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We develop a nonparametric test for deciding whether a semimartingale process, modeling an asset price,
contains a fixed time of discontinuity, i.e., a positive probability of a jump, at a given point in time, and we
further propose a rate-optimal estimator of the jump distribution when this is the case. Itô semimartingales
used commonly in applied work have absolutely continuous in time, with respect to Lebesgue measure,
jump compensators, and this rules out fixed times of discontinuity in their paths. However, certain phenom-
ena, such as scheduled economic announcements in finance, make the existence of such discontinuities a
possibility. The inference in the paper is based on noisy observations of options written on the asset with
different strikes and two different expiration dates. The asymptotics is joint in which the times to maturity
of the options shrink to zero and the number of observed options increases to infinity. The test is based
on estimates of the characteristic function of the increments of the semimartingale, constructed from the
option data, and the fact that the asymptotic limit of the increments and their characteristic functions is
different with and without fixed time of discontinuity. The limit distribution of the test statistic is derived
and feasible inference is developed on the basis of wild bootstrap type techniques. A Monte Carlo and an
empirical illustration show the applicability of the developed inference procedures.

Keywords: bootstrap; fixed time of discontinuity; jumps; nonparametric inference; options; stable
convergence; stochastic volatility; time-changed Lévy process

1. Introduction

Our interest in this paper is in the jump part of the following semimartingale process used to
model the dynamics of an asset price X:

dXt

Xt−
= at dt + σt dWt +

∫
R

(
ez − 1

)
μ̃(ds, dz), (1.1)

where a is a process with càdlàg paths, W is a Brownian motion, μ is an integer-valued random
measure on R+ ×R, counting the jumps in X, with compensator ν(dt, dz) and μ̃ is the martin-
gale measure associated with μ. For the above process, we develop tests for deciding whether
the realization of ν({t∗},R) = Pt∗−(�Xt∗ �= 0) is positive, for some fixed time t∗. That is, we
propose a test for deciding whether there is a positive probability of jump arrival at a given point
in time, i.e., whether X contains fixed times of discontinuity. We further propose a rate-efficient
estimator of the density of ν at t∗.

The standard models used in many applications, e.g., the class of Lévy processes, time-
changed Lévy models with absolutely continuous time change, and more generally Itô semi-
martingales imply Pt∗−(�Xt∗ �= 0) = 0 for any deterministic time t∗. For example, the jump
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compensator of the classical Lévy process is of the form dt ⊗ F(dz), for some measure F sat-
isfying

∫
R
(z2 ∧ 1)F (dz) < ∞, implying time homogeneity and hence no atoms in time. That is,

for these processes the jump arrivals on a given time interval are uniformly distributed on the
interval. However, for the modeling of various phenomena, it can be more natural for the process
to have fixed times of discontinuity. For example, in finance for different reasons such as prede-
termined releases of information or periods of market closure, one might expect that jumps with
fixed arrival time are built into asset prices.

How can we test whether Pt∗−(�Xt∗ �= 0) > 0? Obviously, from observing the jump times
of X, we cannot decide whether these are times of fixed discontinuity. Similarly, if X does not
jump at a given time on a given path, this does not mean that this time point is not one of fixed
time of discontinuity. Our identification and testing for the presence of such times will be based
on option prices written on the asset price X. The option prices will let us study directly the
jump compensator of X in a way that we describe below, and hence they will allow us to identify
whether the latter is strictly positive at a given fixed point in time.

More specifically, using nonparametric techniques and following the results of Carr and Madan
[10], we can recover from option prices written at time t and expiring at time t +T the conditional
characteristic function of the increment of x = log(X), i.e., Et (e

iu(xt+T −xt )), for u ∈ R. Then
suppose that x is a semimartingale process with independent increments (Jacod and Shiryaev
[23], Definition II.4.1) with fixed time of discontinuity at t∗ ∈ (t, t + T ), and further that the
increments are stationary outside the jump time t∗. In this case, we can write (see Jacod and
Shiryaev [23], Theorem II.4.15):

Et

(
eiu(xt+T −xt )

)= eT ψ(u)

(
1 +

∫
R

(
eiuz − 1

)
ν
({

t∗
}
, dz
))

, (1.2)

for some function ψ : R → C. This means that the characteristic exponent is proportional to the
length of the time interval T whenever there is no fixed time of discontinuity in X. Therefore,
we can construct a test for the latter scenario by using observations of options at time t < t∗
with two different times to maturity T1 < T2, such that t∗ < t + T2, and forming estimates of the
difference Et (e

iu(xt+T2 −xt )) − (Et (e
iu(xt+T1 −xt )))T2/T1 .

While the above discussion is for a semimartingale process with independent increments
which are further stationary outside of the fixed time of discontinuity, it can be easily extended
to the general semimartingale setting by letting T1 and T2 shrink to zero. This way, the effect of
the variation of the semimartingale characteristics will be of higher asymptotic order (with the
precise assumptions needed for this provided in the main text) and therefore the above-described
statistics can still be used for the purposes of testing for fixed times of discontinuity in this more
general context.

In our setup, the number of options with different strikes increases asymptotically at the same
time as the maturities of the options shrink. The separation of the null from alternative hypothesis
occurs because of the different asymptotic order of the options and the characteristic function of
the price increments with and without fixed times of discontinuity in the underlying asset price.
The characteristic function of the price increments is of asymptotic order proportional to the
length of the increment (which is shrinking) under the null and it is of asymptotic order one
under the alternative.
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We derive a functional Central Limit Theorem (CLT) for our characteristic function estimates
from the option data, and the associated test statistic, under the null of no fixed time of disconti-
nuity in a weighted L2 space. The rate of convergence of the statistic depends both on the length
of the time to maturity of the options as well as on the mesh of the strike grid, both of which
are asymptotically shrinking. The asymptotic variance of our estimators is determined by the
diffusive volatility of the underlying asset price at the time of observing the option prices as well
as the heteroskedastic volatility of the observation error, which is left unspecified. We develop
an easy-to-implement wild bootstrap type method for doing feasible inference which consists of
regenerating new option prices with error on the basis of noisy estimates of the heteroskedastic
variance of the observation error. The developed limit theory should be of independent interest
for conducting inference for models for the underlying asset and the option prices written on it.

We further propose a nonparametric rate-efficient estimator of the jump distribution at time t∗,
when t∗ is a point of fixed discontinuity in the underlying asset price. The estimator is based on
recovering the characteristic function of the price increment from options which expire after t∗,
and an appropriate bias correction formed from the options with the different times-to-maturity
to correct for the Itô semimartingale component of the price outside of t∗. Unlike the case of the
null hypothesis, now the options and the associated errors are not asymptotically shrinking in
spite of the shrinking options’ time-to-maturity. The error in the density recovery depends both
on the shrinking maturity (because of the bias due to the Itô semimartingale component of the
price increment) as well as the mesh of the observation grid (due to the observation error).

The current paper relates to several strands of existing work. First, Belomestny and Reiß [6,7],
Cont and Tankov [12], Söhl [30], Söhl and Trabs [31] and Trabs [32,33] propose rate-efficient
estimators of the Lévy density from options with fixed time to maturity in exponential Lévy
models and Qin and Todorov [28] propose rate-efficient estimators of the Lévy density of Itô
semimartingales in a setting with shrinking maturity of the options. Unlike these papers, we
derive a functional CLT for estimates of the characteristic function of the underlying process
and develop novel wild bootstrap for conducting feasible inference. Both of these results are
nonstandard because of the different asymptotic order of the option prices that are used in the
computation of the statistic. Another difference between the above-cited papers and the current
work is that here we derive rate-efficient estimators at times of fixed discontinuity which is
not allowed for in the setup of the above-cited work. Our estimator combines features of both
asymptotic setups, with and without shrinking maturity of the options.

Second, our work is related to studies of the asymptotic behavior of the option price written on
an underlying Itô semimartingale as their maturity shrinks, see, for example, Andersen, Fusari
and Todorov [1], Bentata and Cont [8], El Euch et al. [16], Figueroa-López, Gong and Houdré
[19], Figueroa-López and Ólafsson [20,21], Fukasawa [22], Medvedev and Scaillet [25], Mija-
tović and Tankov [26] and Muhle-Karbe and Nutz [27], and the many references therein. Unlike
this strand of work, we consider fixed times of discontinuity in the underlying process, allow for
observation errors in the option prices (which drive our CLT), and integrate options with differ-
ent strikes in the analysis (which is challenging because of their different asymptotic order as the
maturity of the options shrinks).

The rest of the paper is organized as follows. In Section 2, we present the formal setup and
state the assumptions. Section 3 formulates the test statistic and in Section 4 we analyze its
asymptotic behavior. Section 5 presents a density estimator for the jump distribution at the fixed
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time of discontinuity. Sections 6 and 7 contain a Monte Carlo study and an empirical application,
respectively. The proofs are given in Section 8.

2. Setup and assumptions

The process X is defined on a filtered probability space (�(0),F (0), (F (0)
t )t≥0,P

(0)). As noted in
the introduction, our inference in this paper will be based on European style options written on
X, and from finance theory, see, for example, Duffie [13], and in the absence of arbitrage, their
theoretical values equal their conditional expected future discounted payoffs (given in (2.1) be-
low) under the so-called risk-neutral probability, which we henceforth denote with Q. The latter
is locally equivalent to the true probability measure and is of major interest both theoretically
and for applications. The dynamics of X under Q is given in (1.1) above.

For ease of exposition, we will assume that the dividend yield of X and the risk-free interest
rate are both zero. As in the introduction, henceforth we denote the logarithm of the underly-
ing asset price with x = log(X). With these normalizations, the theoretical values of the option
prices, we will use in our analysis are given by

Ot,T (k) =
{
E
Q
t

(
ek − ext+T

)+
, if k ≤ xt ,

E
Q
t

(
ext+T − ek

)+
, if k > xt ,

(2.1)

where K ≡ ek and k are the strike and log-strike, respectively, of the option. Ot,T (k) is the price
of an out-of-the-money option, that is, an option which will be worth zero if it were to expire
today. This is a call contract (an option to buy the asset) if k > xt and a put contract (an option
to sell the asset) if k ≤ xt .

Our data will consist of two sets of out-of-the-money options both observed at time t , with
one set expiring at time t + T1 and the other one at t + T2, for some 0 < T1 < T2. The log-strike
grid of the observed options is given by

kl,1 < kl,2 < · · · < kl,Nl
, l = 1,2. (2.2)

We further denote

k = k1,1 ∧ k2,1 and k = k1,N1 ∨ k2,N2 , (2.3)

and we set K = exp(k) and K = exp(k). Finally, as common in empirical asset pricing, we allow
for observation errors, that is, we observe:

Ôt,Tl
(kl,j ) = Ot,Tl

(kl,j ) + εt,Tl
(kl,j ), j = 1, . . . ,Nl, l = 1,2, (2.4)

where the sequence of observation errors is defined on a space �(1) =×k∈RAk , for Ak =
R. This space is equipped with the product Borel σ -field F (1) and with transition probability
P(1)(ω(0), dω(1)) from the original probability space �(0) – on which X is defined – to �(1). We
further define,

� = �(0) × �(1), F =F (0) ×F (1), P
(
dω(0), dω(1)

)= P(0)
(
dω(0)

)
P(1)
(
ω(0), dω(1)

)
.
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Below we state our assumptions for the dynamics of X as well as the option observation
scheme for which we make use the following additional notation. The compensator of the jumps
is of the form

ν(dt, dz) = dt ⊗ Ft(z) dz + εt∗(dt)Gt∗(z) dz, (2.5)

where εa denotes the Dirac measure at a, and Ft and Gt∗ are some predictable functions.

A1. The process σ has the following dynamics under Q:

σt = σ0 +
∫ t

0
bs ds +

∫ t

0
ηs dWs +

∫ t

0
η̃s dW̃s +

∫ t

0

∫
R

δσ (s, u)μσ (ds, du), (2.6)

where W̃ is a Brownian motion independent of W ; μσ is an integer-valued random measure
on R+ ×R with compensator νσ (ds, du) = ds ⊗ du + εt∗(ds)νσ

t∗(du), having arbitrary depen-
dence with the random measures μ, and for some measure νσ

t∗ ; b, η and η̃ are processes with
càdlàg paths and δσ (s, u) : R+ × R → R is left-continuous in its first argument. In addition,
inft∈[t∗−ε,t∗] σt > 0, for some arbitrary small ε > 0 and νσ

t∗ is identically zero if ν({t∗},R) = 0.

A2. With the notation of A1, for t ∈ [t∗ − ε, t∗] with ε > 0 arbitrarily small, there exist F (0)
t -

adapted random variables Ct and t > t such that for s ∈ [t, t]:

E
Q
t |as |4 +E

Q
t |σs |6 +E

Q
t

(
e4|xs |)+E

Q
t

(∫
R

(
e3|z| − 1

)
Fs(z) dz

)4

< Ct, (2.7)

and in addition for some ι > 0

E
Q
t

(∫
R

(∣∣δσ (s, z)
∣∣4 ∨ ∣∣δσ (s, z)

∣∣)dz

)1+ι

≤ Ct . (2.8)

Furthermore, we have supt∈[t∗−ε,t∗] Ct < ∞ and inft∈[t∗−ε,t∗] t > t∗.

A3. With the notation of A1, for t ∈ [t∗ − ε, t∗] with ε > 0 arbitrarily small, there exist F (0)
t -

adapted random variables Ct and t > t such that if ν({t∗},R) = 0, we have for s, r ∈ [t, t]:

E
Q
t |as − ar |p +E

Q
t |σs − σr |p +E

Q
t |ηs − ηr |p +E

Q
t |̃ηs − η̃r |p

≤ Ct |s − r|, ∀p ∈ [2,4], (2.9)

and

E
Q
t

(∫
R

(
ez∨0|z| ∨ |z|2)∣∣Fs(z) − Fr(z)

∣∣dz

)p

≤ Ct |s − r|, ∀p ∈ [2,3]. (2.10)

Furthermore, we have supt∈[t∗−ε,t∗] Ct < ∞ and inft∈[t∗−ε,t∗] t > t∗.
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A4. We have
∫
R
(ez − 1)Gt∗(z) dz = 0. For t ∈ [t∗ − ε, t∗) with ε > 0 arbitrarily small, there

exists F (0)
t− -adapted random variable Ct such that for s, r ∈ [t, t∗] with s < r ≤ t∗:

E
Q
t−
∣∣EQ

s−
(
eiu�xt∗

)−E
Q
r−
(
eiu�xt∗

)∣∣2 ≤ Ct

(|u|p ∨ 1
)|s − r|, for some p > 0, (2.11)

where supt∈[t∗−ε,t∗] Ct < ∞. In addition, for t ∈ [t∗ − ε, t∗), we have E
Q
t (eiu�xt∗ ) =

E
Q
t−(eiu�xt∗ ), almost surely.

A5. The log-strike grids {kl,j }Nl

j=1, for l = 1,2, are F (0)-adapted and we have

ct� ≤ kl,j − kl,j−1 ≤ Ct�, l = 1,2, as � ↓ 0, (2.12)

where � is a deterministic sequence, and inft∈[t∗−ε,t∗] ct > 0 and supt∈[t∗−ε,t∗] Ct < ∞, for some
arbitrary small ε > 0. In addition, for some arbitrary small ζ > 0:

sup
j :|kl,j −xt |<ζ

∣∣∣∣kl,j − kl,j−1

�
− ψl(kl,j−1 − xt )

∣∣∣∣ P−→ 0, l = 1,2, as � ↓ 0, (2.13)

where ψl(k) are F (0)-adapted functions which are continuous in k at 0 with ψl(0) > 0.

A6. We have εt,Tl
(kl,j ) = ξt,l(kl,j − xt )εt,l,jOt,Tl

(kl,j ) for l = 1,2, where ξt,l(0) is continuous
in t at t∗ and further for k in a neighborhood of zero, we have |ξt,l(k)−ξt,l(0)| ≤ Ct |k|ι, for some
ι > 0 and supt∈[t∗−ε,t∗] Ct < ∞ as well as supt∈[t∗−ε,t∗] supk∈R |ξt,l | < ∞, with some arbitrary

small ε > 0. For l = 1,2, εt,l,j =∑M
m=0 ψt,l,mζt,l,j−m, with {ψt,l,m}Mm=1 being an F (0)-adapted

sequence, with ψt,l,m continuous in t at t∗, and {ζt,l,j }Nl

j=1−m being an i.i.d. sequence defined on

an extension of F (0) and independent of it, and for some nonnegative integer M . The sequences
{ζt,1,j }N1

j=1−m and {ζt,2,j }N2
j=1−m are independent from each other and have arbitrary dependence

on t . We further have E(εt,l,j |F (0)) = 0, E((εt,l,j )
2|F (0)) = 1 and E(|εt,l,j |κ |F (0)) < ∞, for

some κ ≥ 4 and l = 1,2.

In the case ν({t∗},R) = 0, assumption A1 specifies that σ is an Itô semimartingale, which is
the standard way of modeling stochastic volatility in applied work. In the case when x can has a
fixed time of discontinuity at t = t∗ (i.e., when ν({t∗},R) > 0), assumption A1 allows the volatil-
ity process σ to have a fixed time of discontinuity at t = t∗ as well. We impose non-vanishing
σt , for t in a neighborhood of t∗, which is satisfied in most applications and is important for
characterizing the limiting distribution of our test statistic. Assumption A2 imposes existence of
conditional moments and we note that the condition on Ct is automatically satisfied when Ct

has càdlàg paths. Assumption A3 is a smoothness in expectation condition which holds when
the processes involved in it are Itô semimartingales. This assumption is needed only in the case
ν({t∗},R) = 0. Assumption A4 imposes existence of moments of the conditional jump distribu-
tion function Gt∗(x) as well as a smoothness in expectation condition on the conditional expecta-
tion of the jump �xt∗ which will hold if its dependence on time is through an Itô semimartingale
process.
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Assumption A5 is our regularity condition for the log-strike grid which imposes very mild
smoothness of the denseness of the strike grid in a neighborhood of the current price. Finally, as-
sumption A6 is about the observation error. We note that the errors are proportional to the option
prices they are attached to, so that the relative errors remain Op(1) as the time to maturity of the
options shrinks. As we will see later, this implies that the asymptotic order of the observation
error depends on the distance of the strike to the current spot price. We allow for heteroskedas-
ticity in the observation error and we only assume a very mild condition on the smoothness of
the latter as a function of the strike which is needed for its nonparametric recovery from the ob-
served options. In addition, we allow for F (0)-conditional dependence in the observation error.
This dependence can change over time and can change from one sample path to another (the
coefficients ψt,l,m can be stochastic).

3. Formulation of the test and construction of the test statistic

We now state formally the null and alternative hypotheses and develop a test statistic to dis-
criminate between the two. Our interest is in deciding whether the jump compensator is strictly
positive at the fixed time t∗, that is, whether t∗ is a fixed time of discontinuity for X. Formally,
we are trying to decide whether the realization of ν({t∗},R) is positive or not, that is, in which
of the following two subsets of the sample space �, the observed ω ∈ � belongs to:

�0 = {ω ∈ � : ν({t∗},R)= 0
}
, �A = {ω ∈ � : ν({t∗},R)> 0

}
. (3.1)

The idea of the test we propose is the following. When T1 and T2 are small, then under the null
hypothesis, the increments of X over the intervals [t, t + T1] and [t, t + T2] are approximately

F (0)
t -conditionally like those from a Lévy process. Hence, by use of Lévy–Khintchine theorem,

Theorem 8.1 in Sato [29], their F (0)
t -conditional characteristic exponents are equal up to division

by T1 and T2, respectively. This scaling of the characteristic exponents of the time increments
with their length, however, does not work if X has a fixed time of discontinuity at t∗.

We follow Qin and Todorov [28] and utilize results in Carr and Madan [10] to propose the
following estimator of the conditional characteristic function of the increments of the log-price x:

L̂t,T (u) = 1 − (u2 + iu
) Nl∑

j=2

ht (u, kl,j−1, kl,j )Ôt,T (kl,j−1), u ∈R, (3.2)

where

ht (u, k1, k2) = e−iuxt
e(iu−1)k2 − e(iu−1)k1

iu − 1
, u ∈ R, k1, k2 ∈ R. (3.3)

Since our test will be based on comparing L̂t,T1(u) and L̂t,T2(u) as functions in u, the conver-
gence results that follow will be functional and will take place in the complex-valued Hilbert
space L2(w):

L2(w) =
{
f :R→ C

∣∣∣ ∫
R

∣∣f (u)
∣∣2w(u)du < ∞

}
, (3.4)
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where w is some positive-valued and continuous weight function with exponential tail decay.
The inner product on L2(w) is induced from the inner products of its real and imaginary parts,
that is, for f and g two elements of L2(w), we set

〈f,g〉 =
∫
R

f (z)g(z)w(z) dz. (3.5)

Next, for a random complex function Z taking values in L2(w), we introduce the covari-
ance operator Kh = E[(Z − E(Z))〈h,Z − E(Z)〉] and the relation operator Ch = E[(Z −
E(Z))〈h,Z −E(Z)〉], where h ∈ L2(w). We recall that a Gaussian law on L2(w) is uniquely
identified by the mean, covariance and relation operators and we denote it with CN (μ,K,C),
for μ being the mean, K being the covariance and C being the relation operator.

As we will show later (see Lemma 1), under assumptions A1–A4, if ν({t∗},R) = 0, t ↑ t∗ and
T ↓ 0,

L̂t,T (u) = exp

(
iuT ãt − T

u2

2
σ 2

t + T

∫
R

(
eiuz − iuz − 1

)
Ft(z) dz

)
+ Op

(
T 3/2), (3.6)

where we denote

ãt = at − 1

2
σ 2

t −
∫
R

(
ez − 1 − z

)
Ft (z) dz, (3.7)

and if ν({t∗},R) > 0, t ↑ t∗ and T ↓ 0,

L̂t,T (u) =
∫
R

eiuzGt∗(z) dz + op(1). (3.8)

This motivates the following test statistic for discriminating the null from the alternative hypoth-
esis:

Ŵ1,2 = ∥∥L̂t,T2 − L̂T2/T1
t,T1

∥∥=
√∫

R

∣∣L̂t,T2(u) − L̂t,T1(u)T2/T1
∣∣2w(u)du, (3.9)

and the power in the above expression is uniquely defined by the principal value of the argument
of the complex number.

4. Asymptotic behavior of the test statistic

We proceed with characterising the limit behavior of our statistic under the null and alternative
hypotheses. We start with a CLT result under the null.

Theorem 1. Assume A1–A6 hold. Suppose t < t∗ < t + T2 and T2 = τT1 for some τ ∈ (1, κ]
(with κ being the constant in A6). Let t ↑ t∗ together with T1 ↓ 0, � � T α

1 , K � T
β

1 , K � T
−γ

1 ,
for β,γ > 0 and 1

2 < α < 1
2 + (1 ∧ 4β ∧ 4γ ). Then, under ν({t∗},R) = 0, we have

1

T
3/4
1

√
�

(
L̂t,T2 − L̂τ

t,T1

) L|F (0)

−−−−→ Z, (4.1)
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with Z defined on an extension of the original probability space and having F (0)-conditional law
of CN (0,K,C) where K and C are covariance and relation operators with integral representa-
tions,

Kh(z) =
∫
R

k(z,u)h(u)w(u)du, Ch(z) =
∫
R

c(z,u)h(u)w(u)du, ∀h ∈ L2(w), (4.2)

and the kernels k(z,u) and c(z,u) are given in Section 8.2.

We provide several comments about the above result. First, the notation
L|F (0)

−−−−→ means conver-
gence in probability of the conditional probability laws when the latter are considered as random
variables taking values in the space of probability measures equipped with the weak topology,
see, for example, VIII.5.26 of Jacod and Shiryaev [23]. Second, a similar CLT result holds for
L̂t,T1 − E

Q
t (eiu(xt+T1 −xt )) with the covariance and relation operators of the limit being the com-

ponents of K and C above from the options with maturity t + T1. Such a result should be of
independent interest for making inference for the characteristic triplet of x at time t . Third, the
asymptotic variance of the limit is determined by the diffusive part of X. This is because, by as-
sumption A6, the option error is proportional to the true option price it is attached to and the latter
is dominated by the diffusion in X for strikes that are close to the current stock price. Fourth,
the conditions for α, β and γ in the theorem guarantee that the leading term in the asymptotic
behavior of L̂t,T2 − L̂τ

t,T1
is due to the observation error. We note in that regard, that the condition

for the strike range is rather weak and this condition can be satisfied even if only β ∨γ > 0 holds.
Finally, even though the scaling in the CLT is using � (defined in assumption A5), which is not
known, for performing feasible inference, its knowledge is not necessary.

From Theorem 1, the limit behavior of our test statistic Ŵt1,t2 follows by continuous mapping.
For feasible inference, we will develop an easy-to-implement simulation-based approach which
is reminiscent of the wild bootstrap, see, for example, Wu [35]. In an analogy to the applications
of the bootstrap, here we have nontrivial heteroskedasticity in the two cross-sections of options
in the strike domain. Indeed, the asymptotic order of magnitude of the observation errors varies
across the strikes. To develop the feasible inference, we make use of the following estimate of
the observation error:

ε̂t,Ti
(ki,j ) =

√
2

3

[
Ôt,Ti

(ki,j ) − 1

2

(
Ôt,Ti

(ki,j−1) + Ôt,Ti
(ki,j+1)

)]
, (4.3)

for j = 2, . . . ,Ni − 1 and i = 1,2, and further ε̂t,Ti
(ki,1) = ε̂t,Ti

(ki,2) as well as ε̂t,Ti
(ki,Ni

) =
ε̂t,Ti

(ki,Ni−1) for i = 1,2. We denote next with J ∗
i , the smallest element of the set of integers

(1,2, . . . ,Ni) such that

|kJ ∗
i

− xt | ≤ |ki,j − xt |, j = 1, . . . ,Ni, i = 1,2. (4.4)

That is, kJ ∗
i

is the available log-strike that is closest to the current log-price xt . We then modify
the estimate of the error corresponding to kJ ∗

i
by replacing it with

ε̂t,Ti
(ki,J ∗

i
) = 1

2

(∣∣̂εt,Ti
(ki,J ∗

i −1)
∣∣+ ∣∣̂εt,Ti

(ki,J ∗
i +1)

∣∣), i = 1,2. (4.5)
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The construction of ε̂t,Ti
(ki,j ) above makes use of the fact that the true option price is smooth

as a function of its strike, and hence ε̂t,Ti
(ki,j ) is dominated by the observation error in the

options used in forming it. Given the smoothness in strike assumption for the F (0)-conditional
volatility of the relative option error in A6, |̂εt,Ti

(ki,j )| provides therefore an estimate of the
F (0)-conditional volatility of the option error (albeit a very noisy one).

Since the observation error can have spatial dependence (recall assumption A6), we need to
construct estimates for this dependence. Towards this end, we first form the sample spacial auto-
covariance of our estimates of the observation error:

χ̂t,i (h) =
Ni∑

j=h+1

[̂
εt,Ti

(ki,j )̂εt,Ti
(ki,j−h)1{j �=J ∗

i ,j �=J ∗
i +h}

]

− 1

Ni − 1

(
Ni∑

j=1

ε̂t,Ti
(ki,j )1{j �=J ∗

i }

)2

, h = 0, . . . ,Ni − 1, i = 1,2. (4.6)

The centering in (4.6), that is, the inclusion of the second term on the right-hand side of (4.6),
is standard in covariance estimation but in the current context is not necessary as ε̂t,Ti

(ki,j ) are,
up to an asymptotically negligible error, mean zero. Nevertheless, we keep this term in (4.6) as
in small samples it can help correcting biases in ε̂t,Ti

(ki,j ) due to the change in the true option
price across strikes.

The behavior of χ̂t,i (h) is non-standard because the asymptotic order of the options used in
its construction is different. As we show in the proofs (see Lemma 4), we have the following
convergence in probability in the setting of Theorem 1 (where the null hypothesis holds):

T
3/2
i

�
χ̂t,i (h)

P−→ Ctχt,i(h), i = 1,2, (4.7)

where Ct is an F (0)
t -adapted random variable that does not depend on h, given explicitly in the

statement of Lemma 4, and where χt,i(h) is:

χt,i(h) = 2

3

(
3

2
γt,i(h) − γt,i(h + 1) − γt,i(h − 1) + 1

4
γt,i(h + 2) + 1

4
γt,i(h − 2)

)
, (4.8)

with γt,i(h) denoting the F (0)-conditional covariances between εt,i,j and εt,i,j−h:

γt,i(h) = E
(
εt,i,j εt,i,j−h|F (0)

)
, i = 1,2. (4.9)

Since ε̂t,Ti
(ki,j ) is formed by a second-order difference of the observed option price as a func-

tion of its strike, the error estimates ε̂t,Ti
(ki,j ) have spatial dependence, which is generated by

the overlap of the option observation errors contained in them. Using the F (0)-conditional M-
dependence of the observation errors (assumed in A6), we have

γt,i (h) = 6χt,i(h + 2)
(
1 + L + · · · + LM

)4
, h = 0,1, . . . , (4.10)
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where L denotes the “spatial lag” operator that shifts the spatial autocovariance by one lag, i.e.,
Lγ t,i(h) = γ t,i (h + 1). Using this relationship, we can solve iteratively for {γt,i(h)}h=0,1,...,M

from {χ̂t,i (h)}h=0,...,M+2 up to an F (0)
t -adapted scaling factor. We denote these estimates with

{γ̂t,i (h)}h=0,1,...,M . We then introduce the following scaling factor

Ŝt,i =
√

1 + 2κ

(∑M
h=1 γ̂t,i (h)

γ̂t,i (0)
1{γ̂t,i (0)>0};Ni

)
, i = 1,2, (4.11)

where the function κ(x,N) satisfies

κ(x,N) → x, locally uniformly in x ∈ R, as N → ∞. (4.12)

The function κ(x,N) is a finite sample correction that guarantees that Ŝt,i is a finite and positive
number in finite samples. It reduces to a small-sample correction of the spatial autocovariances
past lag zero. This correction is the counterpart in the current setting of the kernel-based estima-
tors of the long-run asymptotic variance of sample averages of dependent sequences. The latter
similarly dampen the autocovariance estimates past lag zero.

Under the null hypothesis, the result of Lemma 4 implies

Ŝt,i
P−→
√∑M

h=−M γt,i(h)

γt,i(0)
, i = 1,2. (4.13)

The limit on the right-hand side of the above convergence captures the effect from the spatial de-
pendence of the observation error on the limiting standard deviation of L̂t,Ti

. In particular, if there
is positive spatial dependence in the observation error, the asymptotic variance will naturally go
up.

We are now ready to describe our bootstrap procedure. Using the above estimates, we add
noise to the observed option prices and denote the new observations with

Ô∗
t,Ti

(ki,j ) = Ôt,Ti
(ki,j ) + ε̂t,Ti

(ki,j )Ŝt,izi,j , j = 1, . . . ,Ni, i = 1,2, (4.14)

where {z1,j }N1
j=1 and {z2,j }N2

j=1 are two i.i.d. sequences of standard normal variables defined on
an extension of the original probability space and independent from F and from each other. We
then define L̂∗

t,T from L̂t,T by replacing Ôt,Ti
(ki,j ) with Ô∗

t,Ti
(ki,j ). With this notation, we set

Ŵ ∗
1,2 = ∥∥L̂∗

t,T2
− L̂t,T2 − τ L̂τ−1

t,T1

(
L̂∗

t,T1
− L̂t,T1

)∥∥. (4.15)

We note that in defining Ŵ ∗
1,2, we center L̂∗

t,T2
and L̂∗

t,T1
around L̂t,T2 and L̂t,T1 , respectively.

This guarantees that the F -conditional limiting distribution of Ŵ ∗
1,2 is the same as that of our

statistic Ŵ1,2 under the null and it has important implications also for the behavior of Ŵ ∗
1,2 under

the alternative hypothesis. The F -conditional limit behavior of Ŵ ∗
1,2 is given in the following

theorem.
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Theorem 2. Under the conditions of Theorem 1, we have

1

T
3/4
1

√
�

∥∥Ŵ ∗
1,2

∥∥ L|F−−→ ‖Z‖, (4.16)

where Z is a random function in L2(w), defined on extension of the original probability space
with F -conditional distribution of CN (0,K,C) where K and C are given in Theorem 1.

The above theorem allows for a very easy way of implementing our test. One needs only to
compute the quantiles of ‖Ŵ ∗

1,2‖ via simulation. In particular, we avoid the need to estimate
consistently the covariance and relation operators of the limiting distribution of Theorem 1. To
fully characterize the asymptotic behavior of our test, we need to derive the behavior of Ŵ1,2

and Ŵ ∗
1,2 in the case of fixed time of discontinuity at time t = t∗. This is done in the following

theorem.

Theorem 3. Assume A1–A6 hold. Suppose t < t∗ < t + T2 and T2 = τT1 for some τ ∈ (1, κ]
(with κ being the constant in A6). Let t ↑ t∗ together with T1 ↓ 0, � � T α

1 , K � T
β

1 , K � T
−γ

1
with α,β, γ > 0. Then, under ν({t∗},R) > 0, we have

L̂t,T1

P−→ 1, L̂t,T2

P−→
∫
R

eiuzGt∗(z) dz, if T1 < t∗, (4.17)

L̂t,T1

P−→
∫
R

eiuzGt∗(z) dz, L̂t,T2

P−→
∫
R

eiuzGt∗(z) dz, if t∗ ≥ T1, (4.18)

and ∥∥Ŵ ∗
1,2

∥∥= Op(
√

�). (4.19)

As seen from the above theorem, when X has a fixed time of discontinuity at t = t∗, then
this becomes the leading component in the increments of x over time intervals that include t∗.
Importantly, this holds regardless of whether σ and F have a fixed time of discontinuity at t = t∗.
To convey the intuition for this, it is instructive to look at the special case when a is zero, F is
zero and σ remains constant apart from the possible jump at t = t∗. In this case, for an interval
[t, t + T ] that includes t∗, we can write (because σt = σt∗−):

xt+T − xt = σt (Wt+T − Wt) + �σt∗(Wt+T − Wt∗) + �xt∗ .

Then, in the asymptotic setting in which t ↑ t∗ and T ↓ 0, the first two terms are both Op(
√

T )

and the last term is Op(1). In particular, the fixed time of discontinuity in σ at t = t∗ plays
an asymptotically negligible role in the behavior of xt+T − xt as T ↓ 0. This is because, �σt∗
multiplies an increment of a Brownian motion which shrinks asymptotically as T ↓ 0.

As a result, in the case of fixed time of discontinuity in x at t = t∗, the characteristic exponent
of xt+T2 − xt is no longer shrinking as T2 goes down to zero. Instead, in this case L̂t,T2 estimates
the characteristic function of the jump distribution of x at t∗. This implies for our testing purposes
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that ‖Ŵ1,2‖ = Op(1). This, together with the fact that ‖Ŵ ∗
1,2‖ = Op(

√
�), means that our test

will have asymptotic power to discriminate the null against the alternative.
To state formally the result for the asymptotic behavior of our test, we denote

ĉvα = Q1−α

(
Ŵ ∗

1,2|F
)
, α ∈ (0,1), (4.20)

where Qα(Z) denotes the α-quantile of the random variable Z. We can evaluate ĉvα easily via
simulation.

Corollary 4.1. Assume A1–A6 hold. Suppose t < t∗ < t + T2 and T2 = τT1 for some τ ∈ (1, κ]
(with κ being the constant in A6). Let t ↑ t∗ together with T1 ↓ 0, � � T α

1 , K � T
β

1 , K � T
−γ

1 ,
for β,γ > 0 and 1

2 < α < 1
2 + (1 ∧ 4β ∧ 4γ ). Then, for α ∈ (0,1), we have

P(Ŵ1,2 > ĉvα|�0) −→ α, P(Ŵ1,2 > ĉvα|�A) −→ 1. (4.21)

Remark 1. Our theoretical results can be extended to testing, in a setting with no fixed time
of discontinuity, whether the Lévy measure of the jumps in x is that of a time-changed Lévy
process, that is, whether Ft(x) is of the form at × F(x), for at being a stochastic process with
càglàd paths and F being a time-invariant Lévy measure (see, e.g., Theorem 8.3 in Barndorff-
Nielsen and Shiryaev [2]). On an intuitive level, the above structure boils down to time-invariant
jump distribution with all the variation of the jump compensator being through level shifts in
the latter and no changes in its shape. This is the predominant approach of modeling jumps
in applications. For example, the jumps in the popular affine class of models that are typically
used in empirical asset pricing, see Duffie, Pan and Singleton [15] and Duffie, Filipović and
Schachermayer [14], are time-changes of Lévy processes (with additional restrictions on the
jump compensator). See also Figueroa-López [18], Belomestny [3], Belomestny and Panov [4,5]
and Bull [9] for estimation of such types of models in various asymptotic setups.

We can test the hypothesis of time-changed Lévy models by studying the change in the char-
acteristic function of the increments of x at different points in time (which can be recovered from
short-dated options at these time points). For this to be done, however, we will need estimators
of the spot diffusive volatility (which can be obtained either from high-frequency record of X

or the options themselves) as well as an estimate of the ratio of the time-change (at in the no-
tation above) at the two different time points (which can be obtained from the estimates of the
characteristic functions of the increments). We leave such an extension for future work.

5. Inference for the jump distribution at the fixed time of
discontinuity

When X contains a fixed time of discontinuity at t = t∗, we can use the options to recover the
density of the jump distribution at t∗. As shown in Theorem 3, the Fourier transform of the latter
is the dominant component of L̂t,T (u). The estimator of the characteristic function of the jump
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at time t∗ is therefore given by

L̂f d
t (u) =

⎧⎪⎪⎨⎪⎪⎩
1

B̂1(u)
L̂t,T1(u), if

τ

τ − 1
‖L̂t,T2 − L̂t,T1‖/‖L̂t,T2 − 1‖ < 1,

1

B̂2(u)
L̂t,T2(u), if

τ

τ − 1
‖L̂t,T2 − L̂t,T1‖/‖L̂t,T2 − 1‖ ≥ 1,

(5.1)

where recall τ = T2/T1 and we denote

B̂1(u) =

⎧⎪⎨⎪⎩
( L̂t,T2(u)

L̂t,T1(u)

) 1
τ−1

, if
∣∣L̂t,T2(u)/L̂t,T1(u) − 1

∣∣≤ (τ − 1)u2ĉT1,(
1 − u2ĉT1

)
, if

∣∣L̂t,T2(u)/L̂t,T1(u) − 1
∣∣> (τ − 1)u2ĉT1,

(5.2)

and

B̂2(u) =
{
L̂t,T1(u)τ , if

∣∣L̂t,T1(u) − 1
∣∣≤ u2ĉT1,

1 − u2ĉT2, if
∣∣L̂t,T1(u) − 1

∣∣> u2ĉT1,
(5.3)

with ĉ denoting a sequence of nonnegative-valued random variables which is Op(1) as � → 0
and T1 → 0. When the fixed time of discontinuity satisfies t∗ < t +T1, then we use the character-
istic function from the shortest-dated options and the term B̂1(u) in L̂f d

t (u) corrects for the effect
on L̂t,T1(u) due to xt+T1 −xt −�xt∗ . Similarly, when t +T1 < t∗ < t +T2, then we use L̂t,T2(u)

and with B̂2(u), we correct for the component in it that is due to xt+T2 −xt −�xt∗ . In both cases,
the bias correction terms will account fully for the biases stemming from xt+T1 − xt −�xt∗ only
in the case when the semimartingale spot characteristics (at , σt and Ft ) do not have a fixed time
of discontinuity at t = t∗. Even if this is not the case, however, B̂1(u) and B̂2(u) will play only a
higher order asymptotic role.

In general, the statistician might not know the location of t∗ relative to t + T1. However, the
two alternative scenarios of t∗ < t + T1 and t + T1 < t∗ < t + T2 can be easily separated by the
value of τ

τ−1‖L̂t,T2 − L̂t,T1‖/‖L̂t,T2 −1‖ which converges to 0 in the former case and to τ
τ−1 > 1

in the latter (and to 1 under the null of no fixed time to discontinuity).
Given L̂f d

t (u), our estimator of Gt∗(x) is then simply its Fourier inverse:

Ĝt∗(x) = 1

2π

∫ uN

−uN

e−iuxL̂f d
t (u) du, (5.4)

for some positive sequence uN → ∞ as � → 0 and T1 → 0. Our asymptotic result for Ĝt∗(x)

will be based on the following smoothness assumption for the density of the jump distribution:

A7. The function Gt∗(x) belongs to the class

Sr (Ct∗) =
{
f ∈ L1(R) ∩ L2(R) :

∫
R

∣∣Ff (x)
∣∣2(1 + x2)r dx ≤ Ct∗

}
,

for some positive constant r and some positive Ft∗ -adapted random variable Ct∗ , and Ff de-
noting the Fourier transform of f .
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The next theorem derives the order of magnitude for the integrated squared error in recovering
Gt∗ .

Theorem 4. Assume A1–A7 hold. Suppose t < t∗ < t + T2 and T2 = τT1 for some τ ∈ (1, κ]
(with κ being the constant in A6). Let t ↑ t∗ together with T1 ↓ 0, � � T α

1 , K � T
β

1 , K � T
−γ

1 ,
for α,β, γ > 0. Let ĉ in (5.2)–(5.3) satisfy ĉ = Op(1). If

uN → ∞ and u2
NT1 → 0, (5.5)

then, we have∫
R

(
Ĝt∗(x) − Gt∗(x)

)2
dx = Op

(
u−2r

N ∨ u5
N

(
� ∨ u

2(p∨1)−4
N T1 ∨ e−4(|k|∨k)

))
, (5.6)

where p is the constant in A4.

The above result combines features of related work on the recovery of Lévy density from
options with fixed time to maturity (Belomestny and Reiß [6,7]) and shrinking one (Qin and
Todorov [28]). Like Belomestny and Reiß [6,7], the error in the density recovery that is due to
observation error is of order Op(u5

n�). This is despite of the fact that here the maturity of the
options is shrinking. The reason for this is that when there is a fixed time of discontinuity in X

before the option expiration, then option prices are of asymptotic order Op(1), even though their
time to maturity is shrinking. Since the observation error is proportional to the true option price,
the observation errors also do not shrink when the time to maturity goes down. On the other hand,
similar to Qin and Todorov [28], the error in recovering Gt∗ also depends on the time to maturity
of the options, T1. The reason for this is that the increment of X contains not only the jump at
the fixed time of discontinuity, whose size distribution we are trying to recover, but also the other
part of the process (the Itô semimartingale) which is of order Op(

√
T1). Also in our setting, we

allow the jump size distribution at the fixed discontinuity time to depend also on time, and this
in turn also generates error, the size of which depends on T1.

The error in the density recovery naturally depends on the smoothness of the latter. Assumption
A7 imposes power decay of the Fourier transform of Gt∗ . A stronger assumption like for example
Gt∗ being supersmooth, see, for example, Fan [17], which means that its Fourier transform has an
exponential tail decay (which is satisfied for example by the density of the normal distribution),
will lead to replacing u−2r

N in (5.6) with a term that is of significantly smaller (exponential)

asymptotic order. Finally, in the case when u
2(p∨1)−4
N T1 ∨ e−4(|k|∨k) is of smaller asymptotic

order than �, using similar techniques as in Belomestny and Reiß [6,7] and Qin and Todorov
[28], we can show that our estimator is rate-optimal.

6. Monte Carlo study

We now present results for the performance of our test for fixed time of discontinuity on simu-
lated data from the following model for the risk-neutral dynamics of X:

dXt

Xt−
=√Vt dWt +

∫
R

(
ez − 1

)
μ̃(ds, dz) + ηYt , (6.1)
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with W being a Brownian motion and V having the dynamics

dVt = 3.6(0.02 − Vt) dt − 0.1
√

Vt dWt + 0.1732
√

Vt dW̃t , (6.2)

where W̃ is a Brownian motion orthogonal to W . The jump measure μ has a compensator
Ft (x) dt ⊗ dx with

Ft (x) = Vt

(
91.75

e−20|x|

|x|1.5
1{x<0} + 102.58

e−100|x|

|x|1.5
1{x>0}

)
. (6.3)

Finally,

Yt =
{

0, for t < t∗,
e�xt∗ − 1, for t ≥ t∗,

with �xt∗ = 0.0546
√

V0 × Z − 0.05462V0/2, (6.4)

where Z is a standard normal variable independent from W , W̃ and μ. The case η �= 0 corre-
sponds to a process with fixed time of discontinuity. When η = 0, the specification in (6.1)–(6.3)
belongs to the affine class of models of Duffie, Pan and Singleton [15] commonly used in empiri-
cal option pricing work. The jumps outside of t∗ have time-varying jump intensity, are of infinite
activity, and their distribution is like that of a tempered stable process, see, for example, Carr
et al. [11], which is found to provide good fit to option data. The jump size at time t∗ is drawn
from a F0-conditionally normal distribution with volatility proportional to the level of diffusive
volatility at time zero.

The model parameters are set in a way that results in option prices similar to observed equity
index option data. In particular, the unconditional mean of volatility is similar to that inferred
from S&P 500 index return and option data. The model, as in the data, allows for a negative
correlation between return and volatility innovations (so called leverage effect). Jump tails have
exponential tail decay, with tail decay parameters yielding out-of-the-money short-maturity op-
tion decays (as the strikes moves further from the current stock price) like those observed in
S&P 500 index options, see, for example, Andersen, Fusari and Todorov [1]. Finally, the jump
at time t∗ has F0-conditional variance that is only 1/8-th of the F0-conditional variance of the
increment xT1 − x0 − �xt∗ . This is rather challenging for our asymptotics under the alternative
hypothesis as this way xT1 − x0 − �xt∗ , although asymptotically negligible relative to �xt∗ , is
rather nontrivial for the current values of T1 and T2.

Options written on X are observed at time t = 0 with maturities of 3 and 5 business days and
we set X0 = 2500. The strike grid and range of the options are calibrated to match roughly the
data we use in the empirical application. In particular, for each of the maturities the strike grid
is equidistant with increments of 5. The strike range is determined by the requirement that the
true option prices should be at least 0.05 in value. Finally, the option observation error is set to
ε0,Ti

(ki,j ) = ξ0,Ti
(ki,j )O0,Ti

(ki,j )Zi,j , for i = 1,2 and where {Z1,j }j≥1 and {Z2,j }j≥1 are two
independent sequences of i.i.d. standard normal random variables, and

ξ0,Ti
(ki,j ) =

⎧⎪⎨⎪⎩
√

0.052 + 0.0046875
[
(x0 − ki,j )/

(√
Tiσ

ATM
t,i

)∧ 1
]
, if x0 ≥ ki,j ,√

0.052 + 0.009375
[
(ki,j − x0)/

(√
Tiσ

ATM
t,i

)∧ 1
]
, if x0 < ki,j ,

(6.5)
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with σ ATM
t,i denoting the at-the-money Black–Scholes implied volatility computed from the

option with time to maturity Ti and log-strike k = xt . This specification implies (as in the
data) smallest relative error for the options with strikes closest to the current stock price,
and larger observation error for out-of-the-money calls versus puts with strikes equally distant
from X0.

In the Monte Carlo study, we consider three cases for the starting value of volatility: low, me-
dian and high, corresponding to 25th, 50th and 75th quantiles, respectively, of the unconditional
distribution of V . For simplicity we assume that the statistical and risk-neutral probabilities for
the volatility dynamics coincide. Finally, we analyze two alternative scenarios: in alternative 1
we have t∗ < T1 while in alternative 2 we have T1 < t∗ < T2.

For the implementation of the test, we set w equal to the pdf of a mean zero normal variable
with variance of 0.5u2

max, and we then approximate the integral in our test statistic by a Riemann
sum over the interval [−umax, umax], split into increments of length 0.25, and we set umax = 30.
Finally, for the calculation of the scaling factor Ŝt,i that accounts for the potential dependence in
the observation error, we set M = 1 and we use the following function κ:

κ(x,N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
(

1 − 30

N

)
N

400
, if x ≤ − N

400
,(

1 − 30

N

)
x, if x ∈

(
− N

400
,

N

400

)
,(

1 − 30

N

)
N

400
, if x ≥ N

400
.

(6.6)

This choice of κ(x,N) corresponds to tempering the value of the ratio
∑M

h=1 γ̂t,i (h)

γ̂t,i (0)
in the two tails,

and further dampening this ratio when it takes moderate values. This way we modify slightly∑M
h=1 γ̂t,i (h)

γ̂t,i (0)
around zero and we modify it more severely when it takes big values. The resulting

estimate of
∑M

h=1 γt,i (h)

γt,i (0)
can be viewed as the counterpart in the current context of the estimate of

the long-run asymptotic variance of sample averages from sequences with dependence based on
a Bartlett kernel.

The results for the performance of the test in the Monte Carlo study are summarized in Table 1.
The finite sample behavior of the test under the null hypothesis is satisfactory with only minor
deviations from the nominal size in all considered cases for the starting level of volatility. Table 1
also shows that the test has very good power against the considered alternatives. Not surprisingly,
the power against alternative 2 in which T1 < t∗ < T2 is higher. This is because, under alternative
2, the difference in the distributions of xT1 − x0, which does not contain the jump at time t∗, and
xT2 − x0, which contains the jump at time t∗, is bigger. We also note that we have less power to
reject the alternative hypothesis when volatility starts at a low level. The reason for this is that
in the low volatility regime, options are cheaper and since we keep only options with price of at
least 0.05, this leads to fewer options and hence less power.
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Table 1. Monte Carlo Results for the Test. Critical values are based on 3000 simulations

Test Size

Scenario Vol Regime 10% 5% 1%

η = 0 (Null) Low 10.0 5.1 1.0
η = 0 (Null) Median 9.2 4.8 1.2
η = 0 (Null) High 9.2 4.7 1.0
η = 1, t∗ < T1 (Alt. 1) Low 63.8 50.5 26.8
η = 1, t∗ < T1 (Alt. 1) Median 76.8 63.7 38.5
η = 1, t∗ < T1 (Alt. 1) High 81.9 70.7 44.8
η = 1, T1 < t∗ < T2 (Alt. 2) Low 96.7 92.6 78.6
η = 1, T1 < t∗ < T2 (Alt. 2) Median 95.9 91.9 76.2
η = 1, T1 < t∗ < T2 (Alt. 2) High 95.9 91.5 75.0

7. Empirical application

We now apply the inference techniques developed above to options written on the S&P 500
market index in the year of 2017. More specifically, we use data at market close on each of the
Mondays in our sample period for the weeks for which there is no public holiday. The maturity
of the options in our empirical analysis expire on the Wednesday and Friday of the same week
in which the option prices are recorded. The tuning parameters of the test are set exactly as in
our Monte Carlo experiment. In particular, we use κ given in (6.6) and set M = 1. In this regard,
we note that our sample estimates of χ̂t,i (4), for i = 1,2, are both very small in absolute value
(smaller than their sampling standard deviation), suggesting M-dependence with M = 1 for the
option observation errors.

The p-values of the test are displayed in Figure 1. As seen from the figure, for the majority
of the weeks in our sample, there is no statistical evidence for fixed times of discontinuity. That
said, our test rejects the null hypothesis at 1% level in 7 weeks. Many of these rejections can
be associated with pre-scheduled economic announcements such as those after the Federal Open
Market Committee (FOMC) meetings, unemployment reports etc. However, it is interesting to
note that not all of these events trigger fixed times of discontinuity in the market index.

We next recover the jump distribution at a fixed time of discontinuity for one of the weeks
in the sample where our test rejects, mainly the week of June 5, 2017. The Friday expiration
options for that week are much more expensive than the ones expiring Wednesday (both recorded
at market close on Monday), reflecting the potential effect on the markets from the UK elections
on Thursday, May 8 and the European Central Bank announcement on the same day as well
as the release of important information about the technology sector on Friday, May 9. Thus,
our shortest-dated options on June 5, 2017 do not include the fixed-arrival jump events while
the longer-dated ones do include them. We set the maximum Fourier frequency in the density
recovery to the smallest value of u for which |L̂t,T2(u)| falls below 0.25 and ĉ to (σ ATM

t,1 )2. The
recovered jump density is displayed on the left plot of Figure 2. As seen from the figure, the jump
distribution appears symmetric, reflecting the fact that the fixed jump events created uncertainty
on the market. The median size of the jump is around 0.5% which is nontrivial given the low
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Figure 1. P-values of test for presence of fixed time of discontinuity for S&P 500 Index options.

volatility at the time. On the right plot of Figure 2, we show the S&P 500 Index futures price
(sampled at 1-minute frequency) for the period June 5, 2017 till June 9, 2017. As seen from
this plot, the S&P 500 Index is significantly more volatile on Thursday and Friday when the

Figure 2. Fixed time jumps in the S&P 500 Index. Left plot displays recovered fixed time jump distribution
in the S&P 500 Index on June 5, 2017. Right plot displays the S&P 500 Index futures price sampled at
1-minute for the period June 5, 2017 till June 9, 2017. The ticks on the x-axis of the right plot correspond
to the market close on each day (3.15pm CST).
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fixed arrival jump events occur. This increased volatility also suggests that the price jumps are
accompanied by volatility jumps.

8. Proofs

8.1. Decomposition and notation

The jump part of the process xt , excluding the jump at time t∗, can be represented as an integral
with respect to Poisson random measure (see Qin and Todorov [28]):∫

[0,t]\t∗

∫
R

zμ̃(ds, dz) ≡
∫ t

0

∫
E

δx(s, z)μ̃x(ds, dz), t ≥ 0,Q-a.s., (8.1)

where μx(ds, dz) is a Poisson random measure on R+ × E with compensator dt ⊗ λ(dz), for
some Polish space E and σ -finite measure on it, μ̃x is the martingale counterpart of μx , and δx

is a predictable and R-valued function on � × R+ × E such that Ft(z) dz is the image of the
measure λ under the map z → δx(t, z) on the set {z : δx(ω, t, z) �= 0}.

With this notation, we can split xs − �xt∗1{s≥t∗} into

xc
s = xt +

∫ s

t

ãu du +
∫ s

t

σu dWu, xd
s =

∫ s

t

∫
E

δx(u, z)μ̃x(du, dz), s ≥ t, (8.2)

where recall ãs = as − 1
2σ 2

s − ∫
R
(ez − 1 − z)Fs(z) dz, and this follows from the dynamics of

X in (1.1) and an application of Itô’s formula. We can approximate xs − �xt∗1{s≥t∗} − xt with
x̃s = x̃c

s + x̃d
s , where for s ≥ t :

x̃c
s = ãt (s − t) + σt (Ws − Wt), x̃d

s =
∫ s

t

∫
E

δx(t, z)μ̃x(du, dz). (8.3)

The option prices at time t associated with terminal value xt + x̃t+T are denoted with Õt,T (k).
Using the above notation, we set for u ∈ R and t ≤ t∗:

Lt,T (u) = E
Q
t

(
eiu(xt+T −xt )

)
, L̃t,T (u) = E

Q
t

(
eiux̃t+T

)
, L̃f d

t (u) = E
Q
t−
(
eiu�xt∗

)
. (8.4)

Finally, we will make use of the following decomposition

L̂t,Tl
(u) −Lt,Tl

(u) =
3∑

j=1

η
(j)
t,Tl

(u), l = 1,2, (8.5)

with η
(j)
t,Tl

(u) = −(u2 + iu)η
(j)
t,Tl

(u), and where

η
(1)
t,Tl

(u) =
Nl∑

j=2

ht (u, kl,j−1, kl,j )εt,Tl
(kl,j ), (8.6)
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η
(2)
t,Tl

(u) =
Nl∑

j=2

∫ kl,j

kl,j−1

e(iu−1)k−iuxt
(
Ot,Tl

(kl,j−1) − Ot,Tl
(k)
)
dk, (8.7)

η
(3)
t,Tl

(u) =
∫

k<kl,1∪k>kl,Nl

e(iu−1)k−iuxt Ot,Tl
(k) dk. (8.8)

8.2. Notation for the K and C operators of Theorem 1

We denote

ζ(u) = −(u2 + iu
)
, u ∈R, (8.9)

�̃(k) = f (k) + |k|�(−|k|), k ∈R, (8.10)

where f and � are the pdf and cdf of a standard normal random variable. We further set

γ t,i =
M∑

h=−M

γt,i(h), i = 1,2, (8.11)

where γt,i(h) is defined in (4.9). With this notation, the kernels of the operators K and C are
given by

k(z,u) =
2∑

l=1

(
1{l=1} + τ 21{l=2}

)
ζ(z)ζ(u)γ t∗,lσ

3
t∗ξ

2
t∗,l(0)ψl(0)

∫
R

�̃2(k) dk, (8.12)

c(z,u) =
2∑

l=1

(
1{l=1} + τ 21{l=2}

)
ζ(z)ζ(u)γ t∗,lσ

3
t∗ξ

2
t∗,l(0)ψl(0)

∫
R

�̃2(k) dk. (8.13)

8.3. Preliminary results

Lemma 1. Assume A1–A4 hold. For t ∈ [t∗ − ε, t∗) with ε > 0 arbitrary small, there ex-
ist F (0)

t -adapted random variables Ct and t > t , that do not depend on u and T and satisfy
supt∈[t∗−ε,t∗) Ct < ∞ and inft∈[t∗−ε,t∗) t > t∗, such that for T < t − t we have∣∣L̃t,T (u) − 1

∣∣≤ Ct

(|u|2 ∨ 1
)
T , (8.14)∣∣Lt,T (u) − L̃f d

t (u)
∣∣≤ Ct

(|u| ∨ 1
)√

T , almost surely, (8.15)

and if in addition ν({t∗},R) = 0, then∣∣Lt,T (u) − L̃t,T (u)
∣∣≤ Ct

(|u|2 ∨ 1
)
T 3/2. (8.16)
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Proof of Lemma 1. Throughout the proof, Ct will denote an F (0)
t -adapted random variable

satisfying the conditions in the statement of the lemma, and it can further change from line to
line. We will assume in addition, without loss of generality, that T < t − t , for t being the random
variable in assumptions A2–A4.

The first bound follows trivially upon noticing that by application of Lévy–Khintchine formula
(Theorem 8.1 in Sato [29]), we can write

L̃t,T (u) = exp

(
iuT ãt − T

u2

2
σ 2

t + T

∫
R

(
eiuz − iuz − 1

)
Ft(z) dz

)
, (8.17)

and using the fact that ãt , σt and
∫
R

|z|2Ft (z) dz have càdlàg paths.
We continue with (8.16). Using Taylor series expansion, we have:∣∣EQ

t

(
eiu(xt+T −xt ) − eiux̃t+T

)− iuE
Q
t (xt+T − xt − x̃t+T )

∣∣
≤ Ct

(|u|2 ∨ 1
)
E
Q
t

[|xt+T − xt − x̃t+T |2 + |xt+T − xt − x̃t+T ||̃xt+T |]. (8.18)

From here the result follows by applying Cauchy-Schwarz inequality, the integrability assump-
tion for the the components of x as well as the following results∣∣EQ

t (xt+T − xt − x̃t+T )
∣∣≤ CtT

3/2, E
Q
t (xt+T − xt − x̃t+T )2 ≤ CtT

2, (8.19)

which in turn follows from assumption A3. The last bound of the lemma then follows from
applying the above two inequalities.

We finish with the bound in (8.15). First, using the second bound in (8.19), we have∣∣Lt,T (u) −E
Q
t

(
eiu�xt∗

)∣∣≤ Ct

(|u| ∨ 1
)√

T . (8.20)

From here, the bound in (8.15) follows by taking into account that EQ
t (eiu�xt∗ ) = L̃f d

t (u) almost
surely. �

Lemma 2. Assume A1–A3 hold and ν({t∗,R}) = 0. There exist F (0)
t -adapted random variables

Ct and t > t , that do not depend on T and satisfy supt∈[t∗−ε,t∗] Ct < ∞ and inft∈[t∗−ε,t∗] t > t∗
with some arbitrary small ε > 0, such that for T < t − t we have

Ot,T (k) ≤ Ct

⎧⎪⎪⎨⎪⎪⎩
T e3(k−xt ), if k − xt < −1,

T e−(k−xt ), if k − xt > 1,√
T ∧ T

|k − xt | , if |k − xt | ≤ 1,

(8.21)

∣∣Ot,T (k) − Õt,T (k)
∣∣≤ Ct

∣∣log(T )
∣∣(T 3/2 ∨

(
T 3/2

|ek−xt − 1| ∧ T

))
, (8.22)

∣∣Ot,T (k1) − Ot,T (k2)
∣∣≤ Ct

[
T

(k2 − xt )4
∧ T

(k2 − xt )2
∧ 1

]∣∣ek1 − ek2
∣∣, (8.23)
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where k1 < k2 < xt or k1 > k2 > xt . In addition, for |k − xt | ≤
√

T | log(T )|, we have∣∣∣∣Ot,T (k) − ext
√

T σt �̃

(
k − xt√

T σt

)∣∣∣∣≤ CtT log2(T ). (8.24)

Proof of Lemma 2. The first three bounds follow from Lemmas 2–7 in Qin and Todorov [28]
plus the fact that the bounding F (0)

t -adapted processes in these bounds have càdlàg paths. We
show the last one here. Throughout the proof, Ct will denote an F (0)

t -adapted random variable
satisfying the conditions in the statement of the lemma, and it can further change from line to
line. We will assume in addition, without loss of generality, that T < t − t , for t being the random
variable in assumptions A2–A3.

By dividing the strike of the option and the option price by Xt , we can reduce the analysis to
the case xt = 0 and we do so in the rest of this proof. From the second result of the lemma, it
is clear that it suffices to show the last inequality with Ot,T (k) replaced by Õt,T (k). Now, if we
denote with Õc

t,T (k), the counterpart of Õt,T (k) in which x̃t+T is replaced with x̃c
t+T , then upon

using assumption A1, we have∣∣Õt,T (k) − Õc
t,T (k)

∣∣≤ E
Q
t

∣∣ex̃d
t+T − 1

∣∣≤ CtT . (8.25)

Next, direct calculation yields for k > xt = 0:

Õc
t,T (k) = eãt T +σ 2

t T /2
(

1 − �

(
k − ãt T√

T σt

− √
T σt

))
− ek

(
1 − �

(
k − ãt T√

T σt

))
, (8.26)

with a similar result holding for the case k ≤ xt = 0. From here, using Taylor expansion, we get
the result in (8.24). �

Lemma 3. Assume A1–A4 hold and ν({t∗,R}) > 0. There exist F (0)
t -adapted random variables

Ct and t > t , that do not depend on T and satisfy supt∈[t∗−ε,t∗] Ct < ∞ and inft∈[t∗−ε,t∗] t > t∗
for some arbitrary small ε > 0, such that for T < t − t we have

Ot,T (k) ≤ Ct

{
e−3|k−xt |, if k ≤ xt ,

e−|k−xt |, if k > xt ,
(8.27)

∣∣Ot,T (k1) − Ot,T (k2)
∣∣≤ Ct

∣∣ek1 − ek2
∣∣e−4|k2−xt |, (8.28)

where k1 < k2 < xt or k1 > k2 > xt .

Proof of Lemma 3. The first of the two bounds follows from the following algebraic inequalities
(similar bounds are used in the proof of Theorem 2.1 in Lee [24])(

ek − ext+T
)+ ≤ 2ext e3(k−xt )e−2(xt+T −xt ),

(
ext+T − ek

)+ ≤ 2ext e−(k−xt )e2(xt+T −xt ), (8.29)

and assumption A2 for the existence of conditional moments of xt+T combined with the fact that
the process xt has càdlàg paths. The second bound follows trivially from the following algebraic
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inequalities ∣∣(ex − ek1
)+ − (ex − ek2

)+∣∣≤ ∣∣ek1 − ek2
∣∣1{x≥min{k1,k2}}, (8.30)∣∣(ek1 − ex

)+ − (ek2 − ex
)+∣∣≤ ∣∣ek1 − ek2

∣∣1{x≤max{k1,k2}}, (8.31)

for x, k1, k2 ∈ R together with assumption A2 for the existence of conditional moments of
xt+T . �

Lemma 4. Assume A1–A6 hold and fix h ∈ N. Suppose t < t∗ < t + T2 and T2 = τT1 for some
τ ∈ (1, κ] (with κ being the constant in A6). Let t ↑ t∗ together with T1 ↓ 0, � � T α

1 , K � T
β

1 ,

K � T
−γ

1 , for β,γ > 0 and 1
2 < α < 1

2 + (1 ∧ 4β ∧ 4γ ).
If ν({t∗,R}) = 0:

T
−3/2
i �χ̂t,i (h)

P−→ e2xt

ψi(0)
ξ2
t∗,i (0)σ 3

t∗χt∗,i (h)

∫
R

�̃2(k) dk, i = 1,2, (8.32)

and if ν({t∗,R}) > 0:

χ̂t,i (h) = Op

(
1

�

)
, and �−1χ̂−1

t,i (0) = Op(1), i = 1,2, (8.33)

where χt,i(h) is given in (4.8).

Proof of Lemma 4. In the proof, we will assume that t > t∗ − ε and T2 < inft∈[t∗−ε,t∗] t − t ,
with ε and t being the ones that appear in the statements of Lemmas 1 and 2. Note that t is F (0)-
adapted random variable which satisfies t > t∗, so the above conditions for t and T2 will hold
for each ω(0) in F (0) when � and T2 are sufficiently small (the values for � and T1 for which
this happens will depend on ω(0)). Throughout the proof, ct and Ct will denote an F (0)

t -adapted
random variables satisfying the conditions in the statement of Lemmas 1 and 2, and they can
further change from line to line.

We can decompose

χ̂t,i (h) = χ̂
(1)
t,i (h) + χ̂

(2)
t,i (h) + χ̂

(3)
t,i (h) + χ̂

(4)
t,i (h), i = 1,2, (8.34)

where

χ̂
(1)
t,i (h) = − 1

Ni − 1

(
Ni∑

j=1

ε̂t,Ti
(ki,j )1{j �=J ∗

i }

)2

, (8.35)

χ̂
(2)
t,i (h) =

Ni∑
j=h+1

[(
Ot,Ti

(ki,j ) − 1

2
Ot,Ti

(ki,j−1) − 1

2
Ot,Ti

(ki,j+1)

)

×
(

Ot,Ti
(ki,j−h) − 1

2
Ot,Ti

(ki,j−h−1) − 1

2
Ot,Ti

(ki,j−h+1)

)
1{j �=J ∗

i ,j �=J ∗
i +h}

]
, (8.36)
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χ̂
(3)
t,i (h) =

Ni∑
j=h+1

[(
εt,Ti

(ki,j ) − 1

2
εt,Ti

(ki,j−1) − 1

2
εt,Ti

(ki,j+1)

)

×
(

εt,Ti
(ki,j−h) − 1

2
εt,Ti

(ki,j−h−1) − 1

2
εt,Ti

(ki,j−h+1)

)
1{j �=J ∗

i ,j �=J ∗
i +h}

]
, (8.37)

and χ̂
(4)
t,i (h) is defined as the residual term χ̂t,i (h) − χ̂

(1)
t,i (h) − χ̂

(2)
t,i (h) − χ̂

(3)
t,i (h). Starting with

χ̂
(1)
t,i (h), we have the following inequality∣∣∣∣∣

Ni∑
j=1

ε̂t,Ti
(ki,j )1{j �=J ∗

i }

∣∣∣∣∣
≤ C

Ni∑
j=2

∣∣Ot,Ti
(ki,j ) − Ot,Ti

(ki,j−1)
∣∣+ C

∑
j=1,2,J ∗−1,J ∗,J ∗+1

|εt,Ti
(ki,j)|, (8.38)

for i = 1,2 and some constant C. From here, using assumptions A5 and A6, the growth condition
for |k| and k as well as Lemma 2, we have

χ̂
(1)
t,i (h) = Op

(
Ti�

| log(Ti)|
)

, if ν
({

t∗,R
})= 0, i = 1,2, (8.39)

and upon using further Lemma 3, we have

χ̂
(1)
t,i (h) = Op

(
�
∣∣log(Ti)

∣∣), if ν
({

t∗,R
})

> 0, i = 1,2. (8.40)

For χ̂
(2)
t,i (h), using Lemma 2, we have

χ̂
(2)
t,i (h) = Op(

√
Ti�), if ν

({
t∗,R

})= 0, i = 1,2, (8.41)

and using Lemma 3, we have

χ̂
(2)
t,i (h) = Op(�), if ν

({
t∗,R

})
> 0, i = 1,2. (8.42)

Using next the M-dependence assumption for the observation error in A6 as well as the algebraic
inequality 2xy ≤ x2 + y2 for x, y ∈ R, we have for i = 1,2:

E
((

χ̂
(4)
t,i (h)

)2|F (0)
)≤ Ct

h+2∑
l=−h−2

Ni∑
j=2

(
Ot,Ti

(ki,j ) − Ot,Ti
(ki,j−1)

)2
O2

t,Ti
(ki,j+l ), (8.43)

where Ct is some F (0)
t -adapted random variable and we set to zero Ot,Ti

(ki,j ) for j < 1 and
j > Ni . From here by using Lemma 2, we have

χ̂
(4)
t,i (h) = Op

(
T

3/4
i

√
�
)
, if ν

({
t∗,R

})= 0, i = 1,2, (8.44)
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and using Lemma 3, we have

χ̂
(4)
t,i (h) = Op(

√
�), if ν

({
t∗,R

})
> 0, i = 1,2. (8.45)

Altogether, using the restriction α > 1
2 , we have

χ̂
(1)
t,i (h) + χ̂

(2)
t,i (h) + χ̂

(4)
t,i (h) = op

(
T

3/2
i

�

)
, if ν

({
t∗,R

})= 0, i = 1,2, (8.46)

and

χ̂
(1)
t,i (h) + χ̂

(2)
t,i (h) + χ̂

(4)
t,i (h) = op

(
1

�

)
, if ν

({
t∗,R

})
> 0, i = 1,2. (8.47)

We are left with χ̂
(3)
t,i (h). Using again the M-dependence assumption for the observation error in

A6, we have

E
[(

χ̂
(3)
t,i (h) −E

(
χ̂

(3)
t,i (h)|F (0)

))2|F (0)
]≤ Ct

Ni∑
j=1

O4
t,Ti

(ki,j ), i = 1,2. (8.48)

From here by using Lemma 2, we have

χ̂
(3)
t,i (h) −E

(
χ̂

(3)
t,i (h)|F (0)

)= Op

(
T

5/4
i√
�

)
, if ν

({
t∗,R

})= 0, i = 1,2, (8.49)

and using Lemma 3, we have

χ̂
(3)
t,i (h) −E

(
χ̂

(3)
t,i (h)|F (0)

)= Op

(
1√
�

)
, if ν

({
t∗,R

})
> 0, i = 1,2. (8.50)

We next expand E(χ̂
(3)
t,i (h)|F (0)) in the case ν({t∗,R}) = 0. First, using A6, we have

E
(
εt,Ti

(ki,j )εt,Ti
(ki,j−h)|F (0)

)
= ξt,Ti

(ki,j − xt )Ot,Ti
(ki,j )ξt,Ti

(ki,j−h − xt )Ot,Ti
(ki,j−h)γt,i(h), i = 1,2. (8.51)

This result and the first bound in Lemma 2 imply∣∣E(εt,Ti
(ki,j )εt,Ti

(ki,j−h)|F (0)
)∣∣≤ CtTi, i = 1,2. (8.52)

Further, for |ki,j − xt | ≤ √
Ti | log(Ti)| and Ti sufficiently small, using the first and third bounds

in Lemma 2 as well as the smoothness assumption for ζt,Ti
(k) as a function of k in A6, we have∣∣E(εt,Ti

(ki,j )εt,Ti
(ki,j−h)|F (0)

)− ξt,Ti
(ki,j − xt )

2O2
t,Ti

(ki,j )γt,i (h)
∣∣

≤ Ct

√
Ti� + CtTi�

ι, for |ki,j − xt | ≤
√

Ti

∣∣log(Ti)
∣∣, i = 1,2, (8.53)



Testing and inference for fixed times of discontinuity 2933

where ι is the constant of assumption A6. The smoothness assumption for ξt,Ti
(k) as a function

of k and the first bound in Lemma 2 further imply∣∣(ξt,Ti
(ki,j − xt )

2 − ξt,Ti
(0)2)O2

t,Ti
(ki,j )

∣∣
≤ CtTi

(√
Ti

∣∣log(Ti)
∣∣)ι, for |ki,j − xt | ≤

√
Ti

∣∣log(Ti)
∣∣, i = 1,2. (8.54)

Finally, for |ki,j − xt | > √
Ti | log(Ti)|, an application of the first bound in Lemma 2 implies

Ot,Ti
(ki,j ) ≤ Cte

−α|ki,j −xt | Ti

|ki,j − xt | , for |ki,j − xt | >
√

Ti

∣∣log(Ti)
∣∣, i = 1,2, (8.55)

and some α ∈ (0,1). Combining the results in (8.51)–(8.55), using A5 and taking into account
the asymptotic order of k and k assumed in the statement of the lemma, we have altogether for
the case ν({t∗,R}) = 0:

E
(
χ̂

(3)
t,i (h)|F (0)

)
= ξ2

t,i (0)χt,i(h)
∑

j :|ki,j −xt |≤√
Ti | log(Ti )|

O2
t,Ti

(ki,j )

+ Op

(
T

3/2
i

�| log(Ti)| ∨ T
3/2+ι/2
i | log(Ti)|1+ι

�
∨ Ti

∣∣log(Ti)
∣∣), i = 1,2, (8.56)

where recall that χt,i(h) is defined in (4.8). Next, using the second and fourth bounds in
Lemma 2, and denoting the set

I
(i)

l := {j = 2, . . . ,Ni : |ki,j − xt | ≤
∣∣log(Ti)

∣∣√Ti

}
, i = 1,2, (8.57)

we have for ν({t∗,R}) = 0:

∑
j∈I

(i)
l

O2
t,Ti

(ki,j ) = Tie
2xt σ 2

t

∑
j∈I

(i)
l

�̃2
(

ki,j − xt√
Tiσt

)
+ Op

(
T 2

i | log(Ti)|3
�

)
, i = 1,2, (8.58)

where the function �̃ is defined in (8.10). Using assumption A5, we have

∑
j∈I

(i)
l

�̃2
(

ki,j − xt√
Tiσt

)
= 1

ψi(0)�

∑
j∈I

(i)
l

�̃2
(

ki,j − xt√
Tiσt

)
(ki,j − ki,j−1)

+ op(1) ×
∑

j∈I
(i)
l

�̃2
(

ki,j − xt√
Tiσt

)
, i = 1,2, (8.59)
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and using the smoothness of �̃(k) and upon changing variable of integration, we have

∑
j∈I

(i)
l

�̃2
(

ki,j − xt√
Tiσt

)
(ki,j − ki,j−1)

=√Ti

∫ | log(Ti )|

−| log(Ti )|
�̃2
(

k

σt

)
dk + Op

(
�
∣∣log(Ti)

∣∣)
=√Tiσt

∫
R

�̃2(k) dk + Op

(
�
∣∣log(Ti)

∣∣∨ T 2
i

)
, i = 1,2. (8.60)

Combining the results in (8.58)–(8.60), we get for the case ν({t∗,R}) = 0 and for i = 1,2:

∑
j :|ki,j −xt |≤√

Ti | log(Ti )|
O2

t,Ti
(ki,j ) = T

3/2
i

ψi(0)�
e2xt σ 3

t

∫
R

�̃2(k) dk + op

(
T

3/2
i

�

)
. (8.61)

For the case ν({t∗,R}) > 0, we can use assumption A5 and Lemma 3 and conclude

ct

�

∫
R

O2
t,Ti

(k) dk ≤ E
(
χ̂

(3)
t,i (h)|F (0)

)≤ Ct

�

∫
R

O2
t,Ti

(k) dk, i = 1,2, (8.62)

for some F (0)
t -adapted random variables ct > 0 and Ct > 0. We note further that

ct ≤
∫
R

O2
t,Ti

(k) dk ≤ Ct , i = 1,2, (8.63)

again for some F (0)
t -adapted random variables ct > 0 and Ct > 0. The upper bound in the above

inequality follows from Lemma 3. For the lower bound, we can first use the fact that EQ
t (Xt+Ti

−
Xt)

2 = 2
∫
R

ekOt,Ti
(k) dk > 0. This is because ν({t∗,R}) > 0. Therefore, there exists a region

for the log-strike with positive Lebesgue measure where Ot,Ti
(k) is bounded from below by an

F (0)
t -adapted strictly positive random variable. From here, the lower bound for

∫
R

O2
t,Ti

(k) dk

follows.
Combining the bounds in (8.46)–(8.63) and upon making use of the fact that when ν({t∗,R}) =

0, σt , ξt,i and χt,i(h) are almost surely continuous at t = t∗, we get the two results of the
lemma. �

8.4. Proof of Theorem 1

In the proof (including of Lemma 5 below), we will assume that t > t∗ − ε and T2 <

inft∈[t∗−ε,t∗] t − t , with ε and t being the ones that appear in the statements of Lemmas 1 and 2.
Throughout the proof, Ct will denote an F (0)

t -adapted random variable satisfying the conditions
in the statement of Lemmas 1 and 2, and it can further change from line to line.
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We start with establishing a few preliminary results. First, using Lemma 2, we have

sup
u∈R

∣∣η(2)
t,Tl

(u)
∣∣≤ Ct

√
Tl�, sup

u∈R

∣∣η(3)
t,Tl

(u)
∣∣≤ CtTle

−2(|k|∨k), l = 1,2. (8.64)

Next, making use of assumption A6 as well as Lemma 2, Burkholder–Davis–Gundy inequality,
inequality in means as well as Tonelli’s inequality, and taking into account that α > 1

2 , we have

E
(∥∥G(u)

∣∣η(1)
t,Tl

(u)
∣∣p∥∥2|F (0)

)= Op

(
T

p+1/2
1 �2p−1), l = 1,2, (8.65)

for any deterministic function G with at most polynomial growth for |u| increasing and any 1 ≤
p < κ , for κ being the constant in assumption A6. We further have by making use of assumption
A5 and Lemma 2, and taking into account again that α > 1

2 :

E

(
sup
u∈R

∣∣η(1)
t,Tl

(u)
∣∣∣∣∣F (0)

)
≤ Ct

Nl∑
j=2

e−kl,j−1
∣∣ξt,l(kl,j−1 − xt )

∣∣Ot,Tl
(kl,j−1)�

≤ Ct

∣∣log(T1)
∣∣T1, l = 1,2. (8.66)

With these bounds, we can now turn to the proof of the theorem. We denote

Ẑ =
N2∑
j=2

Ẑ
(2)
j − τ

N1∑
j=2

Ẑ
(1)
j , (8.67)

where

Ẑ
(i)
j = −(u2 + iu

)
ht (u, ki,j−1, ki,j )εt,Ti

(ki,j ), j = 1, . . . ,Ni, i = 1,2, (8.68)

and we split the difference L̂t,T2(u) − L̂t,T1(u)τ − Ẑ into the following components:

R1(u) = τLt,T1(u)τ−1(L̂t,T1(u) −Lt,T1(u)
)− (L̂t,T1(u)τ −Lt,T1(u)τ

)
, (8.69)

R2(u) = −τ
(
Lt,T1(u)τ−1 − 1

)(
L̂t,T1(u) −Lt,T1(u)

)
, (8.70)

R3(u) = Lt,T2(u) −Lt,T1(u)τ , R4(u) =
3∑

j=2

η
(j)
t,T2

(u) − τ

3∑
j=2

η
(j)
t,T1

(u). (8.71)

For R1 and R2, using Taylor expansion (note that the power function of a complex variable is
analytic outside the negative real axis) and making use of the fact that |Lt,T1(u)| ≤ 1, we have∣∣R1(u)

∣∣≤ C
[∣∣L̂t,T1(u) −Lt,T1(u)

∣∣τ + ∣∣L̂t,T1(u) −Lt,T1(u)
∣∣2], (8.72)∣∣R2(u)

∣∣≤ C
∣∣L̂t,T1(u) −Lt,T1(u)

∣∣∣∣Lt,T1(u) − 1
∣∣(τ−1)∧1

, (8.73)
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for some positive constant C > 0. From here, using the bounds for {η(j)
t,T (u)}j=1,2,3 in (8.64)–

(8.66) as well as Lemma 1 (note that τ ∈ (1, κ]), we have

‖R1‖ = Op

(
T

τ∧2
2 + 1

4
1 �τ∧2− 1

2 ∨ (
√

T1�)τ∧2 ∨ (T1e
−2(|k|∨k)

)τ∧2)
, (8.74)

‖R2‖ = Op

([
T

3/4
1

√
� ∨√T1� ∨ T1e

−2(|k|∨k)
]
T

(τ−1)∧1
1

)
, (8.75)

Using again the bounds for {η(j)
t,T (u)}j=1,2,3 as well as Lemma 1, we have

‖R3‖ = Op

(
T

3/2
1

)
, ‖R4‖ = Op

(
T1e

−2(|k|∨k) ∨√T1�
)
. (8.76)

Altogether, we get,

L̂t,T2(u) − L̂t,T1(u)τ − Ẑ

= Op

(
T

τ∧2
2 + 1

4
1 �τ∧2− 1

2 ∨ T
3
4 +(τ−1)∧1

1

√
� ∨√T1� ∨ T1e

−2(|k|∨k) ∨ T
3/2
1

)
, (8.77)

and we note that τ > 1, and under the conditions of the theorem for the rate of growth of � and
|k| ∨ k, we can therefore write

L̂t,T2(u) − L̂t,T1(u)τ − Ẑ = op

(
T

3/4
1

√
�
)
, (8.78)

and hence the result of the theorem will follow upon showing the following result.

Lemma 5. Assume A1–A5 hold. Suppose t < t∗ < t + T2 and T2 = τT1 for some τ ∈ (1, κ]
(with κ being the constant in A6). Let t ↑ t∗ together with T1 ↓ 0, � � T α

1 , where α > 1
2 . Then,

we have

1

T
3/4
1

√
�

Ẑ
L|F (0)

−−−−→ CN (0,K,C). (8.79)

Proof. Proof of Lemma 5 Using a subsequence criterion for convergence in probability, we
need to show that for all ω(0) and every subsequence, there is a further subsequence along which
we have 1

T
3/4
1

√
�

Ẑ(ω(0)) converge in distribution to CN (0,K(ω(0)),C(ω(0))). Using Bessel’s

inequality, dominated convergence and the bounds of Lemma 2, we have under the conditions of
the lemma

lim sup
T1↓0

1

T
3/2
1 �

E

(∑
j>J

〈Ẑ, ej 〉2
∣∣∣F (0)

)
→ 0, as J → ∞, (8.80)

where {ej }j≥1 denotes an orthonormal basis in L2(w). This means that the sequence is asymptot-
ically finite-dimensional, see 1.8 in van der Vaart and Wellner [34]. Therefore, the limit result of
the theorem will follow from Theorem 1.8.4 in van der Vaart and Wellner [34] if we can establish

1

T
3/4
1

√
�

〈Ẑ, h〉 L|F (0)

−−−−→ 〈Z,h〉, (8.81)
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for Z denoting the limit of Theorem 1 and h an arbitrary element in L2(w). Since Z is F (0)-
conditionally CN (0,K,C), we have

E
(〈Z,h〉2|F (0)

)= 〈Kh,h〉, E
(〈Z,h〉〈Z,h〉|F (0)

)= 〈h,Ch〉. (8.82)

Since the observation errors have F (0)-conditional dependence, to establish finite-dimensional
convergence, we will apply a big block-small block approach. More specifically, we denote with
l
(i)
T , for i = 1,2, two F (0)-adapted sequences of integers increasing to infinity. We further set

r
(i)
T = �Ni/l

(i)
T �, for i = 1,2. Since l

(i)
T are increasing, without loss of generality, we will assume

l
(i)
T > 2M , for i = 1,2, almost surely. We then split

〈Ẑ, h〉 =
r
(2)
T∑

j=1

Â
(2)
j − τ

r
(1)
T∑

j=1

Â
(1)
j +

r
(2)
T∑

j=1

B̂
(2)
j − τ

r
(1)
T∑

j=1

B̂
(1)
j

+
N2∑

k=r
(2)
T l

(2)
T +1

〈
Ẑ

(2)
k , h

〉− τ

N1∑
k=r

(1)
T l

(1)
T +1

〈
Ẑ

(1)
k , h

〉
, (8.83)

where we set

Â
(i)
j =

∑
k∈L

(i)
j

〈
Ẑ

(i)
k , h

〉
, B̂

(i)
j =

∑
k∈S

(i)
j

〈
Ẑ

(i)
k , h

〉
, j = 1, . . . , r

(i)
T , i = 1,2, (8.84)

and for j = 1, . . . , r
(i)
T and i = 1,2, we denote the sets

S
(i)
j = {(j −1)l

(i)
T +1, . . . , (j −1)l

(i)
T +M

}
, L

(i)
j = {(j −1)l

(i)
T +M +1, . . . , j l

(i)
T

}
. (8.85)

We choose l
(i)
T such that the following rate conditions are satisfied:

| log(Ti)|2√
Til

(i)
T

→ ∞ and
| log(Ti)|√

Til
(i)
T

→ 0, i = 1,2, a.s. (8.86)

We note that because of our rate conditions on the asymptotic order of T1, T2, �, k and k as well
as assumption A5 for the strike grid, this will imply Ni

l
(i)
T

→ ∞ almost surely.

Using Lemma 2 and the fact that l
(i)
T � → 0 almost surely (because of the above condition on

l
(i)
T ), we have

Ni∑
k=r

(i)
T l

(i)
T +1

〈
Ẑ

(i)
k , h

〉= Op

(
l
(i)
T Ti�

)= op

(
T

3/4
i

√
�
)
, i = 1,2, (8.87)
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where the last equality follows because of the rate condition on l
(i)
T as well as the restriction

α > 1/2 of the theorem. Next, using Lemma 2, the F (0)-conditional M-dependence of the ob-
servations errors from assumption A6 as well as the fact that l

(i)
T > 2M , we have

E

(∣∣∣∣∣
r
(2)
T∑

j=1

B̂
(i)
j

∣∣∣∣∣
2∣∣∣F (0)

)
= E

( r
(2)
T∑

j=1

∣∣B̂(i)
j

∣∣2∣∣∣F (0)

)
≤ Ct

NiTi�
2

l
(i)
T

= op

(
T

3/2
i �

)
, (8.88)

for i = 1,2 and an F (0)-adapted random variable Ct . The last inequality in (8.88) follows from
the second rate condition for l

(i)
T in (8.86) as well as the assumption in the theorem regarding the

asymptotic size of k and k.
Given the above two results in (8.87) and (8.88), the finite-dimensional CLT result in (8.81)

will be shown if we can establish:

1

T
3/4
1

√
�

Â
L|F (0)

−−−−→ 〈Z,h〉, (8.89)

where

Â =
r
(2)
T∑

j=1

Â
(2)
j − τ

r
(1)
T∑

j=1

Â
(1)
j . (8.90)

This CLT, in turn, will hold by application of Theorem VIII.5.25 of Jacod and Shiryaev [23], if
we can establish the following convergence results:

1

T
3/2
1 �

E
(
Â2|F (0)

) P−→ 〈Kh,h〉, 1

T
3/2
1 �

E
(
ÂÂ|F (0)

) P−→ 〈h,Ch〉, (8.91)

1

T
3/2+3ε/4
1 �1+ε/2

E
(|Â|2+ε|F (0)

) P−→ 0, for some ε ∈ (0,1). (8.92)

Starting with the last convergence in (8.92), we can apply Burkholder–Davis–Gundy inequality,
inequality in means as well as assumptions A5 and A6 for the log-strike grid and the observation
error, and get

1

T
3/2+3ε/4
1 �1+ε/2

E
(|Â|2+ε|F (0)

)≤ Ct�
1+ε/2

T
3/2+3ε/4

1

2∑
l=1

Nl∑
j=2

O2+ε
t,Tl

(kl,j−1). (8.93)

From here, we can make use of Lemma 2 and get

1

T
3/2+3ε/4
1 �1+ε/2

E
(|Â|2+ε|F (0)

)= Op

(
�ε/2T

−ε/4
1

∣∣log(T1)
∣∣)= op(1), (8.94)
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where for the last equality, we made use of the fact that α > 1
2 . Next, using the F (0)-conditional

M-dependence of the observations errors from assumption A6, the F (0)-conditional indepen-
dence of the errors across the two maturities, as well as the fact that l

(1)
T > 2M and l

(2)
T > 2M ,

we have

E
(
Â2|F (0)

)= r
(2)
T∑

j=1

E
((

Â
(2)
j

)2|F (0)
)+ τ 2

r
(1)
T∑

j=1

E
((

Â
(1)
j

)2|F (0)
)
. (8.95)

Using assumption A6 for the observation error, we have for l = 1,2:

E
((

Â
(l)
j

)2|F (0)
)

=
∑

k,k′∈L
(l)
j :|k−k′|≤M

[〈̃
ht (u, kl,k−1, kl,k), h(u)

〉〈̃
ht (u, kl,k′−1, kl,k′), h(u)

〉
× ξt,l(kl,k−1 − xt )ξt,l(kl,k′−1 − xt )Ot,Tl

(kl,k−1)Ot,Tl
(kl,k′−1)γt,l

(
k − k′)], (8.96)

where γt,l(h) is defined in (4.9) and we further denote

h̃t (u, k1, k2) = −(u2 + iu
)
ht (u, k1, k2), u ∈ R, k1, k2 ∈ R. (8.97)

Form here, by an application of Lemma 2, we have

E
(
Â2|F (0)

)= ∑
j :L(2)

j ⊆I
(2)
l

E
((

Â
(2)
j

)2|F (0)
)+ τ 2

∑
j :L(1)

j ⊆I
(1)
l

E
((

Â
(1)
j

)2|F (0)
)

+ Op

(
T

3/2
1 �

| log(T1)|
)

, (8.98)

where as in the proof of Lemma 4, we denote the sets

I
(i)

l := {j = 2, . . . ,Ni : |ki,j − xt | ≤
∣∣log(Ti)

∣∣√Ti

}
, i = 1,2. (8.99)

Using (8.96), the first and third bound in Lemma 2 as well as the smoothness assumptions for ξ

in assumption A6, we next have for j such that L
(l)
j ⊆ I

(l)

l :

E
((

Â
(l)
j

)2|F (0)
)

=
∑

k∈L
(l)
j

[〈̃
ht (u, kl,k−1, kl,k), h(u)

〉2
ξ2
t,l(kl,k−1 − xt )O

2
t,Tl

(kl,k−1)
]
γt,l(0)
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+ 2
M∑

h=1

∑
k∈L

(l),h
j

[〈̃
ht (u, kl,k−1, kl,k), h(u)

〉2
ξ2
t,l(kl,k−1 − xt )O

2
t,Tl

(kl,k−1)
]
γt,l(h) + R̂(l)

j

=
∑

k∈L
(l)
j

[〈̃
ht (u, kl,k−1, kl,k), h(u)

〉2
ξ2
t,l(kl,k−1 − xt )O

2
t,Tl

(kl,k−1)
]

×
(

γt,l(0) + 2
M∑

h=1

γt,l(h)

)
+ R̂(l)

j , l = 1,2, (8.100)

where L
(l),h
j is the same as the set L

(l)
j but with the last h elements removed, and the residual

term R̂(l)
j satisfies

∣∣R̂(l)
j

∣∣≤ Ct l
(l)
T

√
Tl�

2(�ι
√

Tl + �
)+ CtTl�

2

+ Ctψ
(l)

T �2
∑

k∈L
(l)
j

O2
t,Tl

(kl,k−1), l = 1,2, (8.101)

for ι > 0 being the constant appearing in assumption A6, Ct being an F (0)-adapted random

variable, and ψ
(l)

T given by

ψ
(l)

T = sup
j :|kl,j −kl,j−1|≤√

Tl | log(Tl)|

∣∣∣∣kl,j − kl,j−1

�
− ψl(0)

∣∣∣∣, l = 1,2. (8.102)

Using the first bound of Lemma 2, we have

�
∑

k∈I
(l)
j

O2
t,Tl

(kl,k−1) ≤ CtT
3/2
l , l = 1,2. (8.103)

Using the results in (8.100) and (8.103), the bound Ot,T (k) ≤ Ct

√
T from Lemma 2, the fact

that ψ
(l)

T = op(1) by assumption A5 as well as the second condition for l
(l)
T in (8.86), we have

altogether (recall notation in (8.11)):

E
(
Â2|F (0)

)= γ t,2

∑
k∈I

(2)
l

[〈̃
ht (u, k2,k−1, k2,k), h(u)

〉2
ξ2
t,2(k2,k−1 − xt )O

2
t,T2

(k2,k−1)
]

+ τ 2γ t,1

∑
k∈I

(1)
l

[〈̃
ht (u, k1,k−1, k1,k), h(u)

〉2
ξ2
t,1(k1,k−1 − xt )O

2
t,T1

(k1,k−1)
]

+ op

(
T

3/2
1 �

)
. (8.104)



Testing and inference for fixed times of discontinuity 2941

Next, using the bounds in (8.22) and (8.24) of Lemma 2, we have for i = 1,2:∑
j∈I

(i)
l

〈̃
ht (u, ki,j−1, ki,j ), h(u)

〉2
ξ2
t,i (ki,j−1 − xt )O

2
t,Ti

(ki,j−1)

= Ti

∑
j∈I

(i)
l

〈̃
ht (u, ki,j−1, ki,j ), h(u)

〉2
ξ2
t,i (ki,j−1 − xt )O

2
t,Ti

(ki,j−1) + op

(
T

3/2
i �

)
, (8.105)

where we denote

Ot,T (k) = ext f

(
k − xt√

T σt

)
σt + ext

|k − xt |√
T

�

(
−|k − xt |√

T σt

)
. (8.106)

Now, we note that

〈̃
ht (u, ki,j−1, ki,j ), h(u)

〉= e−xt

∫ ki,j

ki,j−1

〈
ζt (u, k), h(u)

〉
dk, i = 1,2, (8.107)

where we use the notation ζt (u, k) = ζ(u)e(iu−1)(k−xt ) (recall (8.9)). By Taylor expansion, we
have ∣∣Ot,T (k1) − Ot,T (k2)

∣∣≤ Ct

|k1 − k2|√
T

, for k1 < k2 ≤ xt or k1 > k2 ≥ xt , (8.108)

and therefore∣∣∣∣〈̃ht (u, ki,j−1, ki,j ), h(u)
〉2

O
2
t,Ti

(ki,j−1) − �i,j e
−2xt

∫ ki,j

ki,j−1

〈
ζt (u, k), h(u)

〉2
O

2
t,Ti

(k) dk

∣∣∣∣
≤ Ct

�3

√
Ti

, i = 1,2, (8.109)

where in the above expression we use the shorthand �i,j = ki,j − ki,j−1. Taking into account
that α > 1

2 , the results in (8.104), (8.105) and (8.109) lead to

E
(
Â2|F (0)

)= γ t,2T2e
−2xt

∑
j∈I

(2)
l

�2,j

∫ k2,j

k2,j−1

〈
ζt (u, k), h(u)

〉2
O

2
t,T2

(k)ξ2
t,2(k2,j−1 − xt ) dk

+ τ 2γ t,1T1e
−2xt

∑
j∈I

(1)
l

�1,j

∫ k1,j

k1,j−1

〈
ζt (u, k), h(u)

〉2
O

2
t,T1

(k)ξ2
t,1(k1,j−1 − xt ) dk

+ op

(
T

3/2
1 �

)
. (8.110)

Finally, we can note by change of variable of integration that
∫
R

O
2
t,T (k) dk = Op(

√
T ). There-

fore, taking into account the smoothness assumption for �l,j in A5 and for ξ2
t,l(k) in A6, and by
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changing the variable of integration, we can write

E
(
Â2|F (0)

)= γ t,2�T
3/2
2

∫
R

〈
ζ(u),h(u)

〉2
σ 3

t �̃2(k)ξ2
t,2(0)ψ2(0) dk

+ γ t,1�T
3/2
1

∫
R

〈
ζ(u),h(u)

〉2
σ 3

t �̃2(k)ξ2
t,1(0)ψ1(0) dk + op

(
T

3/2
1 �

)
. (8.111)

From here, the first convergence result in (8.91) follows by taking into account that ξt,l(0) and
γ t,l are continuous in t and σt does not have fixed time of discontinuity at t∗. The second con-
vergence in (8.91) can be shown in an analogous way, and from here (8.81) follows and hence
the result of the lemma. �

8.5. Proof of Theorem 2

In the proof, we will assume that t > t∗ − ε and T2 < inft∈[t∗−ε,t∗] t − t , with ε and t being the
ones in Lemmas 1 and 2. Throughout the proof, Ct will denote an F (0)

t -adapted random variable
satisfying the conditions in the statement of Lemmas 1 and 2, and it can change from line to line.
We denote

L̂∗
t,T (u) − L̂t,T (u) = η

(4)
t,T (u) = −(u2 + iu

)
η

(4)
t,T (u). (8.112)

The analysis of η
(4)
t,T (u) is similar to that of η

(1)
t,T (u). In particular, using Lemma 2 as well as the

bounds for {η(j)
t,T (u)}j=1,2,3, we have

E
(∥∥G(u)η

(4)
t,T (u)

∥∥2|F)= Op(T
√

T �), (8.113)

for any deterministic function G : R → R with polynomial growth. Using Taylor expansion,
taking into account |Lt,T1(u)| ≤ 1 and τ > 1, we have

∣∣L̂t,T1(u)τ−1 − 1
∣∣≤ C

∣∣L̂t,T1(u) −Lt,T1(u)
∣∣τ−1 + C

∣∣L̂t,T1(u) −Lt,T1(u)
∣∣

+ C
∣∣Lt,T1(u) − 1

∣∣τ−1 + C
∣∣Lt,T1(u) − 1

∣∣, (8.114)

for some positive constant. From here, using the bounds for {η(j)
t,T (u)}j=1,...,4, derived in the proof

of Theorem 1 and above, and taking into account that τ > 1, we have

L̂∗
t,T2

(u) − L̂t,T2(u) − τ L̂t,T1(u)τ−1(L̂∗
t,T1

(u) − L̂t,T1(u)
)

= Ẑ∗ + op

(
T

3/4
1

√
�
)
, (8.115)
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where

Ẑ∗ = Ŝt,2

N2∑
j=2

h̃t (u, k2,j−1, k2,j )̂εt,T2(k2,j−1)z2,j−1

− τ Ŝt,1

N1∑
j=2

h̃t (u, k1,j−1, k1,j )̂εt,T1(k1,j−1)z1,j−1, (8.116)

and the function h̃t is defined in (8.97) above. Hence, we will be done if we can show

1

T
3/4
1

√
�

Ẑ∗ L|F−−→ CN (0,K,C). (8.117)

First, exactly as in the proof of Lemma 5, we can show

lim sup
T1↓0

1

T
3/2
1 �

E

(∑
j>J

〈
Ẑ∗, ej

〉2∣∣∣F)→ 0, as J → ∞, (8.118)

where {ej }j≥1 denotes an orthonormal basis in L2(w). Therefore, the limit result of the theorem
will follow from Theorem 1.8.4 in van der Vaart and Wellner [34] if we can establish

1

T
3/4
1

√
�

〈
Ẑ∗, h

〉 L|F−−→ 〈Z,h〉, (8.119)

for Z denoting the limit of Theorem 1 and h an arbitrary element in L2(w), and for the latter we
need to show

1

T
3/2
1 �

E
(〈

Ẑ∗, h
〉2|F) P−→ 〈Kh,h〉,

(8.120)
1

T
3/2
1 �

E
(〈
Ẑ∗, h

〉〈
Ẑ∗, h

〉|F) P−→ 〈h,Ch〉,

1

T
3/2+3ε/4

1 �1+ε/2
E
(∣∣〈Ẑ∗, h

〉∣∣2+ε|F) P−→ 0, for some ε ∈ (0,1). (8.121)

The last of the above results follows by making use of Lemma 2. Below we show the first of the
above convergences, with the second one being established in analogous way. Using the fact that
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both sequences {z1,j }N1
j=1 and {z2,j }N2

j=1 are i.i.d., we have

E
(〈
Ẑ∗, h

〉2|F)= Ŝ2
t,2

N2∑
j=2

〈̃
ht (u, k2,j−1, k2,j ), h(u)

〉2
ε̂2
t,T2

(k2,j−1)

+ τ 2Ŝ2
t,1

N1∑
j=2

〈̃
ht (u, k1,j−1, k1,j ), h(u)

〉2
ε̂2
t,T1

(k1,j−1), (8.122)

and using assumption A6 for the observation errors, Lemma 2 and the restriction α > 1/2, we
have for l = 1,2:

Nl∑
j=2

〈̃
ht (u, kl,j−1, kl,j ), h(u)

〉2
ε̂2
t,Tl

(kl,j−1)

=
∑

j∈{2,...,Nl}\J ∗
l

〈̃
ht (u, kl,j−1, kl,j ), h(u)

〉2
ξ

2
t,l(kl,j−1)O

2
t,Tl

(kl,j−1)

+ Op

(
T

5/4
1 �3/2), (8.123)

where ξ
2
t,l(kl,j ) = 2

3ξ2
t,l(kl,j ) + 1

6ξ2
t,l(kl,j−1) + 1

6ξ2
t,l(kl,j+1), for j = 2, . . . ,Nl − 1, and

ξ
2
t,l(kl,Nl

) = ξ
2
t,l(kl,Nl−1), and J ∗

l is defined in (4.4). Note that
√

�/T
1/4
1 → 0, and hence

Op(T
5/4

1 �3/2) = op(T
3/2

1 �). From here, we can use the fact that Ŝ2
t,l

P−→ γ t∗,l , for l = 1,2
from Lemma 4 and the local uniform convergence result in (4.12), and then proceed exactly as
in the proof of Lemma 5 to show (8.120).

8.6. Proof of Theorem 3

In the proof, we will assume that t > t∗ − ε and T2 < inft∈[t∗−ε,t∗] t − t , with ε and t being the
ones in Lemmas 1 and 2. Throughout the proof, Ct will denote an F (0)

t -adapted random variable
satisfying the conditions in the statement of Lemmas 1 and 2, and it can further change from line
to line.

Using Lemma 3, we have∣∣η(2)
t,T (u)

∣∣+ ∣∣η(3)
t,T (u)

∣∣≤ Ct

(
u2 ∧ 1

)(
� ∨ e−2(|k|∨k)

)
. (8.124)

Furthermore, using assumptions A5 and A6 for the mesh of the log-strike grid and the structure
of the observation error and Lemma 3 we have

E
(∣∣η(1)

t,T (u)
∣∣2|F (0)

)≤ Ct

(
u4 ∨ 1

)
�. (8.125)

Combining these results with the bound in (8.15) of Lemma 1, we get altogether∥∥L̂t,T (u) − L̃f d
t (u)

∥∥= Op

(√
� ∨ e−2(|k|∨k) ∨ √

T
)
. (8.126)
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From assumption A4, we further have

∥∥L̃f d
t (u) − L̃f d

t∗ (u)
∥∥= Op(

√
T ). (8.127)

The results in (8.126)–(8.127) imply the first result of the theorem.
Next, with the notation for η

(4)
t,T (u) in the proof of Theorem 2, exactly as for η

(1)
t,T (u) above, we

can show

E
(∣∣η(4)

t,T (u)
∣∣2|F)≤ Ct

(
u4 ∨ 1

)
�. (8.128)

Therefore, since by Lemma 4, Ŝt,l = Op(1), for l = 1,2, we have

∥∥L̂∗
t,T (u) − L̂t,T (u)

∥∥= Op(
√

�), (8.129)

and from here the second result of the theorem follows.

8.7. Proof of Corollary 4.1

We start with the result under the null hypothesis. By Theorem 2 and an application of port-

manteau theorem, we have 1
T

3/4
1

√
�

ĉvα
P−→ cvα , with cvα denoting the F (0)-conditional (1 − α)-

quantile of ‖Z‖ and Z being the limit variable in Theorem 1, because Z has F (0)-conditional
continuous distribution. From Theorem 1, we have that P(Ŵ1,2 > cvα|�0) converges to α, and
this convergence holds locally uniformly in α as P(Ŵ1,2 > cvα|�0) is a monotone function of α.
From here, the result to be proved under the null hypothesis follows.

We turn next to showing the result under the alternative. We denote the set Uε = {u : |Lf d
t∗ (u)−

1| < ε}, for some ε ∈ (0,1). This set is of positive Lebesgue measure, since Lf d
t∗ (u) is continuous

and converges to zero as |u| approaches infinity by Riemann–Lebesgue lemma. Then, using the
bounds (8.124)–(8.125) as well as Lemma 1, we have∫

u∈Uε

∣∣L̂t,T2(u) − L̂t,T1(u)τ
∣∣2w(u)du

P−→
∫

u∈Uε

∣∣L̂f d
t∗ (u) − 1

∣∣2w(u)du > 0, (8.130)

if T1 < t∗ and∫
u∈Uε

∣∣L̂t,T2(u) − L̂t,T1(u)τ
∣∣2w(u)du

P−→
∫

u∈Uε

∣∣L̂f d
t∗ (u) − L̂f d

t∗ (u)τ
∣∣2w(u)du > 0, (8.131)

if t∗ ≥ T1. This together with the order of magnitude of Ŵ ∗
1,2 derived in Theorem 3 (which means

that ĉvα = Op(
√

�)) implies the result of the corollary under the alternative hypothesis.
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8.8. Proof of Theorem 4

Applying the Plancherel’s identity, we can write∫
R

(
Ĝt∗(x) − Gt∗(x)

)2
dx

= 1

2π

∫
|u|≤uN

∣∣FĜt∗(u) −FGt∗(u)
∣∣2 du + 1

2π

∫
|u|>uN

∣∣FGt∗(u)
∣∣2 du, (8.132)

whee FĜt∗ and FGt∗ are the Fourier transforms of Ĝt∗ and Gt∗ , respectively. By assumption
A7, the first term on the right-hand side of the above decomposition is of order O(u−2r

N ).
We continue with the second term in that decomposition. First, we note that regardless of

whether t∗ < t + T1 or t∗ ≥ t + T1, we have that ‖L̂t,T2 − 1‖ converges in probability to a
strictly positive number. Also, ‖L̂t,T2 − L̂t,T1‖ = ‖L̂t,T2 − 1‖ + op(1) in the asymptotic setup
with t∗ ≥ t + T1 and ‖L̂t,T2 − L̂t,T1‖ = op(1) in the asymptotic setup with t∗ < t + T1. These
results follow from the bounds in (8.124)–(8.125). Therefore,

τ

τ − 1

‖L̂t,T2 − L̂t,T1‖
‖L̂t,T2 − 1‖

P−→
⎧⎨⎩

τ

τ − 1
> 1, in the asymp. setup with t∗ ≥ t + T1,

0, in the asymp. setup with t∗ < t + T1.
(8.133)

This implies that on a set with probability approaching one τ
τ−1

‖L̂t,T2 −L̂t,T1‖
‖L̂t,T2−1‖ < 1 will correctly

identify the setup with t∗ < t + T1 and similarly τ
τ−1

‖L̂t,T2 −L̂t,T1‖
‖L̂t,T2−1‖ ≥ 1 will correctly identify the

setup with t∗ ≥ t + T1. Hence, we can proceed in the proof assuming that this is the case.
Taking into account that ĉ = Op(1) and u2

NT1 → 0, we have for T1 sufficiently small on a set
with probability approaching one and for |u| ≤ uN :∣∣∣∣ 1

B̂1(u)
− 1

∣∣∣∣≤ Ct

[
1

(1 − (u2
N ĉT1))

∨ 1

((1 − (τ − 1)u2
N ĉT1))1/(τ−1)

]
× ∣∣B̂1(u) − 1

∣∣, (8.134)∣∣∣∣ 1

B̂2(u)
− 1

∣∣∣∣≤ Ct

[
1

1 − u2
N ĉT2

∨ 1

|1 − u2
N ĉT1|τ

]∣∣B̂2(u) − 1
∣∣, (8.135)

for some variable Ct that depends only on at , σt and Ft . We further have for T1 sufficiently small
on a set with probability approaching one∣∣B̂j (u) − 1

∣∣≤ Cu2ĉT1, j = 1,2, (8.136)

for some positive constant C. From here, we need to study only the distance between the second
term in L̂f d

t (u) (i.e., L̂t,T1(u) or L̂t,T2(u)) and Lf d
t∗ (u). Its analysis follows from the bounds for

the terms {η(j)
t,T (u)}j=1,2,3 as well as (8.127) in the proof of Theorem 3.
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