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We are interested in testing general linear hypotheses in a high-dimensional multivariate linear regression
model. The framework includes many well-studied problems such as two-sample tests for equality of pop-
ulation means, MANOVA and others as special cases. A family of rotation-invariant tests is proposed that
involves a flexible spectral shrinkage scheme applied to the sample error covariance matrix. The asymptotic
normality of the test statistic under the null hypothesis is derived in the setting where dimensionality is com-
parable to sample sizes, assuming the existence of certain moments for the observations. The asymptotic
power of the proposed test is studied under various local alternatives. The power characteristics are then uti-
lized to propose a data-driven selection of the spectral shrinkage function. As an illustration of the general
theory, we construct a family of tests involving ridge-type regularization and suggest possible extensions to
more complex regularizers. A simulation study is carried out to examine the numerical performance of the
proposed tests.

Keywords: general linear hypothesis; local alternatives; random matrix theory; ridge shrinkage; spectral
shrinkage

1. Introduction

In multivariate analysis, one of the fundamental inferential problems is to test a hypothesis in-
volving a linear transformation of regression coefficients under a linear model. Suppose Y is a
p × N matrix of observations modeled as

Y = BX + �
1/2
p Z, (1.1)

where (i) B is a p × k matrix of regression coefficients; (ii) X is a k ×N design matrix of rank k;
(iii) Z is a p × N matrix with i.i.d. entries having zero mean and unit variance; and (iv) �p , a

p × p nonnegative definite matrix, is the population covariance matrix of the errors, with �
1/2
p a

“square-root” of �p so that �p = �
1/2
p (�

1/2
p )T . General linear hypotheses involving the linear

model (1.1) are of the form

H0 : BC = 0 vs. Ha : BC �= 0 (1.2)

for an arbitrary k × q “constraints matrix” C, subject to the requirement that BC is estimable.
Without loss of generality, C is taken to be of rank q . Throughout, we assume that q and k
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are fixed, even as observation dimension p and sample size N increase to infinity. Henceforth,
n = N − k is used to denote the effective sample size, which is also the degree of freedom
associated with the sample error covariance matrix.

With various choices of X and C, the testing formulation incorporates many hypotheses of
interest. For example, multivariate analysis of variance (MANOVA) is a special case. When the
sample size N is substantially larger than the dimension p of the observations, this problem is
well-studied. Anderson [1] and Muirhead [25] are among standard references. Various classical
inferential procedures involve the matrices

�̂p = 1

n
Y

(
I − XT

(
XXT

)−1
X

)
YT , (1.3)

Ĥp = 1

n
YXT

(
XXT

)−1
C

[
CT

(
XXT

)−1
C

]−1
CT

(
XXT

)−1
XYT , (1.4)

so that �̂p is the residual covariance of the full model, an estimator of �p , while Ĥp is the
hypothesis sums of squares and cross products matrix, scaled by n−1. In a one-way MANOVA
set-up, �̂p and Ĥp are, respectively, the within-group and between-group sums of squares and
products matrices, scaled by n−1. In the rest of the paper, we shall refer to �̂p as the sample
covariance matrix.

The testing problem (1.2) is well-studied in the classical multivariate analysis literature. Three
standard test procedures are the likelihood ratio test (LR), Lawley–Hotelling trace test (LH) and
Bartlett–Nanda–Pillai trace (BNP) test. They are called invariant tests, since under Gaussianity
the null distributions of the test statistics are invariant with respect to �p . One common feature

is that all test statistics are linear functionals of the spectrum of Ĥp�̂
−1
p . Since this matrix is

asymmetric, for convenience, a standard transformation is applied, giving the expressions of the
invariant tests as follows. Define

Qn = XT
(
XXT

)−1
C

[
CT

(
XXT

)−1
C

]−1/2
, (1.5)

M0 = 1

n
QT

n YT �̂
−1
p YQn.

The matrix QnQ
T
n is the “hat matrix” of the reduced model under the null hypothesis. Note that

the non-zero eigenvalues of Ĥp�̂
−1
p = n−1YQnQ

T
n YT �̂

−1
p are the same as those of M0. The

test statistics for the LR, LH and BNP tests can be expressed as

T LR
0 =

q∑
i=1

log
{
1 + λi(M0)

}
,

T LH
0 =

q∑
i=1

λi(M0),

T BNP
0 =

q∑
i=1

λi(M0)/
{
1 + λi(M0)

}
.
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The symbol λi(·) denotes the i-th largest eigenvalue of a symmetric matrix, further using the
convention that λmax(·) and λmin(·) indicate the largest and smallest eigenvalue.

In contemporary statistical research and applications, high-dimensional data whose dimension
is at least comparable to the sample size is ubiquitous. In this paper, focus is on the interesting
boundary case when dimension and sample sizes are comparable. Primarily due to inconsistency
of conventional estimators of model parameters – such as �̂p –, classical test procedures for the
hypothesis (1.2) – such as the LR, LH and BNP tests – perform poorly in such settings. When the
dimension p is larger than the degree of freedom n, the invariant tests are not even well-defined
because �̂p is singular. Even when p is strictly less than n, but the ratio γn = p/n is close to
1, these tests are known to have poor power behavior. Asymptotic results when γn → γ ∈ (0,1)

were obtained in [16] under Gaussianity of the populations, and more recently in [3] under more
general settings that only require the existence of certain moments. LR, LH and BNP tests can be
generalized as linear spectral statistics of large-dimensional F-matrices, whose CLT is studied in
[9,33,34].

Pioneering work on modifying the classical solutions in high dimension is in [4], who cor-
rected the scaling of the LR statistic when n ≥ p but p, k and q are proportional to n. The
corrected LR statistic was shown to have significantly more power than its classical counterpart.
In contrast, in this paper, we focus on the setting where k and q are fixed even as n,p → ∞ so
that γn = p/n → γ ∈ (0,∞). In the multivariate regression problem, this corresponds to a sit-
uation where the response is high-dimensional, while the predictor is finite-dimensional. In the
MANOVA problem, this framework corresponds to high-dimensional observations belonging to
one of a finite number of populations.

To the best of our knowledge, when n < p, the linear hypothesis testing problem has been stud-
ied in depth only for specific submodels of (1.1), primarily for the important case of two-sample
tests for equality of population means. For the latter tests, a widely used idea is to construct

modified statistics based on replacing �̂
−1
p with an appropriate substitute. This approach was

pioneered in [5] and further developed in [15]. Various extensions to one-way MANOVA [18,
28,31] and a general multi-sample Behrens–Fisher problem under heteroscedasticity [35] exist.
Other notable works for the two-sample problem include [8,12,14,17,24,29,30]. A second ap-
proach aims to regularize �̂p to address the issue of its near-singularity in high dimensions; see
[13] and [22] for ridge-type penalties in two-sample settings. Finally, another alternative line of
attack consists of exploiting sparsity; see [10,11]. Other related works include [36].

In this paper, we seek to regularize the spectrum of �̂p by flexible shrinkage functions. For a
symmetric p × p matrix A and a function g(·) on R, define

g(A) = RA diag
(
g
(
λ1(A)

)
, . . . , g

(
λp(A)

))
RT

A,

where RA is the matrix of eigenvectors associated with the ordered eigenvalues of A. Now,
consider any real-valued function f (·) on R that is analytic over a specific domain associated
with the limiting behavior of the eigenvalues of �̂p , as elaborated in Section 2. The proposed
statistics are functionals of eigenvalues of the regularized quadratic forms

M(f ) = 1

n
QT

n YT f (�̂p)YQn.
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Specifically, we propose regularized versions of LR, LH and BNP test criteria, namely

T LR(f ) =
q∑

i=1

log
{
1 + λi

(
M(f )

)}
,

T LH(f ) =
q∑

i=1

λi

(
M(f )

)
,

T BNP(f ) =
q∑

i=1

λi

(
M(f )

)
/
{
1 + λi

(
M(f )

)}
.

These test statistics are designed to capture possible departures from the null hypothesis, when
�̂p is replaced by f (�̂p), while suitable choices of the regularizer f allow for getting around
the problem of singularity or near-singularity when p is comparable to n.

Notice that M(f ) has the same non-zero eigenvalues as f (�̂p)Ĥp . Thus, the proposed test

family is a generalization of the classical statistics based on �̂
−1
p Ĥp . Importantly, M(f ) – and

consequently the proposed statistics – is rotation-invariant, which means if a linear transfor-
mation is applied to the observations with an arbitrary orthogonal matrix, the statistic remains
unchanged. It is a desirable property when not much additional knowledge about �p and BC is
available. It should be noted that the two-sample mean tests by Bai and Saranadasa [5] and Li et
al. [22], together with their generalization to MANOVA, are special cases of the proposed family
with f (x) = 1 and f (x) = 1/(x + λ), λ > 0, respectively.

The present work builds on the work by Li et al. [22]. The theoretical analysis also involves an
extension of the analytical framework adopted by Pan and Zhou [26] in their study of the asymp-
totic behavior of Hotelling’s T 2 statistic for non-Gaussian observations. However, the current
work goes well beyond the existing literature in several aspects. We highlight these as the key
contributions of this manuscript: (a) We propose new families of rotation-invariant tests for gen-
eral linear hypotheses for multivariate regression problems involving high-dimensional response
and fixed-dimensional predictor variables that incorporate a flexible regularization scheme to ac-
count for the dimensionality of the observations growing proportional to the sample size. (b) Un-
like Li et al. [22], who assumed sub-Gaussianity, here only the existence of finite fourth mo-
ments of the observations is required. (c) Unlike Pan and Zhou [26], who assumed �p = Ip , �p

is allowed to be fairly arbitrary and subjected only to some standard conditions on the limiting
behavior of its spectrum. (d) We carry out a detailed analysis of the power characteristics of the
proposed tests. The proposal of a class of local alternatives enables a clear interpretation of the
contributions of different parameters in the performance of the test. (e) We develop a data-driven
test procedure based on the principle of maximizing asymptotic power under appropriate local
alternatives. This principle leads to the definition of a composite test that combines the optimal
tests associated with a set of different kinds of local alternatives. The latter formulation is an ex-
tension of the data-adaptive test procedure designed by Li et al. [22] for the two-sample testing
problem.

The rest of the paper is organized as follows. Section 2 introduces the asymptotics of the
proposed test family both under the null hypothesis and under a class of local alternatives. Using
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these local alternatives, in Section 3 a data-driven shrinkage selection methodology based on
maximizing asymptotic power is developed. In Section 4, an application of the asymptotic theory
and the shrinkage selection method is given for the ridge-regularization family. An extension
of ridge-regularization to higher orders is also discussed. The results of a simulation study are
reported in Section 5. In the Appendix, a proof outline of the main theorem is presented, while
technical details and proofs of other theorems are collected in the Supplementary Material [21].

2. Asymptotic theory

After giving necessary preliminaries on Random Matrix Theory (RMT), the asymptotic theory
of the proposed tests under the null hypothesis and under various local alternative models is
presented in this section. For any p × p symmetric matrix A, define the Empirical Spectral
Distribution (ESD) FA of A by

FA(τ) = p−1
p∑

i=1

1{λi(A)≤τ }.

In the following, ‖ · ‖max stands for the maximum absolute value of the entries of a matrix. The
following assumptions are employed.

C1 (Moment conditions) Z has i.i.d. entries zij such that Ezij = 0, Ez2
ij = 1, Ez4

ij < ∞.
C2 (High-dimensional setting) k and q are fixed, while p,n → ∞ such that γn = p/n → γ ∈

(0,∞) and
√

n|γn − γ | → 0.
C3 (Boundedness of spectral norm) �p is non-negative definite; lim supp λmax(�p) < ∞.
C4 (Asymptotic stability of ESD) There exists a distribution L� with compact support

in [0,∞), non-degenerate at zero, such that
√

nDW(F�p,L�) → 0, as n,p → ∞, where
DW(F1,F2) denotes the Wasserstein distance between distributions F1 and F2, defined as

DW(F1,F2) = sup
f

{∣∣∣∣ˆ f dF1 −
ˆ

f dF2

∣∣∣∣ : f is 1-Lipschitz

}
.

C5 (Asymptotically full rank) X is of full rank and n−1XXT converges to a positive definite
k × k matrix. Moreover, lim supn→∞ ‖X‖max < ∞.

C6 (Asymptotically estimable) lim infn→∞ λmin(C
T (n−1XXT )−1C) > 0.

Remark 2.1. The conditions are mild: C5 and C6 are commonly made in multivariate analysis
for asymptotic results of regression models under non-Gaussianity. The o(n−1/2) convergence
rate in C2 and C4 is unnecessary for proving the asymptotic normality of the proposed tests
introduced in Section 2.2 and 2.3. The assumption can be dropped if m(z) introduced in (2.1)
is replaced by the solution to the equation m0

p(z) = ´ {τ(1 − γn − γnzm
0
p(z)) − z}−1 dF�p(τ ).

However, such a modification will significantly complicate mathematical expressions. In order to
emphasize readability and succinctness, the o(n−1/2) convergence rate is adopted. Moreover, for
the purpose of deriving validity of the data-driven selection of shrinkage functions introduced in
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Section 3, the o(n−1/2) convergence rate is necessary. Notably, the convergence rate assumption
is practically not overly restrictive. First, it imposes little constraint on the observations. Sec-
ondly, we always use γn and F�p to estimate γ and L� in the proposed inferential procedure.

2.1. Preliminaries on random matrix theory

Recall that the Stieltjes transform mG(·) of any function G of bounded variation on R is defined
by

mG(z) =
ˆ ∞

−∞
dG(x)

x − z , z ∈C
+ := {u + iv : v > 0}.

Minor modifications of a standard RMT result imply that, under Conditions C1–C6, the ESD
F �̂p converges almost surely to a nonrandom distribution F∞ at all points of continuity of F∞.
This limit is determined in such a way that for any z ∈ C

+, the Stieltjes transform m(·) = mF∞(·)
of F∞ is the unique solution in C

+ of the equation

m(z) =
ˆ

dL�(τ)

τ (1 − γ − γzm(z)) − z . (2.1)

Equation (2.1) is often referred to as the Marčenko–Pastur equation. Moreover, pointwise almost
surely for z ∈ C

+, m
F �̂p (z) converges to mF∞(z). The convergence holds even when z ∈ R−

(negative reals) with a smooth extension of mF∞ to R−. Readers may refer to [6] and [27] for
more details. From now on, for notational simplicity, we shall write mF∞(z) as m(z) and write
m

F �̂p (z) as mn,p(z). Note that

mn,p(z) = p−1 tr(�̂p − zIp)−1

and define

�(z, γ ) = {
1 − γ − γzm(z)

}−1
. (2.2)

It is known that (�̂p − zIp)−1, for any fixed z ∈ C
+, has a deterministic equivalent [6,22,23],

given by {
�−1(z, γ )�p − zI}−1

,

in the sense that for symmetric matrices A bounded in operator norm, as n → ∞,

p−1 tr
[
(�̂p − zIp)−1A

] − p−1 tr
[{

�−1(z, γ )�p − zI}−1
A

] → 0, with probability 1.

Resolvent and deterministic equivalent will be used frequently in this paper. They will appear for
example as Cauchy kernels in contour integrals in various places.
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2.2. Asymptotics under the null hypothesis

To begin with, for q ≥ 1, denote by W = [wij ]qi,j=1 the Gaussian Orthogonal Ensemble (GOE)
defined by (1) wij = wji ; (2) wii ∼ N (0,1), wij ∼ N (0,1/2), i �= j ; (3) wij ’s are jointly in-
dependent for 1 ≤ i ≤ j ≤ q . Throughout this paper, f (·) is assumed to be analytic in an open
interval containing

X :=
[
0, lim sup

p→∞
λmax(�p)(1 + √

γ )2
]
.

Let C to be a closed contour enclosing X such that f (·) has a complex extension to the interior
of C. Further use C2 to denote C ⊗ C = {(z1,z2) : z1,z2 ∈ C}.

Theorem 2.1. Suppose C1–C6 hold. Under the null hypothesis H0 : BC = 0,

√
n
{
M(f ) − �(f,γ )Iq

} =⇒ �1/2(f, γ )W,

where =⇒ denotes weak convergence and �(f,γ ) and �(f,γ ) are as follows.

�(f,γ ) = −1

2πi

˛
C

f (z)
(
�(z, γ ) − 1

)
dz.

See (2.2) for the definition of �(z, γ ). For any two analytic functions f1 and f2,

�(f1, f2, γ ) = 2

(2πi)2

‹
C2

f1(z1)f2(z2)δ(z1,z2, γ ) dz1 dz2,

and �(f,f, γ ) is written as �(f,γ ) for simplicity. The kernel δ(z1,z2, γ ) is such that

δ(z1,z2, γ ) = �(z1, γ )�(z2, γ )

[
z1�(z1, γ ) − z2�(z2, γ )

z1 − z2
− 1

]
,

δ(z,z, γ ) = lim
z2→z

δ(z,z2, γ ) = �2(z, γ )

[
∂z�(z, γ )

∂z
− 1

]
= γ

{
1 + zm(z)

}
�3(z, γ ) + γz

{
m(z) + zm′(z)

}
�4(z, γ ).

The contour integral is taken counter-clockwise.

Using knowledge of the eigenvalues of the GOE leads to the following statement.

Corollary 2.1. Under the conditions of Theorem 2.1, assume further that �(f,γ ) > 0. Let

λ̃i =
√

n

�1/2(f, γ )

{
λi

(
M(f )

) − �(f,γ )
}
, i = 1, . . . , q.
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Then, the limiting joint density function of (λ̃1, . . . , λ̃q) at y1 ≥ y2 ≥ · · · ≥ yq is given by

(
2q/2

q∏
i=1

�(i/2)

)−1 ∏
i<j

(yi − yj ) exp

(
−1

2

q∑
i=1

y2
i

)
.

Although without closed forms, �(f,γ ) and �(f,γ ) do not depend on the choice of C used to
compute the contour integral. With the resolvent as kernel M(f ) can be expressed as the integral
of f (z)n−1QT

n YT (�̂p − zIp)−1YQn on any contour C, up to a scaling factor. The quadratic
form n−1QT

n YT (�̂p −zIp)−1YQn is then shown to concentrate around [�(z, γ )− 1]Iq , which
consequently serves as the integral kernel in �(f,γ ). The kernel δ(z1,z2, γ ) of �(f,γ ) is the
limit of E[n−1 tr{(�̂p − z1Ip)−1�p(�̂p − z2Ip)−1�p}].

Remark 2.2. Two sufficient conditions for �(f,γ ) > 0 are

(1) f (x) > 0 for x ∈ X ;
(2) f (x) ≥ 0 for x ∈X , with f (x) �= 0 for some x ∈ X , and lim infλmin(�p) > 0.

It would be convenient if �(f,γ ) and �(f,γ ) had closed forms in order to avoid compu-
tational inefficiencies. Closed forms are available for special cases as shown in the following
lemma.

Lemma 2.1. When f (x, 
) = (x − 
)−1 with 
 ∈ R
−, the contour integrals in Theorem 2.1 have

closed forms, namely, for j , j1, j2 = 0,1,2, . . . ,

−1

2πi

˛
C

∂jf (z, 
)

∂
j

(
�(z, γ ) − 1

)
dz= ∂j (�(
, γ ) − 1)

∂
j
,

1

(2πi)2

‹
C2

∂j1f (z1, 
1)

∂

j1
1

∂j2f (z2, 
2)

∂

j2
2

δ(z1,z2, γ ) dz1 dz2 = ∂j1+j2δ(
1, 
2, γ )

∂

j1
1 ∂


j2
2

.

The results continue to hold when 
 ∈ C \X .

Lemma 2.1 indicates that it is possible to have convenient and accurate estimators of the
asymptotic mean and variance of M(f ) under ridge-regularization. The result easily general-
izes to the setting when f (x) is a linear combination of functions of the form (x − 
j )

−1, for any
finite collection of 
j ’s. We elaborate on this in Section 4.

To conduct the tests, consistent estimators of �(f,γ ) and �(f,γ ) are needed.

Lemma 2.2. Let �̂(z, γn) and δ̂(z1,z2, γn) be the plug-in estimators of �(z, γ ) and
δ(z1,z2, γ ), with (m(z), γ ) estimated by (mn,p(z), γn). For general f , f1, f2, we can es-
timate �(f,γ ) and �(f1, f2, γ ) by replacing �(z, γ ) and δ(z1,z2, γ ) with �̂(z, γn) and
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δ̂(z1,z2, γn). Denote the resulting estimators by �̂(f, γn) and �̂(f1, f2, γn). Then,

√
n
∣∣�̂(f, γn) − �(f,γ )

∣∣ P−→ 0,

√
n
∣∣�̂(f1, f2, γn) − �(f1, f2, γ )

∣∣ P−→ 0,

where
P−→ indicates convergence in probability. Again, we write �̂(f,f, γn) as �̂(f, γn).

For the special case of f (j)(x, 
) = ∂j (x − 
)−1/∂
j , j = 0,1,2, . . . and 
 ∈ C \ X , using
Lemma 2.1, natural estimators in closed forms are

�̂
(
f (j)(x, 
), γn

) = ∂j (�̂(
, γn) − 1)

∂
j
,

�̂
(
f (j1)(x, 
1), f

(j2)(x, 
2), γn

) = ∂j1+j2 2̂δ(
1, 
2, γn)

∂

j1
1 ∂


j2
2

.

In particular, for j, j1, j2 = 0,

�̂
(
f (x, 
), γn

) = �̂(
, γn) − 1,

�̂
(
f (x, 
1), f (x, 
2), γn

) = 2̂δ(
1, 
2, γn).

The estimators are consistent, for any fixed j and 
. Given the eigenvalues of �̂p , the computa-
tional complexity of calculating the above estimators is O(p).

Recall the definitions of T LR(f ), T LH(f ) and T BNP(f ) from Section 1.

Theorem 2.2. Suppose C1–C6 hold and �(f,γ ) > 0. Under H0 : BC = 0,

T̂ LR(f ) :=
√

n{1 + �̂(f, γn)}
q1/2�̂1/2(f, γn)

[
T LR(f ) − q log

{
1 + �̂(f, γn)

}] =⇒N (0,1),

T̂ LH(f ) :=
√

n

q1/2�̂1/2(f, γn)

{
T LH(f ) − q�̂(f, γn)

} =⇒N (0,1),

T̂ BNP(f ) :=
√

n{1 + �̂(f, γn)}2

q1/2�̂1/2(f, γn)

{
T BNP(f ) − q

�̂(f, γn)

1 + �̂(f, γn)

}
=⇒N (0,1).

For any of the three tests, the null hypothesis is rejected at asymptotic level α, if T̂ (f ) > ξα ,
where ξα is the 1 − α quantile of the standard normal distribution.

2.3. Asymptotic power under local alternatives

This subsection deals with the behavior of the proposed family of tests under a host of local alter-
natives. We start with deterministic alternatives, a framework commonly used in the literature to
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study the asymptotic power of inferential procedures. Next, we consider a Bayesian framework,
using a class of priors that characterize the structure of the alternatives. Because the results to
follow simultaneously hold for T̂ LR(f ), T̂ LH(f ) and T̂ BNP(f ), the unifying notation T̂ (f ) will
be used to refer to each of the test statistics.

2.3.1. Deterministic local alternatives

Consider a sequence of BC such that, on an open subset of C containing X ,

√
nCT BT

{
�−1(z, γ )�p − zI}−1

BC −→ D(z, γ ) pointwise, as n,p → ∞. (2.3)

Observe that YQn = √
nBC[CT (n−1XXT )−1C]−1/2 + �

1/2
p ZQn and define

H(D,f ) = T −1/2
[ −1

2πi

˛
C

f (z)D(z, γ ) dz

]
T −1/2 where (2.4)

T = lim
n→∞CT

(
n−1XXT

)−1
C. (2.5)

Note that T exists and is non-singular under C5 and C6. If further f (x) ≥ 0 for any x ∈ X ,
H(D,f ) is non-negative definite.

Theorem 2.3. Suppose C1–C6 and (2.3) hold, and �(f,γ ) > 0. Then, as n → ∞,

√
n

�1/2(f, γ )

{
M(f ) − �(f,γ )Iq

} =⇒ W + H(D,f )

�1/2(f, γ )
.

Denote the power functions of T̂ (f ) at asymptotic level α, conditional on BC, by

ϒ(BC,f ) = P
(
T̂ (f ) > ξα | BC

)
.

The asymptotic behavior of the power functions is described in the following corollary.

Corollary 2.2. Under the assumptions of Theorem 2.3, as n → ∞,

ϒ(BC,f ) −→ �

(
−ξα + tr(H(D,f ))

q1/2�1/2(f, γ )

)
,

where � is the standard normal CDF.

Remark 2.3. Corollary 2.2 indicates the three proposed statistics have identical asymptotic pow-
ers under the assumed local alternatives. This is because the first-order Taylor expansions of x,
log(1 + x) and x/(1 + x) coincide at 0. However, the respective empirical powers may differ
considerably for moderate sample sizes.
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The following remark provides a sufficient condition under which (2.3) is satisfied. Denoting
the columns of BC by [μ1, . . . ,μq ], it follows that

√
nCT BT

{
�−1(z, γ )�p − zI}−1

BC = √
n
[
μT

i

{
�−1(z, γ )�p − zIp

}−1
μj

]q
i,j=1.

Remark 2.4. (a) Let Em,p denote the eigen-projection associated with λm,p = λm(�p). Suppose

that there exists a sequence (in p) of mappings [Bij ;p]qi,j=1 from [0,∞)q
2

to [0,∞)q
2
, satisfy-

ing Bij ;p(λm,p) = √
npμT

i Em,pμj , m = 1, . . . , p, and a mapping [Bij ;∞]qi,j=1 continuous on

[0,∞)q
2

such that, as p → ∞ and for 1 ≤ i, j ≤ q ,
ˆ ∣∣Bij ;p(x) −Bij ;∞(x)

∣∣dF�p(x) → 0.

Then, under C4, it follows that (2.3) holds with D(z, γ ) = [dij (z, γ )]qi,j=1 and

dij (z, γ ) =
ˆ

Bij ;∞(x)dL�(x)

x�−1(z, γ ) − z =
ˆ

Bij ;∞(x)dL�(x)

x{1 − γ − γzm(z)} − z .

(b) If �p = Ip , then (2.3) is satisfied if
√

nμT
i μj → Kij , for some constants Kij , 1 ≤ i, j ≤ q .

In this case, D(z, γ ) = (�−1(z, γ ) − z)−1[Kij ]qi,j=1.

2.3.2. Probabilistic local alternatives

While deterministic local alternatives provide useful information, they are somewhat restrictive
for the purpose of a systematic investigation of the power characteristics. Therefore, probabilistic
alternatives are considered in the form of a sequence of prior distributions for BC. This has
the added advantage of providing flexibility for incorporating structural information about the
regression parameters and the constraints matrices. The proposed formulation of probabilistic
alternatives can be seen as an extension of the proposal adopted by Li et al. [22] in the context of
two-sample tests for equality of means. One challenge associated with formulating meaningful
alternatives to the hypothesis (1.2), when compared to the two-sample testing problem, is that
there are many more plausible ways in which the null hypothesis can be violated. Considering
this, we propose a class of alternatives, that on one hand can incorporate a multitude of structures
of the parameter BC, while on the other hand retains analytical tractability in terms of providing
interpretable expressions for the local asymptotic power.

Assume the following prior model of BC with separable covariance

BC = n−1/4p−1/2RVST , (2.6)

where V is a p × m stochastic matrix (m ≥ 1 fixed) with independent elements νij such that
E[νij ] = 0, E[|νij |2] = 1 and maxij E[|νij |4] ≤ pcν for some cν ∈ (0,1); R is a p × p determin-
istic matrix and S is a fixed q × m matrix. Moreover, let ‖R‖2 ≤ K1 < ∞ and suppose there is
a nonrandom function h(z, γ ) such that, as p → ∞, on an open subset of C containing X ,

p−1 tr
{(

�−1(z, γ )�p − zI)−1RRT
} → h(z, γ ) pointwise. (2.7)
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Recalling that (�−1(z, γ )�p − zI )−1 is the deterministic equivalent of the resolvent (�̂p −
zI )−1, existence of the limit (2.7) also implies that p−1 tr{(�̂p − zI )−1RRT } converges point-
wise in probability to h(z, γ ). Notice also that p−1 tr{(�̂p − zI )−1RRT } is the Stieltjes trans-
form of a measure supported on the eigenvalues of �̂p .

Model (2.6) leads to a fairly broad covariance design for multi-dimensional random elements,
encompassing structures commonly encountered in many application domains, especially in
spatio-temporal statistics. We give some representative examples by considering various func-
tional forms of the matrix S . Denote by μj the columns of BC and by Vj the columns of V .

Example 2.1. In all that follows j takes values in 1, . . . , q .

(a) Independent: μj = n−1/4p−1/2RVj .
(b) Longitudinal: μj = n−1/4p−1/2R(V1 + V2j + · · · + Vmjm−1).
(c) Moving average: μj = n−1/4p−1/2R[Vj+t + θ1Vj+t−1 + · · · + θtVj ] for constants

θ1, . . . , θt .

Taking the MANOVA problem to illustrate, suppose that the columns of B represent group
mean vectors, and suppose C is the matrix that determines successive contrasts among them.
Then, μj is the difference between the means of group j and group j + 1. Parts (a)–(c) of
Example 2.1 correspond then to μ1, . . . ,μq respectively following an independent, a longitudinal
and a moving average process. The row-wise covariance structure is assumed to be such that each
μj has a covariance matrix proportional to n−1/2p−1RRT . The factor n−1/2p−1 provides the
scaling for the tests to have non-trivial local power.

A sufficient condition that leads to (2.7), similar to Remark 2.4, is to postulate the existence of
functions B̃p satisfying B̃p(λj,p) = tr{Ej,pRRT }, j = 1, . . . , p, and

ˆ ∣∣B̃p(x) − B̃∞(x)
∣∣dF�p(x) → 0

for some function B̃∞ continuous on [0,∞), where λj,p is the j th eigenvalue of �p and Ej,p

is the eigen-projection associated with λj,p . Then

h(z, γ ) =
ˆ

B̃∞(x) dL�(x)

x{1 − γ − γzm(z)} − z . (2.8)

Equations (2.7) and (2.8) indicate that h(z, γ ) effectively captures the distribution of the total
spectral mass of RRT across the spectral coordinates of �p , also taking into account the dimen-
sionality effect through the aspect ratio γ . Later, we shall discuss specific classes of the matrices
R that lead to analytically tractable expressions for h(z, γ ), with the structure of R linking the
parameter BC under the alternative through (2.6) to the structure of �p .

Another important feature of the probabilistic model is that it incorporates both dense and
sparse alternatives through different specifications of the innovation variables νij . We consider
two special cases.

1. Dense alternative: νij ∼N (0,1).
2. Sparse alternative: νij ∼ Gη , for some η ∈ (0,1), where Gη is the discrete probability

distribution assigning mass 1 − p−η to 0 and mass (1/2)p−η to the points ±pη/2.
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Note that the usual notion of sparsity corresponds to the setting where in addition, R = Ip . More
generally, the second specification above formulates a prior model for BC that is sparse in the
coordinate system determined by R. In particular, if RRT is a polynomial in �p (see Section 3.2
for a discussion), BC can be seen as sparse in the spectral coordinates of �p .

Theorem 2.4. Suppose that C1–C6 hold and �(f,γ ) > 0. Also suppose that, under Ha , BC

has a prior distribution given by (2.6). Then, the power function of each of the three test statistics
satisfies

ϒ(BC,f )
L1−→ �

(
−ξα + tr(SST T −1)

q1/2�1/2(f, γ )

˛
C

−1

2πi
f (z)h(z, γ ) dz

)
, (2.9)

as n → ∞, where T is as in (2.5) and
L1−→ indicates L1-convergence (with respect to the prior

measure of BC).

Remark 2.5. Even if the quantity hp(z, γ ) = p−1 tr{(�−1(z, γ )�p − zI )−1RRT } does not
converge, it can be verified that the difference between the left- and right-hand sides of (2.9) still
converges to zero in L1 if h(z, γ ) is replaced by hp(z, γ ).

Observe that the matrices R and S decouple in the expression (2.9) for the asymptotic power.
Dependence on the unknown error covariance matrix �p , besides �1/2(f, γ ), is only through the
function h(z, ν), which incorporates the structure of the matrix RRT . It is also noticeable that
distributional characteristics of the variables νij do not affect the asymptotic power. Indeed, the
proposed tests have the same local asymptotic power under both sparse and dense alternatives.

3. Data-driven selection of shrinkage

In this section, we introduce a data-driven procedure to select the “optimal” f from a parametric
family F of shrinkage functions. The strategy is to maximize the local power function ϒ(BC,f )

over f , given a class of probabilistic local alternatives as in (2.6). In designing the classes of
alternatives, we focus our attention only on the specification of R. This is because, as the ex-
pression (2.9) shows, the dependence on the matrix S is only through a multiplier involving a
“known” matrix T , while the effect of the unknown covariance �p (and its interaction with R)
manifests itself through the function h(z, γ ). Another reason for focusing on R is that the choice
of S is closely related to the specific type of linear model being considered, while the choice of
R is associated with the structure of the error distribution.

We present some settings of BC for which h(z, γ ) can be computed explicitly. We also verify
that the standardized test statistic with the data-driven selection of f is still asymptotically stan-
dard normal under suitable conditions. Hence, the Type 1 error rate of the tests is asymptotically
not inflated, although the same data is used for both shrinkage selection and testing. Lastly, we
present a composite test procedure that combines the optimal tests corresponding to different
prior models of BC and thereby improves adaptivity to various kinds of alternatives.
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3.1. Shrinkage family

Suppose the family of shrinkage functions is such that

F= {f
 : 
 ∈ L},

(i) L is a compact subset of Rr , r ∈ N
+.

(ii) There is a closed, connected subset Z of C such that X = [0, lim supp λmax(�p) ×
(1 + √

γ )2] ⊂Z , and the third-order partial derivatives of f
 with respect to 
 are continuous on
L⊗Z .

(iii) The gradient ∇
f
 and the Hessian ∇2

 f
 of f
 with respect to 
 have analytic extensions

to Z for all 
 ∈ L.
(iv) inf
∈L �(f
, γ ) > 0.

Under the probabilistic prior model (2.6) with h(z, γ ) in (2.7) given, define

�(
,h, γ ) = −1

2πi�1/2(f
, γ )

˛
C

f
(z)h(z, γ ) dz.

Theorem 2.4 suggests that 
 should be chosen such that �(
,h, γ ) is maximized, that is,


opt = arg max

∈L

�(
,h, γ ).

The test with the selected shrinkage will then be the locally most powerful test under the alter-
natives specified by (2.6) and (2.7) for any given choice of S . Since �(
,h, γ ) is continuous
with respect to 
 under condition (i)–(iv), 
opt exists. Importantly, �(
,h, γ ) does not rely on
S . In other words, different column-wise covariance structures of BC are uniform in terms of
selecting the optimal shrinkage. This significantly simplifies the selection procedure.

Recall that h(z, 
) is the limit of p−1 tr{(�−1(z, γ )�p − zI )−1RRT }. We next present two
possible settings of RRT under which h(z, γ ) and consequently �(
,h, γ ) can be accurately
estimated:

(1) Suppose RRT is specified. Then, h(z, γ ) is estimated by ĥ(z, γn) = p−1 tr{(�̂p −
zI )−1RRT } and

�̂(
, ĥ, γn) := −1

2πi�̂1/2(f
, γn)

˛
C

f
(z)̂h(z, γn) dz

is a consistent estimator of �(f,h, γ ). As an example of this scenario, assume that the p com-
ponents of μj admit a natural ordering such that the dependence between their coordinates is a
function of the difference between their indexes. Then we may set RRT to be a Toeplitz matrix
(stationary auto-covariance structure).

(2) Only the spectral mass distribution of RRT in the form of B̃∞ described in (2.8) is
specified.

The remainder of this section is devoted to dealing with the second scenario.
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3.2. Polynomial alternatives

Even if B̃∞ is given, the estimation of h(z, γ ) is still challenging since it involves the unknown
limiting spectral distribution L� . In order to estimate h(z, γ ), it is convenient to have it in a
closed form. It is feasible if B̃∞ is a polynomial, which is true if RRT is a matrix polynomial
in �p . Since any smooth function can be approximated by polynomials, this formulation is quite
flexible and practically beneficial. Assume therefore that

RRT =
∑s

j=0
tj�

j
p, (3.1)

where t0, . . . , ts are pre-specified weights such that
∑s

j=0 tj�
j
p is nonnegative definite. Under

the model,

h(z, γ ) = lim
p→∞p−1 tr

[(
�−1(z, γ )�p − zI)−1

s∑
j=0

tj�
j
p

]
=

s∑
j=0

tj ρj (z, γ ),

where the functions ρj (z, γ ) satisfy the recursive formula (see [19])

ρ0(z, γ ) = m(z), ρj+1(z, γ ) = �(z, γ )

[ˆ
xj dL�(x) + zρj (z, γ )

]
.

For any j ∈ N,
´

xj dL�(x), and consequently ρj (z, γ ), can be estimated consistently [2],
Lemma 1. Specifically, p−1 tr(�̂p) is a consistent estimator of

´
x dL�(x).

In practice, we restrict to the case s = 2. There are several considerations that guided this
choice of s as stated in [22]. First, for s = 2, all quantities involved can be computed explicitly
without requiring knowledge of higher-order moments of the observations. Also, the correspond-
ing estimating equations for h(z, γ ) are more stable as they do not involve higher-order spectral
moments. Second, the choice of s = 2 yields a significant, yet nontrivial, concentration of the
prior covariance of μj , j = 1, . . . , q , (that is RRT up to a scaling factor) in the directions of the
leading eigenvectors of �p . Finally, the choice s = 2 allows for both convex and concave shapes
of the spectral mass distribution B̃∞ since the latter becomes a quadratic function.

With s = 2, we estimate ρ0(z, γ ), ρ1(z, γ ), ρ2(z, γ ), and h(z, γ ) by

ρ̂0(z, γn) = mn,p(z),

ρ̂1(z, γn) = �̂(z, γn)
[
1 + zmn,p(z)

]
,

ρ̂2(z, γn) = �̂(z, γn)
[
p−1 tr(�̂p) + zρ̂1(z, γn)

]
,

ĥ(z, γn) =
2∑

j=0

tj ρ̂j (z, γn).

(3.2)

The algorithm for the data-driven shrinkage selection is stated next.
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Algorithm 3.1 (Data-driven shrinkage selection).

1. Specify prior weights t̃ = (t0, t1, t2). The canonical choices are (1,0,0), (0,1,0), (0,0,1).
2. Compute ĥ(z, γn) = ∑2

j=0 tj ρ̂j (z, γn).
3. For any 
 ∈ L, numerically compute the integral

�̂(
, ĥ, γn) = −1

2πi�̂1/2(f
, γn)

˛
C

f
(z)̂h(z, γn) dz.

4. Select 
opt(t̃) = arg max
∈L �̂(
, ĥ, γn).

The behavior of the tests applied with the data-driven shrinkage selection is described in the
following theorem.

Theorem 3.1. Suppose C1–C6 hold and F satisfies conditions (i)–(iv). Then,

(1) sup
∈L
√

n|�̂(
, ĥ, γn) − �(
,h, γ )| P−→ 0 as n → ∞.
(2) Let 
∗ be any local maximizer of �(
,h, γ ) in the interior of L. Assume there exists a

neighborhood of 
∗ such that for all feasible points 
 ∈ L within the neighborhood, there exists
a constant K > 0 such that

�(
,h, γ ) − �
(

∗, h, γ

) ≤ −K
∥∥
 − 
∗∥∥2

2. (3.3)

Then, there exists a sequence (
∗
n : n ∈N) of local maximizers of (�̂(
, ĥ, γn) : n ∈ N) satisfying

n1/4
∥∥
∗

n − 
∗∥∥
2 = Op(1) (n → ∞). (3.4)

Further, recalling notation in Section 2, under the null hypothesis,

√
n

�̂1/2(f
∗
n
, γn)

{
M(f
∗

n
) − �̂(f
∗

n
, γn)Iq

} =⇒ W. (3.5)

(3) Let 
∗ be any local maximizer of �(
,h, γ ) on the boundary of L. Assume there exists a
neighborhood of 
∗ such that for all feasible points 
 ∈ L within the neighborhood, there is a
constant K′ > 0 satisfying

�(
,h, γ ) − �
(

∗, h, γ

) ≤ −K′∥∥
 − 
∗∥∥
2. (3.6)

Then, (3.4) and (3.5) still hold.

The two conditions (3.3) and (3.6) ensure that the parameter 
∗ is locally identifiable in a
neighborhood of 
∗. In general, the two conditions depend on the structure of L� .
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3.3. Combination of prior models

An extensive simulation analysis revealed that there is considerable variation in the shape of
the power functions and the values of t̃ = (t0, t1, t2), especially when the condition number of
�p is relatively large. In this subsection, we consider a convenient collection of priors that are
representative of certain structural scenarios. A composite test, called T̂max, is defined as the
maximum of the standardized statistics T̂ (f
∗

i
) where 
∗

i is obtained from Algorithm 3.1 under
prior t̃i , i = 1, . . . ,m. The following strategy is applicable to LR, LH and BNP. We therefore
continue to use T̂ (f ) to denote the general test statistic. In summary, we propose to test the
hypothesis by rejecting for large values of the statistic

T̂max = max
t̃∈�̃

T̂ (f
∗
i
),

where �̃ = {t̃1, . . . , t̃m}, m ≥ 1, is a pre-specified finite class of weights. A simple but effective
choice of �̃ consists of the three canonical weights t̃1 = (1,0,0), t̃2 = (0,1,0), t̃3 = (0,0,1).

Theorem 3.2. Suppose C1–C6 hold and F satisfies condition (i)–(iv). For each i = 1, . . . ,m,
assume that 
∗

in is a sequence of local maximizers of the empirical power function �̂(
, ĥ, γn)

under prior model with weight t̃i such that

n1/4
∥∥
∗

in − 
∗
i

∥∥
2 = Op(1).

(See (3.4).) Then, under the null hypothesis H0 : BC = 0,(
T̂ (f
∗

1n
), . . . , T̂ (f
∗

mn
)
) =⇒N (0,�∗),

where �∗ is an m × m matrix with diagonal entries 1 and (i, j)-th off-diagonal entry

�−1/2(f
∗
i
, γ )�(f
∗

i
, f
∗

j
, γ )�−1/2(f
∗

j
, γ ).

Theorem 3.2 shows that T̂max has a non-degenerate limiting distribution under H0. It is worth
mentioning that LR, LH and BNP share the covariance matrix �∗. Theorem 3.2 can be used to
determine the cut-off values of the test by deriving analytical formulas for the quantiles of the
limiting distribution. Aiming to avoid complex calculations, a parametric bootstrap procedure
is applied to approximate the cut-off values. Specifically, �∗ is first estimated by �̂∗, and then
bootstrap replicates are generated by simulating from N (0, �̂∗), thereby providing an approxi-
mation of the null distribution of T̂max. Replacing �(f
∗

i
, f
∗

j
, γ ) with �̂(f
∗

i
, f
∗

j
, γn) yields the

natural estimator.

Remark 3.1. Observe that �̂∗ defined above may not be nonnegative definite even though it
is symmetric. If such a case occurs, the resulting estimator can be projected onto its closest
non-negative definite matrix simply by setting the negative eigenvalues to zero. This covariance
matrix estimator is denoted by �̂+∗ and it is used for generating the bootstraps samples.
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4. Ridge and higher-order regularizers

4.1. Ridge regularization

One of the most commonly used shrinkage procedures in statistics is ridge regularization, corre-
sponding to choosing f
(x) = 1/(x −
), 
 < 0, so that f
(�̂p) = (�̂p −
Ip)−1. It is an effective
way to shift �̂p away from singularity by adding a ridge term −
Ip . In this subsection, we apply
the results of Sections 2 and 3 using the ridge-shrinkage family

Fridge := {
f
(x) = (x − 
)−1, 
 ∈ [
, 
]}, −∞ < 
 < 
 < 0.

In the literature, ridge-regularization was applied to high-dimensional one- and two-sample mean
tests in [13] and [22]. Hence, this subsection is a generalization of their methods to general linear
hypotheses.

From the aspect of population covariance estimation, ridge-regularization can be viewed as
an order-one estimation where �p is estimated by a weighted average of �̂p and Ip , namely
α0Ip + α1�̂p . The estimator is equivalent to ridge-regularization with 
 = −α0/α1 for testing
purposes. Within a restricted region of (α1, α2), the large eigenvalues of �̂p are shrunk down and
the small ones are lifted upward. It is a desired property since in high-dimensional settings, large
sample eigenvalues are systematically biased upward and small sample eigenvalues downwards.

An important advantage of ridge regularization is that the test procedure is computationally
efficient due to the fact that �(f
, γ ) and �(f
, γ ) admit closed forms as shown in Lemma 2.1.
These quantities can be estimated by �̂
(γn) = �̂(
, γn) − 1 and �̂
(γn) = 2̂δ(
, 
, γn), respec-
tively. A closed-form estimator �̂
(̂h, γn) is then also available for �(
,h, γ ). This leads to the
following algorithm.

Algorithm 4.1 (Ridge-regularized test procedure).

1. Specify prior weights t̃ = (t0, t1, t2).
2. With mn,p(
) = p−1 tr(�̂p − 
Ip)−1, compute, for any 
 ∈ [
, 
],

�̂(
, γn) = {
1 − γn − γn
mn,p(
)

}−1
,

�̂
(γn) = �̂(
, γn) − 1,

�̂
(γn) = 2γn

{
1 + 
mn,p(
)

}
�̂3(
, γn) + 2γn


{
mn,p(
) + 
m′

n,p(
)
}
�̂4(
, γn).

3. For any 
 ∈ [
, 
], compute ĥ(
, γn) = ∑2
j=0 tj ρ̂j (
, γn) as defined in (3.2) and

�̂
(̂h, γn) = ĥ(
, γn)

�̂
1/2

 (γn)

.

4. Select 
∗ = arg max
∈[
,
] �̂
(̂h, γn).
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5. Use one of the standardized statistics

T̂ LR(

∗) :=

√
n{1 + �̂
∗(γn)}
q1/2�̂

1/2

∗ (γn)

[
T LR(


∗) − q log
{
1 + �̂
∗(γn)

}]
,

T̂ LH(

∗) :=

√
n

q1/2�̂
1/2

∗ (γn)

[
T LH(


∗) − q�̂
∗(γn)
]
,

T̂ BNP(

∗) :=

√
n{1 + �̂
∗(γn)}2

q1/2�̂
1/2

∗ (γn)

[
T BNP(


∗) − q�̂
∗(γn)

1 + �̂
∗(γn)

]
,

where

T LR(

∗) =

q∑
i=1

log(1 + λi), T LH(

∗) =

q∑
i=1

λi, T BNP(

∗) =

q∑
i=1

λi

1 + λi

,

and λ1, . . . , λq are the eigenvalues of n−1QT
n YT (�̂p − 
∗Ip)−1YQn. Reject the null at asymp-

totic level α if the test statistic value exceeds ξα .

Although in theory any negative 
∗ is allowed in the test procedure, in practice, meaningful
lower and upper bounds 
 and 
 are needed to ensure stability of the test statistics when p ≈ n

or p > n and also to carry out the search for optimal 
 at a low computational cost. In our
simulation settings, we use 
 = −p−1 tr(�̂p)/100 and 
 = −20λmax(�̂p), which generally lead
to quite robust performance.

The composite test procedure with ridge-regularization is summarized below.

Algorithm 4.2 (Composite ridge-regularized test procedure).

1. Select prior weights �̃ = (t̃1, . . . , t̃m). The canonical choice is ((1,0,0), (0,1,0), (0,0,1)).
2. For each t̃j in �̃, run Algorithm 4.1, get the standardized test statistic T̂ (
∗

j ) and compute

T̂max = max1≤j≤m T̂ (
∗
j ).

3. With the selected tuning parameters (
∗
1, 


∗
2, 


∗
3) compute the matrix �̂∗ whose diagonal

elements are equal to one and whose (i, j)-th entry for i �= j is

�̂
−1/2

∗
i

(γn)�̂
∗
i ,


∗
j
(γn)�̂

−1/2

∗
j

(γn),

where �̂
∗
i
(γn) is defined in Step 2 of Algorithm 4.1 and

�̂
∗
i ,


∗
j
(γn) = 2�̂

(

∗
i , γn

)
�̂

(

∗
j , γn

)[
∗
i �̂(
∗

i , γn) − 
∗
j �̂(
∗

j , γn)


∗
i − 
∗

j

− 1

]
.

4. Project �̂∗ to its closest non-negative definite matrix �̂+∗ by setting the negative eigenvalues
to zero. Generate ε1, . . . , εG with εb = max1≤i≤m Z

(b)
i with Z(b) = [Z(b)

i ]mi=1 ∼N (0, �̂+∗ ).

5. Compute the p-value as G−1 ∑G
b=1 1{εb > T̂max}.
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4.2. Extension to higher-order regularizers

Through an extensive simulation study in a MANOVA setting, it is shown in Section 5 that
the ridge-regularized tests compare favorably against a host of existing test procedures. This is
consistent with the findings in [22] in the two-sample mean test framework. Ridge-shrinkage

rescales Ĥp by (�̂p − 
Ip)−1 instead of �̂
−1
p . Broader classes of scaling matrices have been

studied extensively (see [20] for an overview). They can be set up in the form f (�̂p). When f (·)
is analytic, such scaling falls within the class of the proposed tests.

The flexibility provided by a larger class of scaling matrices can be useful to design test pro-
cedures for detecting a specific kind of alternative. The choice of the test procedure may for
example be guided by questions such as Which f leads to the best asymptotic power under a
specific sequence of local alternatives, if H0 is rejected based on large eigenvalues of M(f )?
While a full characterization of this question is beyond the scope of this paper, a partial answer
may be provided by restricting to functions f in the higher-order class

Fhigh =
{

f
(x) =
[

κ∑
j=0

lj x
j

]−1

: 
 = (l0, . . . , lκ )T ∈ G
}

,

where G is such that f
 is uniformly bounded and monotonically decreasing on X , for any 
 ∈ G.
These higher-order shrinkage functions are weighted averages of ridge-type shrinkage functions.
To see this, suppose the polynomial

∑κ
j=0 lj x

j has roots r1, . . . , rκ0 ∈ C \ X with multiplicity
s1, . . . , sκ0 ∈N

+. Via basic algebra, f
 can be expressed as

f
(x) =
[

κ∑
j=0

lj x
j

]−1

=
κ0∑

j=1

sκ0∑
i=1

wji(x − rj )
−i , (4.1)

with some weights wji ∈ C. If all roots are simple, f
 is a weighted average of ridge-
regularization with κ different parameters. Heuristically, it is expected that a higher order f


yields tests more robust against unfavorable selection of ridge shrinkage parameter.
The design of G is not easy when κ is large. Here, we select κ = 3, which is the minimum

degree that allows f −1

 to be both locally convex and concave. In this case, the complexity of

selecting the optimal regularizer is significantly higher than for ridge-regularization. Due to space
limitations, we move the design of G and the test procedure when κ = 3 to Section S.1 of the
Supplementary Material [21].

5. Simulations

In this section, the proposed tests are compared by means of a simulation study to two repre-
sentative existing methods in the literature, [35] (ZGZ) and [11] (CX). We focus on one-way
MANOVA, a set-up for which both competing methods are applicable. It is worth mentioning
that CX requires a good estimator of the precision matrix �−1

p , that is typically unavailable
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when both �p and �−1
p are dense. In the simulations, the true �−1

p is utilized for CX, thus
making it an oracle procedure. In the following, LRridge, LHridge, and BNPridge denote the ridge-
regularized tests presented in Algorithm 4.1. LRhigh, LHhigh, and BNPhigh denote the tests with
higher-order shrinkage introduced in Section 4.2 with κ = 3. LRcomp, LHcomp and BNPcomp
denote the composite ridge-regularized tests of Algorithm 4.2 with the canonical choice of
�̃ = ((1,0,0), (0,1,0), (0,0,1)).

5.1. Settings

The observation matrix Y was generated as in (1.1) with normally distributed Z. Specifically, we
selected k = 3 or 5, and N = 300. For k = 3, the three groups had 75,90 and 135 observations,
respectively. For k = 5, the design was balanced with each group containing 60 observations.
The dimension p was 150,600,3000, so that γn = p/n ≈ 0.5,2 and 10. The columns of B were
the k group mean vectors. Accordingly, the columns of X were the group index indicators of
observation subjects. We selected C to be the successive contrast matrix of order q = k − 1. This
is a standard one-way MANOVA setting.

Under the null, B is the zero matrix. Under the alternative, for each setting of the parameters
and each replicate, B is generated using one of the following models.

(i) Dense alternative: The entries of B are i.i.d. N (0, c2) with c = O(n−1/4p−1/2) used to
tune signal strength to a non-trivial level.

(ii) Sparse altenative: B = cRV with c = O(n−1/4p−1/2), where R is a diagonal p × p

matrix with 10% randomly and uniformly selected diagonal entries being
√

10 and the remaining
90% being equal to 0, and V is a p × p matrix with i.i.d. standard normal entries.

The following four models for the covariance matrix � = �p were considered. All models
were further scaled so that tr(�p) = p.

(i) Identity matrix (ID): � = Ip .
(ii) Dense case �den: Here � = P�(1)P

T with a unitary matrix P randomly generated from
the Haar measure and resampled for each different setting, and a diagonal matrix �(1) whose
eigenvalues are given by λj = (0.1 + j)6 + 0.05p6, j = 1, . . . , p. The eigenvalues of � decay
slowly, so that no dominating leading eigenvalue exists.

(iii) Toeplitz case �toep: Here � is a Teoplitz matrix with the (i, j)-th element equal to
0.5|i−j |. It is a setting where �−1 is sparse but � is dense.

(iv) Discrete case �dis: Here � = P�(2)P
T with P generated in the same way as in (ii), and

�(2) is a diagonal matrix with 40% eigenvalues 1, 40% eigenvalues 3 and 20% eigenvalues 10.

All tests were conducted at significance level α = 0.05. Empirical sizes for the various tests
are shown in Tables 1 and 2. Empirical power curves versus expected signal strength n1/4p1/2c

are reported in Figures 1–3. To better compare the power of each test, curves are displayed
after size adjustment where the tests utilize the size-adjusted cut-off values based on the actual
null distribution computed by simulations. Counterparts of Figures 1–3 that utilize asymptotic
(approximate) cut-off values are reported in Section S.12 of the Supplementary Material [21].
The difference between the two types is limited. LR, LH and BNP criteria behave similarly across
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Table 1. Empirical sizes at level 5%. � = ID and �den; t̃1 = (1,0,0), t̃2 = (0,1,0), t̃3 = (0,0,1)

� = Ip � = �den

k = 3 k = 5 k = 3 k = 5

n = 300, p = 150 600 3000 150 600 3000 150 600 3000 150 600 3000

LRridge t̃1 5.4 5.2 5.1 5.2 5.1 5.1 4.9 4.4 4.7 4.4 3.3 4.2
t̃2 5.4 5.2 5.1 5.2 5.1 5.1 4.9 5.2 4.9 4.4 4.9 4.7
t̃3 5.3 5.2 5.1 5.2 5.1 5.1 5.8 5.9 5.1 5.3 5.2 4.9

LHridge t̃1 5.4 5.2 5.1 5.3 5.1 5.2 6.2 7.2 5.7 6.2 7.7 6.0
t̃2 5.4 5.2 5.1 5.3 5.1 5.2 6.2 5.9 5.2 6.2 5.9 5.1
t̃3 5.3 5.2 5.1 5.3 5.1 5.2 5.8 5.9 5.2 5.4 5.2 5.0

BNPridge t̃1 5.3 5.2 5.0 5.2 5.0 5.0 4.0 2.5 3.7 2.9 1.3 3.1
t̃2 5.4 5.2 5.0 5.2 5.0 5.0 4.0 4.7 4.6 2.9 3.9 4.4
t̃3 5.3 5.2 5.0 5.2 5.0 5.0 5.8 5.8 5.0 5.3 5.1 4.7

LRhigh t̃1 6.5 6.3 5.3 6.5 5.3 5.5 6.0 5.8 5.1 6.5 5.9 4.5
t̃2 6.5 6.3 5.3 6.5 5.3 5.5 8.3 6.8 5.5 8.4 7.2 5.2
t̃3 6.6 6.3 5.3 6.6 5.3 5.5 6.7 6.7 5.5 6.4 7.1 5.2

LHhigh t̃1 6.7 6.4 5.4 6.8 5.5 5.7 6.1 5.9 5.7 6.7 6.2 5.5
t̃2 6.7 6.4 5.4 6.8 5.4 5.7 8.3 6.8 5.6 8.5 7.3 5.5
t̃3 6.7 6.4 5.4 6.8 5.4 5.7 6.7 6.7 5.6 6.5 7.2 5.5

BNPhigh

t̃1 6.2 6.3 5.2 6.1 5.3 5.2 5.9 5.7 4.6 6.4 5.5 3.7
t̃2 6.3 6.3 5.2 6.1 5.2 5.2 8.3 6.7 5.3 8.3 7.0 4.9
t̃3 6.3 6.3 5.1 6.1 5.2 5.2 6.6 6.6 5.3 6.4 6.9 4.9

LRcomp 5.1 5.1 5.0 5.4 5.3 5.0 6.0 5.1 5.5 5.6 5.0 5.1
LHcomp 5.1 5.1 5.1 5.5 5.3 5.1 6.7 5.8 5.9 6.9 6.2 5.7
BNPcomp 5.1 5.0 5.0 5.4 5.2 5.0 5.4 4.5 5.1 4.7 4.4 4.6

ZGZ 5.6 5.7 5.2 5.6 4.8 5.2 5.9 5.5 5.4 5.4 5.4 5.3
CX (Oracle) 5.6 6.3 7.0 7.3 6.9 8.6 5.8 5.9 6.8 6.0 7.2 9.0

simulation settings, as indicated by Theorem 2.4. Therefore, only one of them is displayed in each
figure for ease of visualization. More figures can be found in Section S.11 of the Supplementary
Material [21]. Note that, in some of the settings, several of the power curves nearly overlap,
creating an occlusion effect. Then, power curves corresponding to the composite tests are plotted
as the top layer.

5.2. Summary of simulation results

Tables 1 and 2 show the empirical sizes of the proposed tests are mostly controlled under 7.5%.
The slight oversize is caused by the fact that M(f ) behaves like a quadratic form, therefore
the finite sample distribution is skewed. LR and BNP tests are more conservative than LH tests
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Table 2. Empirical sizes at level 5%. � = �dis and �toep; t̃1 = (1,0,0), t̃2 = (0,1,0), t̃3 = (0,0,1)

� = �dis � = �toep

k = 3 k = 5 k = 3 k = 5

n = 300, p = 150 600 3000 150 600 3000 150 600 3000 150 600 3000

LRridge t̃1 4.8 5.0 4.6 4.7 4.5 5.0 5.4 4.4 4.8 4.5 4.6 4.6
t̃2 5.1 5.2 4.9 5.2 4.6 5.1 5.4 4.9 4.9 4.9 4.8 5.0
t̃3 5.6 5.5 5.1 5.7 5.3 5.3 5.8 5.2 5.0 5.7 5.4 5.1

LHridge t̃1 5.8 6.0 5.2 6.6 6.3 5.6 6.4 5.3 5.2 6.2 6.3 5.3
t̃2 5.7 5.7 5.1 6.3 5.6 5.5 5.9 5.3 5.0 5.8 5.6 5.3
t̃3 5.6 5.5 5.2 5.8 5.3 5.4 5.8 5.3 5.1 5.7 5.4 5.2

BNPridge t̃1 3.9 4.1 4.3 3.1 3.1 4.1 4.4 3.7 4.4 3.2 3.4 3.9
t̃2 4.6 4.8 4.8 4.1 4.0 4.9 4.9 4.4 4.8 4.1 4.3 4.7
t̃3 5.5 5.5 5.0 5.7 5.2 5.1 5.8 5.2 5.0 5.6 5.4 5.1

LRhigh t̃1 6.3 6.4 4.8 5.9 7.0 5.5 7.1 7.0 5.3 7.5 6.9 5.2
t̃2 7.9 6.5 4.8 8.3 7.1 5.5 7.6 7.2 5.3 7.8 7.0 5.2
t̃3 6.1 5.6 4.8 6.4 6.1 5.5 6.7 6.5 5.3 6.6 6.4 5.2

LHhigh t̃1 6.6 6.5 5.0 6.2 7.2 5.7 7.2 7.2 5.5 7.7 7.0 5.5
t̃2 8.0 6.6 5.0 8.5 7.2 5.7 7.8 7.2 5.5 8.0 7.1 5.5
t̃3 6.2 5.6 5.0 6.5 6.2 5.7 6.7 6.5 5.5 6.7 6.5 5.5

BNPhigh t̃1 6.1 6.3 4.7 5.6 6.8 5.3 7.1 7.0 5.2 7.2 6.8 5.1
t̃2 7.9 6.4 4.7 8.2 7.0 5.3 7.5 7.1 5.2 7.7 7.0 5.1
t̃3 6.1 5.5 4.7 6.4 6.0 5.3 6.6 6.4 5.2 6.5 6.3 5.1

LRcomp 6.2 5.2 5.0 5.2 5.3 5.5 5.9 5.0 5.1 5.5 4.9 4.9
LHcomp 7.0 5.9 5.3 6.5 6.4 6.0 6.6 5.6 5.3 6.6 5.7 5.3
BNPcomp 5.5 4.6 4.8 4.4 4.6 5.0 5.4 4.6 4.9 4.8 4.4 4.6

ZGZ 5.5 4.7 4.6 5.7 5.1 5.3 6.0 5.5 5.0 5.9 5.6 5.0
CX (Oracle) 5.3 5.9 6.6 6.8 7.2 8.6 5.3 6.2 6.8 6.8 7.2 8.4

because the former two calibrate the statistics by transforming eigenvalues of M(f ). Ridge-
regularized tests are slightly more conservative under higher-order shrinkage.

Note that in both simulation settings, B consists of independent entries. Therefore, t̃1 =
(1,0,0) is considered as a correctly specified prior, while t̃2 = (0,1,0) and t̃3 = (0,0,1) are
considered as moderately and severely misspecified, respectively. The composite tests combine
t̃1, t̃2 and t̃3, and are therefore considered as consistently capturing the correct prior. We shall
treat the composite tests as a baseline to study the effect of prior misspecification, by comparing
them to tests using a single t̃ .

For each simulation configuration considered in this study, the proposed procedures are as
powerful as the procedure with the best performance, except for the cases when B is sparse,
p is small, and priors are severely misspecified in the proposed tests; see Figure S.11.6 in the
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Figure 1. Size-adjusted power with � = �den, k = 5. Rows (top to bottom): B = Dense and Sparse;
Columns (left to right): p = 150,600,3000. BNPcomp (red, solid); ZGZ (green, solid); oracle CX (pur-
ple, solid); BNPridge (black, dashed) and BNPhigh (blue, dotted-dashed) with t̃ = (1,0,0).

Supplementary Material [21]. We highlight the following observations based on the simulation
results.

(1) The composite tests are slightly less efficient than BNPridge and BNPhigh when the correct
prior t̃1 is used, as in Figure 1. However, as in Figure 2, when the prior is severely misspeci-
fied, the composite test is significantly more powerful. It suggests that the composite tests are
robust against prior misspecification, although losing some efficiency against tests with correctly
specified priors.

(2) Although ridge-shrinkage and higher-order shrinkage behave similarly under the correct
prior, the latter outperforms the former when the prior is misspecified; see Figure 2. This pro-

Figure 2. Size-adjusted power with � = �den, k = 5. Rows (top to bottom): B = Dense and Sparse;
Columns (left to right): p = 150,600,3000. LHcomp (red, solid); ZGZ (green, solid); oracle CX (purple,
solid); LHridge (black, dashed) and LHhigh (blue, dotted-dashed) with t̃ = (0,0,1).
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Figure 3. Size-adjusted power with � = �toep, k = 3. Rows (top to bottom): B = Dense and Sparse;
Columns (left to right): p = 150,600,3000. LRcomp (red, solid); ZGZ (green, solid); oracle CX (purple,
solid); LRridge (black, dashed) and LRhigh (blue, dotted-dashed) with t̃ = (0,1,0).

vides evidence for the robustness of high-order shrinkage against unfavorable ridge shrinkage
parameter selection.

(3) ZGZ is a special case of the proposed test family with f (x) = 1 for all x, which amounts
to replacing �̂p with Ip . When �p = Ip , ZGZ appears to be the reasonable option at least
intuitively. Note, both Fridge and Fhigh contain functions close to f (x) = 1. Figures for �p =
Ip displayed in Section S.11 of the Supplementary Material [21] show that the proposed tests
perform as well as ZGZ in that case. It may be viewed as evidence of the effectiveness of the
data-driven shrinkage selection strategy detailed in Section 3.

(4) Comparing to ZGZ, when the eigenvalues of �p are disperse, the proposed tests are sig-
nificantly more powerful when p = 150 and 600, but behave similarly as ZGZ when p = 3000.
On the other hand, as in Figure 2, the ridge-regularized test with a severely misspecified prior t̃3,
is close to ZGZ.

(5) CX is a test specifically designed for sparse alternatives. The procedure shows its advan-
tage in favorable settings, especially when p = 150. Simulation results suggest that the proposed
tests are still comparable to CX even under sparse BC and �−1

p , as long as the prior in use is not
severely misspecified. When p is large, the proposed tests are significantly better when �p = Ip .
Evidence may be found in Figures S.11.10, S.11.11 and S.11.12 of the Supplementary Material
[21].

Appendix: Proof of Theorem 2.1

This appendix contains a proof outline of Theorem 2.1. Additional proofs of supporting lemmas
and other theorems can be found in the Supplementary Material [21].

Recall Qn = XT (XXT )−1C[CT (XXT )−1C]−1/2. Introduce Qn = UnVn with

Un = XT
(
XXT

)−1/2 and Vn = (
XXT

)−1/2
C

[
CT

(
XXT

)−1
C

]−1/2
.

This decomposition will aid the analysis of the correlation between YQn and �̂p .
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From now on, use �
T/2
p to denote (�

1/2
p )T . Under the null hypothesis, the following represen-

tations hold:

M(f ) = n−1V T
n UT

n ZT �
T/2
p f (�̂p)�

1/2
p ZUnVn,

�̂p = n−1�
1/2
p Z

(
I − UnU

T
n

)
ZT �

T/2
p .

Observe that the joint asymptotic normality of entries in
√

nM(f ) is equivalent to the asymptotic
normality of

n−1/2αT V T
n UT

n ZT �
T/2
p f (�̂p)�

1/2
p ZUnVnη

for arbitrary (but fixed) vectors α and η ∈R
q .

Recall that X = [0, lim supp λmax(�p)(1 + √
γ )2]. Let C be any contour enclosing X such

that f (·) is analytic on its interior. With slight modifications, all arguments in the following hold
for arbitrary such C. For convenience, select C as rectangle with vertices u ± iv0 and u ± iv0,
such that v0 > 0;u > lim supλmax(�p)(1 + √

γ )2;u < 0. Such a rectangle must exist.
By Cauchy’s integral formula, if λmax(�̂p) < u,

n−1/2αT V T
n UT

n ZT �
T/2
p f (�̂p)�

1/2
p ZUnVnη

= −1

2πi

˛
C

f (z)n−1/2αT V T
n UT

n ZT �
T/2
p (�̂p − zI )−1�

1/2
p ZUnVnη dz. (A.1)

If λmax(�̂p) ≥ u, the above equality may not hold. However, if we can show that P(λmax(�̂p) ≥
u) converges to 0, we can still acquire the weak limit of the left-hand side by deriving the weak
limit of the right-hand side. [32], Theorem 3.1, implies that

P
(
λmax(�̂p) ≥ u

) → 0. (A.2)

Hence, it suffices to show the asymptotic normality of the process

ξn(z, α, η) = n−1/2αT V T
n UT

n ZT �
T/2
p (�̂p − zI )−1�

1/2
p ZUnVnη, z ∈ C.

Clearly, ξ(z, α, η) is continuous with respect to z. All asymptotic results are derived in the space
of continuous functions on C with uniform topology. Results in Chapter 2 of [7] apply with Eu-
clidean distance replaced by Frobenius norm of a matrix, that is ‖A‖F = (

∑m
i=1

∑r
j=1 |aij |2)1/2,

where A = [aij ]ij .
We may proceed to prove the asymptotic normality of ξn(z, α, η) on z ∈ C directly. How-

ever, several technical challenges need to be addressed. First, in view of the spectral norm
of (�̂p − zI )−1 being unbounded when z is close to the real axis and extreme eigenvalues
of �̂p exceed lim supλmax(�p)(1 + √

γ )2, the tightness of the process ξn(z, α, η) is unclear.
Secondly, �̂p is not a summation of independent terms, but contains ZUnU

T
n ZT , a compo-

nent containing cross product terms between pairs of columns of Z. These terms entangle
the analysis of the correlation between �̂p and each single column of Z. For these tech-
nical reasons, we avoid directly working on ξn(z, α, η) under C1 on z ∈ C, but start with
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n−1/2UT
n ZT �

T/2
p (�̃p − zI )−1�

1/2
p ZUn, a component of ξn(z, α, η) with �̂p replaced by an

uncentered counterpart

�̃p = 1

n
�

1/2
p ZZT �

T/2
p . (A.3)

The relationship between �̃p and �̂p is given by �̂p = �̃p − 1
n
�

1/2
p ZUnU

T
n ZT �

T/2
p . Next, we

modify the process and the distribution of Z as follows.
Process smoothing. Select a sequence of ρn > 0 such that for some ω ∈ (1,2)

nρn ↓ 0, ρn ≥ n−ω.

Let C+ = C ∩ {u + iv : |v| ≥ ρn}. Define

Q̃n(z) = n−1UT
n ZT �

T/2
p (�̃p − zI )−1�

1/2
p ZUn if z ∈ C+,

Q̃n(z) = ρn − v

2ρn

Q̃n(u + iρn) + v + ρn

2ρn

Q̃n(u − iρn) if z ∈ C \ C+.

To understand this definition better, note that if z is too close to the real axis, Q̃n(z) is modified
to be the linear interpolation of its values at u + iρn and u − iρn. Observe that Vn appearing in
ξn(z, α, η) was left out when defining Q̃n(z). This trick helps transforming back to �̂p from �̃p;
see (A.5). Note also that Vn is a sequence of deterministic matrices of fixed dimensions, having
a limit under C5 and C6. The reason to smooth the process is to guarantee a bound of order
O(ρ−1

n ) on the spectral norm of (�̃p − zIp)−1. It is crucial in the proof of tightness.
Variable truncation. C1 will be temporarily replaced by the following truncated variable con-

dition. Select a positive sequence εn such that

εn → 0 and ε−4
n E

[
z4

111
(|z11| ≥ εnn

1/2)] → 0.

The existence of εn is shown in [32]. We then truncate zij to be zij1(|zij | ≤ εnn
1/2). The trun-

cated variable is then standardized to maintain zero mean and unit variance. Since we will mostly
work on the truncated variables in the following sections, for notational simplicity, we shall use
zij to denote the truncated random variables and z̆ij to denote the original random variable satis-
fying C1. That is,

zij = z̆ij1(|z̆ij | ≤ εnn
1/2) −Ez̆ij1(|z̆ij | ≤ εnn

1/2)

{E[z̆ij1(|z̆ij | ≤ εnn1/2) −Ez̆ij1(|z̆ij | ≤ εnn1/2)]2}1/2
.

For some constant K, when n is sufficiently large,

|zij | ≤Kεnn
1/2, E[zij ] = 0, E

[
z2
ij

] = 1, E
[
z4
ij

]
< ∞. (A.4)

The reason to truncate z̆ij is to obtain a bound on the probability of extreme eigenvalues of
�̂p exceeding lim supp λmax(�p)(1 + √

γ )2, which is crucial to be able to prove tightness of the
smoothed random processes on C. Under the original condition C1, although (A.2) holds, such a
tail bound is not available. After the truncation, the following lemma shown in [6,32] holds.
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Lemma A.1. Suppose the entries of Z satisfy (A.4). For any positive 
 and any D ∈
(lim supp λmax(�p)(1 + √

γ )2, u),

P
(
λmax(�̃p) ≥ D

) = o
(
n−


)
.

It is argued later that the process smoothing and variable truncation steps do not change the
weak limit of objects under consideration.

Theorem A.1. For arbitrary vectors a and b ∈ R
k , define Gn(z, a, b) = aT Q̃n(z)b. Suppose Z

satisfies (A.4) and suppose C2–C6 in Section 2 hold. Then,

n1/2{Gn(z, a, b) − aT b
(
1 − �−1(z, γ )

)} D−→ �(1)(z), z ∈ C,

where
D−→ denotes weak convergence in C(C,R2), and �(1)(z) is a Gaussian process with zero

mean and covariance function

�(1)(z1,z2) = δ(z1,z2, γ )�−2(z1, γ )�−2(z2, γ )
[‖a‖2‖b‖2 + (

aT b
)2]

.

See Section S.3 of the Supplementary Material [21] for proof of the theorem.
Next, transforming back to �̂p , define

Q̂n(z) = n−1UT
n ZT �

T/2
p (�̂p − zI )−1�

1/2
p ZUn, z ∈ C+,

Q̂n(z) = ρn − v

2ρn

Q̂n(u + iρn) + v + ρn

2ρn

Q̂n(u − iρn), z ∈ C \ C+.

Using the identity (A.3), and Lemma S.6 in the Supplementary Material [21], we get

Q̂n(z) = Q̃n(z)
[
Ik − Q̃n(z)

]−1
. (A.5)

Notably, (�(z, γ ) − 1)/�(z, γ ) is bounded away from 1 on C. Since Q̂n(z) is a smooth func-
tion of Q̃n(z), applying the delta-method, the following result is an immediate consequence of
Theorem A.1.

Lemma A.2. Suppose Z satisfies (A.4) and suppose C2–C6 in Section 2 hold. Then,

n1/2{Q̂n(z) − {
�(z, γ ) − 1

}
Ik

} D−→ �(2)(z), z ∈ C,

where
D−→ denotes weak convergence in C(C,R2k2

), and �(2)(z) = [�(2)(z)]ij is a k × k sym-
metric Gaussian matrix process with zero mean and covariance

E
[
�(2)(z1)

]
ii

[
�(2)(z2)

]
ii

= 2δ(z1,z2, γ ),

E
[
�(2)(z1)

]
ij

[
�(2)(z2)

]
ij

= δ(z1,z2, γ ) if i < j,

E
[
�(2)(z1)

]
ij

[
�(2)(z2)

]
i′j ′ = 0 if i �= i′ or j �= j ′.
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Define a smoothed version of ξn(z, α, η) as

ξ̂n(z, α, η) = ξn(z, α, η), z ∈ C+,

ξ̂n(z, α, η) = ρn − v

2ρn

ξn(u + iρn,α, η) + v + ρn

2ρn

ξn(u − iρn,α, η), z ∈ C \ C+.

Lemma A.3. Suppose that Z satisfies (A.4) and C2–C6 hold. Then,

ξ̂n(z, α, η) − n1/2(�(z, γ ) − 1
)
αT η

D−→ �(3)(z),

where
D−→ denotes weak convergence in C(C,R2), and �(3)(z) is a Gaussian process with zero

mean and covariance function �(2)(z1,z2) = δ(z1,z2, γ )[‖α‖2‖η‖2 + (αT η)2].

The following result is an immediate consequence of the foregoing:

˛
C

f (z)̂ξn(z, α, η)

−2πi
dz− n1/2�(f,γ )αT η =⇒N

(
0,

[‖α‖2‖η‖2 + (
αT η

)2]
�(f,γ )

)
. (A.6)

To complete the proof of Theorem 2.1, we further need to show (A.6) still holds if (A.4) is
extended to C1 and ξ̂n(z, α, η) is replaced by ξn(z, α, η). We present the extension of (A.6) in
Section S.9 of the Supplementary Material [21].
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