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Asymptotic properties of penalized splines
for functional data
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Penalized spline methods are popular for functional data analysis but their asymptotic properties have not
been established. We present a theoretic study of the L2 and uniform convergence of penalized splines for
estimating the mean and covariance functions of functional data under general settings. The established con-
vergence rates for the mean function estimation are mini-max rate optimal and the rates for the covariance
function estimation are comparable to those using other smoothing methods.
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1. Introduction

Functional data analysis (FDA) has been popular in the last two decades; for textbooks on FDA,
see [9,16] and [10] and for recent reviews, see [13] and [20]. Functional data methods are
nonparametric and classical smoothing methods such as local polynomial methods, splines and
wavelets have all played important roles in the development of functional data methods. Among
them, local polynomial smoothing has been more often employed because of its ease of theoretic
study; see [31] for a summary of theoretical results on FDA and the references therein. The paper
[2] established mini-max optimal rates of estimation of the mean function for functional data.

The present paper is concerned about the asymptotic properties of penalized spline estimators
for FDA. Penalized splines have become widely used for methods development and applications
in recent years because of its computational simplicity and its connection to mixed effects models
[18]. The methods have also found lots of successes in FDA, see, e.g., the R package refund [11]
and the references therein. However, it seems a consensus that the asymptotic theory of penalized
splines is difficult to derive and many theoretic gaps haven not been filled even for the standard
nonparametric regression setting. To our best knowledge, there are very few theoretic studies
of penalized splines for FDA. When the functional data are observed on a fixed common and
dense grid, [3] studied the L2 convergence rate of penalized spline estimators. When functional
data are observed densely for each subject under a deterministic design, [28] established the
uniform convergence (no rate was given) of mean and covariance estimators based on a mix
of penalized splines and local polynomials. When the covariance of functional data is modeled
parametrically, [4] studied the L2 convergence rate of penalized splines for estimating the mean
function. Despite those works, asymptotic theory of penalized splines for FDA in general has not
yet been developed.

The contribution of the paper is a theoretic study of the L2 and uniform convergence of penal-
ized spline estimators for estimating the mean and covariance functions under general functional
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data settings. First, following [2], both fixed common design and random independent design
will be considered. For the former, the results in [3] are special cases of our theoretic results for
mean function estimation. As far as we know, our work is the first one to study the theoretical
properties of penalized splines for functional data under the random independent design. More-
over, the uniform convergence of penalize splines for nonparametric regression has been elusive
until recent works [22,27] and the present paper extends those works for functional data.

Second, under either design, our theoretic study is unified as it includes the three different
types of functional data: “sparse”, “dense” and “ultra-dense”. Generally speaking, these types
can be differentiated by their different rates of the average number of observations per subject
compared to the number of subjects and have different asymptotic properties, thus causing “phase
transition” [2]. See [31] for a first definition of the three types of functional data for random
design and see also the discussion for Table 1. We shall establish the rate-optimality of penalized
splines for estimating the mean function for each type of data under either design and also derive
the corresponding rates for the number of basis functions and the smoothing parameter.

Third, the convergence rates derived in the paper include as special cases both the regression
spline type asymptotic rates and the smoothing spline type asymptotic rates, thereby extending
the two-type asymptotics in the standard nonparametric regression [5,22]. An interesting finding
is that, for ultra-dense functional data, to achieve the mini-max optimal rates of mean function es-
timation for functional data, the rates of number of basis functions and the smoothing parameter
can be more flexible than in nonparametric regression.

Fourth, similar to [31], the study considers a general weighting scheme in aggregating the
multiple observations from each subject, which includes as special cases the methods of stan-
dard equal weight per observation [30] and the equal weight per subject [2,12]. As a result, a
comparison of the two types of weights can be made for penalized splines, similar to that in [31]
for local polynomials.

Last but not the least, the theoretic study of covariance function estimation takes into account
the mean function estimation (see Section 4.1), while existing theoretic works either assumed
that the mean function is known (e.g., [31]) or used a non-conventional approach (e.g., [12]).

The theoretic study is based on recent advances in the asymptotic theory of penalized splines
[22,23,27] and earlier theoretic works, for example, [5]. However, in order to establish the theo-
retic properties of penalized splines for FDA, a few new techniques are employed. For example,
the technique for studying the variability of penalized splines for functional data can be useful
for the theoretic derivation of penalized splines for general correlated data; see, for example,
the derivations between (A.7) and (A.10) in the proof of Theorem 3.1. Another example is, for
the random independent design, new techniques are used to derive the uniform convergence of
penalized splines; see the proof of Theorem 3.4 on how to deal with the dependence of Hn on
the design points and the derivation of (A.14). These new techniques may be useful for theoretic
studies of penalized splines under other contexts.

1.1. Functional data model

Suppose that the observed data takes the form {(Tij , Yij ) ∈ T ×R,1 ≤ j ≤ Ni,1 ≤ i ≤ n}, where
Yij is subject i’s j th observation at time Tij ∈ T and T is a compact time interval. Without loss
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of generality, let T = [0,1]. The data has n subjects and subject i has Ni observations. We shall
consider both fixed design and random design for Tij , however, Nis are assumed non-random.
Consider the functional data model

Yij = μ(Tij ) + Xi(Tij ) + εij , (1.1)

where μ(t) is the fixed mean function, Xi is a zero-mean random function that models subject i’s
smooth deviation from the mean, and εij s are random errors. Define σ(s, t) = Cov{Xi(s),Xi(t)},
the covariance function of the random functions, and σ 2

ε = Eε2
ij , the error variance. We shall

use penalized splines to estimate the mean and covariance functions and the focus is on the
asymptotic theory of penalized spline estimators for functional data.

1.2. Notation

We use ′ to denote the transpose of a matrix. The Euclidean norm is ‖ · ‖2, Frobenius norm
is ‖ · ‖F and the operator norm is ‖ · ‖op. For a matrix A = (aij ), ‖A‖max = maxi,j |aij | and
‖A‖∞ = maxi

∑
j |aij |.

For two scalars, let a ∧ b = min(a, b) and a ∨ b = max(a, b). The notation a 	 b denotes that
there exists an absolute constant c > 0 such that a ≤ cb for sufficiently large n. And a 
 b means
that a 	 b and b 	 a, that is, a and b are rate-wise equivalent. Also a � b means a = o(b) and
a � b means b = o(a). For two square matrices A and B , A ≤ B denotes that B − A is positive
semidefinite, A 	 B means that there exists an absolute constant c > 0 such that A ≤ cB for
sufficiently large n, and A 
 B means that A 	 B and also B 	 A.

For a univariate continuous function g over T , ‖g‖ denotes its supreme norm. Similarly, if g is
a d-variate continuous function over T d , ‖g‖ also denotes it supreme norm. We also use ‖g‖L2

to denote the L2 norm of g over T d . For a positive integer p, denote by Cp(T ) the class of func-
tions with continuous pth derivatives over T . Similarly, denote by Cp(T 2) the class of bivariate
functions such that if σ ∈ Cp(T 2), then ∂2pσ(s, t)/∂sp∂tp is continuous in T 2. Alternatively,
we may also define Cp(T 2) to be functions such that for any 0 ≤ i ≤ p, ∂pσ (s, t)/∂si∂tp−i is
continuous in T 2. For the latter, the theoretical results on covariance function estimation require
p ≥ 2 as the proofs require ∂2σ(s, t)/∂s∂t to be continuous in T 2.

Let T i = (Ti1, Ti2, . . . , TiNi
)′ and T = (T ′

1, T
′
2, . . . , T

′
n)

′. We use the following notation
in [31]. Let N̄ = n−1 ∑n

i=1 Ni , N̄S2 = n−1 ∑n
i=1 N2

i and N̄H = (n−1 ∑n
i=1 N−1

i )−1. Note that
N̄S2 ≥ (N̄)2 and N̄ ≥ N̄H .

1.3. Organization of the paper

The rest of the paper is organized as follows. Section 2 introduces the penalized spline estimator
for estimating the mean function and the penalized spline estimator for estimating the covariance
function, respectively. Section 3 gives the L2 and uniform convergence rates of penalized splines
for mean function estimation. Section 4 gives the L2 and uniform convergence rates of penalized
splines for covariance function estimation. The Appendix gives the proofs of theorems for mean
function estimation as well as some technical lemmas.
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The supplement [24] contains additional proofs for mean function estimation and all proofs of
theorems for covariance function estimation.

2. Penalized spline estimators

2.1. Mean function estimation

Let B(t) = {B1(t), . . . ,BK(t)}′ be the collection of B-spline basis functions of order m (de-
gree m − 1) and constructed from equally-spaced knots. Here K equals the number of interior
knots plus the order of B-splines. We approximate the mean function μ(t) by the spline function
B ′(t)θ , where θ ∈ R

K is a coefficient vector to be determined. Penalized splines estimate θ via
the minimization

θ̂ = arg min
θ

[
n∑

i=1

Ni∑
j=1

wi

{
Yij − B ′(Tij )θ

}2 + λθ ′P θ

]
,

where wi > 0 are fixed weights to be specified and satisfy
∑n

i=1 Niwi = 1, the penalty matrix
P ∈ R

K×K is positive semidefinite and to be specified, and λ is a smoothing parameter that bal-
ances data fit and smoothness of the fit. We shall focus on P-splines in [6] so that θ ′P θ equals the
squared sum of the qth order consecutive differences of the coefficient vector θ . However, the
theoretical results to be established can be easily adapted to other types of penalized splines, for
example, penalized splines in [14] and [17]. Please refer to [22] for a detailed theoretic compar-
ison of the different types of penalized splines. One common choice of the weights is wi = N−1

where N = ∑n
i=1 Ni , that is, each observation has equal weight (denoted OBS). Alternatively as

in [12], wi = (nNi)
−1, which implies that each subject has the same weight (denoted SUBJ). For

the theoretic study, we shall employ a general set of weights as in [31], which includes the above
choices as special cases.

Let Yi = (Yi1, Yi2, . . . , YiNi
)′ ∈ R

Ni , Bi = [B(Ti1),B(Ti2), . . . ,B(TiNi
)]′ ∈ R

Ni×K and Wi =
wiINi

. Furthermore, let Y = (Y ′
1, Y

′
2, . . . , Y

′
n)

′, B = [B ′
1,B

′
2, . . . ,B

′
n]′ and W = blockdiag(W1,

W2, . . . ,Wn). Also let Gn = ∑n
i=1 B ′

iWiBi = B ′WB and Hn = Gn + λP . Then, θ̂ =
H−1

n (B ′WY) and the penalized spline estimate of the mean function is μ̂(t) = B ′(t )̂θ . The
smoothing parameter λ can be selected by cross-validation.

2.2. Covariance function estimation

To estimate the covariance function σ(s, t), a standard procedure consists of two steps [29]. In the
first step, an empirical estimate of the covariance function is constructed. Let μ̂ be any estimate
of the mean function and ẽij = Yij − μ̂(Tij ) be the residuals and σ̃ij1j2 = ẽij1 ẽij2 be the auxiliary
variables. Then {̃σij1j2 : 1 ≤ j1 �= j2 ≤ Ni, i = 1, . . . , n} is a collection of empirical estimates of
the covariance function. In the second step, the empirical estimates are smoothed using a bivariate
smoother. Our interest is penalized spline smoothing and we shall use a modified version of the
sandwich smoother [26], which is based on tensor-product splines.
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Let B̄(t) = {B̄1(t), . . . , B̄L(t)}′ be the collection of B-splines of order m and constructed from
equally-spaced knots. To simplify the theoretic study, we use the same order of B-splines as in the
univariate smoothing although the number of basis functions is L, which can be different from
K . Throughout the paper, we use the bar symbol to denote that the dimensions are related to L

instead of K . The covariance function σ(s, t) is modeled as a tensor-product spline H(s, t) =∑
1≤k,�≤L θk�B̄k(s)B̄�(t), where � = (θk�) ∈R

L×L is a coefficient matrix to be determined. Let
vec(·) be an operator that stacks the columns of a matrix into a vector and θσ = vec(�). Consider
the penalized least squares

PLS =
n∑

i=1

[
vi

∑
1≤j1 �=j2≤Ni

{
σ̃ij1j2 −H(Tij1 , Tij2)

}2
]

+ θ ′
σ Pσ θσ ,

where the penalty matrix Pσ is to be specified and vi > 0 are weights such that
∑n

i=1 viNi(Ni −
1) = 1. Let B̄i = [B̄(Ti1), . . . , B̄(TiNi

)]′ ∈ R
Ni×L and Ḡn = (nN̄)−1 ∑n

i=1 B̄ ′
i B̄i . We use the

penalty matrix

Pσ = λσ Ḡn ⊗ P̄ + λσ P̄ ⊗ Ḡn + λ2
σ P̄ ⊗ P̄ ,

where λσ is a smoothing parameter and P̄ is similar to P but has dimension L × L. The above
penalty is similar to the penalty matrix used by the sandwich smoother [26]. Alternatively, one
may use the penalty in [7] as in [8] and [25] or the one in [21]. With those penalties, similar L2

convergence rates can be established with some modification of the proofs; however, it remains
unclear how to derive the corresponding uniform convergence rates.

By minimizing PLS with respect to �, we obtain the estimate

�̂ = (θ̂k�) = arg min
�

PLS

and the estimate of the covariance function σ(s, t) is σ̂ (s, t) = B̄ ′(s)�̂B̄(t). Let tr(·) be the trace
operator. It is easy to derive that

θ ′
σ Pσ θσ = λσ tr(P̄�Ḡn) + λσ tr

(
P̄�′Ḡn

) + λ2
σ tr(P̄�P̄ ).

Note that the right-hand side of the above equality is the same if � is replaced by �′. In addition,
the auxiliary variables are also symmetric, that is, σ̃ij1j2 = σ̃ij2j1 . Thus, we can derive that �̂ = �̂′
and hence σ̂ (s, t) = σ̂ (t, s), that is, the estimate is also a symmetric function.

Denote by ⊗ the Kronecker product operator. Then H(s, t) = B̄ ′(s, t)θσ , where B̄(s, t) =
B̄(t) ⊗ B̄(s). Let 	̃i = (̃σij1j2) ∈ R

Ni×Ni and σ̃ ∗
i = vec∗(	̃i), where vec∗(·) is an operator that

is the same as vec(·) except that it excludes the diagonal elements of a square matrix. Let Ai

be the sub-matrix of B̄i ⊗ B̄i that excludes the rows corresponding to the same Tij . Finally, let
Vi = viINi(Ni−1). Then

PLS =
n∑

i=1

(
σ̃ ∗

i − Aiθσ

)′
Vi

(
σ̃ ∗

i − Aiθσ

) + θ ′
σ Pσ θσ .
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Let Gσ,n = ∑n
i=1 A′

iViAi and Hσ,n = Gσ,n + Pσ . Then

θ̂σ = vec(�̂) = H−1
σ,n

(
n∑

i=1

A′
iVi σ̃

∗
i

)
.

It follows that σ̂ (s, t) = B̄ ′(s, t )̂θσ . The smoothing parameter λσ may be selected by cross-
validation.

3. Asymptotic properties of mean function estimator

In this section, we establish the asymptotic properties of penalized splines introduced in Sec-
tion 2.1 for estimating the mean function. We first make the following two assumptions, required
for both the fixed common design and random independent design.

Assumption 1. (a) The random functions Xi are independent and identically distributed with
zero-mean function and covariance function σ(s, t); (b) The random errors εij are independent
from the random functions Xi and are independent and identically distributed with mean zero
and variance σ 2

ε < ∞; (c) ‖σ‖ < ∞.

Assumption 2. (a) The number of basis functions K satisfies K ≥ nδ1 for some constant δ1 > 0
and K = o(n); (b) The smoothing parameter λ satisfies λ = o(n−δ2) for some constant δ2 > 0.

In Section 3.1, we consider the fixed common design, where all functions are discretely
observed at a fixed and equally-spaced set of time points. Then in Section 3.2, we consider
the random independent design, where the observed time points are independent and identi-
cally distributed. We now introduce some notation. Let h = K−1 and he = h ∨ λ1/(2q). Due
to its similar role as the bandwidth parameter for kernel methods, the latter notation he may
be called the “effective bandwidth” for penalized splines. The notation h shall be frequently
used throughout the proofs, in accordance with existing theoretic works on spline estimators. To
quantify the variance of penalized splines for functional data, we define τ1 = ∑n

i=1 Niw
2
i and

τ2 = ∑n
i=1 Ni(Ni − 1)w2

i . Recall that n is the number of subjects, Ni is the number of observa-
tions for the ith subject and wis are fixed weights and satisfy

∑n
i=1 Niwi = 1.

3.1. Fixed common design

Assumption 3 (Fixed common design). (a) Ni = N̄ for all i and Tij = (j − 1/2)/N̄ . (b) N̄ ≥
nδ3 for some constant δ3 > 0; (c) There exists a sufficiently small constant c0 > 0 such that
K ≤ c0N̄ .

Remark. For covariance function estimation, we shall assume that the number of marginal basis
functions L satisfies L ≤ c0N̄ in (c).



Asymptotics of penalized splines for FDA 2853

Recall from Section 2.1 that we estimate the mean function using penalized splines that are
constructed from order m B-spline basis functions and an order q difference penalty. In addition,
the number of B-splines is K and the smoothing parameter for the penalty is λ.

Theorem 3.1 (Mean function: L2 convergence under fixed common design). Suppose that
Assumptions 1–3 hold. If μ ∈ Cp(T ) with q ≤ p ∧ m, then

E
(‖μ̂ − μ‖2

L2

) = O
(
K−2m

) + o
(
K−2p

) + O
(
λ2h

−2q
e

) + O
(
τ1h

−1
e + τ2

)
.

Similar to [5] and [22] for standard nonparametric regression, the term O(K−2m)+o(K−2p) is
the order of the integrated and squared approximation bias of spline functions, O(λ2h

−2q
e ) is the

order of the integrated and squared shrinkage bias from the smoothness penalty, and O(τ1h
−1
e +

τ2) is the order of the integrated variability of penalized splines. In particular, O(τ2) is due to
the correlation between the observations within each subject. So if the observations within each
subject are uncorrelated, i.e., the covariance function is always 0, then the variability term would
be O(τ1h

−1
e ).

It is worth mentioning that the proof of Theorem 3.1 actually gives a slightly stronger result:

sup
t∈T

E
[{

μ̂(t) − μ(t)
}2] = O

(
K−2m

) + o
(
K−2p

) + O
(
λ2h

−2q
e

) + O
(
τ1h

−1
e + τ2

)
.

The above result is stronger because the time interval T is compact. A similar observation can
also be made for Theorem 3.3 and will be omitted.

Theorem 3.1 holds for general weights and in the rest of the subsection, we focus on the
weights wi = (nN̄)−1. Recall that N̄ is the average number of observations per subject. The
above weights correspond to both the OBS and SUBJ weights for the fixed common design.
In this case τ1 = (nN̄)−1 and τ2 = n−1 − (nN̄)−1. Because h−1

e = O(K) and K = O(N̄) by
Assumption 3, τ1h

−1
e = O(n−1) and O(τ1h

−1
e + τ2) = O(n−1), that is, the variance of penalized

splines is O(n−1).
Following [5] and [22], we now discuss the two-type asymptotic properties of penal-

ized splines for functional data. For the regression spline type asymptotics, we assume λ =
o(K−m−q), which leads to he ∼ h ∼ K−1.

Corollary 3.1 (L2 convergence: regressione spline type asymptotics under fixed common
design). Suppose that Assumptions 1–3 hold. If μ ∈ Cp(T ) with q ≤ p ∧m and λ = o(K−m−q),
then

E
(‖μ̂ − μ‖2

L2

) = O
(
K−2m

) + o
(
K−2p

) + O

(
1

n

)
. (3.1)

The L2 rate in (3.1) is the same as that for regression splines. For regression splines, to achieve
optimal rate of convergence, the order of B-splines needs to match the degree of smoothness of
the mean function. So we now let m = p. Then the rate in (3.1) becomes O(K−2p + n−1). It
is sharp because if c0c1(N̄ ∧ n1/(2p)) ≤ K ≤ c0N̄ for c0 as in Assumption 3 and some constant
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Table 1. Optimal L2 rates for mean function estimation and corresponding rates for N̄ , average number
of observations per subject, and K , the number of basis functions, for regression spline type asymptotics
under the fixed common design and the smoothing parameter λ satisfies λ = o(K−m−q)

Case N̄ K E(‖μ̂ − μ‖2
L2

)

Sparse o(n
1

2p ) N̄ O(N̄−2p)

Dense n
1

2p n
1

2p O(n−1)

Ultra-dense � n
1

2p n
1

2p � K 	 N̄ O(n−1)

0 < c1 < 1, then

E
(‖μ̂ − μ‖2

L2

) = O

(
N̄−2p + 1

n

)
,

which is the optimal L2 rate [2]. [3] obtained a slightly loose L2 rate that leads to optimal rate
under more stringent conditions, for example, N̄ needs to be much larger. For the regression
spline type asymptotics, the condition λK−m−q = o(1) means that the smoothing parameter λ

does not matter as long as it is sufficiently small.
For the random independent design, [31] identified “sparse”, “dense”, and “ultra-dense” cases

for functional data. In particular, the ultra-dense case means that not only a parametric rate is
obtained but also the bias of the estimator is rate-wise smaller than the parametric rate. These
cases can be differentiated by the rate of N̄ , the average number of observations per subject.
For regression spline type asymptotics under the fixed common design, it turns out n1/(2p) is the
transition rate between the cases for N̄ , and for those three cases the optimal L2 rates as well as
the corresponding required rates for the number of basis functions K are given in Table 1.

It is interesting that the optimal L2 rate depends on the number of knots in a somewhat flexible
way for the ultra-dense case in Table 1. For the ultra-dense case where N̄ � n1/(2p), the optimal
and parametric rate can be attained whenever c0c1n

1/(2p) ≤ K ≤ c0N̄ . This is different from
the theoretical results in standard nonparametric regression function estimation using penalized
splines, where the number of knots for the optimal L2 error rate is n1/(2p+1); see, for example,
[5] and [22]. Here the required number of knots has a higher rate (n1/(2p)) so as to achieve the
optimal L2 rate (Note that the optimal L2 rate for standard nonparametric function estimation
is n−2p/(2p+1).), and its rate can be anywhere between n1/(2p) and N̄ , showing flexibility of the
number of knots for optimal estimation of the mean function for functional data.

Next, we consider the smoothing spline type asymptotics of penalized splines and we assume
λh

−2q
e is sufficiently large, or equivalently, λK2q is sufficiently large.

Corollary 3.2 (L2 convergence: smoothing spline type asymptotics under fixed common
design). Suppose that Assumptions 1–3 hold. If μ ∈ Cp(T ) with q ≤ p ∧ m and λK2q ≥ C for
some sufficiently large constant C, then

E
(‖μ̂ − μ‖2

L2

) = O

(
λ + 1

n

)
. (3.2)
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Table 2. Optimal L2 rates for mean function estimation and corresponding rates for N̄ , average number of
observations per subject, and λ, the smoothing parameter, for smoothing spline type asymptotics under the
fixed common design and the number of basis functions K satisfies λK2p is sufficiently large

Case N̄ λ E(‖μ̂ − μ‖2
L2

)

Sparse o(n
1

2p ) N̄−2q O(N̄−2p)

Dense n
1

2p n−1 O(n−1)

Ultra-dense � n
1

2p N̄−2p 	 λ � n−1 O(n−1)

The L2 rate in (3.2) is the same as that for smoothing splines for functional data and shows that
the smoothing parameter λ determines the rate of convergence. For fixed common design, K ≤ N̄

as in Assumption 3. Thus, the condition λK2q ≥ C in Corollary 3.2 implies that λ ≥ CN̄−2q .
Therefore, if N̄−2q 	 λ 	 N̄−2q ∨ n−1, then

E
(‖μ̂ − μ‖2

L2

) = O

(
N̄−2q + 1

n

)
,

which is the rate for smoothing splines and will be again rate-optimal [2] if we let q = p and
m ≥ p, that is, the order of penalty is the same as the degree of smoothness of the mean function
and the order of B-splines is no smaller than the order of penalty.

Table 2 gives the three cases of functional data with corresponding optimal rates. As discussed
in [2] and other works, if N̄ ≥ n1/(2p), the functional data is “dense” and a parametric L2 rate
is obtained. [31] further identified an “ultra-dense” case when the order of the bias of the local
linear smoother decays faster than the parametric rate. The ultra-dense case could also happen
for penalized splines and occurs if N̄−2p = o(n−1) and λ satisfies λ ≥ N̄−2p and λ = o(n−1).

For ultra-dense functional data as in Table 2, that is, N̄ � n1/(2p), the optimal L2 rate also
depends on the smoothing parameter λ in a flexible way, similar to the role of the number of
knots for regression spline type asmptotics; see the discussion after Corollary 3.1. Indeed, the
optimal rate can be attained when N̄−2p 	 λ 	 n−1. Again, this is different from the theoretical
results in standard nonparametric regression function estimation using penalized splines, where
for the optimal L2 rate, λ ∼ n−2p/(2p+1); see, for example, [5] and [22]. Here λ has a lower
rate (n−1) so as to achieve the parametric L2 rate, and its rate can be anywhere between N̄−2p

and n−1, showing that, for optimal estimation of the mean function for functional data, λ can be
rate-wise smaller as long as it is not too small.

We conclude the discussion on the L2 rates for fixed common design by comparing the rates
of required numbers of knots as well as the smoothing parameter for optimal estimation under
both types of asymptotics. First, note that the transition rate for N̄ is the same for both types of
asymptotics. Next, recall that for regression spline type asymptotics (with m = p and q ≤ p),
the conditions are λ = o(K−p−q) and n1/(2p) ∧ N̄ 	 K 	 N̄ , and for smoothing spline type
asymptotics (with q = p and m ≥ p), the conditions are N̄−2q 	 λ 	 N̄−2q ∨n−1 and 1 	 λK2p .
For the sparse and dense cases with N̄ 	 n1/(2p), regression spline type asymptotics give K ∼ N̄

and λ = o(N̄−p−q) while smoothing spline type asymptotics give K ∼ N̄ and λ ∼ N̄−2p . Thus,
for the sparse and dense cases, the required number of knots are rate-wise the same for optimal
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estimation under the two-type asymptotics. For the ultra dense case with N̄ � n1/(2p), regression
spline type asymptotics give n1/(2p) 	 K 	 N̄ and λ = o(K−p−q) while smoothing spline type
asymptotics give n1/(2p) ≤ K 	 N̄ , N̄−2q 	 λ 	 n−1 and 1 	 λK2p . So for the ultra-dense case,
the required numbers of knots are somehow equally flexible for optimal estimation under the two
types of asymptotics.

Now we establish the uniform convergence of penalized splines for estimating the mean func-
tion. Compared to the L2 convergence, additional assumptions, that is, Assumptions 4 and 5 be-
low, are needed. The additional assumptions are standard for establishing uniform convergence.

Assumption 4 (Uniform convergence). There exists a constant τ > 2 such that

E‖Xi‖τ < ∞, E|εij |τ < ∞.

Assumption 5 (Uniform convergence under fixed common design). (a)

1

(τ1 + τ2)h2
e logn

(
n

logn

)2/τ−2

= O(1),

where τ > 2 is in Assumption 4; (b) (nN̄)maxi wi < ∞.

Theorem 3.2 (Mean function: Uniform convergence under fixed common design). Suppose
that Assumptions 1–5 hold. If μ ∈ Cp(T ) with q ≤ p ∧ m, then

‖μ̂ − μ‖ = O
(
K−m

) + o
(
K−p

) + O
(
λh

−q
e

) + O
{(

τ1h
−1
e + τ2

)1/2
(logn)1/2} a.s.

For the uniform convergence rate, O(K−m) + o(K−p) is the order of approximation bias of
spline functions, O(λh

−q
e ) is the order of the shrinkage bias from the smoothness penalty, and

O{(τ1h
−1
e + τ2)

1/2(logn)1/2} is the order of the variability of penalized splines. Compared to the
L2 rate, the difference is the log term, which is common for uniform convergence.

The derived uniform convergence rates agree with those obtained under standard nonparamet-
ric regression setting on the bias of penalized splines; see [22,27]. The order of the variability
term, that is, O{(τ1h

−1
e + τ2)

1/2(logn)1/2}, under functional data setting can be rate-wise bigger
because of correlation between observations within each subject. Indeed, under standard non-
parametric regression setting with the same weights, the corresponding variability order would
be O{(τ1h

−1
e logn)1/2}.

Similar to the L2 rates, we may consider the two-type asymptotics of penalized splines and
create tables similar to Tables 1 and 2 for the best uniform convergence rates. Due to the log term
in the order of the variability term, the best uniform rate will be slower than the optimal L2 rate
and the transition rates in terms of the number of observations per subject N̄ for the three different
types of functional data are slightly smaller. Specifically, the best uniform convergence rate is
O(N̄−2p + logn/n) and the transition rate for N̄ now becomes (n/ logn)1/(2p). Consequently,
the required rates for the number of basis functions and the smoothing parameter will change
accordingly and the details are omitted.
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3.2. Random independent design

For functional data with random independent design, we impose Assumptions 6 and 7.

Assumption 6 (Random independent design). The design points Tij are independent and iden-
tically distributed with the cumulative distribution function Q, where Q has a positive and con-
tinuously differentiable density function ρ over T .

Assumption 7 (Random independent design). (a)

τ1 = o
(
h2/ logn

)
, max

i
Niwi = o(h/ logn);

(b)

τ−2
1

(
n∑

i=1

Niw
4
i

)
= o

(
h2/ logn

)
, τ−1

1 max
i

Niw
2
i = o(h/ logn);

(c)

τ−2
2

{
n∑

i=1

Ni(Ni − 1)(4Ni − 6)w4
i

}
= o

(
h4/ logn

)
,

τ−1
2 max

i
Ni(Ni − 1)w2

i = o
(
h2/ logn

)
.

The conditions in Assumption 7 are required to ensure that relevant empirical cumulative
distribution functions converge at desired orders; see Lemmas A.7, A.8 and A.9 for details. They
generally hold for both the OBS and SUBJ weights. Recall that for the former each observation
has the same weight in forming the least squares and for the latter each subject has the same
weight.

Theorem 3.3 (Mean function: L2 convergence under random independent design). Suppose
that Assumptions 1–2, 6–7 hold. If μ ∈ Cp(T ) with q ≤ p ∧ m, then

E
(‖μ̂ − μ‖2

L2
|T ) = O

(
K−2m

) + o
(
K−2p

) + O
(
λ2h

−2q
e

) + O
(
τ1h

−1
e + τ2

)
a.s.

Remark. The L2 rates are the same under both designs; see Theorem 3.1. In addition, the results
hold almost surely and hence are stronger than results in [31], which hold in probability.

Similar to the discussions after Theorem 3.1 for the fixed common design, we shall now con-
sider separately two types of asymptotics: regression spline type and smoothing spline type.

Corollary 3.3 (L2 convergence: regression spline type asymptotics under random indepen-
dent design). Suppose that Assumptions 1–2, 6–7 hold. If μ ∈ Cp(T ) with q ≤ p ∧ m and
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λ = o(K−m−q), then

E
(‖μ̂ − μ‖2

L2
|T ) = O

(
K−2m

) + o
(
K−2p

) + O(τ1K + τ2) a.s.

Moreover, if m = p and

τ
−1/(2p+1)

1 ∧ τ
−1/(2p)

2 	 K 	 τ
−1/(2p+1)

1 ∨ (τ2/τ1), (3.3)

then

E
(‖μ̂ − μ‖2

L2
|T ) = O

(
τ

2p/(2p+1)

1 + τ2
)

a.s. (3.4)

We now apply the corollary to the OBS weight, where wi = (nN̄)−1, and the SUBJ weight,
where wi = (nNi)

−1. For OBS weight, τ1 = (nN̄)−1 and τ2 = (N̄S2 − N̄)/{n(N̄)2}, where
N̄S2 = n−1 ∑n

i=1 N2
i . Hence,

E
(‖μ̂ − μ‖2

L2
|T ) = O

{
(nN̄)−2p/(2p+1) + 1

n

N̄S2

(N̄)2

}
a.s.

For SUBJ weight, τ1 = (nN̄H )−1 and τ2 = n−1(1 − N̄−1
H ), where N̄H = (n−1 ∑n

i=1 N−1
i )−1 is

the geometric mean of the numbers of observations from the subjects. Hence,

E
(‖μ̂ − μ‖2

L2
|T ) = O

{
(nN̄H )−2p/(2p+1) + 1

n

}
a.s.

Therefore, the penalized spline smoother with SUBJ weight achieves the optimal L2 rate un-
der the independent design [2]. The same holds for the OBS weight if N̄S2/(N̄)2 is bounded.
Because N̄ ≥ N̄H and N̄S2 ≥ (N̄)2, similar to local linear smoothers [31], the penalized spline
smoother with OBS weight may have a rate-wise smaller asymptotic bias while the penalized
spline smoother with SUBJ weight could have a rate-wise smaller asymptotic variance.

If τ
2p/(2p+1)

1 = o(τ2), then the rate of the number of basis functions K to achieve (3.4) has

some flexibility and can be any value between τ
−1/(2p)

2 and τ2/τ1, similar to the observation
before for the common design. For SUBJ weight, this happens if N̄H n−1/(2p) → ∞. As for OBS
weight, if we assume N̄S2/(N̄)2 is bounded, this happens if N̄n−1/(2p) → ∞.

For SUBJ weight, Table 3 gives a summary of different cases of functional data. Note that
condition (3.3) now becomes

(nN̄H )1/(2p+1) ∧ n1/(2p) 	 K 	 (nN̄H )1/(2p+1) ∨ N̄H .

A similar table for the OBS weight can be made under the assumption that N̄S2/(N̄)2 is bounded.
For random design, N̄H differentiates the three types of functional data and the transition rate for
N̄H is n1/(2p), the same as that for fixed common design.

We now discuss the sparse case in Table 3. To simplify the discussion, further assume that
Ni = N̄ for all i. Then, N̄H = N̄ as well. We see that the L2 rate is O{(nN̄)−(2p)/(2p+1)} and
the required rate for K is (nN̄)1/(2p+1), which are the corresponding optimal rates for standard
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Table 3. Optimal L2 rates for mean function estimation and corresponding rates for N̄H =
(n−1 ∑n

i=1 N−1
i

)−1 and the number of basis functions K for regression spline type asymptotics under the
random independent design with SUBJ weight and the smoothing parameter λ satisfies λ = O(K−p−q)

Case N̄H K E(‖μ̂ − μ‖2
L2

|T )

Sparse o(n
1

2p ) (nN̄H )
1

2p+1 O{(nN̄H )
− 2p

2p+1 } a.s.

Dense n
1

2p n
1

2p O(n−1) a.s.

Ultra-dense � n
1

2p n
1

2p � K 	 N̄H O(n−1) a.s.

nonparametric regression with nN̄ independent observations. This means when N̄ = o(n1/(2p)),
that is, sparse functional data, we may ignore the correlation between functional data observa-
tions and simply treat them as independent observations. Similar discussion can be made for the
sparse case for the large number of knots scenario as well and will be omitted.

Corollary 3.4 (L2 convergence: smoothing spline type asymptotics under random indepen-
dent design). Suppose that Assumptions 1–2, 6–7 hold. If μ ∈ Cp(T ) with q ≤ p ∧ m and
λK2q ≥ C for some sufficiently large constant C, then

E
(‖μ̂ − μ‖2

L2
|T ) = O

(
λ + τ1λ

−1/(2q) + τ2
)

a.s.

Moreover, if q = p and τ
2q/(2q+1)

1 ∧ (τ2/τ1)
−2q ≤ λ ≤ τ2 ∨ τ

2q/(2q+1)

1 , then

E
(‖μ̂ − μ‖2

L2
|T ) = O

(
τ

2p/(2p+1)

1 + τ2
)

a.s. (3.5)

Again we apply the corollary to the OBS weight and SUBJ weight. For OBS weight, τ1 =
(nN̄)−1 and τ2 = (N̄S2 − N̄)/{n(N̄)2}, hence

E
(‖μ̂ − μ‖2

L2
|T ) = O

{
(nN̄)−2p/(2p+1) + 1

n

N̄S2

N̄2

}
a.s.

For SUBJ weight, τ1 = (nN̄H )−1 and τ2 = n−1(1 − N̄−1
H ), hence

E
(‖μ̂ − μ‖2

L2
|T ) = O

{
(nN̄H )−2p/(2p+1) + 1

n

}
a.s.

For SUBJ weight, Table 4 gives a summary of different cases of functional data.
If τ

2p/(2p+1)

1 = o(τ2), then the rate of λ to achieve (3.5) has some flexibility and can be any
value between (τ2/τ1)

−2p and τ2, similar to the observation before for the common design. For
SUBJ weight, this happens if N̄H n−1/(2p) → ∞. As for OBS weight, if we assume N̄S2/N̄

2 is
bounded, this happens if N̄n−1/(2p) → ∞.

We now consider the uniform convergence of μ̂ under the random independent design. As-
sumption 8 is needed for establishing the uniform convergence under the random independent
design.
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Table 4. Optimal L2 rates for mean function estimation and corresponding rates for N̄H =
(n−1 ∑n

i=1 N−1
i

)−1 and the smoothing parameter λ for smoothing spline type asymptotics under the ran-

dom independent design with SUBJ weight and the number of basis functions K satisfies λK2p is suffi-
ciently large

Case N̄H λ E(‖μ̂ − μ‖2
L2

|T )

Sparse o(n
1

2p ) (nN̄H )
− 2p

2p+1 O{(nN̄H )
− 2p

2p+1 } a.s.

Dense n
1

2p n−1 O(n−1) a.s.

Ultra-dense � n
1

2p N̄
−2p
H

	 λ � n−1 O(n−1) a.s.

Assumption 8 (Uniform convergence under random independent design). (a)

1

(τ1he + τ2h2
e) logn

(
n

logn

)2/τ−2

= O(1),

where τ > 2 is in Assumption 4; (b)

nmax
i

Niwi < ∞, (nN̄)max
i

wi < ∞.

Theorem 3.4 (Mean function: Uniform convergence under random independent design).
Suppose that Assumptions 1–2, 4, 6–8 hold. If μ ∈ Cp(T ) with q ≤ p ∧ m, then

‖μ̂ − μ‖ = O
(
K−m

) + o
(
K−p

) + O
(
λh

−q
e

) + O
{(

τ1h
−1
e + τ2

)1/2
(logn)1/2} a.s.

The difference between the uniform rate and L2 rate is the log term in the last term, in order to
have a uniform control over the variability of penalized splines. Similar discussions can be made
as those after Theorem 3.2 in terms of best rate estimation and hence are omitted.

4. Asymptotic properties of covariance function estimator

In this section, we establish the asymptotic properties of penalized splines introduced in Sec-
tion 2.2 for estimating the covariance function. We first make the following two assumptions,
required for both the fixed common design and random independent design. Recall that L is
the number of marginal basis functions for bivariate penalized splines and λσ is the associated
smoothing parameter.

Assumption 9.

sup
t∈T

EXi(t)
4 < ∞, Eε4

ij < ∞.

Assumption 10. (a) L ≥ nδ4 for some constant δ4 > 0 and L = o(n); (b) λσ = o(n−δ5) for some
constant δ5 > 0.
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4.1. Assumptions on mean function estimator

Since the covariance function estimation involves the mean function estimator, to control the
effect of the latter, we may need the following assumptions. Let U1 = o(1) be a non-random
value such that (

sup
t∈T

E
[{

μ̂(t) − μ(t)
}4|T ])1/4 = O(U1) (4.1)

for the fixed common design and almost surely for the random independent design. The above as-
sumption involves fourth moment of the mean function estimator, thus we establish the following
lemmas for the penalized spline mean function estimator.

Lemma 4.1 (Mean function: 4th moment convergence under fixed common design). Sup-
pose that Assumptions in Theorem 3.1 hold. In addition, suppose that Assumption 9 holds. Let

U1 = {
K−2m + o

(
K−2p

) + λ2h
−2q
e + τ1h

−1
e + τ2

}1/2
. (4.2)

If μ ∈ Cp(T ) with q ≤ p ∧ m, then the penalized spline estimator μ̂ satisfies

sup
t∈T

E
[{

μ̂(t) − μ(t)
}4] = O

(
U4

1

)
.

Lemma 4.2 (Mean function: 4th moment convergence under random independent design).
Suppose that Assumptions in Theorem 3.3 hold. In addition, suppose that Assumption 9 holds.
Let U1 be as in (4.2). If μ ∈ Cp(T ) with q ≤ p∧m, then the penalized spline estimator μ̂ satisfies

sup
t∈T

E
[{

μ̂(t) − μ(t)
}4] = O

(
U4

1

)
a.s.

Similarly, let U2 = o(1) be a non-random value such that

‖μ̂ − μ‖ = O(U2) a.s. (4.3)

See Theorems 3.2 and 3.4 for the form of U2 for the penalized spline estimator for the fixed
common design and random independent random design, respectively.

One note is that if U1 and U2 correspond to the optimal rates of convergence for mean function
estimation and the mean function is sufficiently smooth, then the convergence rates of covariance
function estimation are not affected by the mean function estimation.

We now introduce some notation. Let hσ = L−1 and hσ,e = hσ ∨ λ
1/(2q)
σ . To quantify

the variability of penalized splines for estimating the covariance function, we define τ̃1 =∑n
i=1 v2

i Ni(Ni − 1), τ̃2 = ∑n
i=1 v2

i Ni(Ni − 1)(Ni − 2), and τ̃3 = ∑n
i=1 v2

i Ni(Ni − 1)(Ni −
2)(Ni − 3). The terms τ̃2 and τ̃3 are due to correlation between functional data observations.
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Table 5. Best L2 rates for covariance function estimation and corresponding rates for the number of obser-
vations per subject N̄ and the number of marginal basis functions L for regression spline type asymptotics
under the fixed common design and the smoothing parameter λσ satisfies λσ = O(L−p−q)

Case N̄ L E(‖σ̂ − σ‖2
L2

)

Sparse o(n
1

2p ) N̄ O(N̄−2p)

Dense n
1

2p n
1

2p O(n−1)

Ultra-dense � n
1

2p n
1

2p � L 	 N̄ O(n−1)

4.2. Fixed common design

Theorem 4.1 (Covariance function: L2 convergence under fixed common design). Suppose
that Assumptions 1, 3, 9 and 10 hold and (4.1) holds. If σ ∈ Cp(T 2) with q ≤ p ∧ m, then

E
(‖σ̂ − σ‖2

L2

) = O
(
U2

1

) + O
(
L−2m

) + o
(
L−2p

) + O
(
λ2

σ h
−2q
σ,e

) + O
(̃
τ1h

−2
σ,e + τ̃2h

−1
σ,e + τ̃3

)
.

Similar to the discussions for the mean function estimation with penalized splines, for covari-
ance function estimation, we could derive asymptotics of penalized splines similar to regression
splines and smoothing splines and identify the corresponding best convergence rate. Moreover,
we could determine the transition rate for the sparse, dense and ultra-dense cases for covariance
function estimation.

To simplify the discussion, in the rest of the subsection, we consider the OBS weight which
means that vi = {nN̄(N̄ −1)}−1. Note that for the fixed common design, the OBS weight and the
SUBJ weight are the same. It follows that τ̃1 = {nN̄(N̄ −1)}−1, τ̃2 = (N̄ −2)/{nN̄(N̄ −1)}, and
τ̃3 = (N̄ − 2)(N̄ − 3)/{nN̄(N̄ − 1)}. Because h−1

σ,e = O(N̄), O(̃τ1h
−2
σ,e + τ̃2h

−1
σ,e + τ̃3) = O(n−1).

Furthermore, we shall assume that the term O(U2
1 ) can be removed. It is easy to show that the

above term does not affect the rate of covariance function estimation when it corresponds to the
optimal rate for mean function estimation and the mean function is sufficiently smooth.

Corollary 4.1 (Covariance function: L2 convergence for regression spline type asymptotics
under fixed common design). Suppose that Assumptions 1, 3, 9 and 10 hold and (4.1) holds. If
σ ∈ Cp(T 2) with q ≤ p ∧ m and λσ = o(L−m−q), then

E
(‖σ̂ − σ‖2

L2

) = O
(
L−2m

) + o
(
L−2p

) + O

(
1

n

)
.

For regression spline type asymptotics under the fixed common design, n1/(2p) is the transition
rate for N̄ between the sparse, dense and ultra-dense cases. In order to obtain optimal rate, we
now let m = p. Then for those three cases the optimal L2 rates as well as the corresponding
required rates for L are given in Table 5. Here we use the word “best” instead of “optimal”
because the mini-max rate for covariance function estimation has not been established. It is our
belief that those best rates are actually optimal.
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Table 6. Best L2 rates for covariance function estimation and corresponding rates for N̄ and λσ for smooth-
ing spline asymptotics under the fixed common design and λσ L2p is sufficiently large

Case N̄ λσ E(‖σ̂ − σ‖2
L2

)

Sparse o(n
1

2p ) N̄−2p O(N̄−2p)

Dense n
1

2p n−1 O(n−1)

Ultra-dense � n
1

2p N̄−2p 	 λσ � n−1 O(n−1)

Corollary 4.2 (Covariance function: L2 convergence for smoothing spline type asymptotics
under fixed common design). Suppose that Assumptions 1, 3, 9 and 10 hold and (4.1) holds. If
σ ∈ Cp(T 2) with q ≤ p ∧ m and λσ L2q ≥ C for a sufficiently large constant C, then

E
(‖σ̂ − σ‖2

L2

) = O(λσ ) + O

(
1

n

)
.

For regression spline type asymptotics under the fixed common design, again n1/(2p) is the
transition rate for N̄ between the sparse, dense and ultra-dense cases. In order to obtain optimal
rate, we now let q = p. Then for those three cases the best L2 rates as well as the corresponding
required rates for L are given in Table 6.

Now we establish the uniform convergence of penalized splines for estimating the covariance
function. Assumption 11 is standard for establishing the uniform convergence of covariance es-
timation, while Assumption 12 is needed to establish the uniform convergence of covariance
estimation under the fixed common design.

Assumption 11 (Uniform convergence). There exists a constant τσ > 2 such that

E‖Xi‖2τσ < ∞, E|εij |2τσ < ∞.

Assumption 12 (Uniform convergence under fixed common design). (a)

1

(̃τ1 + τ̃2 + τ̃3)h4
σ,e logn

(
n

logn

)2/τσ −2

= O(1),

where τσ > 2 is in Assumption 11; (b) (nN̄2)maxi vi < ∞.

Theorem 4.2 (Covariance function: Uniform convergence under fixed common design).
Suppose that Assumptions 1, 3, 10–12 hold and (4.3) holds. If σ ∈ Cp(T 2) with q ≤ p ∧ m,
then

‖σ̂ − σ‖ = O(U2) + O
(
L−m

) + o
(
L−p

) + O
(
λσ h

−q
σ,e

)
+ O

[{(̃
τ1h

−2
σ,e + τ̃2h

−1
σ,e + τ̃3

)
logn

}1/2]
a.s.
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4.3. Random independent design

Assumption 13 ensures the almost sure convergence of of an empirical cumulative distribution
function. Compared with the conditions in Assumption 7 for mean function estimation, there are
fewer conditions here. However, the established results are in probability and hence are weaker
than those for mean function estimation, which hold almost surely.

Assumption 13 (Random independent design).

τ̃1 = o
(
h4

σ / logn
)
, max

i
Ni(Ni − 1)vi = o

(
h2

σ / logn
)
.

Theorem 4.3 (Covariance function: L2 convergence under random independent design).
Suppose that Ni ≥ 4 for all i. Suppose that Assumptions 1, 6, 9–10 and 13 hold and (4.1) holds
almost surely. If σ ∈ Cp(T 2) with q ≤ p ∧ m, then

E
(‖σ̂ − σ‖2

L2
|T ) = OP

(
U2

1

) + OP

(
L−2m

) + oP
(
L−2p

) + OP

(
λ2

σ h
−2q
σ,e

)
+ OP

(̃
τ1h

−2
σ,e + τ̃2h

−1
σ,e + τ̃3

)
.

Remark. The above derived result holds in probability, rather than almost surely as in Theorem
3.3 for E(‖μ̂ − μ‖2

L2
|T ).

To simplify the discussion, assume that Ni = N̄ for all i. Then the SUBJ weights are the same
as the OBJ weights and vi = {nN̄(N̄ − 1)}−1. It follows that

τ̃1h
−2
σ,e + τ̃2h

−1
σ,e + τ̃3 = O

{(
nN̄2h2

σ,e

)−1 + (nN̄hσ,e)
−1 + n−1} = O

{(
nN̄2h2

σ,e

)−1 + n−1}.
Assume now U2

1 is negligible.

Corollary 4.3 (Covariance function: L2 convergence for regression spline type asymptotics
under random independent design). Suppose that Ni ≥ 4 for all i. Suppose that Assumptions
1, 6, 9–10 and 13 hold and (4.1) holds almost surely. If σ ∈ Cp(T 2) with q ≤ p ∧ m and λσ =
o(L−m−q), then

E
(‖σ̂ − σ‖2

L2
|T ) = OP

(
L−2m

) + oP
(
L−2p

) + OP

{(
nN̄2h2

σ

)−1 + n−1}.
Moreover, if m = p and (nN̄2)1/(2p+2) ∧ n1/(2p) ≤ L ≤ (nN̄2)1/(2p+2) ∨ N̄ , we obtain the best
rate

E
(‖σ̂ − σ‖2

L2
|T ) = OP

{(
nN̄2)−2p/(2p+2) + n−1}.

The quantity n1/(2p) is the transition rate for N̄ between the different cases for functional
data; see Table 7. In particular, for the sparse case, the best rate is the optimal rate for estimating
bivariate smooth functions with nN̄ independent data points [19]. However, it is worth noting that
under further assumptions on the covariance functions, that is, the eigenvalues of the covariance
functions decay at certain rates, a better rate might be achievable [1,15].
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Table 7. Best L2 rates for covariance function estimation and corresponding rates for N̄ , average number
of observations per subject, and L, the number of marginal basis functions, for regression spline asymptotics
under the random independent design and the smoothing parameter λσ satisfies λσ = O(L−p−q)

Case N̄ L E(‖σ̂ − σ‖2
L2

|T )

Sparse o(n
1

2p ) (nN̄2)
1

2p+2 OP{(nN̄2)
− 2p

2p+2 }
Dense n

1
2p n

1
2p OP(n−1)

Ultra-dense � n
1

2p n
1

2p � K 	 N̄ OP(n−1)

Corollary 4.4 (Covariance function: L2 convergence for smoothing spline asymptotics un-
der random independent design). Suppose that Ni ≥ 4 for all i. Suppose that Assumptions 1,
6, 9–10 and 13 hold and (4.1) holds almost surely. If σ ∈ Cp(T 2) with q ≤ p∧m and λσ L2q ≥ C

for some sufficiently large C, then

E
(‖σ̂ − σ‖2

L2
|T ) = OP(λσ ) + OP

{(
nN̄2λ1/q

σ

)−1 + n−1}.
Moreover, if q = p and (nN̄2)−2p/(2p+2) ∧ N̄−2p ≤ λσ ≤ (nN̄2)−2p/(2p+2) ∨n−1, we obtain the
best rate

E
(‖σ̂ − σ‖2

L2
|T ) = OP

{(
nN̄2)−2p/(2p+2) + n−1}.

For the large number of knots scenario under the random independent design, n1/(2q) is the
transition rate for N̄ between the sparse, dense and ultra-dense cases and for those three cases
the optimal L2 rates as well as the corresponding required rates for λσ are given in Table 8.

Finally, we establish the uniform convergence of covariance function estimation under random
independent design and Assumption 14 is needed.

Assumption 14 (Uniform convergence under random independent design). (a)

1

(̃τ1h2
σ,e + τ̃2h3

σ,e + τ̃3h4
σ,e) logn

(
n

logn

)2/τσ −2

= O(1),

Table 8. Best L2 rates for covariance function estimation and corresponding rates for N̄ , average number
of observations per subject, and L, the number of marginal basis functions, for the large number of knots
scenario under the random independent design and the smoothing parameter λσ satisfies λσ L2p ≥ C for
some sufficiently large constant C

Case N̄ λσ E(‖σ̂ − σ‖2
L2

|T )

Sparse o(n
1

2p ) (nN̄2)
− 2p

2p+2 OP{(nN̄2)
− 2p

2p+2 }
Dense n

1
2p n−1 OP(n−1)

Ultra-dense � n
1

2p N̄−2p 	 λσ � n−1 OP(n−1)
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where τσ > 2 is in Assumption 11; (b)

nmax
i

Ni(Ni − 1)vi < ∞, (nN̄)max
i

(Ni − 1)vi < ∞.

Theorem 4.4 (Covariance function: Uniform convergence under random independent de-
sign). Suppose that Ni ≥ 4 for all i. Suppose that Assumptions 1, 6, 10–11 and 13–14 hold and
(4.3) holds. If σ ∈ Cp(T 2) with q ≤ p ∧ m, then

‖σ̂ − σ‖ = O(U2) + O
(
L−m

) + o
(
L−p

) + O
(
λσ h

−q
σ,e

)
+ O

[{(̃
τ1h

−2
σ,e + τ̃2h

−1
σ,e + τ̃3

)
logn

}1/2]
a.s.

Appendix: Technical proofs

A.1. Proofs of theorems for mean function estimation

Notation. For the design points, define Qni(t) = N−1
i

∑Ni

j=1 1{Tij ≤t}, where 1{·} is an indica-
tor function that equals 1 if the statement inside the bracket is true and 0 otherwise. Define
Qn(t) = ∑n

i=1 wiNiQni(t) and Q̃n(t) = τ−1
1

∑n
i=1 w2

i NiQni(t). The functions Qn(t) and Q̃(t)

are empirical cumulative distributions functions and they shall be shown or assumed to converge
to a cumulative distribution function Q(t) with a density function ρ(t). For the fixed common de-
sign with Assumption 3, Qn(t) = Q̃n(t) = Qn1(t) and that ‖Qn −Q‖ = O(N̄−1). Here Q(t) = t

and ρ(t) = 1 over T . Also define

Rn(s, t) = τ−1
2

n∑
i=1

Ni(Ni − 1)w2
i 1{Tij ≤s}1{Tij ≤t}.

Finally, for a matrix A = (aij ), we shall use A+ to denote that A+ = (|aij |). Note that
‖A+‖max = ‖A‖max and ‖A+‖∞ = ‖A‖∞.

Proof of Theorems 3.1 and 3.3. The proof is similar for the fixed common design and ran-
dom independent design. We first consider the common design and then adapt the proof to the
independent design.

First, since T is the unit interval,

E‖μ̂ − μ‖2
L2

≤ ∥∥E{
(μ̂ − μ)2}∥∥ ≤ ‖Eμ̂ − μ‖2 + ∥∥var

{
μ̂(·)}∥∥.

We shall consider the bias ‖Eμ̂ − μ‖2 and the variance ‖var{μ̂(·)}‖ separately.
Let ημ be the spline function in Lemma A.1 such that

‖ημ − μ‖ = O
(
hm

) + o
(
hp

)
. (A.1)

Let μi = {μ(Ti1), . . . ,μ(TiNi
)}′ and μ = (μ′

1, . . . ,μ
′
n)

′. Similarly, let ημ,i = {ημ(Ti1), . . . ,

ημ(TiNi
)}′ and ημ = (η′

μ,1, . . . ,η
′
μ,n)

′. Recall that μ̂(t) = B ′(t)H−1
n (B ′WY), where Gn =
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B ′WB and Hn = Gn + λP . Then

E
{
μ̂(t)

}
= B ′(t)H−1

n

(
B ′Wμ

)
= B ′(t)G−1

n

(
B ′Wμ

) − B ′(t)H−1
n (λP )G−1

n

(
B ′Wμ

)
= B ′(t)G−1

n

(
B ′Wημ

) + B ′(t)G−1
n

{
B ′W(μ − ημ)

} − B ′(t)H−1
n (λP )G−1

n

(
B ′Wμ

)
.

Since ημ is a spline function, ημ(t) = B ′(t)β for some β ∈ R
K . Thus, ημ = Bβ and

B ′(t)G−1
n

(
B ′Wημ

) = B ′(t)β = ημ(t).

Let α = B ′W(μ − ημ) ∈R
K and γ = G−1

n (B ′Wμ) ∈ R
K . Then,

E
{
μ̂(t)

} − μ(t) = (ημ − μ)(t) + B ′(t)G−1
n α − B ′(t)H−1

n (λP )γ .

Because of the non-negativity and unity of B-spline functions, that is, Bk(t) ≥ 0 and
∑

k Bk(t) =
1 for any t ∈ T , we derive that

‖Eμ̂ − μ‖ ≤ ‖ημ − μ‖ + ∥∥G−1
n α

∥∥
max + ∥∥H−1

n (λP )γ
∥∥

max. (A.2)

We first consider ‖G−1
n α‖max. Let αk be the kth element of α. Then

αk =
n∑

i=1

wi

Ni∑
j=1

Bk(Tij )
{
μ(Tij ) − ημ(Tij )

} =
∫

Bk(s)
{
μ(s) − ημ(s)

}
dQn(s),

where Qn(s) = ∑n
i=1 wi

∑Ni

j=1 1{Tij ≤s} is an empirical cumulative distribution function. By As-
sumption 3 for the common design and Lemma A.2,

‖α‖max = o
(
hp+1). (A.3)

Since ‖G−1
n α‖max ≤ ‖G−1

n ‖∞‖α‖max and ‖G−1
n ‖∞ = O(h−1) by Lemma A.4,∥∥G−1

n α
∥∥

max = o
(
hp

)
. (A.4)

Next, by equality (A.19) in Lemma A.6,∥∥H−1
n (λP )γ

∥∥
max = O

(
λh

−q
e

)
. (A.5)

Combining (A.1), (A.2), (A.4) and (A.5),

‖Eμ̂ − μ‖ = O
(
hm

) + o
(
hp

) + O
(
λh

−q
e

)
. (A.6)

Next, we consider the variance ‖var{μ̂(·)}‖. First,

var
{
μ̂(t)

} = B ′(t)H−1
n B ′W var(Y )WBH−1

n B(t).
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Let

�̃ = (γ̃k�) = B ′W var(Y )WB =
n∑

i=1

B ′
iWi var(Yi)WiBi. (A.7)

Then,

var
{
μ̂(t)

} = B ′(t)H−1
n �̃H−1

n B(t). (A.8)

Note that var(Yi) = {σ(Tij1, Tij2)}1≤j1,j2≤Ni
+ σ 2

ε INi
. By (A.7),

γ̃k� =
n∑

i=1

w2
i

{ ∑
1≤j≤Ni

Bk(Tij )B�(Tij ) +
∑

1≤j1,j2≤Ni

Bk(Tij1)B�(Tij2)σ (Tij1, Tij2)

}
.

Define �1 = (γ1k�) and �2 = (γ2k�) with

γ1k� =
n∑

i=1

w2
i

{
σ 2

ε

∑
1≤j≤Ni

Bk(Tij )B�(Tij )

}

and

γ2k� =
n∑

i=1

w2
i

{ ∑
1≤j1,j2≤Ni

Bk(Tij1)B�(Tij2)

}
. (A.9)

Note that |γ̃k�| ≤ σ 2
ε γ1k� +‖σ‖γ2k�. Let � = (γk�) = σ 2

ε �1 +‖σ‖�2. For a matrix A = (aij ), we
shall use A+ to denote that A+ = (|aij |). By the linearity of terms,

B ′(t)H−1
n �̃H−1

n B(t) ≤ B ′(t)
(
H−1

n

)
+(�̃)+

(
H−1

n

)
+B(t)

≤ B ′(t)
(
H−1

n

)
+�

(
H−1

n

)
+B(t).

Therefore, by (A.8),

var
{
μ̂(t)

} ≤ B ′(t)
(
H−1

n

)
+�

(
H−1

n

)
+B(t).

By the unity and non-negativity of B-spline bases, that is,
∑

k Bk(t) = 1 and Bk(t) ≥ 0 for any
t ∈ T , ∥∥var

{
μ̂(·)}∥∥ ≤ ∥∥(

H−1
n

)
+�

(
H−1

n

)
+
∥∥

max (A.10)

For the fixed common design, Ni = N̄ and Tij = (j − 1/2)/N̄ for all j ; see Assumption 3(a).
Thus, there are O(N̄h) j s such that Bk(

j−1/2
N̄

) �= 0 and the O notation is uniform with respect to

k. Hence, γ2k� = O{(τ1 + τ2)h
2} uniformly for k and �, that is, ‖�2‖max = O{(τ1 + τ2)h

2}. It is
also easy to show that ‖�1‖op = O(τ1h). By Lemma A.6, ‖H−1

n ‖max = O(h−1
2 ) and ‖H−1

n ‖∞ =
O(h−1). Thus,∥∥(

H−1
n

)
+�

(
H−1

n

)
+
∥∥

max ≤ σ 2
ε

∥∥H−1
n

∥∥∞
∥∥H−1

n

∥∥
max‖�1‖op + ‖σ‖∥∥H−1

n

∥∥2
∞‖�2‖max
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= O
(
τ1h

−1
e

) + O(τ1 + τ2) = O
(
τ1h

−1
e + τ2

)
.

By (A.10), ∥∥var
{
μ̂(·)}∥∥ = O

(
τ1h

−1
e + τ2

)
.

By combining with (A.6), the proof is complete for the fixed common design.
Now we consider the independent design. The expectation (variance) in the above proof be-

comes now conditional expectation (conditional variance) given the design points T . For the
bias, (A.1) and (A.2) always hold. Equality (A.4) holds almost surely if so does (A.3). We write
αk as αk1 + αk2, where

αk1 =
∫

Bk(s)
{
μ(s) − ημ(s)

}
dQ(s),

αk2 =
∫

Bk(s)
{
μ(s) − ημ(s)

}
d(Qn − Q)(s).

It is easy to show that maxk |αk1| = o(hp+1) by Lemma A.2. By integration by parts, αk2 can be
rewritten as

αk2 =
∫

gk(s)(Qn − Q)(s) ds,

where gk(s) = ∂[Bk(s){μ(s) − ημ(s)}]/∂s. By Lemma A.7, ‖Qn − Q‖ = o(h) almost surely.
Using Lemma A.1, we can show that maxk |αk2| = o(hp+1) almost surely. Next, (A.5) also holds
almost surely. It follows that (A.6) holds almost surely.

For the variance, the derivation remains valid with slight changes. Now we let �1 = (γ1k�) and
�2 = (γ2k�) with

γ1k� =
∫

Bk(s)B�(s) dQ̃n(s),

γ2k� =
∫∫

Bk(s)B�(t) ds dtRn(s, t).

The proof is complete if ‖�1‖op = O(h) and ‖�2‖max = O(h2) almost surely.
By Lemma A.8 and a proof similar to that of Gn in Lemma A.3, ‖�1‖op = O(h) almost surely.

We now consider �2. Define F = (fk�) ∈R
K×K with

fk� =
∫∫

Bk(s)B�(t)ρ(s)ρ(t) ds dt.

We first derive that

γ2k� − fk� =
∫∫

Bk(s)B�(t) ds dt

{
Rn(s, t) − Q(s)Q(t)

}
.
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Since ‖F‖max = O(h2), it is sufficient to show that the term above is uniformly O(h2) almost
surely. Denote Rn(s, t) − Q(s)Q(t) by Z(s, t). Also denote Bk(s)B�(t) by gk�(s, t). By integra-
tion by parts, γ2k� − fk� can be written as

−
∫

s

∂gk�(s,1)

∂s
Z(s,1) ds −

∫
t

∂gk�(1, t)

∂t
Z(1, t) ds +

∫∫
∂2gk�(s, t)

∂s ∂t
Z(s, t) ds dt.

By Lemma A.9, each of the above three terms is uniformly O(h2) almost surely and we have
now proved ‖�2‖max = O(h2) almost surely. And the proof is now complete for the independent
design as well. �

Proof of Theorem 3.2. First,

‖μ̂ − μ‖ ≤ ‖Eμ̂ − μ‖ + ‖μ̂ −Eμ̂‖.
By equality (A.6) for the fixed common design, it suffices to show that

‖μ̂ −Eμ̂‖ = O
[{(

τ1h
−1
e + τ2

)
logn

}1/2] a.s.

and the proof is provided in the supplement [24]. �

Proof of Theorem 3.4. First,

‖μ̂ − μ‖ ≤ ∥∥E(μ̂|T ) − μ
∥∥ + ∥∥μ̂ −E(μ̂|T )

∥∥.

As equality (A.6) (with the expectation replaced by conditional expectation) holds almost surely
for the random independent design, it suffices to show that∥∥μ̂ −E(μ̂|T )

∥∥ = O
[{(

τ1h
−1
e + τ2

)
logn

}1/2] a.s. (A.11)

Let eij = Xi(Tij ) + εij , ei = (ei1, . . . , eiNi
)′ and e = (e′

1, . . . , e
′
n)

′. Define

ũ(t) = μ̂(t) −E
{
μ̂(t)|T } = B ′(t)H−1

n

(
B ′We

)
and

u(t) = B ′(t)H−1(B ′We
) =

n∑
i=1

Ni∑
j=1

aij (t)wieij ,

where H = G + λP and

aij (t) = B ′(t)H−1B(Tij ).

Note that H does not depend on the design points. Then by proof similar to that of ‖u‖ in the
proof of Theorem 3.2,

‖u‖ = O
[{(

τ1h
−1
e + τ2

)
logn

}1/2] a.s. (A.12)
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The main change to the proof is that we need to establish∥∥∥∥∑
i

E

[{∑
j

aij (·)wieij 1{|eij |≤L̃n}
}2]∥∥∥∥ = O

(
τ1h

−1
e + τ2

)
. (A.13)

Using the same notation as in the proof of Theorem 3.2, we first have

∑
i

E

[{∑
j

aij (t)wieij 1{|eij |≤L̃n}
}2∣∣∣T ]

= B ′(t)H−1�̃H−1B(t). (A.14)

Using the same technique in the proof of Theorem 3.3 for the random independent design,

B ′(t)H−1�̃H−1B(t) = B ′(t)
(
H−1)

+�
(
H−1)

+B(t),

where the big O notation is uniform with respect to t ∈ T and � = (γk�) is defined as in the
proof of Theorem 3.3. Thus,

∑
i

E

[{∑
j

aij (t)wieij 1{|eij |≤L̃n}
}2]

= B ′(t)
(
H−1)

+E(�)
(
H−1)

+B(t),

and furthermore,∥∥∥∥∑
i

E

[{∑
j

aij (·)wieij 1{|eij |≤L̃n}
}2]∥∥∥∥ ≤ ∥∥(

H−1)
+E(�)

(
H−1)

+
∥∥

max. (A.15)

With slight abuse of notation, let �1 = (γ1k�) and �2 = (γ2k�) with

γ1k� =
∫

Bk(s)B�(s)ρ(s) ds,

γ2k� =
∫∫

Bk(s)B�(t)ρ(s)ρ(t) dt.

Then by a proof similar to that of Theorem 3.3 for the random design and (A.15), we could
establish (A.13). Then, (A.12) holds.

Because of (A.12), the proof is complete if

‖ũ − u‖ = o
(‖u‖) a.s. (A.16)

We derive that

ũ(t) − u(t) = −B ′(t)H−1
n (Gn − G)H−1(B ′We

)
.

Thus,

‖ũ − u‖ ≤ ∥∥H−1
n (Gn − G)H−1(B ′We

)∥∥
max
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≤ ∥∥H−1
n

∥∥∞‖Gn − G‖∞
∥∥G−1

∥∥∞
∥∥GH−1(B ′We

)∥∥
max

= o
(
h−1)∥∥GH−1(B ′We

)∥∥
max a.s.

Since ∥∥GH−1(B ′We
)∥∥

max =
∥∥∥∥∫

B(s)ρ(s)u(s) ds

∥∥∥∥
max

= O
(
h‖u‖),

equality (A.16) holds. And the proof is complete. �

A.2. Technical lemmas for mean function estimation

The following lemma is adapted from Lemma 3.1 and Remark 3.1 in [22].

Lemma A.1. Suppose that Assumption 2(a) holds. If μ ∈ Cp(T ), then there exists a spline func-
tion ημ(t) = B ′(t)β for some β ∈R

K such that∥∥μ(i) − η(i)
μ

∥∥ = O
(
hm−i

) + o
(
hp−i

)
for i = 0 and 1.

Lemma A.2. Suppose that Assumption 2(a) holds and p ≥ 1. Let ημ be the spline function in
Lemma A.1 and F(·) be any cumulative distribution function in T that depends on T . Then for
i = 0 and 1,

max
k

∣∣∣∣∫ Bk(t)
{
μ(i)(t) − η(i)

μ (t)
}
dF(t)

∣∣∣∣ = o
(
hp+1−i

) + o
(
hp−i‖F − Q‖).

Proof. The proof is similar to that of Lemma 3.1 in [22] and hence is omitted. �

For the fixed common design, suppose that Assumptions 2 and 3 always hold. Then Lem-
mas A.3, A.4, and A.5 below can be established by proofs similar to those of Lemmas 6.2, 6.3
and 6.4 in [32]. Thus, the proofs are omitted. For the independent design, suppose that Assump-
tions 2, 6 and 7(a) always hold. Then these lemmas still hold almost surely because of Lemma
A.7. Let G = ∫

B(s)B ′(s)ρ(s) ds.

Lemma A.3.

Gn 
 G 
 hI.

Lemma A.4. Denote the (i, j)th element of G−1
n by αij . There exists a constant c > 0 and

0 < γ < 1 such that, for large n,

|αij | ≤ ch−1γ |i−j |.
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In addition, ∥∥G−1
n

∥∥∞ = O
(
h−1).

Remark A.1. The same inequalities can be established for G−1 with a similar proof.

Lemma A.5.

‖Gn − G‖max = O
(‖Qn − Q‖max

)
,∥∥G−1

n − G−1
∥∥

max = O
(
h−2‖Qn − Q‖max

)
,∥∥G−1

n − G−1
∥∥∞ = O

(
h−2‖Qn − Q‖max

)
.

Because of Lemmas A.3, A.4 and A.5, the following lemma [27] holds for the fixed common
design. For the independent design, if Assumption 7(a) holds, then the lemma also holds almost
surely.

Lemma A.6. The following equalities hold:∥∥H−1
n

∥∥
max = O

(
h−1

e

)
, (A.17)∥∥H−1

n

∥∥∞ = O
(
h−1), (A.18)∥∥H−1

n Pγ
∥∥

max = O
(
h

−q
e

)
. (A.19)

The following lemmas establish the convergence of several empirical cumulative distributions
under the random independent design.

Lemma A.7. Suppose that Assumptions 2 and 6 hold. If Assumption 7(a) holds, then ‖Qn −
Q‖ = o(h) almost surely.

Proof. The proof is given in the supplement [24]. �

By proofs similar to that for Lemma A.7, we can establish the following lemmas.

Lemma A.8. Suppose that Assumptions 2 and 6 hold. If Assumption 7(b) holds, then ‖Q̃n −
Q‖ = o(h) almost surely.

Lemma A.9. Let Z(s, t) = Rn(s, t) − Q(s)Q(t). Suppose that Assumptions 2 and 6 hold. If
Assumption 7(c) holds, then ‖Z‖ = o(h2) almost surely.
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Supplementary Material

Supplement to “Asymptotic properties of penalized splines for functional data” (DOI:
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