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In this paper, we further develop the approach, originating in Juditsky and Nemirovski (Ann. Statist. 37
(2009) 2278–2300), to “computation-friendly” statistical estimation via Convex Programming.Our focus is
on estimating a linear or quadratic form of an unknown “signal,” known to belong to a given convex com-
pact set, via noisy indirect observations of the signal. Classical theoretical results on the subject deal with
precisely stated statistical models and aim at designing statistical inferences and quantifying their perfor-
mance in a closed analytic form. In contrast to this traditional (highly instructive) descriptive framework,
the approach we promote here can be qualified as operational – the estimation routines and their risks are
not available “in a closed form,” but are yielded by an efficient computation. All we know in advance is
that under favorable circumstances the risk of the resulting estimate, whether high or low, is provably near-
optimal under the circumstances. As a compensation for the lack of “explanatory power,” this approach
is applicable to a much wider family of observation schemes than those where “closed form descriptive
analysis” is possible.

We discuss applications of this approach to classical problems of estimating linear forms of parameters
of sub-Gaussian distribution and quadratic forms of parameters of Gaussian and discrete distributions. The
performance of the constructed estimates is illustrated by computation experiments in which we compare
the risks of the constructed estimates with (numerical) lower bounds for corresponding minimax risks for
randomly sampled estimation problems.
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1. Introduction

In its most general form, the problem we are interested in this paper is as follows:

Given are:

• (nonempty convex compact) signal set X ⊂ Rn and a (complete separable metric) observation space �

• a mapping x �→Px associating with signal x ∈ X a family of Px of Borel probability distributions on �

• (linear or quadratic) function G(x) on the signal set X

Given K-repeated observation – a collection ωK = (ω1, . . . ,ωK) of i.i.d. random variables ωk ∼ P with proba-
bility distribution P ∈ Px for some unknown x ∈X , we want to recover G(x).
Note that we make no assumptions on how “the nature” (or an adversary) selects in Px the probability distribution
P of individual observation.
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In this problem, a candidate estimate is a (whatever) Borel function ωK �→ Ĝ(ωK) ∈ R; we
quantify performance of this estimate by its ε-risk

Riskε

(
Ĝ(·)|X ) = inf

{
ρ : ProbωK∼P×···×P

{∣∣Ĝ(ω) − G(x)
∣∣ > ρ

} ≤ ε ∀(x ∈ X ,P ∈Px)
}

(1.1)

– the worst, over signals x ∈X and selections P ∈ Px , half-width of (1 − ε)-confidence interval
associated with the estimate. Here ε ∈ (0,1) is a once for ever fixed reliability tolerance.

To give an impression of our approach and results, consider the sub-Gaussian case of the
above problem where X is a convex compact set in some Rn, G(x) is a given affine function,
� = Rm, and Px , x ∈X , is comprised of all sub-Gaussian distributions with parameters affinely
parameterized by x:

Px =
{
P : Eω∼P

{
ef T ω

} ≤ f T θ(x) + 1

2
f T M(x)f ∀f ∈ Rm

}
,

where θ(x), M(x) are given affine in x mappings taking values in Rm and in the space Sm of
symmetric m × m matrices, respectively, and such that M(x) is positive semidefinite whenever
x ∈X . Our related constructions and results can be outlined as follows:

• The estimate Ĝ(ωK) we build is of the form Ĝ(ωK) = ∑K
k=1 G̃(ωk) stemming from affine

function G̃(ω); the coefficients of this function, same as an (upper bound on) the ε-risk of
the estimate stem from an optimal solution to an explicit convex optimization problem and
thus can be specified in a computationally efficient fashion.

• Under mild structural assumptions on the affine mapping x �→ (θ,�) the resulting estimate
is provably near-optimal in the minimax sense (see Section 4 for details). The latter state-
ment is an extension of the fundamental result of Donoho [11] on near-optimality of affine
recovery of a linear form of signal in Gaussian observation scheme ω ∼N (θ(x),�).

This paper contributes to a long line of research on estimating linear (see, e.g., Levit [40],
Ibragimov and Khas’minskii [25], Efromovich and Low [17], Lepski and Spokoiny [38], Klemela
and Tsybakov [32], Juditsky and Nemirovski [27], Butucea and Comte [7] and references therein)
and quadratic (Hasminskii and Ibragimov [22], Ibragimov, Nemirovskii and Khas’minskii [26],
Bickel and Ritov [1], Fan [18], Donoho and Nussbaum [15], Birgé and Massart [6], Efromovich
and Low [16], Laurent [33], Gayraud and Tribouley [19], Huang and Fan [24], Laurent and Mas-
sart [35], Laurent [34], Klemelä [31], Butucea and Meziani [8] among others) functionals of
parameters of probability distributions via observations drawn from these distributions. In the
majority of cited papers, the objective is to provide “closed analytical form” lower risk bounds
for problems at hand and upper risk bounds for the proposed estimates, in good cases matching
the lower bounds. This paradigm can be referred to as “descriptive;” it relies upon analytical risk
analysis and estimate design and possesses strong explanation power. It, however, imposes severe
restrictions on the structure of the statistical model, restrictions making the estimation problem
amenable to complete analytical treatment. There exists another, “operational,” line of research,
initiated in Donoho [11]. The spirit of the operational approach is perfectly well illustrated by the
main result of the latter paper stating that when recovering the linear form of unknown signal x

known to belong to a given convex compact set X via indirect Gaussian observation ω = Ax + ξ ,
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ξ ∼N (0, I ), the worst-case, over x ∈X , risk of an affine in ω estimate yielded by optimal solu-
tion to an explicit convex optimization problem is within the Factor 1.2 of the minimax optimal
risk. Subsequent “operational” literature is of similar spirit: both the recommended estimate and
its risk are given by an efficient computation (typically, stem from solutions to explicit convex
optimization problems); in addition, in good situations we know in advance that the resulting
risk, whether large or small, is nearly minimax optimal. The explanation power of operational
results is almost nonexisting; as a compensation, the scope of operational results is usually much
wider than the one of analytical results. For example, the just cited result of D. Donoho imposes
no restrictions on A and X , except for convexity and compactness of X ; in contrast, all known
to us analytical results on the same problem subject (A,X ) to severe structural restrictions.

In terms of the outlined “descriptive – operational” dichotomy, our paper is operational. For
instance, in the problem of estimating linear functional of signal x affinely parameterising the
parameters θ,� of sub-Gaussian distribution we started with, we allow for quite general affine
mapping x → (θ,�) and for general enough signal set X , the only restrictions on X being con-
vexity and compactness. This generality allows to handle problems too difficult for “closed ana-
lytical form” design and analysis, and even problems which, from the traditional viewpoint, may
seem meaningless. To illustrate the latter point, let the signal underlying sub-Gaussian observa-
tion is just the pair of “sub-Gaussianity parameters:” x = (θ,�), and let G(x) be a linear function
of the �-component of x. At the first glance, the resulting estimation problem is senseless: a sub-
Gaussian, with parameters (θ,�), distribution P does “remember” θ , but does not “remember”
�, so that even complete knowledge of the distribution of our observation, not speaking about
knowledge of just a sample drawn from P , does not allow to recover � exactly. With the descrip-
tive approach with its primary focus on rates of convergence, this observation would be enough
to qualify the problem as meaningless – what can be said about rate of convergence when there
cannot be convergence at all? By contrast, there is no reason to reject the problem as meaningless
within operational approach: we can still apply the machinery we develop below to build a “pre-
sumably good” estimate of the functional of interest. This estimate can provide us with perhaps
incomplete, but still meaningful information on the functional of interest. Indeed, depending on
X , some nontrivial information on the �-component of x = (θ,�) ∈ X may be “stored” in θ ,
and observations do provide us with a nontrivial information on θ . The bottom line is: with the
operational approach, there is no need to decide in advance which estimation problems are, and
which are not meaningful: we can apply our estimation machinery to the problem at hand to get
both the estimate and an upper bound on its ε-risk.

Technically, the approach we use in this paper combines the machinery developed in Golden-
shluger, Juditsky and Nemirovski [20,28] and the Cramer-type techniques for upper-bounding the
risk of an affine estimate developed in Juditsky and Nemirovski [27].1 On the other hand, this ap-
proach can also be viewed as “computation-friendly” extension of theoretical results on “Cramer
tests” supplied by Birgé [2–5] in conjunction with techniques of Donoho, Liu and MacGibbon
[14], Donoho and Nussbaum [15], Donoho and Liu [12,13], Donoho [11], Butucea and Meziani
[8], which exploits the most attractive, in our opinion, feature of this line of research – potential
applicability to a wide variety of observation schemes and (convex) signal sets X .

1To handle quadratic in observation estimates we treat them as affine functions of “quadratic lifting” ω+ = [ω;1][ω;1]T
of the actual observation ω.
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The rest of the paper is organized as follows. In Section 2 we, following Juditsky and Ne-
mirovski [28], describe the families of distributions we are working with. In the nutshell, these
are families of distributions specified by a given bound 	(f ;μ) on the logarithmic moment-
generating function:

∀(x ∈X ,P ∈Px) : ln
(
Eω∼P

{
ef T ω

}) ≤ 	
(
f ;μ(x)

) ∀(f ∈F),

where continuous convex-concave function 	(f ;μ) : F × M → R, closed convex symmetric
w.r.t. the origin set F , closed convex set M, and affine mapping x �→ μ(x) : X → M are given
“parameters.” The simplest example is presented by the family of sub-Gaussian distributions with
sub-Gaussianity parameters affinely parameterized by signals, where F = Rm, M is comprised
of all pairs μ = (θ,�) with θ ∈ Rm and positive semidefinite symmetric m × m matrices �, and
	(f ;μ) = 	(f ; θ,�) = f T θ + 1

2f T �f . We build our estimate and study its general properties
in Section 3. Then in Section 4 we discuss applications to estimating linear forms of parameters
of sub-Gaussian distributions. In Section 5 we apply the proposed construction to estimating
quadratic forms of parameters of Gaussian and discrete distributions. When estimating quadratic
functionals, upper risk bounds for the developed estimators are not supported by strong “generic”
optimality results available in the case of linear functional estimation. Nevertheless, in some
important situations which allow for analytical study (cf., e.g., Donoho and Nussbaum [15],
Klemelä [31]) the proposed estimates are nearly minimax optimal. Moreover, near-optimality
properties of these estimates can be studied numerically. To illustrate the performance of the
proposed approach we describe results of some preliminary numerical experiments in which
we compare the bounds on the risk of estimates supplied by our machinery with (numerically
computed) lower bounds on the minimax risk. Proofs are relegated to the supplement paper
Juditsky and Nemirovski [30].

Notation. In what follows, Rn and Sn stand for the spaces of real n-dimensional vectors and
real symmetric n × n matrices, respectively; both spaces are equipped with the standard inner
products, xT y, resp., Tr(XY). Relation A 	 B (A 
 B) means that A, B are symmetric matrices
of the same size such that A − B is positive semidefinite (resp., positive definite). We denote
Sn+ = {S ∈ Sn : S 	 0} and Sn++ = int Sn+ = {S ∈ Sn : S 
 0}.

We use “MATLAB notation:” [X1; . . . ;Xk] means vertical concatenation of matrices X1, . . . ,

Xk of the same width, and [X1, . . . ,Xk] means horizontal concatenation of matrices X1, . . . ,Xk

of the same height. In particular, for reals x1, . . . , xk , [x1; . . . ;xk] is a k-dimensional column
vector with entries x1, . . . , xk .

For probability distributions P1, . . . ,PK , P1 ×· · ·×PK is the product distribution on the direct
product of the corresponding probability spaces; when P1 = · · · = PK , we denote P1 × · · ·× PK

by P K or [P ]K .
Given positive integer d , θ ∈ Rd , � ∈ Sd+, we denote by SG(θ,�) the family of all sub-

Gaussian, with parameters (θ,�), probability distributions, that is, the family of all Borel prob-
ability distributions P on Rd such that

∀f ∈ Rd : ln
(
Eω∼P {ef T ω

) ≤ f T θ + 1

2
f T �f.

We use shorthand notation ω ∼ SG(θ,�) to express the fact that the probability distribution of
random vector ω belongs to the family SG(θ,�).
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2. Simple families of probability distributions

Let

• F , 0 ∈ intF , be a closed convex set in � = Rm symmetric w.r.t. the origin,
• M be a closed convex set in some Rn,
• 	(f ;μ) : F ×M → R be a continuous function convex in f ∈ F and concave in μ ∈M.

Following Juditsky and Nemirovski [28], we refer to F,M,	(·, ·) satisfying the above restric-
tions as to regular data. Regular data F,M,	(·, ·) define the family S = S[F,M,	] of Borel
probability distributions P on � such that

∃μ ∈M : ∀f ∈F : ln

(∫
�

exp
{
f T ω

}
P(dω)

)
≤ 	(f ;μ). (2.1)

We say that distributions satisfying (2.1) are simple. Given regular data F,M,	(·, ·), we refer
to S[F,M,	] as to simple family of distributions associated with the data F , M, 	. Standard
examples of simple families are supplied by “good observation schemes,” as defined in Juditsky
and Nemirovski [27], Goldenshluger, Juditsky and Nemirovski [20], and include the families of
Gaussian, Poisson and discrete distributions. For other instructive examples and an algorithmic
“calculus” of simple families, the reader is referred to Juditsky and Nemirovski [28]. We present
here three examples of simple families which we use in the sequel.

2.1. Sub-Gaussian, Poisson, and discrete distributions

1. When F = � = Rd , M is a closed convex subset of Gd = {μ = (θ,�) : θ ∈ Rd,� ∈
Sd+}, and 	(f ; θ,�) = θT f + 1

2f T �f , S[F,M,	] is comprised of all sub-Gaussian
distributions P on Rd with sub-Gaussianity parameters from M. In particular, S[F,M,	]
contains all normal distributions N (θ,�) with (θ,�) ∈M.

2. When F = Rd , � = Zd+ (nonnegative integer vectors in Rd ), M = Rd+ and 	(f ;μ) =∑d
i=1 μi[efi − 1], S[F,M,	] contains distributions of d-dimensional random vectors

ω = [ω1; . . . ;ωd ] with independent across i entries ωi ∼ Poisson(μi).
3. When F = Rd , � = {e1, . . . , ed} ⊂ Rd , where ei are basic orths,2 M = {μ ∈ Rd : μ ≥

0,
∑

i μi = 1}, and 	(f ;μ) = ln(
∑d

i=1 μiefi ), S[F,M,	] contains all discrete proba-
bility distributions on d-element set �.

2.2. Quadratically lifted Gaussian observations

Let V be a nonempty convex compact subset of Sd+. This set gives rise to the family P[V] of
distributions of quadratic liftings [ζ ;1][ζ ;1]T of random vectors ζ ∼ N (θ,�) with θ ∈ Rd and

2The just defined � as a convenient for us “encoding” of the set of realizations of a discrete random variable taking d

possible values.
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� ∈ V . Let us build regular data such that the associated simple family of distributions contains
P[V]. To this end, we select �∗ ∈ Sd++ and δ ≥ 0 such that for all � ∈ V one has

� � �∗ and
∥∥�1/2�

−1/2∗ − I
∥∥ ≤ δ, (2.2)

where ‖ · ‖ is the spectral norm; under these restrictions, the smaller are �∗ and δ, the better.
Observe that for all � ∈ V , we have 0 � �

−1/2∗ ��
−1/2∗ � I . Hence,∥∥�1/2�

−1/2∗
∥∥2 = ∥∥�

−1/2∗ �1/2
∥∥2 = ∥∥�

−1/2∗ �1/2[�−1/2∗ �1/2]T ∥∥ = ∥∥�
−1/2∗ ��

−1/2∗
∥∥ ≤ 1,

and we lose nothing when assuming from now on that δ ∈ [0,2]. The required regular data are
given by the following proposition.

Proposition 2.1. In the just described situation, let γ ∈ (0,1),

Z+ = {
Z ∈ Sd+1 : Zd+1,d+1 = 1

}
, Hγ = {

H ∈ Sd : −γ�−1∗ � H � γ�−1∗
}

and let F = Rd ×Hγ , M+ = V ×Z+. We set

	(h,H ;�,Z) = ϒ(H,�) + �(h,H,Z),

ϒ(H,�) = −1

2
ln Det

(
I − �

1/2∗ H�
1/2∗

)+ 1

2
Tr

([� − �∗]H
)

+ δ(2 + δ)

2(1 − ‖�1/2∗ H�
1/2∗ ‖)

∥∥�
1/2∗ H�

1/2∗
∥∥2

F
,

�(h,H ;Z) = 1

2
Tr

(
Z

[[
H h

hT

]
+ [H,h]T [�−1∗ − H

]−1[H,h]
])

.

(2.3)

Then

(i) F ,M+,	 form a regular data, and for every (θ,�) ∈ Rd ×V it holds for all (h,H) ∈ F :

ln
(
Eζ∼N (θ,�)

{
ehT ζ+ 1

2 ζ T Hζ
}) ≤ 	

(
h,H ;�, [θ;1][θ;1]T ). (2.4)

(ii) Besides this, function 	(h,H ;�,Z) is coercive in the convex argument: whenever
(�,Z) ∈M+, (hi,Hi) ∈F and ‖(hi,Hi)‖ → ∞ as i → ∞, we have 	(hi,Hi;�,Z) →
∞.

For proof, see Section B.1 of the supplement paper.

2.3. Quadratically lifted discrete observations

Consider a random variable ζ ∈ Rd taking values ei , i = 1, . . . , d , where ei are standard basic
orths in Rd (as was already mentioned, this is a convenient way to encode random variable
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taking d possible values). Same as in 2.1.3, we identify the probability distribution Pμ of such
variable with a point μ = [μ1; . . . ;μd ] from the d-dimensional probabilistic simplex �d =
{ν ∈ Rd+ : ∑d

i=1 νi = 1} where μi = Prob{ζ = ei}. Let now ζK = (ζ1, . . . , ζK) with ζk drawn
independently across k from Pμ, and let

ω
[
ζK

] = 2

K(K − 1)

∑
1≤j<j≤K

ωij

[
ζK

]
, ωij

[
ζK

] = 1

2

[
ζiζ

T
j + ζj ζ

T
i

]
,1 ≤ i < j ≤ K. (2.5)

We are about to point our regular data such that the associated simple family of distributions
contains the distributions of the “quadratic lifts” ω[ζK ] of random vectors ζK .

Proposition 2.2. Let F = Sd ,

�d =
{
Z ∈ Sd : Zij ≥ 0 ∀i, j,

∑
i,j

Zij = 1

}
. (2.6)

and let Zd be a set of all positive semidefinite matrices from �d . Denote

	(H ;Z) = ln

(
m∑

i,j=1

Zij exp{Hij }
)

: Sd × �d → R, (2.7)

so that 	(·; ·) is convex-concave on Sd × �d . We set

	M(H ;Z) = M	(H/M;Z), M ∈ Z+.

Then for M = M(K) = �K/2�,

ln
(
EζK∼PK

μ

{
exp

{
Tr

(
Hω

[
ζK

])}}) ≤ 	M

(
H ;μμT

)
. (2.8)

In other words, the simple family S[F,Zd,	�K/2�] contains distributions of all random vari-
ables ω[ζK ] with ζ ∼ Pμ, μ ∈ �d .

For proof, see Section B.2 of the supplement paper.

3. Estimating linear forms

3.1. Situation and goal

Consider the situation as follows: given are Euclidean spaces EF , EM , EX along with

• regular data F ⊂ EF ,M ⊂ EM,	(·; ·) : F ×M → R,
• a nonempty convex compact set X ⊂ EX ,
• an affine mapping x �→A(x) : EX → EM such that A(X ) ⊂M,



2646 A. Juditsky and A. Nemirovski

• a vector g ∈ EX and a constant c specifying the linear form G(x) = 〈g, x〉 + c : EX → R ,3

• a tolerance ε ∈ (0,1) and a positive integer number K of available observations.

Let P be the family of all Borel probability distributions on EF . Given a random observation
ωK = (ω1, . . . ,ωK) with i.i.d. components

ωk ∼ P(·), k ≤ K, (3.1)

where P ∈ P is associated with unknown signal x known to belong to X , we want to recover
G(x). Here “association” of a probability distribution P with a signal x ∈ X means that

P ∈Px :=
{
P : ln

(∫
EF

e〈f,ω〉P(dω)

)
≤ 	

(
f ;A(x)

) ∀f ∈F
}

(3.2)

Note that the problem we have just posed is a special case of the general estimation problem
described in the Introduction, the case where the functional to be recovered is affine, and the
families Px of probability distributions associated with signals x ∈ X are defined by (3.2).

3.2. The construction

Let us set

F+
K = {(

f K,α
) : f K = (f1, . . . , fK) ∈ EK

F := EF × · · · × EF ,α > 0, fk/α ∈ F,1 ≤ k ≤ K
}

so that F+
K is a nonempty convex set in EK

F × R+, and let

�+,K

(
f K,α

) = max
x∈X

[
α

K∑
k=1

	
(
fk/α,A(x)

) − G(x)

]
: F+

K → R,

�−,K

(
f K,α

) = max
x∈X

[
α

K∑
k=1

	
(−fk/α,A(x)

) + G(x)

]
: F+

K → R,

so that �±,K are convex real-valued functions on F+
K (recall that 	 is convex-concave and

continuous on F × M, while A(X ) is a compact subset of M). These functions give rise to
convex functions �̂± : EK

F → R given by

�̂+,K

(
f K

) := inf
α

{
�+,K

(
f K,α

)+ α ln(2/ε) : (f K,α
) ∈F+

K

}
,

�̂−,K

(
f K

) := inf
α

{
�−,K

(
f K,α

)+ α ln(2/ε) : (f K,α
) ∈F+

K

}
3from now on, 〈u,v〉 denotes the inner product of vectors u,v belonging to a Euclidean space; what is this space, it
always will be clear from the context.
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and to convex optimization problem

Opt = min
f K

{
�̂K

(
f K

) := 1

2

[
�̂+,K

(
f K

)+ �̂−,K

(
f K

)]}
, (3.3)

With our approach, a “presumably good” estimate of G(x) and its risk are given by an optimal
(or nearly so) solution to the latter problem. The corresponding result is as follows.

Proposition 3.1. In the situation of Section 3.1, let 	 satisfy the relation

	(0;μ) ≥ 0 ∀μ ∈ M. (3.4)

Then

�̂+,K

(
f K

) := inf
α

{
�+,K

(
f K,α

)+ α ln(2/ε) : (f K,α
) ∈F+

K

}
= max

x∈X
inf

α:(f K,α)∈F+
K

[
α

K∑
k=1

	
(
fk/α,A(x)

)− G(x) + α ln(2/ε)

]
,

(3.5)

�̂−,K

(
f K

) := inf
α

{
�−,K

(
f K,α

)+ α ln(2/ε) : (f K,α
) ∈F+

K

}
= max

x∈X
inf

α:(f K,α)∈F+
K

[
α

K∑
k=1

	
(−fk/α,A(x)

)+ G(x) + α ln(2/ε)

]
,

(3.6)

and the functions �̂±,K(·) are convex real-valued. Furthermore, a feasible solution f̄ K , κ̄, ρ̄ to
the system of convex constraints

�̂+,K

(
f K

) ≤ ρ −κ, �̂−,K

(
f K

) ≤ ρ +κ (3.7)

in variables f K , ρ, κ induces K-observation estimate

Ĝ(ω) =
K∑

k=1

〈f̄k,ωk〉 + κ̄, (3.8)

of G(x), x ∈ X , with ε-risk at most ρ̄:

Riskε

(
Ĝ(·)|X ) ≤ ρ̄, (3.9)

where ε-risk Riskε is defined by (1.1), and the families Px , x ∈ X , are given by (3.2). Relation
(3.7) (and thus – the risk bound (3.9)) clearly holds true when f̄ K is a candidate solution to
problem (3.3) and

ρ̄ = �̂K

(
f̄ K

)
, κ̄ = 1

2

[
�̂−,K

(
f̄ K

)− �̂+,K

(
f̄ K

)]
.

As a result, by properly selecting f̄ K we can make (an upper bound on) the ε-risk of estimate
(3.8) arbitrarily close to Opt, and equal to Opt when optimization problem (3.3) is solvable.
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For proof, see Section B.3 of the supplement paper.
Let us make the following simple and useful observation: the functions �±,K(f K,α) are

convex and symmetric w.r.t. permutations of components f1, . . . , fK in f K = (f1, . . . , fK); as a
result, the functions �̂±,K(f K) also are convex and symmetric w.r.t. permutations of f1, . . . , fK .
Consequently, whenever a collection (f̄ K, κ̄, ρ̄) is feasible for the system of constraints (3.7), so
is the collection (f̃ K, κ̄, ρ̄), where f̃ K is a permutation of f̄ K ; since the constraints in question
are convex, it follows that replacing the components f̄1, . . . , f̄K by their mean, that is, passing
from (f̄ K, κ̄, ρ̄) to the collection (f̂ K, κ̄, ρ̄) with f̂k = 1

K

∑K
k=1 f̄k , k = 1, . . . ,K , we get a

collection satisfying (3.7). The bottom line is that we lose nothing when restricting ourselves
to collections f K with identical components. Denoting by f/K the common value of these
components, Proposition 3.1 becomes the statements as follows.

Proposition 3.2. In the situation described in Section 3.1, let 	 satisfy the relation (3.4). Setting

F+ = {
(f,α) : α > 0, f/α ∈ F

}
,

�+(f,α) = max
x∈X

[
α	

(
f/α,A(x)

)− G(x)
] :F+ → R,

�−(f,α) = max
x∈X

[
α	

(−f/α;A(x)
)+ G(x)

] :F+ → R,

the functions �̂± : EF → R,

�̂+(f ) := inf
α

{
�+(f,α) + K−1α ln(2/ε) : (f,α) ∈ F+}

= max
x∈X

inf
α:(f,α)∈F+

[
α	

(
f/α,A(x)

)− G(x) + K−1α ln(2/ε)
]
,

�̂−(f ) := inf
α

{
�−(f,α) + K−1α ln(2/ε) : (f,α) ∈ F+}

= max
x∈X

inf
α:(f,α)∈F+

[
α	

(−f/α,A(x)
)+ G(x) + K−1α ln(2/ε)

]
are convex and real valued. Furthermore, let f̄ , κ̄, ρ̄ be a feasible solution to the system of
convex constraints

�̂+(f ) ≤ ρ −κ, �̂−(f ) ≤ ρ +κ (3.10)

in variables f , ρ, κ. Then, setting

Ĝ
(
ωK

) =
〈
f̄ ,

1

K

∑K

k=1
ωk

〉
+ κ̄, (3.11)

we get an estimate of G(x), x ∈ X , via K-repeated observation ωK = (ω1, . . . ,ωK) with in-
dependent across k components ωk ∼ P with ε-risk at most ρ̄, meaning that whenever a Borel
probability distribution P is associated with x ∈ X in the sense of (3.2), one has

ProbωK∼PK

{
ωK : ∣∣Ĝ(

ωK
)− G(x)

∣∣ > ρ̄
} ≤ ε.
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Relation (3.10) clearly holds true when f̄ is a candidate solution to the convex optimization
problem

Opt = min
f

{
�̂(f ) := 1

2

[
�̂+(f ) + �̂−(f )

]}
(3.12)

and

ρ̄ = �̂(f̄ ), κ̄ = 1

2

[
�̂−(f̄ ) − �̂+(f̄ )

]
.

As a result, properly selecting f̄ , we can make (an upper bound on) the ε-risk of estimate Ĝ(·)
arbitrarily close to Opt, and equal to Opt when optimization problem (3.12) is solvable. Finally,
the optimal value in (3.12) is exactly the same as the optimal value in (3.3).

4. Application: Estimating linear form of parameters of
sub-Gaussian distributions

For numerical illustration of the subsequent results, see Section A of the supplement paper.

4.1. Situation and result

We are about to apply construction form Section 3 in the situation where our observation is sub-
Gaussian with parameters affinely parameterized by signal x, and our goal is to recover a linear
function of x. Specifically, consider the situation described in Section 3, with the data as follows:

• F = EF = Rd , M = EM = Rd ×Sd+, 	(f ; θ,�) = f T θ + 1
2f T �f : Rd × (Rd ×Sd+) → R

(so that S[F,M,	] is the family of all sub-Gaussian distributions on Rd );
• X ⊂ EX = Rnx is a nonempty convex compact set, and
• A(x) = (Ax + a,M(x)), where A is d × nx matrix, and M(x) is affinely depending on x

symmetric d × d matrix such that M(x) is 	 0 when x ∈X ,
• G(x) is an affine function on EX .

Same as in Section 3, our goal is to recover the value of a given linear function G(y) = gT y +
c at unknown signal x ∈ X via K-repeated observation ωK = (ω1, . . . ,ωK) with ωk drawn,
independently across k, from a distribution P which is associated with x, which now means
“is sub-Gaussian with parameters (Ax + a,M(x)).” We refer to Gaussian case as to the special
case of the just described problem, where the distribution P associated with signal x is exactly
N (Ax + a,M(x)).

In the case in question 	(0; θ,�) = 0, so that (3.4) takes place, and the left-hand sides in the
constraints (3.10) are

�̂+(f ) = max
x∈X

inf
α>0

{
f T [Ax + a] + 1

2α
f T M(x)f + K−1α ln(2/ε) − G(x)

}
= max

x∈X
{[

2K−1 ln(2/ε)f T M(x)f
]1/2 + f T Ax − G(x)

} + aT f, (4.1)
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�̂−(f ) = max
x∈X

inf
α>0

{
−f T [Ax + a] + 1

2α
f T M(x)f + K−1α ln(2/ε) + G(x)

}
= max

x∈X
{[

2K−1 ln(2/ε)f T M(x)f
]1/2 − f T Ax + G(x)

} − aT f. (4.2)

We arrive at the following version of Proposition 3.2.

Proposition 4.1. In the situation described above, given ε ∈ (0,1), let f̄ be a feasible solution
to the convex optimization problem

Opt(K) = min
f ∈Rd

{
�̂(f ) := 1

2

[
�̂+(f ) + �̂−(f )

]}
, (4.3)

where �̂±(·) are given by (4.1), (4.2). Setting

κ̄ = 1

2

[
�̂−(f̄ ) − �̂+(f̄ )

]
, ρ̄ = �̂(f̄ ),

the ε-risk of the affine estimate

Ĝ
(
ωK

) = 1

K

K∑
k=1

f̄ T ωk + κ̄,

taken w.r.t. the data listed in the beginning of this section, is at most ρ̄.

It is immediately seen that optimization problem (4.3) is solvable, provided that⋂
x∈X Ker(M(x)) = {0}, and an optimal solution f∗ to the problem, taken along with

κ∗ = 1

2

[
�̂−(f∗) − �̂+(f∗)

]
, (4.4)

yields the affine estimate

Ĝ∗(ω) = 1

K

K∑
i=1

f T∗ ωi +κ∗

with ε-risk, w.r.t. the data listed in the beginning of this section, at most Opt(K).

Consistency. We can easily answer the natural question “when the proposed estimation scheme
is consistent”, meaning that for every ε ∈ (0,1), it allows to achieve arbitrarily small ε-risk,
provided that K is large enough. Specifically, if we denote G(x) = gT x +c, from Proposition 4.1
it is immediately seen that a sufficient condition for consistency is the existence of f̄ ∈ Rd such
that f̄ T Ax = gT x for all x ∈ X −X , or, equivalently, that g is orthogonal to the intersection of
the kernel of A with the linear span of X − X . Indeed, under this assumption, for every fixed
ε ∈ (0,1) we clearly have limK→∞ 	̂(f̄ ) = 0, implying that limK→∞ Opt(K) = 0, with �̂ and
Opt(K) given by (4.1), (4.2), (4.3). The condition in question is necessary for consistency as
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well, since when the condition is violated, we have Ax′ = Ax′′ for properly selected x′, x′′ ∈ X
with G(x′) �= G(x′′), making low risk recovery of G(x), x ∈ X , impossible already in the case
of zero noise, where an observation stemming from signal x ∈X is identically equal to Ax + a.4

4.2. Direct product case

Further simplifications are possible in the direct product case, where, in addition to what was
assumed in the beginning of Section 4,

• EX = EU × EV and X = U × V , with convex compact sets U ⊂ EU = Rnu and V ⊂ EV =
Rnv ,

• A(x = (u, v)) = [Au + a,M(v)] : U × V → Rd × Sd , with M(v) 	 0 for v ∈ V ,
• G(x = (u, v)) = gT u + c depends solely on u.

It is immediately seen that in the direct product case problem (4.3) reads

Opt = min
f ∈Rd

{
1

2

[
φU

(
AT f − g

)+ φU

(−AT f + g
)]

+ max
v∈V

[
2K−1 ln(2/ε)f T M(v)f

]1/2
}
, (4.5)

where

φU(h) = max
u∈U

uT h.

Assuming
⋂

v∈V Ker(M(v)) = {0}, the problem is solvable, and its optimal solution f∗ gives rise
to the affine estimate

Ĝ∗
(
ωK

) = 1

K

K∑
k=1

f T∗ ωk +κ∗, κ∗ = 1

2

[
φU

(−AT f∗ + g
)− φU

(
AT f∗ − g

)]− aT f∗ + c,

with ε-risk ≤ Opt.

Near-optimality. In addition to the assumption that we are in the direct product case, assume
for the sake of simplicity, that M(v) 
 0 whenever v ∈ V . In this case, (4.3) reads

Opt = min
f

max
v∈V

{
S(f, v) := 1

2

[
φU

(
AT f − g

)
+ φU

(−AT f + g
)]+ [

2K−1 ln(2/ε)f T M(v)f
]1/2

}
,

4Note that in the Gaussian case with M(x) depending on x the above condition is, in general, not necessary for consis-
tency, since a nontrivial information on x (and thus on G(x)) can, in principle, be extracted from the covariance matrix
M(x) which can be estimated from observations.
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whence, taking into account that S(f, v) clearly is convex in f and concave in v, while V is a
convex compact set, by Sion–Kakutani theorem we get also

Opt = max
v∈V

{
Opt(v) = min

f

[
1

2

[
φU

(
AT f − g

)+ φU

(−AT f + g
)]

+ [
2K−1 ln(2/ε)f T M(v)f

]1/2
]}

. (4.6)

Now consider the problem of recovering gT u from observation ωk , 1 ≤ k ≤ K , independently
of each other sampled from N (Au + a,M(v)), where unknown u is known to belong to U and
v ∈ V is known. Let ρε(v) be the minimax ε-risk of the recovery:

ρε(v) = inf
Ĝ(·)

{
ρ : ProbωK∼[N (Au+a,M(v))]K

{
ωK : ∣∣Ĝ(

ωK
)− gT u

∣∣ > ρ
} ≤ ε ∀u ∈ U

}
,

where inf is taken over all Borel functions Ĝ(·) : RKd → R. Invoking Juditsky and Nemirovski
[27], Proposition 4.1, it is immediately seen that whenever ε < 1

2 , one has

ρε(v) ≥ qN (1 − ε)√
2 ln(2/ε)

Opt(v),

where qN (s) is the s-quantile of the standard normal distribution. Since the family of all sub-
Gaussian, with parameters (Au+a,M(v)), u ∈ U , v ∈ V , distributions on Rd contains all Gaus-
sian distributions N (Au + a,M(v)) induced by (u, v) ∈ U × V , we arrive at the following con-
clusion.

Proposition 4.2. In the just described situation, the minimax optimal ε-risk

Riskopt
ε (K) = inf

Ĝ(·)
Riskε

(
Ĝ(·)),

of recovering gT u from K-repeated i.i.d. sub-Gaussian, with parameters (Au + a,M(v)),
(u, v) ∈ U × V , random observations is within a moderate factor of the upper bound Opt on
the ε-risk, taken w.r.t. the same data, of the affine estimate Ĝ∗(·) yielded by an optimal solution
to (4.5). Namely,

Opt ≤
√

2 ln(2/ε)

qN (1 − ε)
Riskopt

ε

with the “near-optimality factor”
√

2 ln(2/ε)
qN (1−ε)

→ 1 as ε → 0.5

5It is worth mentioning that in a more general setting of “good observation schemes,” described in Juditsky and Ne-
mirovski [27], the ε-risk Opt of the affine estimate constructed following the rules in Section 3 satisfies the bound

Opt ≤ 2 ln(2/ε)

ln( 1
4ε

)
Riskopt

ε , where Riskopt
ε is the corresponding minimax ε-risk. In particular, this is what happens when the

constructions from Section 3 are applied to the families of Poisson or Discrete distributions, see Section 2.1, rather than
to the family of sub-Gaussian distributions.



Estimating linear and quadratic forms 2653

5. Quadratic lifting and estimating quadratic forms

In this section, we apply the approach in Section 3 to the situation where, given an i.i.d. sample
ζK = [ζ1; . . . ; ζK ], ζi ∈ Rd , with distribution Px of ζk depending on an unknown “signal” x ∈ X ,
our goal is to estimate a quadratic functional q(x) = xT Qx + cT x of the signal. We consider two
situations – the Gaussian case, where Px is a Gaussian distribution with parameters affinely
depending on x, and discrete case where X is a probabilistic simplex, and Px is a discrete dis-
tribution corresponding to the probabilistic vector Ax, A being a given stochastic matrix. Our
estimation strategy is to apply the techniques developed in Section 3 to quadratic liftings ω of
actual observations ζ (e.g., ωk = (ζk, ζkζ

T
k ) in the Gaussian case), so that the resulting estimates

are affine functions of ω’s. We first focus on implementing this program in the Gaussian case.

5.1. Estimating quadratic forms, Gaussian case

In this section, we focus on the problem as follows. Given are

• a nonempty bounded set U ⊂ Rm and a nonempty convex compact set V ⊂ Rk ,
• an affine mapping v �→ M(v) : Rk → Sd which maps V onto convex compact subset V of

Sd+;
• an affine mapping u �→ A[u;1] : Rm → � = Rd , where A is a given d × (m + 1) matrix,
• a “functional of interest”

F(u, v) = [u;1]T Q[u;1] + qT v : Rm × Rk → R, (5.1)

where Q and q are known (m + 1) × (m + 1) symmetric matrix and k-dimensional vector,
respectively.

• a tolerance ε ∈ (0,1).

We observe an i.i.d. sample ζK = [ζ1; . . . ; ζK ], ζi ∈ Rd , with Gaussian distribution Pu,v of ζi

depending on an unknown “signal” (u, v) known to belong to U ×V : Pu,v =N (A[u;1],M(v)).
Our goal is to estimate F(u, v) from observation ζK .

The ε-risk Riskε(Ĝ) of a candidate estimate Ĝ(·) – a Borel real-valued function on RKd – is
defined as the smallest ρ such that

∀((u, v) ∈ U × V
) : ProbζK∼PK

u,v

{∣∣Ĝ(
ζK

)− F(u, v)
∣∣ > ρ

} ≤ ε.

5.1.1. Construction

Our course of actions is as follows.

• We specify convex compact subset Z ⊂ Sm+1 such that

∀u ∈ U : [u;1][u;1]T ∈ Z ⊂Z+ = {
Z ∈ Sm+1+ : Zm+1,m+1 = 1

}
, (5.2)

matrix �∗ ∈ Sd and real δ ∈ [0,2] such that �∗ 
 0 and

∀� ∈ V : � � �∗ and
∥∥�1/2�

−1/2∗ − I
∥∥ ≤ δ; (5.3)

(cf. Section 2.2).
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• We set x(u, v) = (v, [u;1][u;1]T ), and

X = {(
v, [u;1][u;1]T ) : u ∈ U,v ∈ V

}
,

so that

X ⊂X := V ×Z ⊂ EX := Rk × Sm+1.

We select γ ∈ (0,1) and set

Hγ = {
H ∈ Sd : −γ�−1∗ � H � γ�−1∗

}
, F = Rd ×Hγ ⊂ EF = Rd × Sd,

M = V × BZ+BT ⊂ EM = Sd × Sd+1, B = [
A; eT

m+1

]
,

(5.4)

where em+1 is the (m + 1)th basis orth in Rm+1.
• When adding to the above entities function 	(·; ·), as defined in (2.3), we conclude by

Proposition 2.1 that M,F and 	(·; ·) form a regular data such that for all (u, v) ∈ U × V

and (h,H) ∈F ,

ln
(
Eζ∼Pu,v

{
exp

{〈
(h,H),

(
ζ, ζ ζ T

)〉}}) ≤ 	
(
h,H ;M(v),B[u;1][u;1]T BT

)
, (5.5)

where the inner product 〈·, ·〉 on EF is defined as 〈(h,H), (g,G)〉 = hT g + 1
2 Tr(HG), so

that 〈(h,H), (ζ, ζ ζ T )〉 = hT ζ + 1
2ζ T Hζ .

Observe that A(x = (v, [u;1][u;1]T︸ ︷︷ ︸
Z

)) = (M(v),BZBT ) is an affine mapping which

maps X into M, and G(x) : EX → R,

G(x) = Tr(QZ) + qT v = [u;1]T Q[u;1] + qT v

is a linear functional on EX .

As a result of the above steps, we get at our disposal entities EX , EM , EF , F , M, 	, X , A(·), G(·)
and ε participating in the setup described in Section 3.1, and it is immediately seen that these
entities meet all the requirements imposed by this setup. The bottom line is that the estimation
problem stated in the beginning of this section reduces to the problem considered in Section 3.

5.1.2. The result

When applying to the resulting data Proposition 3.2 (which is legitimate, since 	 in (2.3) clearly
satisfies (3.4)), we arrive at the result as follows:
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Proposition 5.1. In the just described situation, let us set

�̂+(h,H) = max
(v,Z)∈V ×Z

inf
α>0,

−γα�
−1∗ �H�γα�

−1∗

{
α	

(
h

α
,
H

α
;M(v),BZBT

)

− G(v,Z) + α

K
ln

(
2

ε

)}
,

�̂−(h,H) = max
(v,Z)∈V ×Z

inf
α>0,

−γα�
−1∗ �H�γα�

−1∗

{
α	

(
−h

α
,−H

α
;M(v),BZBT

)

+ G(v,Z) + α

K
ln

(
2

ε

)}
.

(5.6)

so that the functions �̂±(h,H) : Rd × Sd → R are convex. Whenever h̄, H̄ , ρ̄, κ̄ form a feasible
solution to the system of convex constraints

�̂+(h,H) ≤ ρ −κ, �̂−(h,H) ≤ ρ +κ (5.7)

in variables (h,H) ∈ Rd × Sd , ρ ∈ R, κ ∈ R, setting

Ĝ
(
ζK := (ζ1, . . . , ζK)

) = 1

K

K∑
i=1

[
hT ζi + 1

2
ζ T
i Hζi

]
+ κ̄, (5.8)

we get an estimate of the functional of interest F(u, v) = [u;1]T Q[u;1] + qT v via K indepen-
dent observations

ζi ∼N
(
A[u;1],M(v)

)
, i = 1, . . . ,K,

with ε-risk not exceeding ρ̄:

∀(u, v) ∈ U × V : ProbζK∼[N (A[u;1],M(v))]K
{∣∣F(u, v) − Ĝ

(
ζK

)∣∣ > ρ̄
} ≤ ε. (5.9)

In particular, setting for (h,H) ∈ Rd × Sd

ρ̄ = 1

2

[
�̂+(h,H) + �̂−(h,H)

]
, κ̄ = 1

2

[
�̂−(h,H) − �̂+(h,H)

]
, (5.10)

we obtain an estimate (5.8) with ε-risk not exceeding ρ̄.

For proof, see Section B.4 of the supplement paper.

Remark 5.1. In the situation described in the beginning of this section, let a set W ⊂ U × V be
given, and assume we are interested in recovering functional of interest (5.1) at points (u, v) ∈
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W only. When reducing the “domain of interest” to W , we hopefully can reduce the ε-risk of
recovery. Assuming that we can point out a convex compact set W ⊂ V ×Z such that

(u, v) ∈ W ⇒ (
v, [u;1][u;1]T ) ∈W,

it can be straightforwardly verified that in this case the conclusion of Proposition 5.1 remains
valid when the set V × Z in (5.6) is replaced with W , and the set U × V in (5.9) is replaced
with W . This modification enlarges the feasible set of (5.7) and thus reduces the attainable risk
bound.

5.1.3. Illustrating example: Energy estimation from direct observations

To illustrate Proposition 5.1, consider the simple situation as follows: Given observation

ζ = u + ξ, ξ ∼N (0,�Im) (5.11)

with u known to belong to the spherical layer U = {u ∈ Rm : r2 ≤ uT u ≤ R2} and � known to
be diagonal with diagonal entries in the segment [θσ 2, σ 2], we want to recover F(u) = uT u.
Here r,R, θ, σ are known, with 0 ≤ r < R, θ ∈ [0,1], and σ > 0. The situation is covered by
the setup of Section 5.1, where we set V = {v ∈ Rm : θ ≤ vi ≤ 1, i ≤ m}, M(v) = σ 2 Diag{v},6
A[u;1] = u, and K = 1.

In the situation just described, Proposition 5.1 boils down to the following.
A. We lose nothing when restricting ourselves with estimates of the form

Ĝ(ζ ) = η

2
ζ T ζ +κ, (5.12)

with properly selected scalars η and κ. Specifically, η and κ are supplied by the convex opti-
mization problem (with just 3 variables α,β,η)

Opt = min
α,β,η

{
�̂(α,β,η) = 1

2

[
�̂+(α, η) + �̂−(β, η)

] : σ 2|η| < min[α,β]
}
, (5.13)

where

�̂+(α, η) = −mα

2
ln
(
1 − σ 2η/α

)+ m

2
σ 2(1 − θ)max[−η,0] + mδ(2 + δ)σ 4η2

2(α − σ 2|η|)

+ max
r2≤t≤R2

[[
αη

2(α − σ 2η)
− 1

]
t

]
+ α ln(2/ε),

�̂−(β, η) = −mβ

2
ln
(
1 + σ 2η/β

)+ m

2
σ 2(1 − θ)max[η,0] + mδ(2 + δ)σ 4η2

2(β − σ 2|η|)

+ max
r2≤t≤R2

[[
− βη

2(β + σ 2η)
+ 1

]
t

]
+ β ln(2/ε),

(5.14)

6Here and in what follows Diag{A1,A2, . . . ,Ak} stands for a block-diagonal matrix with diagonal blocks A1, A2,. . . ,
Ak .
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with δ = 1 − √
θ . Specifically, the η-component of a feasible solution to (5.13) augmented by

the quantity

κ = 1

2

[
�̂−(β, η) − �̂+(α, η)

]
yields estimate (5.12) with ε-risk on U not exceeding �̂(α,β,η); note that this risk can be made
arbitrarily close to Opt.

B. In the simple situation in question, it is easy to extract from (5.13) analytical bounds on
ε-risk of our estimate.7 To simplify our life, we restrict ourselves with two extreme cases: the
one where the (diagonal) covariance matrix of noise is known exactly (θ = 1) and the one when
all we know is that this matrix is diagonal � σ 2Im (θ = 0). Assume in addition that r = 0.

B.1: θ = 1, r = 0. In this case, one has

Opt ≤ 2σ
√

mσ 2 + 2R2
√

ln(2/ε). (5.15)

B.2: θ = 0, r = 0. One has

Opt ≤ 2σ
√

mσ 2 + 2R2
√

ln(2/ε) + 3σ 2m. (5.16)

The simple “energy estimation” problem we consider in this section is well studied – in this
setting the interplay between the dimension m of signal, the range of noise intensity σ 2 and
parameters R, r, ε can be studied analytically to provide provably optimal, up to absolute con-
stant factors, estimates. Note that bounds (5.15) and (5.16) for the “extreme cases” are nearly
minimax optimal up to logarithmic in 1/ε factor when R is not “too small” – R2 ≥ O(1)σ 2√m

when θ = 1, and R2 ≥ O(1)σ 2m when θ = 0 – otherwise the trivial estimate Ĝ(ζ ) ≡ 0 is min-
imax optimal. They attest that risk bounds (5.12) yielded by the optimal solution to (5.13) have
similar near-optimality characteristics in this case. A nice property of the proposed approach is
that (5.13) automatically takes care of the parameters and results in estimates with near-optimal
performance, as is witnessed by the numerical results we present in Section C of the supplement
paper.

5.1.4. Discussion

Repeated observations. When estimating quadratic forms from K-repeated observations ζK =
[ζ1; . . . ; ζK ] with i.i.d. ζi we applied “literally” the construction of Section 3, thus restricting
ourselves with estimates affine in quadratic liftings ωi = (ζi, ζiζ

T
i ) of ζi ’s. As an alternative to

such “basic” approach, let us consider estimates which are affine in the “full” quadratic lifting
ω = (ζK, ζK [ζK ]T ) of ζK , thus extending the family of candidate estimates (what is affine in
ω1, . . . ,ωK , is affine in ω, but not vice versa, unless K = 1). Note that this alternative is covered
by our approach – all we need, is to replace the original components d , M(·), V , A of the setup

7For detailed justification of what follows, see Section C of the supplement paper.



2658 A. Juditsky and A. Nemirovski

of this section with their extensions

d+ = Kd, M+(v) = Diag
{
M(v), . . . ,M(v)︸ ︷︷ ︸

K

}
,

V+ = M+(V ) = {
� = Diag

{
M(v), . . . ,M(v)

}
, v ∈ V

}
, A+ = [A; . . . ;A],

and set K to 1.
It is easily seen that such modification can only reduce the risk of the resulting estimates, the

price being the increase in design dimension (and thus in computational complexity) of the op-
timization problems yielding the estimates. To illustrate the difference between two approaches,
consider the problem of energy estimation from observation (5.11) discussed in the previous sec-
tion where � is (unknown) diagonal matrix with diagonal entries from the range [0, σ 2], and a
priori information about u is that ‖u‖2 ≤ R for some known R. Assume that m ≥ 16 ln(2/ε),
where ε ∈ (0,1) is a given reliability tolerance and that R2 ≥ mσ 2. Under these assumptions
one can easily verify that in the single-observation case the ε-risks of both the “plug-in” estimate
ζ T ζ and of the estimate yielded by the proposed approach are, up to absolute constant factors, the
same as the minimax optimal ε-risk, namely, O(1)R, R = σ 2m+σR

√
ln(2/ε) (cf. (5.16)). Now

let us look at the case K = 2 where we observe two independent copies, ζ1 and ζ2, of observation
(5.11). Here, the ε-risks of the “naive” plug-in estimate 1

2 [ζ T
1 ζ1 + ζ T

2 ζ2], and of the estimate ob-
tained by applying our “basic” approach with K = 2 are just by absolute constant factors better
than in the single-observation case – both these risks still are O(1)R. In contrast to this, an “in-
telligent” plug-in 2-observation estimate ζ T

1 ζ2 has risk O(1)σ (R + σ
√

m)
√

ln(2/ε) whenever
R ≥ 0, which is much smaller than R when m � ln(2/σ) and R

√
ln(2/ε) � σm. It is easily

seen that with the outlined alternative implementation, our approach also results in estimate with
“correct” ε-risk O(1)σ (R + σ

√
m)

√
ln(2/ε). It should be mentioned that the phenomenon in

question stems from uncertainty in �.

Adaptation. When analysing performance of estimation routines in the minimax framework
we are only interested in the worst-case performance (risk) over signals from a given (possi-
bly large) signal set. Were we told in advance that the actual signal belongs to a much smaller
set, we typically could recover the functional of interest with essentially smaller risk. Intrinsic
conservatism and lack of flexibility, often considered as principal shortcomings of the minimax
approach, become even more obvious when estimating quadratic functionals. For example, in
the energy recovery problem from Section 5.1.3 with U = {u : uT u ≤ R2}, the focus of nearly
minimax optimal estimates built in Section 5.1.3 is on recovering energy of order of R2. When
restricting ourselves, for the sake of simplicity, to the case of N (0, σ 2Im) noise with known σ

(i.e., with θ = 1), the worst case ε-risk of our estimate is ≈ [σ 2√m + σR], where ≈ stands for
“up to logarithmic in 1/ε factors.” At the same time, the ε-risk of the simplest under the cir-
cumstances estimate ζ T ζ − σ 2m at signal u is ≈ [σ 2m + σ‖u‖2], so that the second estimate is
basically as good in the worst case as the first one, but is much better suited for estimating energy
of “weak signals” with energy � R2.

We are about to explain that in the problem we are interested in this “built-in” shortcoming of
the minimax approach can be (at least, to some extent) cured by passing from the original to the
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straightforward adaptive version of our procedures.8 Specifically, in the situation described in
the beginning of Section 5.1, assume that for some integer L we have at our disposal “filtration”
[∅ �=]U1 ⊂ U2 ⊂ · · · ⊂ UL ≡ U and [∅ �=]V1 ⊂ V2 ⊂ · · · ⊂ VL ≡ V which are lifted to filtration
Z1 ⊂ · · · ⊂ZL ≡Z and V1 ⊂ · · · ⊂ VL ≡ V required by construction from Section 5.1.1. In other
words, Z� are convex compact subsets of Z+ such that [u;1][u;1]T ∈ Z� whenever u ∈ U�, and
V� are convex compact subsets of Sd+ such that M(v) ∈ V� whenever v ∈ V�. Besides this, we
equip sets V� with positive definite matrices �∗,� and reals δ� ∈ [0,2] such that �∗,1 � �∗,2 �
... � �L, δ1 ≤ δ2 ≤ · · · ≤ δL, and relation (5.3) holds true with V�,�∗,� and δ� in the role of
V,�∗, δ. Applying the machinery from Section 5.1.1 to U�, . . . , δ� in the role of U, . . . , δ, and
ε+ = ε/L in the role of ε, we get estimates Ĝ�(ζ

K) and risk bounds ρ̄�, � ≤ L, such that

∀(u, v) ∈ U� × V�,

ProbζK∼[N (A[u;1],M(v))]K
{∣∣F(u, v) − Ĝ�

(
ζK

)∣∣ > ρ̄�

} ≤ ε/L, 1 ≤ � ≤ L.

Assuming w.l.o.g. that ρ̄1 ≤ ρ̄2 ≤ · · · ≤ ρ̄L, let us assemble the estimates Ĝ� as follows. Given
observation ζK , we compute g� := Ĝ�(ζ

K) and call index � ζK -good, if the segments �r(ζ
K) =

[Ĝr (ζ
K) − ρ̄r , Ĝr (ζ

K) + ρ̄r ], � ≤ r ≤ L, have a point in common. Good indexes do exist (e.g.,
� = L); we select the smallest of them, let it be denoted by � = �(ζK), and take the midpoint
Ĝ∗(ζK) of the (nonempty!) segment

⋂
�≤r≤L �r(ζ

K), as the adaptive estimate of F(u, v). By
standard arguments (cf. Lepskii [39]), the resulting estimate satisfies the relation

∀(� ≤ L,u, v ∈ U� × V�) : ProbζK∼[N (A[u;1],M(v))]K
{∣∣F(u, v) − Ĝ∗

(
ζK

)∣∣ > ρ̄�

} ≤ ε, (5.17)

whence

Riskε[Ĝ∗|U� × v�] := min
{
ρ : ProbζK∼[N (A[u;1],M(v))]K

{∣∣F(u, v) − Ĝ∗
(
ζK

)∣∣ > ρ̄�

} ≤ ε

∀(u, v) ∈ U� × V�

}
≤ 2ρ̄�, 1 ≤ � ≤ L.

That is, the ε-risk of the aggregated estimate on each signal set X� = U� × V� is within factor 2
of the ε/L-risk of the estimate provided by our procedure as applied to the set X�.

Indeed, let us fix � ∈ {1, . . . ,L}, and let the signal underlying our observation be (u, v) ∈
U� × V�, so that the distribution Pu,v of the observation stemming from (u, v) is the distribution
of K independent across k ≤ K blocks ζk ∼ N (A[u;1],M(v)). For � ≤ r ≤ L, let Er be the
event {ζK : |Ĝr (ζ

K) − F(u, v)| ≤ ρ̄r}. Since (u, v) ∈ Ur × Vr for r ≥ �, the Pu,v-probability
of Er is at least 1 − ε/L, implying that the probability of the event E = ⋂

r≥� E� is at least
1 − ε. Assume that ζK ∈ E . Then the segments �r(ζ

K), � ≤ r ≤ L, have a point in common,

8The adaptive estimate described below is in fact an adopted for our purposes simplified version of adaptive estimation
routines from Klemelä [31], Butucea and Meziani [8]. Of course, one can also consider other approaches to improving
estimate performance beyond the minimax setting, e.g., those utilizing “pilot” plug-in estimate as in Laurent and Massart
[35] or implementing estimation in relative risk scales (cf. Juditsky and Nemirovski [29]) just to mention a few. However,
these developments are beyond the scope of this paper.
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namely, F(u, v), and � is ζK -good. Consequently, �(ζK) ≤ �, meaning that Ĝ∗(ζK) ∈ ��(ζ
K)

by construction of Ĝ∗. Since we are in the case when the latter segment contains F(u, v), we get
|F(u, v) − Ĝ∗(ζK)| ≤ 2ρ̄�, as claimed in (5.17).

Note that the “cost” of the above adaptation amounts to the necessity to tune estimates Ĝ� to
reliability tolerance ε/L rather than ε; as is immediately seen from (5.6), to get this improvement
in reliability, it suffices to increase the number of observations by factor ln(2L/ε)/ ln(2/ε). And
of course similar construction can be applied to all estimation problems considered in this paper,
not only to problem posed in Section 5.1.

Coming back to the example from Section 5.1.3 and assuming for the sake of simplicity that
r = 0, the simplest way to implement adaptive estimation is to use the filtration U� = 2�−LR,
V� = V = {v ∈ Rm : θ ≤ vi ≤ 1}, select L resulting in “small” R1, specifically, R1 ≤ σ

√
m, and

set Z� = {Z ∈ Sm+1+ : Zm+1,m+1 = 1,Tr(Z) ≤ R2
� + 1}. Utilizing (5.15) and (5.16), we conclude

that with this filtration we obtain estimate F̂ (·) of F(u) = uT u which ensures signal-dependent
risk bound

∀(u ∈ Rm,‖u‖ ≤ R,v ∈ V
) :

Riskε(u, v) := min
{
ρ : ProbζK∼[N (A[u;1],M(v))]K

{∣∣F(u, v) − Ĝ∗
(
ζK

)∣∣ > ρ
} ≤ ε

}
≤

{
2σ

√
mσ 2 + 2uT u

√
ln(2L/ε), in the case of B.1,

8σ
√

mσ 2 + 2uT u
√

ln(2L/ε) + 3σ 2m, in the case of B.2,

L = ⌋
log2(1 + R/σ)

⌊
.

In the case of B.1, the resulting risk bound for every u with ‖u‖ ≤ R is basically the same as for
the standard estimate ζ T ζ − σ 2m. This being said. note that the latter estimate, in contrast to the
first one, is an “ad hoc” construction with the scope restricted to the case of direct observations
ζ = u + ξ , ξ ∼N (0, σ 2Im), with known σ .

5.1.5. Consistency

Note that risk bounds of Proposition 5.1 are not supported by generic optimality as it was the
case in the problem of linear functional estimation in Section 3. One of the reasons for this is
that “quadratic estimates” built in Section 5.1.1 are suboptimal for certain types of geometry of
the signal set U even in the problem of signal energy estimation from direct observations (see,
e.g., Cai and Low [9,10]). Nevertheless, in some important cases the constructed estimates are
nearly minimax optimal. For instance, consider the problem of estimating a quadratic function
F(u) = ∑m

i=1 qiu
2
i , qi ≥ 0, from observation ζ = u+ξ , ξ ∼N (0, σ 2Im), in the setting described

in Donoho and Nussbaum [15] where the signal set U is quadratically convex, meaning that
u = {u ∈ Rm : [u2

1; . . . ;u2
m] ∈ T }, where the set T ⊂ Rm+ is convex, compact, and monotone (i.e.,

0 ≤ t ′ ≤ t , t ∈ T ). The performance of an estimator is measured by the maximal over U expected
recovery error

Risk
(
F̂ (·)|U) = sup

u∈U

Eζ∼N (u,σ 2I )

{(
F̂ (ω) − F(u)

)2}
.
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It can be shown that in this case the risk bounds yielded by Proposition 5.1 are within logarithmic
in 1/ε factor (stemming from passing from Risk to Riskε ) of the minimax risk (cf. Theorem 6 of
Donoho and Nussbaum [15]).

Now we are about to present a simple sufficient condition for the estimator suggested by
Proposition 5.1 to be consistent, in the sense of Section 4. Specifically, assume that

A.1. V = {v̄} is a singleton such that M(v̄) 
 0, which allows to satisfy (2.2) with �∗ = M(v̄)

and δ = 0, same as allows to assume w.l.o.g. that

F(u, v) = [u;1]T Q[u;1], G
(
x = (v,Z)

) = Tr(QZ);
A.2. The first m columns of the d × (m + 1) matrix A are linearly independent.

By A.2, the columns of (d + 1) × (m + 1) matrix B , see (5.4), are linearly independent, so that
we can find (m + 1) × (d + 1) matrix C such that CB = Im+1. Let us define (h̄, H̄ ) ∈ Rd × Sd

from the relation [
H̄ h̄

h̄T

]
= 2

[
CT QC

]o
, (5.18)

where for (d + 1) × (d + 1) matrix S, So is the matrix obtained from S by replacing the entry
Sd+1,d+1 with zero. The consistency of our estimation procedure is given by the following simple
statement.

Proposition 5.2. In the just described situation and under assumptions A.1–A.2, given ε ∈ (0,1),
consider the estimate

ĜK

(
ζK

) = 1

K

K∑
i=1

[
h̄T ζi + 1

2
ζ T
i H̄ ζi

]
+κK,

where

κK = 1

2

[
�̂−(h̄, H̄ ) − �̂+(h̄, H̄ )

]
and �̂± = �̂K± are given by (5.6). Then the ε-risk of ĜK,ε(·) goes to 0 as K → ∞.

For proof, see Section B.5 of the supplement paper.

5.2. Numerical illustration, indirect observations

5.2.1. The problem

The estimation problem we address in this section is as follows. Our observations are

ζ = Pu + ξ, (5.19)

where
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• P is a given d × m matrix, with m > d (“under-determined observations”),
• u ∈ Rm is a signal known to belong to a given compact set U ,
• ξ ∼ N (0,�) is the observation noise; � is positive semidefinite d × d matrix known to

belong to a given convex compact set V ⊂ Sd+.

Our goal is to estimate the energy

F(u) = ‖u‖2
2

m

of the signal given a single observation (5.19).
In our experiment, the data is specified as follows:

1. We assume that u ∈ Rm is a discretization of a smooth function x(t) of continuous argument
t ∈ [0;1]: ui = x( i

m
), 1 ≤ i ≤ m, and use in the role of U ellipsoid {u ∈ Rm : ‖Su‖2

2 ≤ 1}
with S selected to make U a natural discrete-time version of the Sobolev-type ball {x :
[x(0)]2 + [x′(0)]2 + ∫ 1

0 [x′′(t)]2 dt ≤ 1}.
2. d × m matrix P is of the form UDV T , where U and V are randomly selected d × d and

m × m orthogonal matrices, and the d diagonal entries in diagonal d × m matrix D are of

the form ϑ− i−1
d−1 , 1 ≤ i ≤ d ; the “condition number” ϑ of P is a design parameter.

3. The set V of allowed values of the covariance matrices � is the set of all diagonal d × d

matrices with diagonal entries varying in [0, σ 2], with the “noise intensity” σ being a design
parameter.

5.2.2. Processing the problem

Our estimating problem clearly is covered by the setup considered in Section 5.1. In terms of
this setup, we specify �∗ as σ 2Id , V as V , and M(v) as the identity mapping of Sd onto itself;
the mapping u �→ A[u;1] becomes the mapping u �→ Pu, while the set Z (which should be a
convex compact subset of the set {Z ∈ Sd+1+ : Zd+1,d+1 = 1} containing all matrices of the form
[u;1][u;1]T , u ∈ U ) becomes the set

Z = {
Z ∈ Sd+1+ : Zd+1,d+1 = 1,Tr

(
Z Diag

{
ST S,0

}) ≤ 1
}
.

As suggested by Proposition 5.1, linear in “lifted observation” ω = (ζ, ζ ζ T ) estimates of F(u) =
1
m

‖u‖2
2 stem from the optimal solution (h∗,H∗) to the convex optimization problem

Opt = min
h,H

1

2

[
�̂+(h,H) + �̂−(h,H)

]
, (5.20)

with �̂±(·) given by (5.6) as applied with K = 1. The resulting estimate is

ζ �→ hT∗ ζ + 1

2
ζ T H∗ζ +κ, κ = 1

2

[
�̂−(h∗,H∗) − �̂+(h∗,H∗)

]
(5.21)

and the ε-risk of the estimate is (upper-bounded by) Opt.
Problem (5.20) is a well-structured convex-concave saddle point problem and as such is be-

yond the “immediate scope” of the standard Convex Programming software toolboxes primarily
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aimed at solving well-structured convex minimization problems. However, applying conic dual-
ity, one can easily eliminate in (5.6) the inner maxima over v,Z to arrive at the reformulation
which can be solved numerically by CVX (Grant and Boyd [21]), and this is how (5.20) was
processed in our experiments.

5.2.3. Numerical results

To quantify the performance of the proposed approach, we present, along with the upper risk
bounds, simple lower bounds on the best ε-risk achievable under the circumstances. The origin
of these lower bounds is as follows. Let w ∈ U with t (w) = ‖Pw‖2, and let ρ = 2σqN (1 − ε)

where qN (·) is the standard normal quantile:

Probξ∼N (0,1)

{
ξ ≤ qN (p)

} = p ∀p ∈ (0,1).

Then for θ(w) = max[1 − ρ/t (w),0], we have w′ := θ(w)w ∈ U , and ‖Pw − Pw′‖2 ≤ ρ.
The latter, due to the origin of ρ, implies that there is no test which decides on the hypotheses
u = w and u = w′ via observation Pu + ξ , ξ ∼ N (0, σ 2Id), with risk < ε. As an immediate
consequence, the quantity

φ(w) := 1

2

[‖w‖2
2 − ∥∥w′∥∥2

2

] = ‖w‖2
2

[
1 − θ2(w)

]
/2

is a lower bound on the ε-risk, on U , of a whatever estimate of ‖u‖2
2. We can now try to maximize

the resulting lower risk bound over U , thus arriving at the lower bound

LwBnd = max
w∈U

{
1

2
‖w‖2

2

(
1 − θ2(w)

)}
.

On a closest inspection, the latter problem is not a convex one, which does not prevent us from
building its suboptimal solution.

Note that in our experiments even with fixed design parameters d,m, θ,σ , we still deal with
families of estimation problems differing from each other by their “sensing matrices” P ; orien-
tation of the system of right singular vectors of P with respect to the axes of U is random, so
that these matrices vary essentially from simulation to simulation, which affects significantly the
attainable estimation risks. We display in Figure 1 typical results of our experiments. We see that
the (theoretical upper bounds on the) ε-risks of our estimates, while varying significantly with
the parameters of the experiment, all the time stay within a moderate factor from the lower risk
bounds.

5.3. Estimation of quadratic functionals of a discrete distribution

In this section, we consider the situation as follows: we are given a d × m “sensing matrix” A

which is stochastic – with columns belonging to the probabilistic simplex �d = {v ∈ Rd : v ≥
0,

∑
i vi = 1}, and a nonempty closed subset U of �m, along with a K-repeated observation

ζK = (ζ1, . . . , ζK) with ζk , 1 ≤ k ≤ K , drawn independently across i from the discrete distribu-
tion μ = Au∗, where u∗ is an unknown probabilistic vector (“signal”) known to belong to U . We
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Figure 1. Empirical distribution of the 0.01-risk over 20 random estimation problems, σ = 0.025. (a): up-
per risk bound Opt as in (5.20); (b) corresponding suboptimality ratios.

always assume that K ≥ 2. We treat a discrete distribution on d-point set as a distribution Pμ on
the d vertices e1, . . . , ed of �d , so that possible values of ζi are basic orths e1, . . . , ed in Rd with
Probζ∼μ{ζ = ej } = μj . Our goal is to recover from observation ζK the value at u∗ of a given
quadratic form

F(u) = uT Qu + 2qT u.

5.3.1. Construction

Observe that for u ∈ �m, we have u = [uuT ]1m, where 1m is the all-ones vector in Rm. This
observation allows to rewrite F(u) as a homogeneous quadratic form:

F(u) = uT Q̄u, Q̄ = Q + [
q1T

m + 1mqT
]
. (5.22)

Our goal is to construct an estimate Ĝ(ζK) of F(u), specifically, estimate of the form

Ĝ
(
ζK

) = Tr
(
hω

[
ζK

])+ κ,

where ω[ζK ] is the “quadratic lifting” of observation ζK (cf. (2.5)):

ω
[
ζK

] = 2

K(K − 1)

∑
1≤j<j≤M

ωij

[
ζK

]
, ωij

[
ζK

] = 1

2

[
ζiζ

T
j + ζj ζ

T
i

]
, 1 ≤ i < j ≤ K,

and h ∈ Sd and κ ∈ R are the parameters of the estimate. To this end

• we set x(u) = uuT ∈ X := {uuT : u ∈ U}, and specify a convex compact subset X of the
intersection of the “symmetric matrix simplex” �m ⊂ Sm (see (2.6)) and the cone Sm+ of
positive semidefinite matrices such that X ⊂ X ⊂ EX := Sm. We put F = EF := Sd , and
M = �d , thus AXAT ⊂M ⊂ EM := Sd .
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• By Proposition 2.2, F,M and 	(·; ·), as defined in (2.7), form a regular data such that
setting M = �K/2�, for all u ∈ U and h ∈ Sd it holds

ln
(
Eζ∼Pu

{
exp

{〈
h,ω

[
ζK

]〉}}) ≤ 	M

(
h;AuuT AT

)
,[

	M(h;Z) = M ln

(∑
i,j

Zij exp
{
M−1hij

}) : Sd × �d → R
]
,

(5.23)

where 〈h,w〉 = Tr(hw) is the Frobenius inner product on Sd .
Observe that for x ∈ EX , x �→ A(x) = AxAT is an affine mapping from X into M, and

setting

G(x) = 〈Q̄, x〉 : EX → R,

we get a linear functional on EX such that

G
(
uuT

) = 〈
Q̄,uuT

〉 = F(u).

The relation 	(0, z) = 0 ∀z ∈ M being obvious, Proposition 2.2 combines with Proposition 3.1
to yield the following result.

Proposition 5.3. In the situation in question, given ε ∈ (0,1), let M = M(K) = �K/2�, and let

�+(h,α) = max
x∈X

[
α	M

(
h/α,AxAT

)− Tr(Q̄x)
] : Sd × {α > 0} → R,

�−(h,α) = max
x∈X

[
α	M

(−h/α,AxAT
)+ Tr(Q̄x)

] : Sd × {α > 0} → R,

�̂+(h) := inf
α>0

{
�+(h,α) + α ln(2/ε)

}
= max

x∈X
inf
α>0

[
α	M

(
h/α,AxAT

)− Tr(Q̄x) + α ln(2/ε)
]

= max
x∈X

inf
β>0

[
β	1

(
h/β,AxAT

)− Tr(Q̄x) + β

M
ln(2/ε)

]
[β = Mα],

�̂−(h) := inf
α>0

{
�−(h,α) + α ln(2/ε)

}
= max

x∈X
inf
α>0

[
α	M

(−h/α,AxAT
)+ Tr(Q̄x) + α ln(2/ε)

]
= max

x∈X
inf
β>0

[
β	1

(−h/β,AxAT
)+ Tr(Q̄x) + β

M
ln(2/ε)

]
[β = Mα].

The functions �̂± are real valued and convex on Sm, and every candidate solution h̄ to the convex
optimization problem

Opt = min
h

{
�̂(h) := 1

2

[
�̂+(h) + �̂−(h)

]}
, (5.24)
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induces the estimate

Ĝh̄

(
ζK

) = Tr
(
h̄ω

[
ζK

])+ κ(h̄), κ(h) = �̂−(h) − �̂+(h)

2
,

of the functional of interest (5.22) via observation ζK with ε-risk on U not exceeding ρ̄ = �̂(h̄):

∀(u ∈ U) : ProbζK∼PK
u

{∣∣F(u) − Ĝh̄

(
ζK

)∣∣ > ρ̄
} ≤ ε.

5.3.2. Numerical illustration

To illustrate the above construction, consider the following problem: we observe independent
across k ≤ K realizations ζk of discrete random variable ζ taking values 1, . . . , d . The distribu-
tion p ∈ �d of ζ is linearly parameterized by “signal” u which itself is a probability distribution
on “discrete square” � = � × �, � = {1, . . . ,m}:

pi =
∑

1≤r,s≤m

Ap,rsurs, 1 ≤ i ≤ d.

Here Ai,rs ≥ 0 are known coefficients such that
∑

i Ai,rs = 1 for all (r, s) ∈ �. Now, given
two sets I ⊂ � and J ⊂ �, consider the events I = I × � ⊂ � and J = � × J ⊂ �. Our
objective is to quantify the deviation of these events, the probability distribution on � being u,
from independence, specifically, to estimate, via observations ζ1, . . . , ζK , the quantity

FIJ (x) =
∑

(r,s)∈I×J
urs −

[∑
(r,s)∈I×�

urs

][∑
(r,s)∈�×J

urs

]
which is a quadratic function of u. In the experiments we report below, this estimation was carried
out via a straightforward implementation of the construction presented earlier in this section. Our
setup was as follows:

1. We use d = m2. d × d column-stochastic “sensing matrix” A 9 corresponding to the
“mixed-noise observations” Lepski [36], Lepski and Willer [37] is generated according
to A = θId + (1 − θ)D, with column-stochastic d × d matrix D, θ ∈ [0,1] being our con-
trol parameter. D was selected at random, by normalizing columns of a d × d matrix with
independent entries drawn from the uniform distribution on [0,1];

2. We set

X =
{
x ∈ Sd : xrs,r ′s′ ≥ 0 ∀r, s, r ′, s′ ≤ m,x 	 0,

∑
1≤r,s,r ′,s′≤m

xrs,r ′s′ = 1

}

which is the simplest convex outer approximation of the set {uuT : u ∈ �d}.
3. We use I = J = {1,2,3} ⊂ � = {1,2, . . . ,8}, ε = 0.01, m = 8 (i.e., d = 64).

9we identify the m × m “discrete square” � with {1, . . . , d}, which allows to treat a probability distribution u on � as a
vector from �d .
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Figure 2. Estimation of “independence defect.” (a): Upper risk bound (value Opt in (5.24)) of linear es-
timate as a function of condition number cond(A); data for K = 2 · 103,2 · 104 and 2 · 105. (b): risk of
linear estimation as function of K along with boxplots of empirical error distributions for 100 simulations
(θ = 0.1, cond(A) = 39.2).

We present in Figure 2 the results of experiments for θ taking values in {0.00,0.25,0.50,
0,75,1.00}. Other things being equal, the smaller θ , the larger is the condition number cond(A)

of the sensing matrix, and thus the larger is the (upper bound on the) risk of our estimate – the
optimal value of (5.24). Note that the variation of FIJ over X is exactly 1/2, so the maximal risk
is ≤ 1/4. It is worthy to note that simple (if compared, e.g., to much more involved results of
Houdré and Reynaud-Bouret [23]) bounds in Proposition 2.2 for Laplace functional of order-2
U -statistics distribution result in fairly good approximations of the risk of our estimate (cf. the
boxplots of empirical distributions of the estimation error in the right plot of Figure 2).
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Supplementary Material

Supplement A: Numerical illustration for Section 4 and proofs (DOI: 10.3150/20-
BEJ1200SUPP; .pdf). In the supplement, we provide numerical illustration for Section 4 and
full proofs of the results appearing in the paper.
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