s|2p. (26)

2.2. Proof of the convergence theorem and formulae for the anomalous
area drift

In this section, we fix a hidden Markov path ((Rn,Fn)n∈N, (Xt )t∈R+) in G2(V ) satisfying the
hypothesis of Theorem 1.2. The proof of Theorem 1.2 relies on the following steps:

• we cut the trajectories of (Rn) into excursions;
• we then study the convergence of the accelerated geodesic interpolation (X̂t ) of the process

(Xt ) between two successive return times of (Rn);
• we compare the finite-dimensional marginals of the two processes X̂ and X in the limit;
• we prove the tightness of the sequence of processes (X(N))N .

Cutting into independent excursions. The proof of Theorem 1.2 relies on the division of the pro-
cess ((Rn,Fn)n∈N, (Xt )t∈R+) into time windows [Tk,Tk+1) corresponding to excursions of the
Markov process (Rn) (see Norris [18] for a general theory of excursions of Markov processes).

Proposition 2.1. Let (Tk)k∈N be the sequence of excursion times defined by:{
T0 = 0,

Tk+1 = inf{n > Tk;Rn = RTk
}, k ∈N.

(27)
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Then, for any r0 ∈ E, conditionally on {R0 = r0}, the r.v. (F̂k)k∈N1 defined by

F̂k = FTk−1(1) · FTk−1+1(1) · · ·FTk−1(1) (28)

is a sequence of independent and identically distributed G2(V )-valued random variables.

Proof. The recurrence of (Rn) implies that all the Tk are finite a.s. and, from the general theory
of discrete Markov processes, the excursions of the process (Rn) are independent and identically
distributed. Each F̂k is a product of r.v. indexed by times belonging to the same excursion of the
process (Rn) and the hidden Markov structure implies the result. �

Property 2.1 (Moments of F̂1). Under the hypotheses of Theorem 1.2, the r.v. (F̂k)k∈N are
independent and satisfy:

(i) for all p ∈ N and all r0 ∈ E, Er0[‖F̂1‖p] < ∞
(ii) the projection on V are centred and have a finite covariance

Er0

[
π1(F̂1)

] = 0V , Er0

[
π

(i)
1 (F̂1)π

(j)

1 (F̂1)
] = CijEr0[T1] < ∞, (29)

where Cij is symmetric and does not depend on the choice of r0.
(iii) the expectation of the second level is given by

Er0

[
π

(ij)

2 (F̂1)
] = �ijEr0[T1], (30)

where �ij is antisymmetric and does not depend on r0.

Proof. Let p ∈ N be a fixed integer. The first point uses sub-additivity of the norm and the bound
(a1 + · · · + an)

p ≤ np(a
p

1 + · · · + a
p
n ) for positive numbers:

‖F̂1‖p ≤ T
p

1

∑
0≤k<T1

∥∥Fk(1)
∥∥p

,

Er0

[‖F̂1‖p|σ(R)
] ≤ T

p

1

∑
0≤k<T1

Er0

[∥∥Fk(1)
∥∥p|σ(R)

] ≤ T
p+1
1 C

using hypotheses (19) and (18).
The second point uses the classical representation property of invariant measure as marginal of

the excursion measure of additive functionals: for any ν-integrable function f : E → R, it holds∑
r∈E

f (r)ν(r) = 1

Er0[T1]Er0

[ ∑
0≤k<T1

f (Rk)

]
(31)

for any r0 ∈ E. In the present case, we apply this formula to

Er0

[
π1(F̂1)

] = Er0

[ ∑
0≤k<T1

Er0

[
π1

(
Fk(1)

)|Rk

]]
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and use the centring hypothesis (20). C and � do not involve additive functionals (see below Sec-
tion 2.3.2 for more information and explicit formulae), however the independence with respect
with r0 can be proved in the same way as the previous property. �

Convergence of the excursion-geodesic extracted process. Out of the independent G2(V )-
valued r.v. (F̂k), we follow Breuillard, Friz and Huesmann [4] and build the geodesic-interpolated
processes (X̂t ))t∈R+ defined by

X̂t = F̂1 · · · F̂�t� · g(
F̂�t�+1, {t}

)
, (32)

where g : G2(V ) × [0,1] → G2(V ) is defined such that g(u, ·) is the geodesic in G2(V ) joining
0G2(V ) and u. For any real number t , �t� and {t} are respectively its integer and fractional parts.

The relation with the initial process Xt is that, for any k ∈N,

X̂k = XTk
. (33)

However, the sequence of processes (δN−1/2(X̂Nt )) is such that a corrected version of the results
of Breuillard, Friz and Huesmann [4] can be applied and provide the following theorem and
the following lemma. By the word corrected, we mean that Theorem 3 of Breuillard, Friz and
Huesmann [4] should either require also the centering of the π2(ξ i ) in order to have no drift
area or, if not, include an area drift � in the enhanced Brownian motion at the limit. One may
be convinced for example, by considering increments (ξi, a) where ξi is an random increment
in V and a is a constant in V ∧ V . Then W(n)

k/n is given by δn−1/2(eξ1 ⊗ · · · ⊗ eξk ) ⊗ (0, ka/n)

since the last term is central in G2(V ) and converges a.s. to the limit process (0, ta) (using
Slutsky’s lemma, one has convergence to the anomalous enhanced Brownian motion). The proof
of Theorem 3 of Breuillard, Friz and Huesmann [4] remains unchanged: the use of Stroock–
Varadhan theorem is still valid but identifies a non-zero additional drift term in V ⊗ V . The
tightness criterion remains the same up to recentering of the area, which is costless. An alternative
way of identifying this drift term is present in Chevyrev [6] in a more general context and with a
precise description of all the terms.

Theorem 2.1 (From Breuillard, Friz and Huesmann [4]). Let ((Rn,Fn)n∈N, (Xt )t∈R+) be a
hidden Markov path in G2(V ) satisfying the hypothesis of Theorem 1.2 and let 1/3 < α < 1/2.
Let β = 1/Er0[T1]. The sequence of processes ((δN−1/2(X̂Nβt )t∈[0,1])N∈N∗ converges in distri-
bution in the space C0,α-Höl([0,1],G2(V )) to the enhanced Brownian motion with covariance
matrix C and area anomaly � given in Property 2.1. Moreover, the limit law does not depend on
r0.

We emphasize that the dependence on r0 in the construction of X̂k is due to the construction
of the excursions of the process (Rn) and of their length T1: the independence of C and � in
Property 2.1 requires a normalization by Er0[T1], which is included in the previous theorem
as a slow-down of the time scale. This can be also seen in eq. (33), using the a.s. asymptotic
equivalent Tk � E[T1]k.
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Useful bounds on products of increments F̂n.

Lemma 2.1 (From Breuillard, Friz and Huesmann [4]). For all integer p ≥ 1, there exists
C′

p > 0 such that, for any integers n < m, the following bound holds:

E
[‖F̂n · F̂n+1 · · · F̂m−1‖4p

] ≤ Cp(m − n)2p. (34)

This lemma inherited directly from Breuillard, Friz and Huesmann [4] corresponds to equa-
tion (∗) of Breuillard, Friz and Huesmann [4] and its proof relies on the centering of the r.v.
π

(i)
1 (F̂n) and a equivalence of ‖ · ‖ with a norm which is a polynomial in the components of F̂n.
However, this lemma is not precise enough for our purposes because of the fluctuations of the

time scale between X̂Nβt and the process XNt (more precisely Tk/k → E[T1] only asymptoti-
cally) and we need the following improved maximal version of the previous lemma.

Lemma 2.2. For all integer p ≥ 1, there exist C′
p > 0 such that, for any integers n < m, the

following bounds hold:

E

[
sup

n≤k≤m−1
‖F̂n · F̂n+1 · · · F̂k‖4p

]
≤ C′

p(m − n)2p, (35)

E

[
sup

n≤k≤l≤m−1
‖F̂k · F̂k+1 · · · F̂l‖4p

]
≤ 24pC′

p(m − n)2p. (36)

Proof. We start with the proof of (35). Using the distance (25), it is enough to prove the existence
of constants Ai and Bij such that:

E

[
sup

n≤k≤m−1

∣∣π(i)
1 (F̂n · F̂n+1 · · · F̂k)

∣∣4p
]

≤ Ai(m − n)2p, (37a)

E

[
sup

n≤k≤m−1

∣∣π(ij)

2 (F̂n · F̂n+1 · · · F̂k)
∣∣2p

]
≤ Bij (m − n)2p (37b)

for any 1 ≤ i, j ≤ d . By definition of G2(V ), we have:

π
(i)
1 (F̂n · F̂n+1 · · · F̂k) =

k∑
l=n

π
(i)
1 (F̂l),

π
(ij)

2 (F̂n · F̂n+1 · · · F̂k) =
k∑

l=n

π
(ij)

2 (F̂l)

+
∑

n≤l1<l2≤k

(
π

(i)
1 (F̂l1)π

(j)

1 (F̂l2) − π
(j)

1 (F̂l1)π
(i)
1 (F̂l2)

)
.

The r.v. π(i)
1 (F̂l) are i.i.d. centred random variable and thus the sequence (M

(1)
k )k≥n of r.v. M(1)

k =∑k
l=n π

(i)
1 (F̂l) is a martingale and Doob’s maximal inequality gives the first bound (37a) since

E[(M(1)
m−1)

4p] ≤ A′
i (m − n)2p .
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We introduce now a(ij) = E[π(ij)

2 (F̂1)] and observe that, if M
(2)
k = π

(ij)

2 (F̂n · · · F̂k) − (k −
n)a(ij), (M

(2)
k )k≥n is also a martingale since both (

∑k
l=n(π

(ij)

2 (F̂l) − a(ij)))k≥n and( ∑
n≤l1<l2≤k

(
π

(i)
1 (F̂l1)π

(j)

1 (F̂l2) − π
(j)

1 (F̂l1)π
(i)
1 (F̂l2)

))
k≥n

are martingales. Moreover, it holds:∣∣π(ij)

2 (F̂· · · · F̂k)
∣∣2p ≤ 22p

(∣∣a(ij)
∣∣2p

(k − n)2p + M
2p
k

) ≤ C1(m − n)2p + M
2p
k .

Using again Doob’s maximal inequality, we are left to prove

E
[(

M
(2)
m−1

)2p] ≤ C2(m − n)2p, (38)

which can be done by direct computation. Hence we obtain eq. (37b).
The proof of (36) is obtained by the norm subadditivity through the following inequality for

n ≤ k ≤ l ≤ m

‖F̂k · · · F̂l‖4p = ∥∥(F̂n · · · F̂k−1)
−1 · (F̂n · · · F̂l)

∥∥4p

≤ 24p
(‖F̂n · · · F̂k−1‖4p + ‖F̂n · · · F̂l‖4p

)
.

Using then (35) gives directly (36). �

Useful bounds on the renewal process (Tk)k∈N. The sequence of excursion times (Tk)k∈N is a
renewal process on N (see Asmussen [1] for a good introduction). We introduce, for any x ∈ R+,
the integer-valued random variable K(x) defined by

K(x) = max{n ∈N;Tn ≤ x}.
This is the unique integer K(x) such that TK(x) ≤ x < TK(x)+1. The proofs below require de-
viation estimates of K(x) − βx with β = 1/E[T1] as well as moment estimates on increments
TK(x)+1 − TK(x). We emphasize on the inspection paradox: although Tn+1 − Tn has the same
law as T1, TK(x)+1 − TK(x) is stochastically larger than T1. However, in our case, the following
property still holds.

Proposition 2.2. Let (Tk) be a renewal process such that the (Tn+1 − Tn)n∈N are i.i.d. and there
exists P ∈ N such that, for all p ≤ P , E[T p

1 ] < ∞. Then, for all p ≤ P − 1, there exists Cp > 0
such that, for all x ∈ R+,

E
[
(TK(x)+1 − TK(x))

p
] ≤ Cp < ∞.

Proof. It is sufficient to prove the result for x integer since K(�x�) = K(x). We introduce the
delay Dj = Tj − Tj−1 for j ≥ 1 and we now decompose the event {DK(x)+1 = n} along the
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values of K(x):

{DK(x)+1 = n} =
⋃
j∈N

{
K(x) = j and Dj+1 = n

}
=

⊔
j∈N

{Tj ≤ x < Tj + n and Dj+1 = n}

=
⊔

x−n<k≤x

⊔
j∈N

{Tj = k and Dj+1 = n}.

We now obtain

P(DK(x)+1 = n) =
∑

x−n<k≤x

∑
j∈N

P(Tj = k and Dj+1 = n).

For fixed j , the r.v. Tj and Dj+1 are independent by construction and Dj+1 has the same law as
T1. We thus obtain

P(DK(x)+1 = n) = P(T1 = n)
∑

x−n<k≤x

∑
j∈N

P(Tj = k)

≤ P(T1 = n)
∑

x−n<k≤x

1 ≤ nP(T1 = n).

The expected uniform finite bounds on the moments of TK(x)+1 − TK(x) is then an easy conse-
quence. �

We will also need the following deviation estimation on the r.v. K(x) for the proof of
Lemma 2.3.

Proposition 2.3. Let (Tk) be a renewal process such that the (Tn+1 −Tn)n∈N are i.i.d. and, there
exists p ∈N, E[T p

1 ] < ∞. Let β = 1/E[T1]. Then, for all real a > 1 and x > 0, it holds:

P
(
K(x) − βx ≥ a

) ≤ Cp

(βx + a)p/2

(a − 1)p
, (39a)

P
(
K(x) − βx ≤ −a

) ≤
⎧⎨⎩Cp

(βx − a + 1)p/2

(a − 1)p
for a ≤ βx,

0 for a > βx.

(39b)

Proof. We first relate the event {|K(x)−βx| ≥ a} to events related to the (Tn) using the equality
{K(x) ≥ n} = {Tn ≤ x}:

P
(
K(x) − βx ≥ a

) = P
(
K(x) ≥ �βx + a�) ≤ P(T�βx+a� ≤ x)

≤ P
(
T�βx+a� −E[T1]�βx + a� ≤ −(a − 1)E[T1]

)
.
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As a sum of independent centered r.v. with finite moments, it holds E[|Tn −nE[T1]|p] ≤ Apnp/2.
Using now Markov inequality produces (39a). The second inequality is obtained in the same way
by considering complementary events:

P
(
K(x) − βx ≤ −a

) ≤ P
(
K(x) ≤ �βx − a�) = P(T�βx−a�+1 > x). �

Comparison of the finite-dimensional marginals of the two processes.

Lemma 2.3. Let β = 1/E[T1] ∈ (0,+∞). Let t ∈ [0,1]. For any ε > 0, it holds:

P
(∥∥δN−1/2(X̂Nβt )

−1 · δN−1/2(XNt )
∥∥ > ε

) N→∞−−−−→ 0. (40)

Using the same argument repeatedly, the same convergence in probability to 0 can be extended
to a family (t1, . . . , tm) and thus, by Slutsky’s lemma, it shows that both processes have the same
finite-dimensional marginal laws.

Proof. The idea behind the lemma comes from eq. (33): the stopping times Tk are asymptotically
equivalent to kE[T1]. The differences between the two processes have two origins: first, the
difference between Tk and kE[T1] and second, the difference between the geodesic interpolation
and the stochastic path Xt .

The two r.v. X̂Ntβ and XNt are given by:

X̂Nβt = F̂1 · · · F̂�Nβt� · g(
F̂�Ntβ�+1, {Ntβ}),

XNt = F̂1 · · · F̂K(�Nt�) · FTK(Nt)
(1) · · ·F�Nt�−1(1) · F�Nt�

({Nt}),
where K(u) is the unique integer such that

TK(u) ≤ u < TK(u)+1.

We then obtain the bound:∥∥X̂−1
Nβt · XNt

∥∥q ≤ 3q
(∥∥g

(
F̂�Nβt�+1, {Ntβ})∥∥q

+ ‖F̂min(K(Nt),�Ntβ�)+1 · · · F̂max(K(Nt),�Ntβ�)‖q

+ ∥∥FTK(Nt)
(1) · · ·F�Nt�−1(1) · F�Nt�

({Nt})∥∥q)
.

The first norm is trivially bounded by ‖F̂�Nβt�+1‖q , which has a finite expectation from Prop-
erty 2.1. The third norm is also easy to bound in expectation:

E
[∥∥FTK(Nt)

(1) · · ·F�Nt�−1(1) · F�Nt�
({Nt})∥∥q |σ(R)

]
≤ (�Nt� − TK(Nt)

)q
�Nt�∑

k=TK(Nt)

E
[
dα(Fk,0G2(V ))

q |Rk

]
≤ A

(�Nt� − TK(Nt)

)q+1 ≤ A(TK(Nt)+1 − TK(Nt))
q+1
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and thus the expectation of the q-th power of the norm is finite from Proposition 2.2 and hypoth-
esis (18).

In order to bound from above the expectation of the second norm, we introduce the sequence
uN = �Nγ � for some real γ > 0 chosen below. We then obtain, using q = 4p and Lemma 2.2:

E
[‖F̂min(K(Nt),�Ntβ�)−1 · · · F̂max(K(Nt),�Ntβ�)‖4p1|K(Nt)−�Ntβ�|≤uN

]
≤ E

[
sup

�Nβt�−uN≤k≤l≤�Nβt�+uN

‖F̂k · · · F̂l‖4p
]

≤ K1u
2p
N .

The event |K(Nt) − �Nβt�| > uN has a small probability for large N . Moreover, the previous
norm contains at most �Nt� terms since K(Nt) ≤ �Nt� and β > 1. We use Lemma 2.2 and
Cauchy–Schwarz inequality to obtain

J (uN) = E
[‖F̂min(K(Nt),�Ntβ�) · · · F̂max(K(Nt),�Ntβ�)−1‖4p1|K(Nt)−�Ntβ�|>uN

]
≤ E

[
sup

1≤k≤l≤�Nt�
‖F̂k · · · F̂l‖4p1|K(Nt)−�Ntβ�|>uN

]
≤ K2N

2p
P
(∣∣K(Nt) − �Ntβ�∣∣ > uN

)1/2
.

Proposition 2.3 for p = 2 immediately gives the following bound for N large enough:

J (uN) ≤ K4
N2p+1/2

uN

.

Collecting all the results with the dilation δN−1/2 gives for 4p + 3 ≤ r

E
[∥∥δN−1/2(X̂Nβt )

−1 · δN−1/2(XNt )
∥∥4p] ≤ A1

N2p
+ K1u

2p
N

N2p
+ K4

N1/2

uN

.

Any choice 1/2 < γ < 1 implies that the expectation tends to zero, hence the convergence in
probability. �

Tightness of the initial process.

Lemma 2.4 (Tightness). Under the hypotheses of Theorem 1.2, the tightness criterion (26) holds
for the sequence of processes (δN−1/2(XNt ))t∈[0,1].

Proof. The proof is similar to the one of the previous lemma. We fix s < t . If �Ns� = �Nt� = j ,
then ∥∥XNs(s)

−1 · XNt(t)
∥∥4p = ∥∥Fj (Nt − Ns)

∥∥4p ≤ dβ(Fj ,0G2(V ))
4p(Nt − Ns)4pβ

for any 1/3 < β < 1/2. Hypothesis (19) gives

E
[∥∥XNs(s)

−1 · XNt(t)
∥∥4p] ≤ C(Nt − Ns)4pβ

for any β < 1/2, hence the bound N2p(t − s)2p by taking β → 1/2.
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If �Ns� < �Nt�, we introduce the event

E = {TK(Ns)+1 < TK(Nt)},

which corresponds to at least one complete excursion separating Ns and Nt . On Ec, we use the
decomposition

X−1
Ns · XNt = (

F�Ns�
({Ns})−1 · F�Ns�(1)

) · F�Ns�+1(1) · · ·F�Nt�−1(1) · F�Nt�
({Nt})

and, on E, we factorize the excursions using the F̂k :

X−1
Ns · XNt = F�Ns�

({Ns})−1 · F�Ns�(1) (41a)

× F�Ns�+1(1) · · ·FTK(Ns)+1−1(1) (41b)

× (F̂K(Ns)+2 · · · F̂K(Nt))) (41c)

× FTK(Nt)
(1) · · ·F�Nt�−1(1) (41d)

× F�Nt�
({Nt}). (41e)

First case: On E. We will use repeatedly the following ordering valid on E:

TK(Ns) ≤ Ns < �Ns� + 1 ≤ TK(Ns)+1 < TK(Nt) ≤ �Nt� ≤ Nt < TK(Nt)+1.

We call I1, I2, I3, I4 and I5 the respective norms of the terms (41a), (41b), (41c), (41d) and
(41e). We then have

∥∥δN−1/2(XNs)
−1 · δN−1/2(XNt )

∥∥4p ≤ 54p

N2p

5∑
k=1

I
4p
k .

Bounding I
4p

1 and I
4p

5 from above uses the distance (23)

‖I1‖4p ≤ dβ(F�Ns�,0G2(V ))
4p

(
1 − {Ns})4pβ

,

‖I5‖4p ≤ dβ(F�Nt�,0G2(V ))
4p

({Nt})4pβ
.

Taking σ(R)-conditional expectation with the bound (19) gives a bound valid for all β < 1/2:

E
[‖I1‖4p|σ(R)

] ≤ C
(
1 − {Ns})4pβ ≤ C(Nt − Ns)4pβ,

E
[‖I5‖4p|σ(R)

] ≤ C
({Nt})4pβ ≤ C(Nt − Ns)4pβ

and thus for β ↑ 1/2 we obtain the expected bound N2p(t − s)2p for E[‖I1‖4p1E] and
E[‖I5‖4p1E].
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The bounds on I2 and I4 are similar and we write down only the one for I2 using again
hypothesis (19):

‖I2‖4p ≤
(TK(Ns)+1−1∑

k=�Ns�+1

dβ(Fk,0G2(V ))

)4p

≤ (
TK(Ns)+1 − �Ns� − 1

)4p
TK(Ns)+1−1∑
k=�Ns�+1

dβ(Fk,0G2(V ))
4p

≤ C
(
TK(Ns)+1 − �Ns� − 1

)4p+1

≤ C(TK(Ns)+1 − TK(Ns))
2p+1(Nt − Ns)2p,

where the last inequality is true on E only. The excursion times have finite moments from Propo-
sition 2.2 and hypothesis (18) and thus:

E
[‖I2‖4p1E

] ≤ C′(t − s)2p. (42)

The bound on I3 can be obtained using Lemma 2.2. Since the number K(Nt) − K(Ns) be-
tween Ns and Nt is necessarily smaller than N(t − s), we have the bound

E
[
I3(Ns,Nt)4p1E

] ≤ E

[
sup

1≤k≤N(t−s)

‖F̂K(Ns)+2 · · · F̂K(Ns)+1+k‖4p
]
.

We call Z(TK(Ns)+1) the positive r.v. in the r.h.s. since it is is a product of r.v. Fj (1) with j ≥
TK(Ns)+1. The filtration (Fn) is defined as Fn = σ((Rk,Fk); k ≤ n). We now have:

E
[
Z(TK(Ns)+1)

] =
∑
p∈N

E
[
Z(Tp+1)1K(Ns)=p

] =
∑
p∈N

E
[
E

[
Z(Tp+1)|FTp+1

]
1K(Ns)=p

]
since the event {K(Ns) = p} = {Tp ≤ Ns < Tp+1} is FTp+1 -measurable. Using the strong
Markov property for the hidden Markov chain (Rn,Fn) and the fact that RTp+1 = r0, we ob-
tain

E
[
Z(TK(Ns)+1)

] =
∑
p∈N

E
[
Z(0)1K(Ns)=p

] = E
[
Z(0)

]
.

We got rid of the dependency on K(Ns) and Lemma 2.2 gives the final inequality

E
[
I3(Ns,Nt)4p1E

] ≤ BN2p(t − s)2p.

Second case: On Ec. On Ec, we have the following ordering:

TK(Ns) ≤ �Ns� ≤ Ns < �Ns� + 1 ≤ �Nt� ≤ Nt < TK(Ns)+2. (43)
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The difference is that the term I3 is absent and I2 and I4 may be combined such that, on Ec:∥∥X−1
Ns · XNt

∥∥4p ≤ 34p
(‖I1‖4p + ‖I24‖4p + ‖I5‖4p

)
,

where I24 = F�Ns�+1(1) · · ·F�Nt�−1(1). The upper bounds on I1 and I5 are the same as in the
previous case. For I24, we have on Ec

‖I24‖4p1Ec ≤ (�Nt� − �Ns� − 1
)4p

�Nt�−1∑
k=�Ns�+1

dβ(Fk,0G2(V ))
4p

and thus now using (19) and the ordering (43) on Ec

E
[‖I24‖4p|σ(R)

]
1Ec ≤ C

(�Nt� − �Ns� − 1
)4p+11Ec

≤ C(Nt − Ns)2p(TK(Ns)+2 − TK(Ns))
2p+11Ec .

Hypothesis (18) then gives the desired bound CE[T 2p+1
2 ] on E[‖I24‖4p1Ec ].

Collecting all the previous bounds gives the expected tightness criterion since all the bounds
are of the form AN2p(t − s)2p . �

Remarks on the hypotheses (18) and (19). Some of the hypotheses of Theorem 1.2 could be
slightly relaxed by improving the previous proof or by considering only a fixed given α < 1/2. In
the case where only one value α < 1/2 is targeted, one could use the same approach as Breuillard,
Friz and Huesmann [4] and require only a finite set of finite moments. However, in practice, one
is often interested to the case α → 1/2. In this case, the finite moments hypothesis on T1 cannot
be relaxed since the variable F̂k are required to have moments of all orders in order to apply the
results of Breuillard, Friz and Huesmann [4]. Only efforts may be made on the requirement (19)
using for example correlations between the length Tk of an excursion and the corresponding
increment F̂k . The bound (19) is not restrictive in practice since it encompasses already the case
where the embeddings Fk are smooth or Lipschitz.

2.3. Iterated occupation times, the quasi-shuffle property and asymptotics

2.3.1. Proof of the quasi-shuffle Property 1.1

Proof. We first prove the following recursive decomposition. If u = u1 ·u′ with u′ = (u2, . . . , uk)

is the concatenation of the length one sequence u1 and the sequence u′, then

Lu1·u′(x) =
∑
0≤i1

1xi1 =u1

( ∑
i1<i2<···<ik≤N

1xi2 =u2 · · ·1xik
=uk

)
=

∑
0≤i1<N

1xi1=u1Lu′
(
(xn)i1+1≤n<N

)
.
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For two sequences u = u1u
′ and v = v1v

′ of length larger than 1, the previous equation gives:

Lu1·u′(x)Lv1·v′(x)

=
∑

0≤i1<j1

1xi1=u11xj1 =v1Lu′
(
(xn)i1+1≤n<N

)
Lv′

(
(xn)j1+1≤n<N

)
+

∑
0≤j1<i1

1xi1=u1 1xj1=v1Lu′
(
(xn)i1+1≤n<N

)
Lv′

(
(xn)j1+1≤n<N

)
+

∑
0≤i

1xi=u11u1=j1Lu′
(
(xn)i+1≤n<N

)
Lv′

(
(xn)i+1≤n<N

)
=

∑
0≤i1

1xi1 =u1Lu′
(
(xn)i1+1≤n<N

)
Lv1v

′
(
(xn)i1+1≤n<N

)
+

∑
0≤j1

1xj1 =v1Lu1u
′
(
(xn)j1+1≤n<N

)
Lv′

(
(xn)j1+1≤n<N

)
+ 1u1=v1

∑
0≤i

1xi=u1Lu′
(
(xn)i+1≤n<N

)
Lv′

(
(xn)i+1≤n<N

)
= L

u1·u′ v1·v′(x)

from the definition of the quasi-shuffle product. The expected result is then obtained from the
previous equation by recursion on the sum of the lengths of u and v by setting for convenience
Lε(x) = 0. �

2.3.2. Relation between C, � and the first iterated occupation times

The covariance matrix C and the anomalous area drift � are obtained in Property 2.1 in terms of
the moments of the law of the i.i.d.r.v. F̂k . It may be interesting to have more explicit formulae
for C and �, since they describe completely the limit law.

To this purpose, we introduce, for all u ∈ E, the following expectation values, which are related
to the conditional law of the Fk and do not depend on the law of the process (Rn)n∈N,

fu = Er0

[
π1

(
F1(1)

)|R1 = u
]
,

cu = Er0

[
π1

(
F1(1)

) ⊗ π1
(
F1(1)

)|R1 = u
] ∈ V � V,

γu = Er0

[
π2

(
F1(1)

)|R1 = u
] ∈ V ∧ V,

where V � V is the symmetric subspace of V ⊗ V . The proof of Proposition 2.1 uses the fact
that the invariant probability of the Markov chain (Rn) satisfies, for any u ∈ E,

ν(u) = Er0[Lu((Rn)0≤n<T1)]
Er0[T1] .
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Using the iterated occupation times, we now define, for any k ∈N, the iterated measure on Ek :

νk,r0(u1, . . . , uk) = Er0[Lu1···uk
((Rn)0≤n<T1)]

Er0[T1] , (44)

which coincide, for k = 1, with ν. For k �= 1, it depends on the initial point r0: this can be seen
for example, in the total mass related to the moments of T1, which depends on the initial point
r0. However, the expression below for C and � do not depend on r0. It would be interesting to
understand in more details the dependence on the initial point, but it is more a question of general
theory of Markov processes than a rough path question.

Property 2.2. The covariance matrix C and the anomalous area drift �, defined in Property 2.1
and appearing in Theorems 1.1 and 1.2 are given by:

Cij =
∑
u∈E

c
(ij)
u ν(u) +

∑
(u,v)∈E2

(
f (i)

u f (j)
v + f

(j)
u f (i)

v

)
ν2(u, v), (45a)

�ij =
∑
u∈E

γ
(ij)
u ν(u) + 1

2

∑
(u,v)∈E2

(
f (i)

u f (j)
v − f

(j)
u f (i)

v

)
ν2(u, v). (45b)

Proof. The proof is left to the reader and uses only the definition of a hidden Markov chain and
the definition of fu, cu, γu, ν and ν2. �

The previous formula (45b) for � shows that there may be two ways of creating a non-zero
�. The first way – which is a bit trivial – uses non-zero contributions γu and corresponds to
path increments Fk which already have a non-zero area π2(Fk(1)) in average: this is the case
for example, in the round-about model of Section 1.3. However, this is impossible in the case of
Theorem 1.1 since geodesics in V are straight lines with zero area.

The second way is much more interesting since it may create a non-zero anomalous area drift
� even in the context of Theorem 1.1: it is based on the ν2 contribution to � in (45b). In particular,
it is absent from Breuillard, Friz and Huesmann [4]: random walks are a particular case of hidden
Markov walk for which E can be chosen to have cardinal 1 and T1 = 1 a.s. and thus νk = 0 for
k ≥ 2. One also checks easily that this term also vanishes for reversible Markov chain (Rn), for
which ν2(u, v) = ν2(v,u) for all (u, v) ∈ E2.

2.3.3. Asymptotic fluctuations of the iterated occupation times and a remark on non-geometric
rough paths

Property 1.2 gives an almost sure limit of the rescaled quantities Lu((Rn))n∈N; however, their
fluctuations are more difficult to describe due to the quasi-shuffle property. We show here how
to handle the question using our previous Theorem 1.2. To make things simpler, we focus on the
case where u is of length at most 2 and E is finite.

We now introduce the following quantities:

L�
u1

(
(Rn)0≤n<N

) =
∑

0≤k<N

(
1Rk=u1 − ν(u1)

) = Lu1

(
(Rn)0≤n<N

) − Nν(u1).
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If E is finite, we introduce the finite-dimensional vector space R
E with its canonical basis

(eu)u∈E . We define the increments F�
k = ∑

u∈E(1Rk=u − ν(u))eu and the walk:

X�
N =

∑
u∈E

L�
u

(
(Rn)0≤n<N

)
)eu. (46)

Property 2.3. The process (Rn,X
�
n)n∈N is a hidden Markov walk in E ×R

E with centred incre-
ments (F �

n ). If (Rn) is irreducible, positive recurrent with finite moments of the first return time
T1, then Theorem 1.1 may be applied to describe the scaling limit of the process.

This implies in particular, without any surprise, that Lu((Rn)0≤n<N)/N has (joint) Gaussian
fluctuations of order N−1/2 around its a.s. limit ν(u). But this also gives result about the second
iterated occupation times Lu1u2((Rn)0≤n<N). To this purpose, we compute explicitly the iterated
integral of the process ιN (X�):

1

N

∫
0<s1<s2<1

dιN
(
X�

)
(s1) ⊗ dιN

(
X�

)
(s2)

= 1

2N

N−1∑
k=0

F�
k ⊗ F�

k + 1

N

∑
0≤k<l<N

F�
k ⊗ F�

l .

The l.h.s. converges in law to B1 ⊗ B1/2 + A
Lévy
1 + �. The first term of the r.h.s. converges a.s.

and thus in law to a deterministic constant by the ergodic theorem. The second term of the r.h.s.
is related to the modified iterated occupation time through:

1

N

∑
0≤k<l<N

F
(u1)
k F

(u2)
l = 1

N

∑
0≤k<l<N

(
1Rk=u1 − ν(u1)

)(
1Rl=u2 − ν(u2)

)
=: 1

N
L�

u1u2

(
(Rn)0≤n<N

)
. (47)

Relating L�
u1u2

to Lu1u2 gives the information about joint fluctuations of the collection of r.v.
Lu1u2((Rn)0≤n<N) and additive functionals of the Lu((Rn)0≤n<N).

Remark on non-geometric rough paths. The construction of the present section is purely combi-
natorial and involves only integer numbers for the indices: one may wonder why integrals of the
Donsker embedding ιN (X�) should be preferred to the choice of iterated sums for the signature
in T 2(V ) (and not G2(V ) any more) such as:( ∑

0≤k<N

F�
k ,

∑
0≤k<l<N

F�
k ⊗ F�

l

)
.

There is indeed no reason to prefer one to another and it may depend on the context. The positive
result is that there is no reason since both constructions differ by a term (1/2)

∑
0≤k<N F�

k ⊗F�
k ,



Area anomaly for hidden Markov walks 3137

which belongs to the center of T 2(V ), is symmetric and whose limit is governed in the present
case by the law of large numbers and is given by (0,Kt) where K is a deterministic symmetric
matrix. This additional term breaks the geometric rough path property but, as emphasized in
exercise 2.14 (page 23) of Friz and Hairer [8] (and remarks disseminated in the corresponding
chapter) or Hairer and Kelly [10], this subtlety does not make a big difference from an analytic
perspective.

3. Some open questions and extensions

We have seen how to build non-trivial rough paths above Brownian motion from very simple and
intuitive processes such as hidden Markov chains. This raises various questions.

A key role in the emergence of a non-zero area anomaly � is played by the short-time correla-
tions of the underlying Markov chain (Rn)n∈N. Exact renormalization on the time scale is due to
the excursion decomposition: it would be interesting to generalize it to more general processes,
such as α-mixing processes as described in Billingsley [3].

On one hand, we have put restrictive hypothesis on the return times T1 and the moments of the
increments Fn, so that the limit belongs to the Brownian universality class. On the other hand,
rough paths structure may also describe Lévy processes as described in Chevyrev [6]. It would
be interesting to build discrete time models that converge to such Lévy processes and contain all
types of admissible anomalies such as �.

The generalization of Theorem 1.1 to Theorem 1.2 uses embeddings. This question of a dis-
crete structure on top of piecewise paths is similar to the theory of piecewise-deterministic
Markov processes (PDMP) in continuous time and it may be interesting to study space-time
renormalized PDMP using the present rough path approach.

Rough paths are a particular case of much more general regularity structures as introduced by
Friz and Hairer [8]. One may expect that such regularity structures may contain a wide class of
anomalies (both in the sense of our area anomaly and in the sense of anomalies in field theory,
that is, a broken symmetry in the discretization or regularization restored by counter-terms in the
continuous limit) and it may interesting to understand them from correlations in discrete models,
as done in the present paper. In particular, anomalous enhanced Brownian motion is a particular
case of translation of rough paths as described in Bruned et al. [5]: the renormalization scheme
described in this reference corresponds to our excursion-based renormalization. It would also be
interesting in this context to introduce branched version of our iterated occupation times.

The other novelty is the introduction of iterated occupation time and the emergence of shuffle
or quasi-shuffle products already at the discrete level. Such products also appear in other domains
of algebra or combinatorics, for example in the theory of multiple zeta values or periods: it would
be interesting to examine whether relevant Markov chains could be related to such theories.
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