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We consider the spectral properties of sparse stochastic block models, where N vertices are partitioned into
K balanced communities. Under an assumption that the intra-community probability and inter-community
probability are of similar order, we prove a local semicircle law up to the spectral edges, with an explicit
formula on the deterministic shift of the spectral edge. We also prove that the fluctuation of the extremal
eigenvalues is given by the GOE Tracy–Widom law after rescaling and centering the entries of sparse
stochastic block models. Applying the result to sparse stochastic block models, we rigorously prove that
there is a large gap between the outliers and the spectral edge without centering.
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1. Introduction

Understanding an underlying network structure is one of the key problems in data science. Many
real world data sets can be viewed as networks of interacting nodes, and a common approach
to analyze the structure of the network is to find which nodes share similar properties so that
they can be grouped into a community. Clustering, or community detection, to recognize such
communities from given data sets is thus a natural and fundamental problem.

Community detection problem is vital in understanding the real-world networks. In biol-
ogy and bioinformatics, community detection appears in finding functional modules in protein-
protein interaction networks [7], functional mapping of metabolic network [18,19], analyzing
gene expression data [9,25] and more. Community detection problems also naturally arise in so-
cial networks. The “friendships” networks of Facebook, the online social network, was studied,
including anonymous Facebook users in one hundred American universities [33,34]. Commu-
nities of the network were identified, and it was found that the community structure depends
strongly on their offline network, such as class year or House affiliation. There have been studies
on community structures of other social networks, such as scientific collaboration networks [16,
30].

The stochastic block model (SBM) is one of the simplest models of the network with commu-
nities. First appeared in the study of social networks [21], it consists of N vertices partitioned
into disjoint subsets C1, . . . ,CK and a K × K symmetric matrix P of edge probabilities. The
model appears in various fields of study, and numerous results have been obtained for commu-
nity detection in SBM, including various algorithms [3,16,17,20,26], phase transitions [2], and
fundamental limits [31]. We refer to [1] for history and recent developments of the community
detection problem and stochastic block models.
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The spectral method is one of the most well-known approaches for the community detection
of SBM. In this method, the adjacency matrix of a given graph is considered, whose extremal
eigenvalues and corresponding eigenvectors contain the information on the ground truth of the
model. In the simplest example of an SBM with two communities of equal size, if we denote
the N × N adjacency matrix by A, the probability matrix P is a 2 × 2 matrix, and the expected
adjacency matrix EA has four blocks, that is,

EA =
(

P11 P12

P21 P22

)
.

If P11 = P22 = ps and P12 = P21 = pd , the first two eigenvalues of EA are N(ps + pd)/2 and
N(ps − pd)/2, and the eigenvalue 0 has multiplicity N − 2. If the difference A − EA is small,
then the eigenstructure of A is not much different from that of EA, and one can recover the
community structure from the second eigenvector of A. The spectral method is also useful in
determining the number of communities K when it is not known a priori [5,28].

In the spectral method, the perturbation H := A − EA, which called centered SBM, is a ran-
dom matrix, and its property, especially the behavior of its largest eigenvalue, can be precisely
predicted by results from random matrix theory when P does not depend on N . However, H is
different from Wigner matrices in two aspects: (1) the variances of entries are not identical, and
(2) the matrix is sparse. (See Assumption 2.1 for more detail on the sparsity.) The first aspect
is due to that the intra-community probability ps and the inter-community probability pd are
different from each other and hence the random variables have different variances. The second
aspect is common in many real data, since the expected degree is much smaller than N and the
edge probability decays as N grows. For sparse random matrices with identical off-diagonal en-
tries, which correspond to Erdős–Rényi graphs, the spectral properties were obtained in [10,12,
27]. One of the most notable aspects of sparse random matrices is that the deterministic shift of
their largest eigenvalues are much larger than the size of the Tracy–Widom fluctuation. Thus,
as discussed in Remark 2.14 of [27], in cases where the intra-community probability ps and the
inter-community probability pd are both small and close to each other, we can predict that the
algorithms for the community detection should reflect the shift of the largest eigenvalues if ps ,
pd � N−1/3. However, to our best knowledge, it has not been proved for sparse SBM.

In this paper, we consider the spectral properties of sparse SBM with K communities. We
assume that the communities are of equal size, or balanced, with Pii = ps and Pij = pd for
i �= j . We further assume that the model is moderately sparse as in Assumption 2.1. Our main
contributions are

(1) proof of local semicircle law for the centered sparse SBM that is believed to be optimal
up to the edge of the spectrum (Theorems 2.6 and 2.8),

(2) proof of the Tracy–Widom limit for the shifted, rescaled largest eigenvalue of the centered
sparse SBM (Theorem 2.13), and

(3) application to the (non-centered) sparse SBM (Theorem 2.15).

The local semicircle law, the estimates on the resolvent of Wigner type matrices, has been
the starting point in the local spectral analysis of Wigner matrices [14,15] and Erdős–Rényi
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graphs [10,12]. We follow the classical strategy based on Schur complement formula and self-
consistent equations as in [14,15], which leads us to a weak local law for the resolvent entries
(Theorem 2.8). Since the weak local law is not sufficient for the proof of other properties such
as the Tracy–Widom fluctuation of the extremal eigenvalues, we improve it to prove the strong
local law for the normalized trace of the resolvent (Theorem 2.6), which is optimal up to the edge
of the spectrum, by adapting the strategy of [23,27].

The proof of the Tracy–Widom limit of the extremal eigenvalues is based on the Green function
comparison method that utilizes a continuous interpolation as in [27]. With the continuous flow,
we can track the change of the normalized trace over time, which is offset by the (deterministic)
shift of the spectral edge.

When applying the local spectral properties of Wigner matrices or Erdős–Rényi graphs to
the SBM, one of the main technical challenges stems from that the entries in the SBM are not
identically distributed, especially the means of the entries are not equal, and thus the results
from random matrix theory are not directly applicable. While the difficulty can be overcome by
algorithms as in [16], it requires a priori knowledge on the number of clusters K . In this paper,
we handle the issue by proving that there is a gap of order 1 between K-th largest eigenvalue
and (K + 1)-st one, which is much larger than the gap between the (K + 1)-st and the (K + 2)-
nd, when the number of clusters is K . This results justifies the use of the spectral method for
community detection even when the SBM is sparse.

In the proof of the local law, as in [27], we choose a polynomial P(m) of the normalized
trace m of the Green function, based on a recursive moment estimate. However, the fluctuation
averaging mechanism, which was intrinsic in the analysis of Erdős–Rényi graph, is much more
complicated for the SBM due to the lack of the symmetry. Technically, it means that we need to
separate the off-diagonal elements Hij into two cases in the cumulant expansion – one with when
i and j are in the same community and the other when i and j are in different communities. With
the separation, the two indices i and j do not decouple completely in the cumulant expansion, and
we resolve the problem by replacing the diagonal entries of the Green function by m and further
expanding the error terms generated by the replacement. Due to this additional expansion, we
need to consider a more complicated polynomial P than the Erdős–Rényi case in [27], and the
analysis is more involved for the limiting distribution.

This paper is organized as follows: In Section 2, we introduce our model and state the main
results. In Section 3, we describe the outline of our proof. In Section 4, we prove a weak local
semicircle law, which is used as an a priori estimate in the proof of our main results. In Section 5,
we prove the strong local law by using the recursive moment estimates. In Section 6, we prove
the Tracy–Widom limit of the largest eigenvalue using the Green function comparison method.
Some technical lemmas in the proof are proved in Supplement [24].

Remark 1.1 (Notational remark). We use the symbols O(·) and o(·) for the standard big-O and
little-o notation. The notations O , o, �, � always refer to the limit N → ∞ unless otherwise
stated. Here, the notation a � b means a = o(b). We use c and C to denote positive constants
that do not depend on N . Their values may change from line to line. For summation index,
we use i ∼ j if i and j are within the same group. We write a ∼ b if there is C ≥ 1 such that
C−1|b| ≤ |a| ≤ C|b|. Throughout this paper, we denote z = E + iη ∈ C

+ where E = Re z and
η = Im z.
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2. Definition and main results

2.1. Models and notations

Let H be an N × N symmetric matrix with K2 blocks of same size. The blocks are based on the
partition of the vertex set [N ] := {1,2, . . . ,N},

[N ] = V1 ∪ V2 ∪ · · · ∪ VK, (2.1)

where |Vi | = N/K . For i, j ∈ {1,2, . . .N}, we may consider two types of the edge probability
Hij , depending on whether i and j are within the same vertex set V� or not. More precisely, we
consider the sparse block matrix model satisfying the following assumption.

Assumption 2.1 (Balanced generalized sparse random matrix). Fix any small φ > 0. We
assume that H = (Hij ) is a real N ×N block random matrix with K balanced communities with
1 ≤ K ≤ N , whose diagonal entries are almost surely zero and whose off-diagonal entries are
independently distributed random variables, up to symmetry constraint Hij = Hji . We suppose
that each Hij satisfies the moment conditions

EHij = 0, E|Hij |2 = σ 2
ij , E|Hij |k ≤ (Ck)ck

Nqk−2
, (k ≥ 2), (2.2)

with sparsity parameter q satisfying

Nφ ≤ q ≤ N1/2. (2.3)

Here, we further assume the normalization condition

N∑
i=1

σ 2
ij = 1. (2.4)

We denote by κ
(k)
ij the k-th cumulant of Hij . Under the moment condition (2.2),

κ
(1)
ij = 0,

∣∣κ(k)
ij

∣∣ ≤ (2Ck)2(c+1)k

Nqk−2
, (k ≥ 2). (2.5)

For our model with the block structure, we abbreviate κ
(k)
ij as

κ
(k)
ij =

{
κ(k)
s if i and j are within same community,

κ
(k)
d otherwise.

(2.6)

We will also use the normalized cumulants, s(k), by setting

s
(1)
(·) := 0, s

(k)
(·) := Nqk−2κ

(k)
(·) , (k ≥ 2). (2.7)
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We notice that we assume Hii = 0 a.s., although this condition can be easily removed. For con-
venience, we define the parameters ζ and ξ (4) as

ζ := s
(2)
s − s

(2)
d

K
= N(κ

(2)
s − κ

(2)
d )

K
, ξ (4) := s

(4)
s + (K − 1)s

(4)
d

K
. (2.8)

The prominent example of a balanced generalized sparse random matrix is the case where Hij

is given by the Bernoulli random variable Aij with probability ps or pd , depending on whether i

and j are within same vertex set or not, respectively. For this reason, in this paper, we oftentimes
use the term ‘centered generalized stochastic block model’ or ‘cgSBM’ as a representative of the
balanced generalized sparse random matrix.

In the rest of this subsection, we introduce some notations of basic definitions.

Definition 2.2 (High probability events). We say that an N -dependent event 	 ≡ 	(N) holds
with high probability if for any (large) D > 0,

P
(
	c

) ≤ N−D,

for N ≥ N0(D) sufficiently large.

Definition 2.3 (Stochastic domination). Let X ≡ X(N), Y ≡ Y (N) be N -dependent non-
negative random variables. We say that X stochastically dominates Y if, for all small ε > 0
and large D > 0,

P
(
X(N) > NεY (N)

) ≤ N−D, (2.9)

for sufficiently large N ≥ N0(ε,D), and we write X ≺ Y . When X(N) and Y (N) depend on a
parameter u ∈ U , then we say X(u) ≺ Y(u) uniformly in u ∈ U if the threshold N0(ε,D) can be
chosen independently of u.

Throughout this paper, we choose ε > 0 sufficiently small. (More precisely, it is smaller than
φ/10, where φ > 0 is the fixed parameter in Assumption 2.1 below.)

Definition 2.4 (Stieltjes transform). For given a probability measure ν, we define the Stieltjes
transforms of ν as

mν(z) :=
∫

ν(dx)

x − z
,

(
z ∈ C

+)
For example, the Stieltjes transform of the semicircle measure,

�(dx) := 1

2π

√(
4 − x2

)
+ dx,

is given by

msc(z) =
∫

�(dx)

x − z
= −z + √

z2 − 4

2
,
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where the argument of
√

z2 − 4 is chosen so that msc(z) ∈ C
+ for z ∈ C

+ and
√

z2 − 4 ∼ z as
z → ∞. Clearly, we have

msc(z) + msc(z)
−1 + z = 0.

Definition 2.5 (Green function (Resolvent)). Given a real symmetric matrix H we define its
Green function or resolvent, G(z), and the normalized trace of its Green function, mH , by

GH (z) ≡ G(z) := (H − zI)−1, mH (z) ≡ m(z) := 1

N
TrGH (z), (2.10)

where z = E + iη ∈ C
+ and I is the N × N identity matrix.

Denoting by λ1 ≥ λ2 ≥ · · · ≥ λN the ordered eigenvalues of H , we note that mH is the Stieltjes
transform of the empirical eigenvalue measure of H , μH , defined as

μH := 1

N

N∑
i=1

δλi
.

Finally, we introduce the following domains in the upper-half plane

E := {
z = E + iη ∈ C

+ : |E| < 3,0 < η ≤ 3
}
, (2.11)

D� := {
z = E + iη ∈ C

+ : |E| < 3,N−1+� < η ≤ 3
}
. (2.12)

2.2. Main results

Our first main result is the local law for mH , the normalized trace of GH (z), up to the spectral
edges.

Theorem 2.6 (Strong local law). Let H satisfy Assumption 2.1 with φ > 0. Then, there exist an
algebraic function m̃ : C+ → C

+ and the deterministic number 2 ≤ L < 3 such that the following
hold:

(1) The function m̃ is the Stieltjes transform of a deterministic probability measure ρ̃t , that
is, m̃(z) = mρ̃(z). The measure ρ is supported on [−L,L] and ρ̃ is absolutely continuous
with respect to Lebesgue measure with a strictly positive density on (−L,L).

(2) The function m̃ ≡ m̃(z), z ∈C
+, is a solution to the polynomial equation

P1,z(m̃) := 1 + zm̃ + m̃2 + q−2
(

s
(4)
s + (K − 1)s

(4)
d

K

)
m̃4

= 1 + zm̃ + m̃2 + q−2ξ (4)m̃4 = 0. (2.13)
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(3) The normalized trace m(z) of the Green function G(z) satisfies the local law∣∣m(z) − m̃(z)
∣∣ ≺ 1

q2
+ 1

Nη
, (2.14)

uniformly on the domain E .

The function m̃ was first introduced in [27] to consider a correction term to the semicircle
measure in the sparse setting. Some properties of probability measure ρ̃ and its Stieltjes transform
m̃ are collected in Lemma A.2.

From the local law in (2.14), we can easily prove the following estimates on the local density
of states of H . For E1 < E2 define

n(E1,E2) := 1

N

∣∣{i : E1 < λi < E2}
∣∣, nρ̃(E1,E2) :=

∫ E2

E1

ρ̃(x)dx.

Corollary 2.7 (Integrated density of states). Suppose that H satisfies Assumption 2.1 with
φ > 0. Let E1,E2 ∈ R, E1 < E2. Then,∣∣n(E1,E2) − nρ̃(E1,E2)

∣∣ ≺ E1 − E2

q2
+ 1

N
. (2.15)

Corollary 2.7 easily follows from Theorem 2.6 by applying the Helffer–Sjöstrand calculus. We
refer to Section 7.1 of [11] for more detail.

The proof of Theorem 2.6 is based on the following a priori estimates on entries of the resol-
vents, which we call the weak local semicircle law. While the weak law for m is indeed weaker
than the strong local law, Theorem 2.6, we have here an entrywise law, which is believed to be
optimal.

Theorem 2.8 (Weak local semicircle law). Suppose H satisfies Assumption 2.1. Define the
spectral parameter ψ(z) by

ψ(z) := 1

q
+ 1√

Nη
, (z = E + iη).

Then for any sufficiently small �, the events

max
i �=j

∣∣Gij (z)
∣∣ ≺ ψ(z) (2.16)

max
i �=j

∣∣Gii(z) − m
∣∣ ≺ ψ(z), (2.17)

and ∣∣m(z) − msc(z)
∣∣ ≺ 1√

q
+ 1

(Nη)1/3
(2.18)

hold uniformly on the domain D�.
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Remark 2.9. We can extend Theorem 2.8 to domain E as in the proof of Theorem 2.8 in [12].
However, we do not pursue the direction in this paper.

An immediate consequence of (2.17) of Theorem 2.8 is the complete delocalization of the
eigenvectors.

Corollary 2.10. Suppose that H satisfies Assumption 2.1 with φ > 0. Denote by (uH
i ) the �2-

normalized eigenvectors of H . Then,

max
1≤i≤N

∥∥uH
i

∥∥∞ ≺ 1√
N

. (2.19)

For the proof, we refer to the proof of Corollary 3.2 of [14].
Together with the weak local semicircle law, a standard application of the moment method

yields the following weak bound on ‖H‖; see, for example, Lemma 4.3 of [12] and Lemma 7.2
of [14].

Lemma 2.11. Suppose that H satisfies Assumption 2.1 with φ > 0. Then,∣∣‖H‖ − 2
∣∣ ≺ 1

q1/2
. (2.20)

From the strong law, we can sharpen the estimate (2.20) by containing the deterministic re-
finement to the semicircle law.

Theorem 2.12. Suppose that H satisfies Assumption 2.1 with φ > 0. Then,∣∣‖H‖ − L
∣∣ ≺ 1

q4
+ 1

N2/3
, (2.21)

where ±L are the endpoints of the support of the measure ρ̃ given by

L = 2 + ξ (4)

q2
+ O

(
q−4). (2.22)

Our last main result states that the fluctuations of the rescaled largest eigenvalue of the cen-
tered generalized stochastic block model are given by the Tracy–Widom law when the sparsity
parameter q satisfies q � N1/6.

Theorem 2.13. Suppose that H satisfies Assumption 2.1 with φ > 1/6. Denote by λH
1 the largest

eigenvalue of H . Then

lim
N→∞P

(
N2/3(λH

1 − L
) ≤ s

) = F1(s) (2.23)

where L is given in (2.22) and F1 is the cumulative distribution function of the GOE Tracy–
Widom law.
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Figure 1. ESD of the largest eigenvalues shifted by 2 (blue) and by L (yellow) plotted against the Tra-
cy–Widom law (red line): cgSBM with N = 27,000, K = 3 and (a) ps = 0.03, pd = 0.01; (b) ps = 0.009,
pd = 0.006; (c) ps = 0.002, pd = 0.001.

In Figure 1, we plot histograms of shifted and rescaled largest eigenvalues of the 27,000 ×
27,000 cgSBM against the Tracy–Widom distribution when ps and pd are (a) between N−1/3

and N−2/3, (b) between N−2/3 and N−7/9, and (c) less then logN/N . The red line is the Tracy–
Widom distribution and the blue histogram is the eigenvalue histogram shifted by 2 and the
yellow one is histogram shifted by L. In the case (a), we see that the deterministic shift given by
L − 2 = O(q−2) is essential so that the empirical eigenvalue distribution of the sample matrices
follows the Tracy–Widom distribution when we shift it by L instead of 2.

In (b), Figure 1(b) shows that the empirical distribution of the sample matrices does not follow
the Tracy–Widom law. In [22], it was shown that for Erdős–Rényi graph, there exists a transition
from Tracy–Widom to Gaussian fluctuations when p ∼ N−2/3. We expect that the fluctuation
of extreme eigenvalues of cgSBM will also follow the Gaussian distribution in this regime. Fi-
nally, in (c) where ps , pd � logN

N
, cgSBM contains an isolated vertex almost surely and thus is

disconnected. Due to this disconnectedness, properties of a cgSBM will be entirely changed. In
this case, as shown in Figure 1(c), the empirical distribution follows neither the Tracy–Widom
distribution nor the Gaussian distribution.

2.3. Applications to the adjacency matrix of the sparse SBM

When K = 1, in [12], it was proved that the largest and second largest eigenvalues are separated
by a gap of order one when p ≥ (1 + ε)/N . We expect that the similar result holds for SBM with
fixed number of clusters. We also introduce the conjecture which stated in [1].

Conjecture 2.14. Let A be the cgSBM with K clusters, intra-community probability ps and the

inter-community probability pd . Define SNR = N(ps−pd)2

K(ps+(K−1)pd )
. Then for any K ≥ 2, if SNR > 1

(the Kesten–Stigum (KS) threshold), it is possible to detect communities in polynomial time.

Now consider an adjacency matrix of the cgSBM with N vertices and K communities. To
make bulk eigenvalues lie in an order one interval, we may rescale this matrix ensemble and
we are led to the following random matrix ensemble. Let A be a real symmetric N × N matrix
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whose entries, Aij , are independent random variables satisfy

P

(
Aij = 1

σ

)
=

{
ps (i ∼ j)

pd (i � j),

P(Aij = 0) =
{

1 − ps (i ∼ j)

1 − pd (i � j),
P(Aii = 0) = 1,

(2.24)

where σ 2 := N
K

ps(1 − ps) + N(K−1)
K

pd(1 − pd). Then we can get Ã := A − EA which is a
centered matrix obtained from A. Here, Ãij have the distribution

P

(
Ãij = 1 − ps

σ

)
= ps, P

(
Ãij = −ps

σ

)
= 1 − ps, (i ∼ j)

P

(
Ãij = 1 − pd

σ

)
= pd, P

(
Ãij = −pd

σ

)
= 1 − pd, (i � j),

P(Ãii = 0) = 1.

(2.25)

When ps and pd have order N−1+2φ , it can be easily shown that Ã satisfies Assumption 2.1 with
q ∼ Nφ . Now we may apply Weyl’s inequality to A = EA + Ã and get the following conjecture.

Conjecture 2.15. Fix φ > 0. Let A and Ã satisfy (2.24) and (2.25) with N−1+2φ ≤ ps , pd ≤
N−2φ and fixed number of cluster K . Then there is a constant c such that

λA
N ≤ · · · ≤ λA

K+1 ≤ λÃ
1 ≤ 2 + c ≤ λA

K ≤ · · · ≤ λA
1 . (2.26)

with high probability. In other words, there is an order one gap between the K largest eigenvalues
and other eigenvalues.

In Figure 2(a), as expected in Conjecture 2.15, we can see a gap between the outliers and
the bulk. However, if K increases in proportion to N , the gap may disappear. For simplicity,

Figure 2. Empirical distributions of the eigenvalues of 8000 × 8000 balanced SBM with (a) 4 clusters and
(b) 20 clusters. Red bar shows the number of outliers at that position.
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assume that ps = (c + 1)pd and pd ∼ N−1+θ . Then nonzero eigenvalues of EA are (c+K)Nθ

Kσ

and cNθ

Kσ
of multiplicity 1 and K − 1, respectively. Since σ 2 ∼ O(Nθ) in this case, the largest

eigenvalue is approximately order of Nθ/2 and second one is order of Nθ/2K−1. Therefore, as
in Figure 2(b), if K � Nθ/2, we may not observe the gap between outliers and the bulk of the
spectrum, i.e., we cannot detect the proper community structure. Note that this result coincides
with Conjecture 2.14 since SNR � 1 if and only if K � Nθ/2.

Remark 2.16. We can extend Conjecture 2.15 to more general matrix ensemble, which satisfies
the condition that A − EA follows Assumption 2.1 and entries of EA is order of N−1+ε for
any small ε. We further remark that all our results also hold for complex Hermitian balanced
generalized sparse random matrices without any change except that the limiting edge fluctuation
is given by GUE Tracy–Widom law.

3. Strategy and outline of the proof

In this section, we briefly outline the strategy of our proofs for the results in Section 2.

3.1. Main strategy for the proof

As illustrated in Section 3 of [27], a good estimate on the expectation of a sufficiently high power
of the quadratic polynomial 1+zm+m2 is enough for the proof of the strong local law. To obtain
such an estimate, we expand the term 1 + zm by using a simple identity

1 + zGii =
N∑

k=1

HikGki. (3.1)

In the expansion, which was called the resolvent expansion in [27], it is not easy to fully expand
the terms with high powers, and the main idea in [27] was to introduce the recursive moment
estimate that estimates E|1 + zm + m2|D by the lower moments E|1 + zm + m2|D−� for � ≥ 1.
When used together with the resolvent expansion, it makes the tracking of the higher order terms
much simpler.

In the actual estimate of the moments, we use a generalized version of Stein’s lemma, which
was introduced in [32]. It was used in the study of the linear eigenvalue statistics of random
matrices [8,29] and also the joint convergence of the largest eigenvalue and the linear statistics
[4].

Lemma 3.1 (Cumulant expansion, generalized Stein’s lemma). Fix � ∈ N and let F ∈
C�+1(R;C+). Let Y be a centered random variable with finite moments to order � + 2. Then,

E
[
YF(Y )

] =
�∑

r=1

κ(r+1)(Y )

r! E
[
F (r)(Y )

] +E
[
	�

(
YF(Y )

)]
, (3.2)
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where E denotes the expectation with respect to Y , κ(r+1)(Y ) denotes the (r + 1)-st cumulant of
Y and F (r) denotes the r-th derivative of the function F . The error term 	�(YF(Y )) satisfies

E
[
	�

(
YF(Y )

)] ≤ C�E
[|Y |�+2] sup

|t |≤Q

∣∣F (�+1)(t)
∣∣

+ C�E[|Y |�+21
(|Y | > Q

)
sup
t∈R

∣∣F (�+1)(t)
∣∣, (3.3)

where Q > 0 is an arbitrary fixed cutoff and C� satisfies C� ≤ (C�)�/�! for some numerical
constant C.

For more detail of the actual application of the methods explained in this subsection, we refer
to [23,27].

3.2. Weak local semicircle law

The first obstacle we encounter in the proof of the strong local law is the lack of a priori es-
timates in the expansion. We follow the conventional strategy, developed in [14,15], based on
Schur complement formula and self-consistent equations. However, the bound in the weak local
semicircle law is not as strong as the one obtained in [15], due to the sparsity, but comparable
with the weak local law in [12]. The weak law, Theorem 2.8, is proved in Section 4.

3.3. Strong local law

The main technical difficulty of the proof the strong local law lies in that the entries of H are not
identically distributed. For example, if we use the cumulant expansion on the right-hand side of
(3.1), we get

E[HikGki] =
�∑

r=1

κ
(r+1)
ik

r! E
[
∂

(r+1)
ik Gki

] +E
[
	�(HikGki)

]

= −E
[
κ

(2)
ik GkkGii + κ

(2)
ik G2

ik

] +
�∑

r=2

κ
(r+1)
ik

r! E
[
∂

(r+1)
ik Gki

] +E
[
	�(HikGki)

]
,

where 	� is the error term in the generalized Stein’s lemma, Lemma 3.1. In the homogeneous
case where κ

(2)
ik are identical, the first term in the right-hand side reduces to m2 after averaging

over indices i and k. In our model, however, κ
(2)
ik depends on the choice of i and k and hence

the indices do not decouple even after the expansion. If the weak law were good enough so that
the error from the substitution of Gkk by m is negligible, the analysis might work even with
the absence of the decoupling mechanism, but Theorem 2.8 is not enough in that purpose, and
moreover, it is believed to be optimal.
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In this paper, exploiting the community structure of the model, we decompose the sum into
two parts, one for the case where i and k are in the same community and the other where i and
k are not in the same community. For each sum, we replace the diagonal entries of the resolvent
G by m if the error from the replacement is negligible. If the error is too large, we decompose it
again by applying the community structure. The number of the diagonal entries of G increases in
each step, and the terms with enough diagonal entries can be handled by the substitution (by m)
even with our local law. The detail can be found in Appendix C of [24], especially in Section C.7.

3.4. Tracy–Widom limit and Green function comparison

The derivation of the Tracy–Widom fluctuation of the extremal eigenvalues from the strong local
law is now a standard procedure in random matrix theory. In this paper, we follow the approach
in [27], based on the Dyson matrix flow. For the sake of completeness, we briefly outline the
main ideas of the proof.

To prove the Tracy–Widom fluctuation, we first notice that we can obtain the distribution of
the largest eigenvalue of H from the expectation of a function of Imm(z). Then, we use the
Green function comparison method to compare the edge statistics of the centered generalized
stochastic block model and generalized Wigner matrix whose first and second moments match
with our model. More precisely, for a given centered generalized stochastic block model H0, we
consider the Dyson matrix flow with initial condition H0 defined by

Ht := e−t/2H0 +
√

1 − e−tWG, (t ≥ 0), (3.4)

where WG is a generalized Gaussian Wigner matrix independent of H0, with vanishing diagonal
entries. The local edge statistics of WG with vanishing diagonal follows the GOE Tracy–Widom
statistics; see Lemma 3.5 of [27] and Theorem 2.7 of [6].

Along the flow, we track the change of the expectation of a function of Imm(z). Taking the
deterministic shift of the edge into consideration, we find that fluctuation of the extremal eigen-
values of Ht do not change over t , which establishes the Tracy–Widom fluctuation for H0. The
analysis along the proof requires the strong local law for the normalized trace of the Green func-
tion of Ht , defined as

Gt(z) = (Ht )
−1, mt (z) = 1

N

N∑
i=1

(Gt )ii(z),
(
z ∈C

+)
. (3.5)

We note that Ht is also a balanced generalized sparse random matrix. To check this, let κ
(k)
t,ij

be the k-th cumulant of (Ht )ij . Then, by the linearity of the cumulants under the addition of

independent random variables, we have κ
(1)
t,(·) = 0, κ

(2)
t,(·) ≤ C

N
and κ

(k)
t,(·) = e−kt/2κ

(k)
(·) for k ≥ 3. In

particular, we have the bound

∣∣κ(k)
t,(·)

∣∣ ≤ e−t (Ck)ck

Nqk−2
t

, (k ≥ 3), (3.6)
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where we introduced the time-dependent parameter

qt := qet/2, ζt := N

K

(
κ

(2)
t,s − κ

(2)
t,d

)
. (3.7)

We also define a polynomial Pz,t of m with parameters z and t by

Pz,t (m) :=(
1 + zm + m2 + e−t q−2

t ξ (4)m4)((z + m + ζtm)2 − ζt

(
1 + mz + m2))

=:P1,z,t (m)P2,z,t (m). (3.8)

We generalize Theorem 2.6 as follows.

Proposition 3.2. Let H0 satisfy Assumption 2.1 with φ > 0. Then, for any t ≥ 0, there exist de-
terministic number 2 ≤ Lt < 3 and an algebraic function m̃t : C+ →C

+ such that the following
hold:

(1) The function m̃t is the Stieltjes transform of a deterministic probability measure ρ̃t , i.e.,
m̃t (z) = mρ̃t (z). The measure ρt is supported on [−Lt ,Lt ] and ρ̃t is absolutely continuous
with respect to Lebesgue measure with a strictly positive density on (−Lt ,Lt ).

(2) The function m̃t ≡ m̃t (z), z ∈C
+, is a solution to the polynomial equation

P1,t,z(m̃t ) := 1 + zm̃t + m̃2
t + e−t q−2

t

(
s
(4)
s + (K − 1)s

(4)
d

K

)
m̃4

t

= 1 + zm̃t + m̃2
t + e−2t q−2ξ (4)m̃4

t = 0. (3.9)

(3) The normalized trace of the Green function satisfies the local law∣∣mt(z) − m̃t (z)
∣∣ ≺ 1

q2
t

+ 1

Nη
, (3.10)

uniformly on the domain E and uniformly in t ∈ [0,6 logN ].
Remark 3.3. Several properties of m̃t , defined in Proposition 3.2, are crucial in the proof of the
Tracy–Widom fluctuation, especially the square-root decay at the edge of the spectrum and the
deterministic shift of the edge, where the upper edge of the support of ρ̃t given by

Lt = 2 + e−t q−2
t ξ (4) + O

(
e−2t q−4

t

)
. (3.11)

In Appendix A of [24], we collect some important properties of m̃t and some basic properties of
msc, the Stieltjes transform of the semicircle measure.

4. Proof of weak local law

4.1. Preliminaries

In this section, we prove Theorem 2.8. Unlike strong local semicircle law for cgSBM, we can
prove the weak local semicircle law under weaker condition. More precisely, we do not need any
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assumption about the community structure. Therefore, in this section, we consider generalized
sparse random matrices defined as follows.

Assumption 4.1 (Generalized sparse random matrix). Fix sufficiently small φ > 0. A gener-
alized sparse random matrix, H = (H)ij is a symmetric N × N matrix whose diagonal entries
are almost surely zero and whose off-diagonal entries are independent, up to symmetry constraint
Hij = Hji , random variables. We further assume that each Hij satisfy the moment conditions

EHij = 0, E|Hij |2 = σ 2
ij , E|Hij |k ≤ (Ck)ck

Nqk−2
, (k ≥ 2), (4.1)

with sparsity parameter q satisfying

Nφ ≤ q ≤ N1/2. (4.2)

We further assume the normalize condition that

N∑
i=1

σ 2
ij = 1. (4.3)

Recall that

D� := {
z = E + iη ∈C

+ : |E| < 3,N−1+� < η ≤ 3
}
.

Throughout this section, we use the factor Nε and allow ε to increase by a tiny amount from
line to line to absorb numerical constants in the estimates. Moreover, we choose � satisfying
4φ ≤ � ≤ 1 and ε > 0 strictly smaller than the fixed parameter φ > 0 appearing in (4.2). If we
take φ sufficiently small, then Theorem 2.8 states that (2.16), (2.17) and (2.18) holds on D� for
sufficiently small �. In other words we can claim that Theorem 2.8 valid on D� for any (small) �.

We define the z-dependent quantities

vk := Gkk − msc, [v] := 1

N

N∑
k=1

vk = m − msc.

Our goal is to estimate the following quantities,

�d := max
k

|vk| = max
k

|Gkk − msc|, �o := max
k �=l

|Gkl |, � := |m − msc|. (4.4)

Definition 4.2 (Minors). Consider general matrices whose indices lie in subsets of {1, . . . ,N}.
For T ⊂ {1, . . . ,N} we define H(T ) as the (N − |T |) × (N − |T |) matrix

H(T ) = (Hij )i,j∈{1,...,N}\T .
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It is important to keep the original values of the matrix indices in the minor H(T ), not to identify
{1, . . . ,N}\T with {1, . . . ,N − |T |}. We set

(T )∑
i

:=
∑
i:i /∈T

.

If T = {a}, we abbreviate ({a}) by (a) in the above definition; similarly, write (ab) instead of
({a, b}). We also define the Green function of H(T ) as

G
(T )
ij (z) := (

H(T ) − z
)−1
ij

.

Definition 4.3 (Partial expectation). Let X ≡ X(H) be a random variable and hi = (Hij )
N
j=1.

For i ∈ {1, . . . ,N} we define the operations Ei and IEi through

EiX := E(X|hi ), IEiX := X −EiX. (4.5)

For T ⊂ {1, . . . ,N}, we introduce the following notations:

Z
(T )
ij :=

T∑
k,l

HikG
(T )
kl Hlj , K

(T )
ij := Hij − zδij − Z

(T )
ij . (4.6)

We abbreviate

Zi := IEiZ
(i)
ii = IEi

(i)∑
k,l

HikG
(i)
kl Hli . (4.7)

The following formulas with these notations were proved in Lemma 4.2 of [14].

Lemma 4.4 (Self-consistent permutation formulas). For any Hermitian matrix H and T ⊂
{1, . . . ,N} the following identities hold. If i, j, k /∈ T and i, j �= k, then

G
(T )
ij = G

(T k)
ij + G

(T )
ik G

(T )
kj

(
G

(T )
kk

)−1
. (4.8)

If i, j /∈ T satisfy i �= j , then

G
(T )
ii =(

K
(iT )
ii

)−1 = (
Hii − z − Z

(iT )
ii

)−1
, (4.9)

G
(T )
ij = − G

(T )
jj G

(jT )
ii K

(ijT )
ij = −G

(T )
ii G

(iT )
jj K

(ijT )
ij . (4.10)

We also have the Wald identity ∑
j

|Gij |2 = Im Gii

η
. (4.11)

The following estimate provide the bound for the matrix element of H which follows from the
Markov’s inequality and the moment conditions.
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Lemma 4.5. We have

|Hij | ≺ 1

q
.

4.2. Self-consistent perturbation equations

Following [13], we define the following quantities:

Ai := σ 2
iiGii +

∑
j �=i

σ 2
ij

GijGji

Gii

, (4.12)

ϒi := Ai + hii − Zi (4.13)

and recall the definition of Zi in (4.7). Using (4.8) and (4.9), we can easily obtain the self-
consistent equations for the deviation msc of the diagonal matrix elements of the Green function;

vi = Gii − msc = 1

−z − msc − (
∑

j σ 2
ij vj − ϒi)

− msc. (4.14)

Now we define the exceptional (bad) event

B = B(z) := {
�d(z) + �o(z) ≥ (logN)−2}, (4.15)

and the control parameter

�(z) :=
√

�(z) + Im msc(z)

Nη
. (4.16)

On Bc, we have �(z) ≤ CN−2φ by definition of D�. We collect some basic properties of the
Green function in the following elementary lemma which were proved in Lemma 3.5 of [15] and
Lemma 3.12 of [13].

Lemma 4.6. Let T be a subset of {1, . . . ,N} and i /∈ T. Then there exists a constant C = CT

depending on |T|, such that the following hold in Bc∣∣G(T)
kk − msc

∣∣ ≤ �d + C�2
o for all k /∈ T (4.17)

1

C
≤ ∣∣G(T)

kk

∣∣ ≤ C for all k /∈ T (4.18)

max
k �=l

∣∣G(T)
kl

∣∣ ≤ C�o (4.19)

max
i

|Ai | ≤ C

N
+ C�2

o (4.20)

for any fixed |T| and for sufficiently large N .
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We note that all quantities depend on the spectral parameter z and the estimates are uniform
in z = E + iη.

4.3. Estimate of the exceptional events and analysis of the self-consistent
equation

We introduce three lemmas which estimate some exceptional events. Their proofs are given in
Appendix B.1 of [24].

Lemma 4.7. For fixed z ∈ D� and any small ε > 0, we have on Bc with high probability

�o ≤ C

(
Nε

q
+ Nε�

)
. (4.21)

Lemma 4.8. For any z ∈ D�, we have on Bc with high probability

|Zi | ≤ C

(
Nε

q
+ Nε�

)
, (4.22)

∣∣Zij

(ij)

∣∣ ≤ C

(
Nε

q
+ Nε�

)
(i �= j). (4.23)

Lemma 4.9. For any z ∈ D�, we have on Bc with high probability

|ϒi | ≤ C

(
Nε

q
+ Nε�

)
. (4.24)

We define the events

	h :=
{

max
1≤i,j≤N

|Hij | ≥ Nε

q

}
∪

{∣∣∣∣∣
N∑

i=1

Hii

∣∣∣∣∣ ≥ Nε

(
1

q
+ 1

)}
,

	d :=
{

max
i

|Zi | ≥ C

(
Nε

q
+ Nε�

)}
, (4.25)

	o :=
{

max
i �=j

∣∣Z(ij)
ij

∣∣ ≥ C

(
Nε

q
+ Nε�

)}
,

and let

	(z) := 	h ∪ [
(	d ∪ 	o) ∩ Bc

]
. (4.26)

Then by (4.22), (4.23) and the large deviation estimate (B.2) we can show that 	c holds with
high probability.
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From (4.14), we obtain the following equation for vi

vi = m2
sc

(∑
j

σ 2
ij vj − ϒi

)
+ m3

sc

(∑
j

σ 2
ij vj − ϒi

)2

+ O

(∑
j

σ 2
ij vj − ϒi

)3

. (4.27)

By assumption,
∑

j σ 2
ij = 1, e = (1,1, . . . ,1) is the unique eigenvector of B = (σij ) with simple

eigenvalue 1. Define the parameter

g = g(z) := max
{
δ+,

∣∣1 − Re m2
sc(z)

∣∣}. (4.28)

and we recall the following basic lemma that was proven in Lemma 4.8 of [13].

Lemma 4.10. The matrix I − m2
sc(z)B is invertible on the subspace orthogonal to e. let u be a

vector which is orthogonal to e and let

w = (
I − m2

sc(z)B
)
u,

then

‖u‖∞ ≤ C logN

g(z)
‖w‖∞

for some constant C that only depends on δ−.

We introduce the following lemma which estimates the deviation of vi from its average [v].
Lemma 4.11. Fix z ∈ D�. If in some set � it holds that

�d ≤ q

(logN)3/2
, (4.29)

then in the set � ∩ Bc , we have

max
i

∣∣vi − [v]∣∣ ≤ C logN

g

(
�2 + Nε

q
+ Nε� + (logN)2

g2

(
Nε

q
+ Nε�

)2)
≤ C logN

g3

(
�2 + Nε

q
+ Nε�

)
, (4.30)

with high probability.

With Lemma 4.11, we can show the following.

Lemma 4.12. Fix z ∈ D�. Define [Z] := N−1 ∑N
i=1 Zi . Then in the set Bc we have

(
1 − m2

sc

)[v] = m3
sc[v]2 + m2

sc[Z] + O

(
�2

logN

)
+ O

(
(logN)3

(
Nε

q
+ Nε�

)2)
, (4.31)

with high probability.
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Proofs of Lemmas 4.11 and 4.12 are given in Appendices B.2 and B.3, respectively.

4.4. Dichotomy estimate for � and continuity argument

In Bc , maxi |Zi | = O(Nε

q
+ Nε�) holds with high probability. Therefore using Nε

q
+ Nε� ≤

N−ε , with high probability, we have

(
1 − m2

sc

)[v] = m3
sc[v]2 + O

(
�2

logN

)
+ O

(
Nε

q
+ Nε�

)
. (4.32)

Lemma 4.13. Let η ≥ 2. Then for z ∈ D� we have

�d(z) + �o(z) ≤ C

(
Nε

q
+ Nε

√
N

)
≤ (logN)−2. (4.33)

Lemma 4.13 is an initial estimates on �d and �o for large η ∼ 1 to get the continuity argument
started.

We further introduce the following notations

α :=
∣∣∣∣1 − m2

sc

m3
sc

∣∣∣∣, β := Nε

√
q

+ Nε

(Nη)1/3
, (4.34)

where α and β depend on the parameter z. For any z ∈ D� we have the bound β ≤ N− 1
2 φ .

From Lemma A.1, it follows that for any z ∈ D� there is a constant K ≥ 1 such that

1

K

√
κ + η ≤ α(z) ≤ K

√
κ + η. (4.35)

Since
√

κ + η is increasing and β(E + iη) is decreasing in η, we know that, for any fixed E

and U > 1,
√

κ + η = 2U2Kβ(E + iη) has a unique solution η̃ = η̃(U,E) which satisfies η̃ � 1.

Lemma 4.14 (Dichotomy). There exist a constant U0 such that for any fixed U ≥ U0, there
exists constant C1(U) such that the following hold for any z ∈ D�.

�(z) ≤ Uβ(z) or �(z) ≥ α(z)

U
if η ≥ η̃(U,E) (4.36)

�(z) ≤ C1(U)β(z) if η < η̃(U,E) (4.37)

on Bc(z) with high probability.

Proofs of Lemma 4.13 and 4.14 are given in B.4.
Now choose a decreasing finite sequence ηk ∈ D�, k = 1,2, . . . , k0, with k0 ≤ CN8, |ηk −

ηk+1| ≤ N−8, η1 = 2, and ηk0 = N−1+l . Fix E with |E| ≤ 3 and set zk = E + iηk . We fix
U ≥ U0 and recall the definition of η̃ from Lemma 4.14.
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Consider the first case of z1. For large N , it is easy to show that η1 ≥ η̃ for any |E| ≤ 3.
Therefore Lemma 4.13 and Lemma 4.14 imply that Bc(z1) and �(z1) ≤ Uβ(z1) hold with high
probability. For general k we have the following:

Lemma 4.15. Define 	k := Bc(zk) ∩ {�(zk) ≤ C(k)(U)β(zk)} where

C(k)(U) =
{

U if ηk ≥ η̃(U,E)

C1(U) if ηk ≤ η̃(U,E).
(4.38)

Then

P
(
	c

k

) ≤ 2kN−D. (4.39)

Proof of the Lemma 4.15 is given in Appendix B.5 of [24]. Now we are ready to prove our
main theorem.

Proof of Theorem 2.8. Take a lattice L ⊂ D� such that |L| ≤ CN6 and for any z ∈ D� there
exist z̃ ∈ L satisfying |z − z̃| ≤ N−3. From the Lipschitz continuity of the map z �→ Gij (z) and
z �→ msc(z) with a Lipschitz constant bounded by η−2 ≤ N2, we have

∣∣Gij (z) − Gij (z̃)
∣∣ ≤ |z − z̃|

η2
≤ 1

N
. (4.40)

We also have ∣∣m(z) − m(z̃)
∣∣ ≤ |z − z̃|

η2
≤ 1

N
. (4.41)

By Lemma 4.15, we have for some large constant C

P

[⋂
z̃∈L

{
�(z̃) ≤ Cβ(z̃)

}] ≥ 1 − N−D. (4.42)

Hence with (4.40) and β � N−1 we find

P

[ ⋃
z∈D�

{
�(z) > Cβ(z)

}] ≤ N−D, (4.43)

for some constant C. Using similar argument, we can also get

P

[ ⋂
z∈D�

Bc(z)

]
≤ N−D. (4.44)

In other words, we proved (2.18). Using (4.21), (4.30) and (4.39) with similar lattice arguments,
we can conclude the proof of Theorem 2.8. �
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5. Proof of Proposition 3.2 and Theorem 2.12

5.1. Proof of Proposition 3.2

In this section, we prove Proposition 3.2. Recall the subdomain D� of E and the definition of the
polynomial P ≡ Pt,z, P1 ≡ P1,t,z and P2 ≡ P2,t,z in (3.8). We have the following lemma called
recursive moment estimate.

Lemma 5.1 (Recursive moment estimate). Fix φ > 0 and fix any t ≥ 0. Let H0 satisfies As-
sumption 2.1. Then, for any D > 10 and small ε > 0, the normalized trace of the Green function,
mt ≡ mt(z), of the matrix Ht satisfies

E
∣∣P(mt )

∣∣2D

≤ Nε
E

[(
1

q4
t

+ Immt

Nη

)∣∣P(mt)
∣∣2D−1

]
+ N−ε/8q−1

t E
[|mt − m̃t |2

∣∣P(mt)
∣∣2D−1]

+ Nεq−1
t

2D∑
s=2

s−2∑
s′=0

E

[(
Immt

Nη

)2s−s′−2∣∣P ′(mt )
∣∣s′ ∣∣P(mt)

∣∣2D−s
]

+ Nε
2D∑
s=2

E

[(
1

Nη
+ 1

qt

(
Immt

Nη

)1/2

+ 1

q2
t

)(
Immt

Nη

)s−1∣∣P ′(mt )
∣∣s−1∣∣P(mt)

∣∣2D−s
]

+ Nεq−8D
t , (5.1)

uniformly on the domain D�, for sufficiently large N .

We give the detailed proof of Lemma 5.1 in Appendix C of [24]. In this section, we only sketch
the idea of the proof. We estimate the expectation of |P(mt )|2D using Lemma 3.1. For example,
consider the cumulant expansion of 1 + zm, a part of P1,t,z(m), computed by

E[1 + zm] = E

[
1

N

N∑
i=1

(1 + zGii)

]
= E

[
1

N

N∑
i=1

(HG)ii

]
= E

[
1

N

∑
i,j

(HjiGji)

]
,

where we used the definition of Green function to get the second equation. Then by Lemma 3.1,
we get

E

[
1

N

∑
i,j

(HjiGji)

]
= 1

N

∑
i �=j

κ
(2)
ij E

[
(∂ijGij )

]
= − 1

N
E

[∑
i,j

κ
(2)
ij GiiGjj

]
+ 1

N
E

[∑
i

κ
(2)
ii G2

ii

]
− 1

N
E

[∑
i �=j

κ
(2)
ij G2

ij

]
,
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and it can be easily shown that the terms containing at least one off-diagonal Green function
entries are sufficiently small. Thus, the main order term we need to estimate is

1

N
E

[∑
i,j

κ
(2)
ij GiiGjj

]
= 1

N
E

[∑
i,j

κ
(2)
d GiiGjj

]
+ 1

N
E

[∑
i∼j

(
κ(2)
s − κ

(2)
d

)
GiiGjj

]

= E
[
(1 − ζ )m2] + ζK

N2
E

[∑
i∼j

GiiGjj

]
.

To compute with sufficiently small error, using Lemma 3.1 again, we multiply z to the second
term to obtain

ζK

N2
E

[∑
i∼j

zGiiGjj

]
= ζK

N2
E

[∑
i∼j

(∑
k

HikGki − 1

)
Gjj

]
=

l∑
r=1

1

r!EJr − ζE[m] + O(�ε),

where

Jr = ζK

N2

∑
i∼j

∑
k �=i

κ
(r+1)
ik E

[(
∂r
ikGikGjj

)]
,

and O(�ε) is a sufficiently small error term defined by the right side of (5.1). One of the main
order term which only consists of the diagonal entries of the Green function is

EJ1 = ζK

N2

∑
i∼j

∑
k

κ
(2)
d E

[
(GiiGjjGkk)

] − ζK

N2

∑
i∼j∼k

(
κ(2)
s − κ

(2)
d

)
E

[
(GiiGjjGkk)

]
. (5.2)

The first term of the right-hand side of (5.2) can be estimated by

−ζK

N2

∑
i∼j

∑
k �=i

κ
(2)
d E

[
(GiiGjjGkk)

] = −ζ(1 − ζ )K

N2

∑
i∼j

E[mGiiGjj ].

Thus, if we can estimate the second term of the right-hand side of (5.2) with sufficiently small
error, then we get the good estimation for

ζK

N2
E

[∑
i∼j

zGiiGjj

]
+ ζ(1 − ζ )K

N2

∑
i∼j

E[mGiiGjj ] = ζK

N2
E

[(
z + (1 − ζ )m

)∑
i∼j

GiiGjj

]
.

Still it is not easy to handle the second term of the right-hand side of (5.2) due to its community
structure. We abbreviate

Ĵ := ζK

N2

∑
i∼j∼k

(
κ(2)
s − κ

(2)
d

)
E

[
(zGiiGjjGkk)

]
,
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and use Lemma 3.1 once more. With some expansions and calculations, one can get the estima-
tion for Ĵ and with small error terms. We apply a similar strategy to the expectation of |P(mt)|2D

and we can obtain the recursive moment estimate stated in (5.1).
With Lemma 5.1, we can prove Proposition 3.2.

Proof of Proposition 3.2 and Theorem 2.6. Fix t ∈ [0,6 logN ]. Let m̃t be the solution wt of
the equation P1,t,z(wt ) = 0. One can show the first two parts directly from the properties of m̃t

and its Stieltjes inversion ρt ; see Appendix A of [24]. It remains to prove the third part of the
proposition. Since |mt | ∼ 1, |m̃t | ∼ 1, there exist positive constants c1 and c2 satisfying

1

c1
≤ P2(m̃t ) ≤ c1,

1

c2
+ O

(
1

q2

)
≤ P ′′(m̃t ) ≤ c2 + O

(
1

q2

)
. (5.3)

We introduce the following z- and t -dependent deterministic parameters

α1(z) := Im m̃t (z), α2(z) := P ′(m̃t (z)
)
, β := 1

Nη
+ 1

q2
t

, (5.4)

with z = E + iη. We note that

|α2| ≥
∣∣P2(m̃t )

∣∣∣∣P ′
1(m̃t )

∣∣ ≥ 1

c1
ImP ′

1(m̃t ) ≥ 1

c1
Im m̃t = 1

c1
α1

Further let

�t(z) := ∣∣mt(z) − m̃t (z)
∣∣, (

z ∈ C
+)

. (5.5)

Note that from weak local law for the cgSBM (2.18), we have that �t(z) ≺ 1 uniformly on D�.
Since P1(m̃t ) = 0, we have P ′(m̃t ) = P ′

1(m̃t )P2(m̃t ). Similar as in the proof of Lemma 5.1 of
[27], we have

|α2| =
∣∣P ′(m̃t )

∣∣ = ∣∣P ′
1(m̃t )‖P2(m̃t )

∣∣ ∼ √
κt + η.

Recall that Young’s inequality states that for any a, b > 0 and x, y > 1 with x−1 + y−1 = 1,

ab ≤ ax

x
+ by

y
. (5.6)

Let D ≥ 10. Choose any small ε > 0. The strategy is now as follows. We apply Young’s
inequality (5.6) to split up all the terms on the right-hand side of (5.1) and absorb resulting
factors of E|P(mt )|2D into the left hand side. For the first term on the right of (5.1), we get, upon
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using applying (5.6) with x = 2D and y = 2D/(2D − 1), that

Nε

(
Immt

Nη
+ q−4

t

)∣∣P(mt )
∣∣2D−1

≤ Nε α1 + �t

Nη

∣∣P(mt )
∣∣2D−1 + Nεq−4

t

∣∣P(mt )
∣∣2D−1

≤ N(2D+1)ε

2D
β2D(α1 + �t)

2D + N(2D+1)ε

2D
q−8D
t + 2(2D − 1)

2D
N− ε

2D−1
∣∣P(mt)

∣∣2D
, (5.7)

since (Nη)−1 ≤ β and note that the last term can be absorbed into the left-hand side of (5.1). The
same idea can be applied to the second term on the right-hand side of (5.1). Hence, we have

N−ε/8q−1
t �2

t

∣∣P(mt)
∣∣2D−1 ≤ N−(D/4−1)ε

2D
q−2D
t �4D

t + 2D − 1

2D
N− ε

2D−1
∣∣P(mt)

∣∣2D
. (5.8)

To handle the other terms, we Taylor expand P ′(mt ) around m̃t as

∣∣P ′(mt ) − α2 − P ′′(m̃t )(mt − m̃t )
∣∣ ≤ C�2

t . (5.9)

Therefore, for some constant C1, we get

∣∣P ′(m)
∣∣ ≤ |α2| + C1�t, (5.10)

for all z ∈ D�, with high probability. Note that for any fixed s ≥ 2,

(α1 + �t)
2s−s′−2(|α2| + C1�t

)s′ ≤ Nε/2(α1 + �t)
s−1(|α2| + C1�t

)s−1

≤ Nε(α1 + �t)
s/2(|α2| + C1�t

)s/2

with high probability, uniformly in D�, since α1 ≤ c1|α2| ≤ C and �t ≺ 1. Also note that 2s −
s′ − 2 ≥ s since s′ ≤ s − 2. Therefore for the second line in (5.1), for 2 ≤ s ≤ 2D,

Nεq−1
t

(
Immt

Nη

)2s−s′−2∣∣P ′(mt )
∣∣s′ ∣∣P(mt )

∣∣2D−s

≤ Nεq−1
t βs(α1 + �t)

2s−s′−2(|α2| + C1�t

)s′ ∣∣P(mt )
∣∣2D−s

≤ N2εq−1
t βs(α1 + �t)

s/2(|α2| + C1�t

)s/2∣∣P(mt )
∣∣2D−s

≤ N2εq−1
t

s

2D
β2D(α1 + �t)

D
(|α2| + C1�t

)D + N2εq−1
t

2D − s

2D

∣∣P(mt)
∣∣2D (5.11)
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uniformly on D� with high probability. Similarly, for the last term in (5.1), for 2 ≤ s ≤ 2D, we
obtain

Nε

(
1

Nη
+ 1

qt

(
Immt

Nη

)1/2

+ 1

q2
t

)(
Immt

Nη

)s−1∣∣P ′(mt )
∣∣s−1∣∣P(mt)

∣∣2D−s

≤ N2εβ · βs−1(α1 + �t)
s/2(|α2| + C1�t

)s/2∣∣P(mt)
∣∣2D−s

≤ s

2D

(
N2εN

(2D−s)ε

4D2
) 2D

s β2D(α1 + �t)
D

(|α2| + C1�t

)D

+ 2D − s

2D

(
N

− (2D−s)ε

4D2
) 2D

2D−s
∣∣P(mt )

∣∣2D

≤ N(2D+1)εβ2D(α1 + �t)
D

(|α2| + C1�t

)D + N− ε
2D

∣∣P(mt )
∣∣2D

, (5.12)

uniformly on D� with high probability where we used

1

Nη
+ 1

qt

(
Immt

Nη

)1/2

+ 1

q2
t

≺ β. (5.13)

From (5.1), (5.7), (5.8), (5.11) and (5.12)

E
[∣∣P(mt )

∣∣2D] ≤ N(2D+1)ε
E

[
β2D(α1 + �t)

D
(|α2| + C1�t

)D] + N(2D+1)ε

2D
q−8D
t

+ N−(D/4−1)ε

2D
q−2D
t E

[
�4D

t

] + CN− ε
2D E

[∣∣P(mt )
∣∣2D]

, (5.14)

for all z ∈D�. Since the last term can be absorbed into the left-hand side, we eventually find

E
[∣∣P(mt)

∣∣2D]
≤ CN(2D+1)ε

E
[
β2D(α1 + �t)

D
(|α2| + C1�t

)D]
+ C

N(2D+1)ε

2D
q−8D
t + C

N−(D/4−1)ε

2D
q−2D
t E

[
�4D

t

]
≤ N3Dεβ2D|α2|2D + N3Dεβ2D

E
[
�2D

t

] + N3Dεq−8D
t + N−Dε/8q−2D

t E
[
�4D

t

]
, (5.15)

uniformly on D�, where we used α1 ≤ c1|α2| and the inequality

(a + b)x ≤ 2x−1(ax + bx
)

(5.16)

for any a, b ≥ 0 and x ≥ 1 with D > 10 to get the last line.
Now, we aim to control �t in terms of |P(mt )|. For that, from the third order Taylor expansion

of P(mt) around m̃t to get∣∣∣∣P(mt ) − P ′(m̃t )(mt − m̃t ) − 1

2
P ′′(m̃t )(mt − m̃t )

2
∣∣∣∣ ≤ C�3

t , (5.17)
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since P(m̃t ) = 0 and P ′′′(m̃t ) ∼ 1. Then using �t ≺ 1 and P ′′(m̃t ) ≥ C + O(q−2
t ) we obtain

�2
t ≺ |α2|�t + ∣∣P(mt )

∣∣, (z ∈ D�). (5.18)

Taking the 2D-power of (5.18), using (5.16) again, and taking the expectation, we get

E
[
�2D

t

] ≤ 42DNε/2|α2|2D
E

[
�2D

t

] + 42DNε/2
E

[∣∣P(mt)
∣∣2D]

(5.19)

Replacing form (5.15) for E[|P(mt )|2D], for sufficiently large N , we obtain

E
[
�4D

t

] ≤ Nε |α2|2D
E

[
�2D

t

] + N(3D+1)εβ2D|α2|2D + N(3D+1)εβ2D
E

[
�2D

t

]
+ N(3D+1)εq−8D

t + N−Dε/8+εq−2D
t E

[
�4D

t

]
, (5.20)

uniformly on D�. Using Schwarz inequality for the first term and the third term on the right,
absorbing the terms o(1)E[�4D

t ] into the left side and using (5.13) we get

E
[
�4D

t

] ≤ N2ε |α2|4DN(3D+2)εβ2D
∣∣α2D

2

∣∣ + N(3D+2)εβ4D, (5.21)

uniformly on D�. This estimate can be fed back into (5.15), to get the bound

E
[∣∣P(mt )

∣∣2D] ≤ N3Dεβ2D|α2|2D + N3Dεβ4D
E

[
�2D

] + N(3D+1)εβ4D + q−2D
t |α2|4D

≤ N5Dεβ2D|α2|2D + N5Dεβ4D + q−2D
t |α2|4D, (5.22)

uniformly on D� for sufficiently large N .
For any fixed z ∈D�, Markov’s inequality then yields |P(mt )| ≺ |α2|β +β2 +q−1

t |α2|2. Then
we can obtain from the Taylor expansion of P(mt) around m̃t in (5.17) that∣∣∣∣α2(mt − m̃t ) + P ′′(m̃)

2
(mt − m̃t )

2
∣∣∣∣ ≺ ψ�2

t + |α2|β + β2 + q−1
t |α2|2, (5.23)

for each fixed z ∈ D�, where ψ , defined in Theorem 2.8, satisfies ψ ≥ q−2
t . Uniformity in z is

easily achieved using a lattice argument and the Lipschitz continuity of mt(z) and m̃t (z) on D�.
Furthermore, for any (small) ε > 0 and (large) D there is an event �̃ with P(�̃) ≥ 1 − ND such
that for all z ∈ D�,∣∣∣∣α2(mt − m̃t ) + P ′′(m̃)

2
(mt − m̃t )

2
∣∣∣∣ ≤ Nεψ�2

t + Nε |α2|β + Nεβ2 + Nεq−1
t |α2|2, (5.24)

on �̃, for N sufficiently large.
Recall that there exists a constant C0 > 1 which satisfies C−1

0

√
κt (E) + η ≤ |α2| ≤

C0
√

κt (E) + η, where we can choose C0 uniform in z ∈ D�. Note that, for a fixed E, β =
β(E + iη) is a decreasing function of η whereas

√
κt (E) + η is increasing. Hence there is

η̃0 ≡ η̃0(E) such that
√

κ(E) + η̃0 = C0qtβ(E + ĩη0). We consider the subdomain D̃ ⊂ D�

defined by

D̃ := {
z = E + iη ∈ D� : η > η̃0(E)

}
. (5.25)
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On this subdomain D̃, β ≤ q−1
t |α2|, hence we get from (5.24) that there is a high probability

event �̃ such that∣∣∣∣α2(mt − m̃t ) + P ′′(m̃)

2
(mt − m̃t )

2
∣∣∣∣ ≤ o(1)�2

t + 3Nεq−1
t |α2|2

and thus

|α2|�t ≤
(

c2

2
+ o(1)

)
�2

t + 3Nεq−1
t |α2|2

uniformly on D̃ on �̃. Hence, on �̃, we have either

|α2| ≤ 2c2�t or �t ≤ 6Nεq−1
t |α2|, (z ∈ D̃). (5.26)

When η = 3, it is easy to see that

|α2| ≥
∣∣P2(m̃)‖P ′

1(m̃)
∣∣ ≥ 1

c1

(
|z + 2m̃| − C

1

q2

)
≥ η

c1
= 3

c1
� 6Nεq−1

t |α2|, (5.27)

for sufficiently large N . From the a priory estimate, we know that |�t | ≺ ψ , we hence find that

�t ≤ 6Nεq−1
t |α2|, (5.28)

holds for z ∈ D̃ on the event �̃. Putting (5.28) back into (5.15), we obtain that

E
[∣∣P(mt )

∣∣2D] ≤ N4Dεβ2D|α2|2D + N3Dεq−8D
t + q−6D

t |α2|4D

≤ N6Dεβ2D|α2|2D + N6Dεβ4D, (5.29)

for any small ε > 0, and large D, uniformly on D̃. For z ∈ D�\D̃, it is direct to check the esti-
mate E[|P(mt )|2D] ≤ N6Dεβ2D|α2|2D + N6Dεβ4D . Using a lattice argument and the Lipschitz
continuity, we find from a union bound that for any small ε > 0 and large D there exists an event
� with P(�) ≥ 1 − N−D such that∣∣∣∣α2(mt − m̃t ) + P ′′(m̃)

2
(mt − m̃t )

2
∣∣∣∣ ≤ Nεψ�2

t + Nε |α2|β + Nεβ2 (5.30)

on �, uniformly on D� for any sufficiently large N .
Recall that for fixed E, β = β(E + iη) is a decreasing function of η,

√
κt (E) + η is an in-

creasing function of η, and η0 ≡ η0(E) satisfies that
√

κ(E) + η0 = 10C0N
εβ(E + iη0). Further

notice that η0(E) is a continuous function. We consider the following subdomains of E :

E1 := {
z = E + iη ∈ E : η ≤ η0(E),10Nε ≤ Nη

}
,

E2 := {
z = E + iη ∈ E : η > η0(E),10Nε ≤ Nη

}
,

E3 := {
z = E + iη ∈ E : 10Nε ≥ Nη

}
.
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We consider the cases z ∈ E1, z ∈ E2 and z ∈ E3, and split the stability analysis accordingly. Let
� be a high probability event such that (5.30) holds. Note that we can choose � sufficiently small
that satisfies D� ⊃ E1 ∪ E2.

Case 1: If z ∈ E1, we note that |α2| ≤ C0
√

κ(E) + η ≤ 10C2
0Nεβ(E + iη). Then, we find that∣∣∣∣P ′′(m̃)

2

∣∣∣∣�2
t ≤ |α2|�t + Nεψ�2

t + Nε |α2|β + Nεβ2

≤ 10C2
0Nεβ�t + Nεψ�2

t + (
10C2

0Nε + 1
)
Nεβ2,

on �. Hence, there is some finite constant C such that on �, we have �t ≤ CNεβ , z ∈ E1.
Case 2: If z ∈ E2, we obtain that

|α2|�t ≤
(∣∣∣∣P ′′(m̃)

2

∣∣∣∣ + Nεψ

)
�2

t + |α2|Nεβ + Nεβ2, (5.31)

on �. We then notice that C0|α2| ≥ √
κt (E) + η ≥ 10C0N

εβ , that is, Nεβ ≤ |α2|/10, so that

|α2|�t ≤
(∣∣∣∣P ′′(m̃)

2

∣∣∣∣ + Nεψ

)
�2

t + (
1 + N−ε

)|α2|β ≤ c2�
2
t + (

1 + N−ε
)|α2|β (5.32)

on �, where we used that Nεψ ≤ 1. Hence, on �, we have either

|α2| ≤ 2c2�t or �t ≤ 3Nεβ. (5.33)

We use the dichotomy argument and the continuity argument similarly to the strategy to get
(5.28). Since 3Nεβ ≤ |α2|/8 on E2, by continuity, we find that on the event �, �t ≤ 3Nεβ for
z ∈ E2.

Case 3: For z ∈ E3 we use that |m′
t (z)| ≤ Immt (z)

Im z
, z ∈ C

+. Note that mt is a Stieltjes transform
of a probability measure. Set η̃ := 10N−1+ε and observe that

∣∣mt(E + iη)
∣∣ ≤

∫ η̃

η

s Immt(E + is)

s2
ds + �t(E + ĩη) + ∣∣m̃t (E + ĩη)

∣∣. (5.34)

It is easy to check that s → s Immt(E + is) is monotone increasing. Thus, we find that∣∣mt(E + iη)
∣∣ ≤ 2η̃

η
Immt(E + ĩη) + �t(E + ĩη) + ∣∣m̃t (E + ĩη)

∣∣
≤ C

Nε

Nη

(
Im m̃t (E + ĩη) + �t(E + ĩη)

) + ∣∣m̃t (E + ĩη)
∣∣, (5.35)

for some C where we used η̃ = 10N−1+ε to obtain the second inequality. Since z = E + ĩη ∈
E1 ∪ E2, we have �t(E + ĩη) ≤ CNεβ(E + ĩη) ≤ C on �. Since m̃t is uniformly bounded on E ,
we obtain that �t ≤ CNεβ on �, for all z ∈ E3.

To sum up, we get �t ≺ β uniformly on E for fixed t ∈ [0,6 logN ]. Choosing t = 0, we have
proved Theorem 2.6. Now we use the continuity of the Dyson matrix flow to prove that this result
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holds for all t ∈ [0,6 logN ]. Consider a lattice L ⊂ [0,6 logN ] with spacings of order N−3. Then
we obtain that �t ≺ β , uniformly on E and on L, by a union bound. Thus, by continuity, we can
extend the conclusion to all t ∈ [0,6 logN ] and conclude the proof of Proposition 3.2. �

5.2. Proof of Theorem 2.12

Theorem 2.12 follows directly from the following result.

Lemma 5.2. Suppose that H0 satisfy Assumption 2.1 with φ > 0. Then,∣∣‖Ht‖ − Lt

∣∣ ≺ 1

q4
t

+ 1

N2/3
, (5.36)

uniformly in t ∈ [0,6 logN ].

For the proof of Lemma 5.2, the similar strategy to the ones in [27] and [23] can be applied.
We establish the upper bound on the largest eigenvalue of Ht , using a stability analysis starting
from (5.15) and the fact that α1(z) = Im m̃t behaves as η/

√
κt (E) + η, for E ≥ L+. The detailed

proof is given in Appendix D of [24].

6. Proof of Tracy–Widom limit

In this section, we prove the Theorem 2.13, the Tracy–Widom limiting distribution of the largest
eigenvalue. Following the idea from [15], we consider the imaginary part of the normalized trace
of the Green function m ≡ mH of H . For η > 0, define

θη(y) = η

π(y2 + η2)
, (y ∈R). (6.1)

From the definition of the Green function, one can easily check that

Imm(E + iη) = π

N
Tr θη(H − E). (6.2)

The first proposition in this section shows how we can approximate the distribution of the
largest eigenvalue by using the Green function. Recall that L+ is the right endpoint of the deter-
ministic probability measure in Theorem 2.6.

Proposition 6.1. Let H satisfy Assumption 2.1, with φ > 1/6. Denote by λH
1 the largest eigen-

value of H . Fix ε > 0 and let E ∈R be such that |E − L| ≤ N−2/3+ε . Set E+ := L + 2N−2/3+ε

and define χE := 1[E,E+]. Let η1 := N−2/3−3ε and η2 := N−2/3−9ε . Let K : R → [0,∞) be a
smooth function satisfying

K(x) =
{

1 if |x| < 1/3,

0 if |x| > 2/3,
(6.3)



2430 J.Y. Hwang, J.O. Lee and W. Yang

which is a monotone decreasing on [0,∞). Then, for any D > 0,

P
(
λH

1 ≤ E − η1
) − N−D < E

[
K

(
Tr(χE ∗ θη2)(H)

)]
< P

(
λH

1 ≤ E + η1
) + N−D (6.4)

for N sufficiently large, with θη2 .

We refer to Proposition 7.1 of [27] for the proof. We remark that the lack of the improved local
law near the lower edge does not alter the proof of Proposition 6.1.

Define WG be a N × N generalized Wigner matrix independent of H with Gaussian entries
WG

ij satisfying

EWG
ij = 0, E

∣∣WG
ij

∣∣2 = E|Hij |2,

and denote by mG ≡ mWG
the normalized trace of its Green function. The following is the Green

function comparison for our model.

Proposition 6.2. Under the assumptions of Proposition 6.1 the following holds. Let ε > 0 and
set η0 = N−2/3−ε . Let E1,E2 ∈ R satisfy |E1|, |E2| ≤ N−2/3+ε . Consider a smooth function
F :R→ R such that

max
x∈R

∣∣F (l)(x)
∣∣(|x| + 1

)−C ≤ C,
(
l ∈ [1,11]). (6.5)

Then, for any sufficiently small ε > 0, there exists δ > 0 such that∣∣∣∣EF

(
N

∫ E2

E1

Imm(x + L+ + iη0) dx

)
−EF

(
N

∫ E2

E1

ImmG(x + λ+ + iη0) dx

)∣∣∣∣
≤ N−δ, (6.6)

for large enough N .

From Theorem 2.7 of [6], we know that the largest eigenvalue of the generalized Wigner matrix
follows the Tracy–Widom distribution. Thus, Proposition 6.2 directly implies Theorem 2.13, the
Tracy–Widom limit for the largest eigenvalue. A detailed proof is found, for example, with the
same notation in [27], Section 7.

In the remainder of the section, we prove Proposition 6.2. We begin by the following applica-
tion of the generalized Stein lemma.

Lemma 6.3. Fix � ∈ N and let F ∈ C�+1(R;C+). Let Y ≡ Y0 be a random variable with finite
moments to order � + 2 and let W be a Gaussian random variable independent of Y . Assume
that E[Y ] = E[W ] = 0 and E[Y 2] = E[W 2]. Introduce

Yt := e−t/2Y0 +
√

1 − e−tW, (6.7)
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and let Ẏt ≡ dYt/dt . Then,

E
[
ẎtF (Yt )

] = −1

2

�∑
r=2

κ(r+1)(Y0)

r! e− (r+1)t
2 E

[
F (r)(Yt )

] +E
[
	�

(
ẎtF (Yt )

)]
, (6.8)

where E denotes the expectation with respect to Y and W , κ(r+1)(Y ) denotes the (r + 1)-th
cumulant of Y and F (r) denotes the r-th derivative of the function F . The error term 	� in (6.8)
satisfies ∣∣E[

	�

(
ẎtF (Yt )

)]∣∣ ≤ C�E
[|Yt ||�+2] sup

|x|≤Q

∣∣F (�+1)(x)
∣∣

+ C�E
[|Yt |�+21

(|Yt | > Q
)]

sup
x∈R

∣∣F (�+1)(x)
∣∣, (6.9)

where Q > 0 is an arbitrary fixed cutoff and C� satisfies C� ≤ (C�)�

�! for some numerical con-
stant C.

Proof of Proposition 6.2. Fix a (small) ε > 0. Consider x ∈ [E1,E2]. For simplicity, let

G ≡ Gt(x + Lt + iη0), m ≡ mt(x + Lt + iη0), (6.10)

with η0 = N−2/3−ε , and define

X ≡ Xt := N

∫ E2

E1

Imm(x + Lt + iη0)dx. (6.11)

Note that X ≺ Nε and |F (l)(X)| ≺ NCε for l ∈ [1,11]. From (3.11) we can obtain that

Lt = 2 + e−t ξ (4)q−2
t + O

(
e−2t q−4

t

)
, L̇t = −2e−t ξ (4)q−2

t + O
(
e−2t q−4

t

)
,

with qt = et/2q0, where L̇t denotes the derivative with respect to t of Lt . Let z = x + Lt + iη0
and G ≡ G(z). Differentiating F(X) with respect to t , we obtain

d

dt
EF(X) = E

[
F ′(X)

dX

dt

]
= E

[
F ′(X) Im

∫ E2

E1

N∑
i=1

dGii

dt
dx

]

= E

[
F ′(X) Im

∫ E2

E1

(∑
i,j,k

Ḣjk

∂Gii

∂Hjk

+ L̇t

∑
1≤i,j≤N

GijGji

)
dx

]
, (6.12)

where by definition

Ḣjk ≡ (Ḣt )jk = −1

2
e−t/2(H0)jk + e−t

2
√

1 − e−t
WG

jk. (6.13)
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Thus, we find that

∑
i,j,k

E

[
ḢjkF

′(X)
∂Gii

∂Hjk

]

= −2
∑
i,j,k

E
[
ḢjkF

′(X)GijGki

]

= e−t

N

�∑
r=2

q
−(r−1)
t

r!
∑

i

∑
j �=k

E
[
s
(r+1)
(jk)

∂r
jk

(
F ′(X)GijGki

)] + O
(
N1/3+Cε

)
, (6.14)

for � = 10, by Lemma 6.3, where we use the short hand ∂jk = ∂/∂Hjk . Here, the error term
O(N1/3+Cε) in (6.14) corresponds to 	� in (6.8), which is O(NCεN2q−10

t ) for X = Hji . To
estimate the right-hand side of (2.6), we use the following lemma whose proof is in Appendix E
of [24].

Lemma 6.4. For an integer r ≥ 2, let

Ar := e−t

N

q
−(r−1)
t

r!
∑

i

∑
j �=k

E
[
s
(r+1)
(jk) ∂r

jk

(
F ′(X)GijGki

)]
. (6.15)

Then, for any r �= 3,

Ar = O
(
N2/3−ε′)

, (6.16)

and

A3 = 2e−t ξ (4)q−2
t

∑
i,j

E
[
F ′(X)GijGji

] + O
(
N2/3−ε′)

. (6.17)

Assuming Lemma 6.4, we find that there exists ε′ > 2ε such that, for all t ∈ [0,6 logN ],
∑
i,j,k

E

[
ḢjkF

′(X)
∂Gii

∂Hjk

]
= −L̇t

∑
i,j

E
[
GijGjiF

′(X)
] + O

(
N2/3−ε′)

, (6.18)

which implies that the right-hand side of (6.12) is O(N−ε′/2). Integrating Equation (6.12) from
t = 0 to t = 6 logN , we get∣∣∣∣EF

(
N

∫ E2

E1

Imm(x + Lt + iη0)dx

)
t=0

−EF

(
N

∫ E2

E1

Imm(x + Lt + iη0)dx

)
t=6 logN

∣∣∣∣
≤ N−ε′/4.
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By comparing largest eigenvalues of H and λG
i , we can get desired result. Let λi(6 logN) be the

i-th largest eigenvalue of H6 logN and λG
i the i-th largest eigenvalue of WG, then |λi(6 logN) −

λG
i | ≺ N−3. Then we find that ∣∣Imm|t=6 logN − ImmG

∣∣ ≺ N−5/3. (6.19)

This completes the proof of Proposition 6.2. �
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Supplementary Material

Supplementary to “Local law and Tracy–Widom limit for sparse stochastic block models”
(DOI: 10.3150/20-BEJ1201SUPP; .pdf). In the supplementary material [24], we will provide
some important properties of the deterministic refinement of Wigner’s semicircle law, and the
proofs of lemmas, including the recursive moment estimates, the bound on the operator norm
‖H‖, and technical lemmas in Section 4 and Section 6.
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