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This paper is concerned with frequency domain theory for functional time series, which are temporally
dependent sequences of functions in a Hilbert space. We consider a variance decomposition, which is more
suitable for such a data structure than the variance decomposition based on the Karhunen–Loéve expansion.
The decomposition we study uses eigenvalues of spectral density operators, which are functional analogs
of the spectral density of a stationary scalar time series. We propose estimators of the variance components
and derive convergence rates for their mean square error as well as their asymptotic normality. The latter is
derived from a frequency domain invariance principle for the estimators of the spectral density operators.
This principle is established for a broad class of linear time series models. It is a main contribution of the
paper.
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1. Introduction

Suppose {Xt } is a weakly dependent stationary mean zero functional time series. Precise defini-
tions will be given in Section 2. A major tool of Functional Data Analysis (FDA) is the Karhunen-
Loéve expansion

Xt(u) =
∞∑

j=1

ξtj vj (u), Eξ2
tj = λj , (1.1)

where the functions vj are the functional principal components (FPCs), and the scalars λj are
the variance components. Expansion (1.1) and its applications are treated in detail in several
monographs, see, for example, Chapter 9 of [22] and Chapter 11 of [27] for introductions, and
most Chapters of [7] and [20] for applications. Stationary time series in Hilbert spaces, including
aspects of their spectral theory relevant to prediction, are discussed in depth in Chapters 9 and
10 of [36]. The variance decomposition

E‖Xt‖2 =
∞∑

j=1

λj (1.2)
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has played a fundamental role in FDA. At the most basic level, estimates of the λj are used
to determine the number of FPCs to be used in dimension reduction through the percentage
of explained variance criterion. These estimates also enter into most statistics based on FPCs.
While decomposition (1.2) is valid for any stationary functional time series with E‖X0‖2 < ∞,
the functions vj do not reflect in any way the dependence structure of the time series {Xt }. If
{X′

t } is a sequence of i.i.d. functions such that for each t , X′
t has the same covariance operator as

Xt , then the series {Xt } and {X′
t } have the same decompositions (1.1) and (1.2).

To provide a more efficient dimension reduction technique for functional time series, Panaretos
and Tavakoli [33] and Hörmann et al. [15] developed theory and methodology for what we call
dynamic FPCs (DFPCs). Extending the multivariate setting developed in Chapter 9 of [8], they
showed that the DFPCs are more suitable to reduce the dimension of functional time series than
the usual FPCs. The DFPCs are defined in Section 2, see equations (2.11) and (2.12). They have
recently been used by Górecki et al. [13] to develop an effective normality test, and extended to
periodically correlated functional time series by Kidzinski et al. [24]. Using approaches based on
DFPCs, Hörmann et al. [16] and Pham and Panaretos [35] considered the problem of estimation
in a functional regression with dependent error functions.

There is however at present basically no work on an analog of the variance decomposition
(1.2) in the context of DFPCs. Such a decomposition will play a similar role for temporally de-
pendent functions Xt as the decomposition (1.2) has played for i.i.d. functional samples. The
decomposition derived in Section 2 is implicit in the work of Hörmann et al. [16], but only the
consistency of the estimators could be inferred from their work. The original question that mo-
tivated this research was to understand second order properties of the estimators of the variance
components based on the DFPCs. It turns out that to gain such an understanding, a fairly pro-
found investigation of the foundations of frequency domain estimation of functional time series
is needed. We will first explain the motivating questions, and then comment on the chief results
presented in this work. Due to a fairly complex structure of the objects we study, we can present
only the highlights in the introduction.

In the context of expansion (1.1), if E‖Xt‖4 < ∞ and some simple assumptions hold, then for
each j ≥ 1,

lim sup
N→∞

NE(̂λj − λj )
2 < ∞ (1.3)

and

N1/2(̂λj − λj )
d→ N

(
0, σ 2

j

)
, (1.4)

where the hat indicates suitable estimators, which are generally the eigenvalues of the sample
covariance operator, but other estimators have also been considered, see, for example, Bosq [7].
Relation (1.3) was established by Dauxois et al. [10] under independence, and extended to weakly
dependent functional time series by Hörmann and Kokoszka [17]. Relation (1.4) can be derived
from the results of Kokoszka and Reimherr [26]. In case of continuous functions satisfying regu-
larity conditions, it follows from the results of Hall and Hosseini-Nasab [14]. Our first objective
is to derive analogs of (1.3) and (1.4) in the contexts of dynamic FPCs of Hörmann [15]. We will
introduce the variance components �j (see (2.10) and (2.14)) and their estimators �̂j (see (3.1)).
The questions are: At what rate does E(�̂j − �j)

2 tend to zero? Is it true that under a suitable
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normalization, the difference �̂j − �j is asymptotically normal. We will see that the standard
rates in (1.3) and (1.4) no longer hold. The second question is particularly delicate. The estimator
�̂j is a functional of the spectral density operator viewed as a process on (−π,π], and to estab-
lish the asymptotic normality of �̂j an invariance principle for the process of estimated spectral
density operators is needed. We use the term “invariance principle” to emphasize convergence in
the metric space of operator-valued functions on (−π,π] rather than at a set of fixed frequencies.
It is not a Donsker’s theorem type result for the partial sum process. The invariance principle we
prove extends classical results on the normality of spectral density estimators, explained for ex-
ample, in [1], in two directions. First, we establish an invariance principle, rather than pointwise
convergence at a fixed frequency. Second, we do it in the setting of a separable Hilbert space
rather than a scalar time series. Combining these two directions leads to the challenge of dealing
with tightness in an infinitely dimensional space under dependence in fairly complex inferential
problem.

The spectral density operator was introduced by Panaretos and Tavakoli [34], and has been
used in several applications, to the papers listed above, we can add [2,19,29] and [38]. It has
been known since the work of Kuelbs [28] that a central limit theorem in a Hilbert space implies
an invariance principle, but we do not use this result; the structure of the process we consider is
different. Influential papers on time domains central limit theorem in a Hilbert space are [32] and
[31]. A time domain invariance principle for approximable, a type of weak dependence condition
we use as well, functional time series was established by Berkes et al. [5].

The paper is organized as follows. The mathematical framework and general assumptions are
introduced in Section 2, where the frequency domain variance decomposition is also specified.
Section 3 is dedicated to the study of the asymptotics of the MSE the estimators �̂j . Their asymp-
totic normality is established in Section 4 as a consequence of the invariance principle discussed
above. All proofs, except simple, illustrative arguments, are presented in the Supplementary Ma-
terial [25]. Proofs of the results stated in Sections 2 and 3 are presented in Section A. Additional
results related to Theorem 3.1 are presented in Section B. Proofs of the results stated in Section 4
are presented in Section C. The main part of the paper is self-contained, but occasional references
to results and formulas given in the supplement are given to help the reader navigate it. These
references begin with letters A, B or C.

2. Preliminaries

Suppose {Xt, t ∈ Z} is a stationary, weakly dependent, mean zero time series of functions in H :=
L2([0,1]). The interval [0,1] with the Lebesgue measure is used for conceptual guidance, and
can be replaced in all formulas by a measure space with total measure equal to 1. To emphasize
it, we write

∫
in place of

∫ 1
0 . The Hilbert space H of square integrable functions is equipped

with the usual inner product

〈f,g〉H =
∫

f (u)g(u)du, f, g ∈ L2[0,1],

and the corresponding norm ‖ · ‖H. The notation L is used to denote the space of bounded linear
operators on H. The subspaces of Hilbert-Schmidt operators and nuclear operators are denoted
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by S and N , respectively, see, for example, [7]. We use these as subscripts to distinguish the
corresponding norms or inner products. An integral operator K ∈ S is an operator which admits
the representation

K(f )(u) =
∫

k(u, v)f (v) dv, f ∈ L2[0,1],

with k(u, v) ∈ L2([0,1] × [0,1]), that is,∫∫ ∣∣k(u, v)
∣∣2

dudv = ‖k‖2
2 = ‖K‖2

S < ∞.

For any f,g ∈ H, f ⊗ g : H→H denotes a bounded linear operator defined by f ⊗ g : h �→
〈h,g〉Hf . We see that f ⊗ g is an integral operator with the kernel f (·)g(·). Notation ⊗S indi-
cates a similar concept for operators on the space S . Notation L

p

H(�,A,P) is used to denote the
space of H-valued random functions defined on the underlying probability space (�,A,P) with
finite pth moment, that is, the random function X belongs to the space L

p

H(�,A,P) if and only

if μp(X) = (E‖X‖p)
1
p < ∞.

We assume that {Xt, t ∈ Z} satisfies μ2(Xt ) < ∞, EXt = 0, and is second–order stationary,
that is, the lag–h autocovariance kernel ch(u, v) := E[Xt+h(u)Xt (v)] does not depend on t . The
condition ∑

h∈Z
‖ch‖2 < ∞ (2.1)

guarantees the convergence, in ‖ · ‖2, of the series

fθ (u, v) = 1

2π

∑
h∈Z

ch(u, v)e−ihθ , u, v ∈ [0,1].

The kernels fθ (·, ·), θ ∈ (−π,π], called the spectral density kernels, define integral Hilbert-
Schmidt operators Fθ , which are called the spectral density operators. In the remainder of the
paper, we assume that (2.1) holds, and so the spectral density operators exist.

We now define estimators f̂θ (u, v), which are kernels of the estimators F̂θ . For fixed u,v ∈
[0,1] and series length N , we estimate ch(u, v) by

ĉh(u, v) = 1

N

N−h∑
k=1

Xh+k(u)Xk(v), h ≥ 0; ĉh(u, v) = 1

N

N−|h|∑
k=1

Xk(u)Xk+|h|(v), h < 0,

which reduces to

ĉh(u, v) = 1

N

N∑
k=1

Xh+k(u)Xk(v), (2.2)
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by setting the terms with impossible subscripts to zero. We use the following estimator of the
spectral density kernel fθ (u, v):

f̂θ (u, v) = 1

2π

∑
|h|≤q

w

(
h

q

)
ĉh(u, v)e−ihθ , (2.3)

where q = q(N) is a bandwidth function. To lighten the notation, the argument N is often sup-
pressed. We impose the following assumption on the bandwidth function q and the weight func-
tion w.

Assumption 2.1. The following conditions hold as N → ∞:

q(N) = o(N), q(N) → ∞

and for each fixed h,

w

(
h

q

)
→ 1.

The weight function w(·) is even, i.e. w(s) = w(−s), continuous on [−1,1] and hence bounded,
that is,

∀s ∈ [−1,1], ∣∣w(s)
∣∣ ≤ b for some b. (2.4)

Continuity of w(·) is needed to establish Lemma 4.3, other lemmas require only (2.4).
Next, we define Lp-approximable sequences, which form a large subclass of strictly stationary

weakly dependent functional time series. (A term that has traditionally been used is “Lp–m-
approximable”, but since the m is not part of the definition, we use a simpler term.)

Definition 2.1. A functional time series {Xt } is said to be Lp-approximable if it takes values in
L

p

H(�,A,P) and admits the representation

Xt = f (εt , εt−1, . . .),

where {εt , t ∈ Z} is a sequence of i.i.d. random elements taking values in some measurable space
S, and f is a measurable function from S∞ to H. Moreover, if the sequence {ε′

t , t ∈ Z} is an
independent copy of {εt , t ∈ Z}, then

∞∑
m=1

μp

(
Xm − X(m)

m

)
< ∞, (2.5)

where X
(m)
t is defined as

X
(m)
t = f

(
εt , εt−1, . . . , εt−m+1, ε

′
t−m, ε′

t−m−1, . . .
)
.
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In the proofs, we choose a different independent copy for each truncation level m. The essence
of Definition 2.1 is that the impact of innovations εt far back in the past becomes negligible;
they can be replaced by independent copies, and the effect of this replacement is quantified by
(2.5). Conditions in Definition 2.1 have been shown to hold for all known stationary models for
temporally dependent functions, assuming the parameters of these models satisfy nonrestrictive
conditions, see [17,18] or Chapter 16 of [20]. For scalar time series, conditions similar in spirit
were used by Shao and Wu [37], Berkes et al. [4], Zhou [40], and for functional time series by
Horváthet al. [21], Zhang [39], Bardsley et al. [3], to name just a few references.

The general assumption of approximability specified in Definition 2.1 is however not sufficient
to establish asymptotic properties of frequency domain functional principal component analysis.
Even in the case of scalar time series, additional assumptions are needed. They are relatively
simple for linear processes (absolute summability of impulse response coefficients), for example,
Chapter 7 of [9], but become more complicated for more general models (conditions on fourth
order cumulants), for example, Chapter 8 of [1]. In our setting, which involves both general
weak dependence and an infinite directional variance decomposition, we impose the following
assumption.

Assumption 2.2. We assume that the functional time series {Xt } is L4-approximable in the sense
of Definition 2.1 and

sup
h>0

∞∑
r=1

∫∫
[0,1]2

∣∣Cov
(
X0(v)

(
Xh(u) − X

(h)
h (u)

)
,X(r)

r (v)X
(r+h)
r+h (u)

)∣∣dudv < ∞. (2.6)

The usual sufficient condition for the consistency of the kernel estimator of the long–run vari-
ance of a scalar time series is

∑
h

∑
r

∑
s |κ(h, r, s)| < ∞, where κ(h, r, s) are fourth order

cumulants. Condition (2.6) is, in a sense, weaker because
∑

h is replaced by suph, and there is
only a single sum with respect to r . A similar modification, but using cumulants, was introduced
by Giraitis et al. [12]. The general structure of condition (2.6) reflects the spirit of Definition 2.1
and the fact that autocovariances are now functions of [0,1] × [0,1]. It is a very weak assump-
tion. For linear processes, the left-hand side of (2.6) vanishes, as stated in Proposition 2.1 below,
whose proof illustrates the meaning of this condition.

Proposition 2.1. Consider the linear process

Xt =
∞∑

j=0

�j(εt−j ), (2.7)

with i.i.d. innovations εi ∈ L
p

H(�,A,P) and �j ∈ L. If the sequence (2.7) is Lp-approximable
for some p ≥ 2, then the left-hand side of (2.6) vanishes.

A simple condition for the Lp-approximability of the process (2.7) , for p ≥ 2, is
∞∑

m=1

∞∑
j=m

‖�j‖L < ∞, (2.8)

see Proposition 16.1 of [20].
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We conclude this section with results stating the decomposition of variance based on frequency
domain FPCA. The j th eigenvalue and eigenfunction of the spectral density operator Fθ are
denoted, respectively, by λj (θ) and ϕj (θ). Both Theorem 2.1 and Proposition 2.2 are proven in
Section A.

Theorem 2.1. Let {Xt } be a second order stationary process satisfying (2.1) and λj (θ) be the
j th eigenvalue of the spectral density operator Fθ . Then

E‖Xt‖2 =
∞∑

j=1

�j, (2.9)

where

�j =
∫ π

−π

λj (θ) dθ. (2.10)

Theorem 2.1 provides a formula for the �j , which allows us to define estimators �̂j in Sec-
tion 3. There is however another representation of the �j . Recall that the ϕj (θ) are the eigen-
functions of the spectral density operator Fθ , and set

φjk = 1

2π

∫ π

−π

e−ikθϕj (θ) dθ. (2.11)

The functions φjk are the DFPCs. An analog of (1.1) is

Xt(u) =
∞∑

j=1

∑
l∈Z

Yj,t+lφjl(u). (2.12)

The Yjt are the dynamic FPC scores defined by Yjt = ∑
l∈Z〈Xt−l , φjl〉. Since E[Yj,t+lYi,t+k] =

0 if i �= j , we see that

E‖Xt‖2 =
∞∑

j=1

E

∥∥∥∥∑
l∈Z

Yj,t+lφjl

∥∥∥∥2

. (2.13)

One may thus expect that the following result holds.

Proposition 2.2. Under the assumptions of Theorem 2.1,

�j = E

∥∥∥∥∑
l∈Z

Yj,t+lφjl

∥∥∥∥2

. (2.14)

3. Bounds on mean squared error

The λj in (1.2) are the eigenvalues of the covariance operator. They are typically estimated by the
eigenvalues of the sample covariance operator, and are denoted λ̂j . These estimated components



2390 P. Kokoszka and N. Mohammadi Jouzdani

of variance form the basis of a large number of FDA procedures. The theoretical justification of
these procedures relies on the bound E|λ̂j − λj |2 = O(N−1). Our objective in this section is to
derive an analogous bound for the �j defined in Theorem 2.1 and their estimators �̂j defined in
the following.

Recall that the j th eigenvalue and eigenfunction of the spectral density operator Fθ are de-
noted, respectively, by λj (θ) and ϕj (θ). Define λ̂j (θ) and ϕ̂j (θ) to be, respectively, the j th
eigenvalue and eigenfunction of the operator F̂θ with the kernel f̂θ (·, ·) defined in (2.3). For-
mula (2.10) suggests the estimator

�̂j :=
∫ π

−π

λ̂j (θ) dθ. (3.1)

Observe that

E|�j − �̂j |2 = E

∣∣∣∣∫ π

−π

λj (θ) dθ −
∫ π

−π

λ̂j (θ) dθ

∣∣∣∣2

≤ E

∫ π

−π

∣∣λj (θ) − λ̂j (θ)
∣∣2

dθ

≤ E

∫ π

−π

‖Fθ − F̂θ‖2
S dθ, (3.2)

where the bound (3.2) follows from the inequality ‖ · ‖L < ‖ · ‖S and Lemma 2.2 in [20]. We
thus see that the key to obtain an upper bound on E|�j − �̂j |2 is to establish an upper bound on
(3.2). The following proposition establishes such a bound.

Proposition 3.1. Consider the estimator F̂θ with kernel (2.3). If Assumptions 2.1 and 2.2 hold,
then

E

∫ π

−π

‖Fθ − F̂θ‖2
S dθ = O

(
P1(N) + P2(N) + q/N

)
, (3.3)

where

P1(N) =
∑
|h|>q

‖Ch‖2
S , P2(N) =

∑
|h|≤q

[
w

(
h

q

)(
1 − |h|

N

)
− 1

]2

‖Ch‖2
S .

It follows from the proof of Proposition 3.1, that the terms P1 and P2 are exact in the sense that
their multiples appear in the decomposition of the left-hand side of (3.3). The remainder term is
O(q/N) under the assumptions of Proposition 3.1. We see, that the best rate our approach allows
us to obtain is given by

lim sup
N→∞

sup
j≥1

N

q
E|�j − �̂j |2 < ∞. (3.4)

We will see in Section 4 that this rate cannot be improved because
√

N/q(�j − �̂j ) converges
in distribution to a nondegenerate limit. These relations imply that the distance between �̂j and
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�j is of the order
√

q/N , and is asymptotically larger than the corresponding distance between
the static population variances λj and their estimators λ̂j .

For relation (3.4) to hold, we need P1(N) = O(q/N) and P2(N) = O(q/N). Assumption
(2.1) allows us only to conclude P1(N) → 0 (‖Ch‖S = ‖ch‖2), so P1(N) = O(q/N) is an ef-
fective restriction. Similarly, P2(N) → 0, by dominated convergence, and P2(N) = O(q/N) is
an effective restriction, which reflects an interplay between the rates of decay of w(·) − 1 and of
the squared norms ‖Ch‖2

S . Many abstract assumptions could be formulated to ensure that these
conditions hold. Instead, we consider the most common case in which q is a power function of
N . Before doing so, we state the following corollary, which follows from the above discussion.

Corollary 3.1. Under the assumptions of Proposition 3.1, E
∫ π

−π
‖Fθ − F̂θ‖2

S dθ → 0.

We now turn to the assumptions that guarantee a specific rate of decay to zero.

Assumption 3.1. The bandwidth function q satisfies q(N) = cNp , for some p ∈ (0,1) and some
c > 0.

Assumption 3.2. The tail series
∑

|h|>q ‖Ch‖2
S tends to zero with rate Np−1 or faster, where p

is as in Assumption 3.1.

We specify the range of p for two specific, commonly used kernels, the Bartlett kernel

w(s) =
{

1 − |s|, 0 ≤ |s| ≤ 1,

0, |s| > 1,
(3.5)

and the Parzen kernel

w(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 6|s|2 + 6|s|3, |s| ≤ 1

2
,

2
(
1 − |s|3), 1

2
≤ |s| ≤ 1,

0, |s| > 1.

(3.6)

Theorem 3.1. Suppose Assumption 2.2 holds. Then, relation (3.4) holds in any of the following
two cases:

(i) the Bartlett kernel is used,
∑

h∈Z |h|2‖Ch‖2
S < ∞, and Assumptions 3.1 and 3.2 hold for

p ∈ [ 1
3 ,1);

(ii) the Parzen kernel is used,
∑

h∈Z |h|4‖Ch‖2
S < ∞, and Assumptions 3.1 and 3.2 hold for

p ∈ [ 1
7 ,1).

Remark 3.1. The optimal rate of convergence of supj≥1 E|�j − �̂j |2 to zero, in terms of N

only, depends on the factors: (1) the kernel used; (2) the rate at which the norms ‖Ch‖S decay to
zero. Under the assumptions of Theorem 3.1, we obtain the rate N−2/3 for the Bartlett Kernel,
and N−6/7 for the Parzen kernel. It might thus appear that the Parzen kernel should be recom-
mended, but this is true only if

∑
h∈Z |h|4‖Ch‖2

S < ∞. If it is assumed, for example, that the
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‖Ch‖S decay exponentially fast, then the Parzen kernel is superior. Under weaker assumptions
on the rate of decay of the ‖Ch‖S , only slower can be claimed. These issues are discussed in
greater detail in Section B of the Supplementary Material [25], which also studies other kernels.

To summarize, the results of this section show that if �j is the variance component given by
(2.10), equivalently by (2.14), and �̂j its estimator given by (3.1), then E|�̂j − �j |2 ∼ q/N ,
where q is the bandwidth used in the estimator (2.3). The result is proven for the Bartlett and
Parzen kernels. In Section 4, we focus on the asymptotic distribution. The results of the present
section provide guidance for the results of Section 4, but do not follow from them as convergence
of moments cannot be directly inferred from weak convergence.

We conclude this section by noting that a different estimator of Fθ , based on locally averag-
ing a suitably defined functional periodogram, was used in Section 3 of [34]. Abusing notation
by denoting their estimator also by F̂θ , their Theorem 3.6 shows that the left-hand side of (3.3)
tends to zero with N . As explained above, such a result also holds for the estimator defined by
(2.3), requiring only Assumption 2.1, but it cannot be used to obtain the rate in (3.4); additional
information about the kernel and the rates of decay of autocovariance operators and of the band-
width is needed. Theorem 3.6 of [34] also shows that for a fixed θ , different from 0 or ±π ,
‖Fθ − F̂θ‖2

S = O(q−2) + O(q/N), providing a different bound.

4. An invariance principle for estimated spectral density
operators

In this section, and in Section C, we will work with the space L2
S((−π,π]) of square integrable

S-valued functions on the interval (−π,π]. More precisely,

L2
S((−π,π]) =

{
� : (−π,π] −→ S,‖�‖2

L2
S ((−π,π]) =

∫ π

−π

∥∥�(θ)
∥∥2
S dθ < ∞

}
.

To adhere to notation used in related papers, the argument θ will be indicated as a subscript in
the context of spectral density operators. The space L2

S((−π,π]) is a separable Hilbert space
with the inner product 〈�(·),�(·)〉 = ∫ π

−π
〈�(θ),�(θ)〉S dθ .

We will show that asymptotic distribution of the frequency domain variance components stud-
ied in this paper can be established under the following assumption, which uses the concept of
a Gaussian distribution in a Hilbert space. There are several equivalent definition of a Gaussian
random element in such a space, see, for example, Section 5.2 in [30]. For example, X is Gaus-
sian with mean zero, if and only if each projection 〈X,h〉 is a normal random variable with mean
zero.

Assumption 4.1. The following weak convergence holds in L2
S((−π,π]):√

N/q
{
F̂θ −Fθ , θ ∈ (−π,π]} d→ G(0,�), (4.1)

where G(0,�) denotes a Gaussian distribution on L2
S((−π,π]) with mean zero and a covariance

operator �.
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The invariance principle (4.1) is of separate and more general interest, and our specific results
can be viewed as some of its applications. Since (4.1) is a weak convergence in the metric space
L2
S((−π,π]), it can be combined with the continuous mapping theorem to obtain distributions

of statistics based on the estimated spectral density estimator. We will show later in this section
that (4.1) holds for a broad class of linear processes (2.7). No invariance principle of this type
is currently available. Returning to the estimator of [34], their Theorem 3.7 essentially states
that for any fixed frequency θ ,

√
N/q(f̂θ − Ef̂θ ) has a Gaussian limit in L2([0,1] × [0,1]).

This will follow from (4.1) for the estimator defined by (2.3), if one can suitably bound the
difference Ef̂θ − fθ . For this, additional assumptions are needed, which are generally satisfied.
For statistical applications centering with Fθ , rather than EF̂θ , is more convenient as it directly
leads to statements on the convergence of an estimator to its target. Before verifying (4.1) for
a specific class of models, we state a theorem it implies. In analogy to the commonly assumed
condition that the eigenvalues λj of the covariance operator satisfy λ1 > λ2 > · · · , we need the
following assumption.

Assumption 4.2. The index j is such that for each θ ∈ (−π,π], λj (θ) − λj+1(θ) > 0 and
λj−1(θ) − λj (θ) > 0, with only the first condition needed if j = 1.

By Proposition 7(a) of [15], the functions θ �→ λj (θ) are continuous, so Assumption 4.2 im-
plies that

inf
θ∈(−π,π]

[
λj (θ) − λj+1(θ)

]
> 0 and inf

θ∈(−π,π]
[
λj−1(θ) − λj (θ)

]
> 0. (4.2)

(The interval (−π,π] is viewed as a compact unit circle in the complex plane.) [15] allow the
functions λj (θ) − λj+1(θ) to have finitely many zeros, but for our stronger results we need a
positive separation at each θ .

Theorem 4.1. If Assumptions 2.1, 2.2, 4.1 and 4.2 hold, then

√
N/q(�̂j − �j) =

√
N

q

∫ π

−π

(
λ̂j (θ) − λj (θ)

)
dθ

d→ N
(
0, σ 2

j

)
. (4.3)

Denoting the limit in (4.1) by {Z(θ), θ ∈ (−π,π]}, the asymptotic variance is given by

σ 2
j = E

{∫ π

−π

〈
Z(θ),ϕj (θ) ⊗ ϕj (θ)

〉
S dθ

}2

.

Our next objective is to show that the invariance principle (4.1) holds for functional linear
processes specified in the following assumption.

Assumption 4.3. The functional time series {Xt } has representation (2.7) with i.i.d. mean zero
innovation {εt } satisfying E‖εt‖8 < ∞ and the coefficients �j satisfying (2.8).

As the first step, we establish the invariance principle with centering by the expectation, a
result of independent value, which holds under weaker assumptions.
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Theorem 4.2. If Assumptions 2.1 and 4.3 hold, then the limiting distribution, as N → ∞, of the
L2
S((−π,π])-valued random element√

N/q
{
F̂θ − EF̂θ ; θ ∈ (−π,π]}

is mean zero Gaussian.

The proof of Theorem 4.2 follows from Lemmas 4.1, 4.2, 4.3 and 4.4. All these lemmas are
proven in Section C of the Supplementary Material [25] under the heading PROOF OF THEO-
REM 4.2.

The first lemma is a direct consequence of Theorem 4.2 in [6].

Lemma 4.1. Let {ZN }N≥1 be a sequence of random elements with values in some general
Hilbert space H. Suppose the sequence {ZN }N≥1 admits the following decomposition

ZN = YN,d + XN,d, d ≥ 1,N ≥ 1,

in which

(i) the sequence {XN,d} tends to zero in mean square, as d tends to infinity, uniformly in N ,
that is, limd→∞ supN≥1 E‖XN,d‖2 = 0,

(ii) for each fixed d , the sequence {YN,d} tends in law to some random element Yd , as N

tends to infinity,
(iii) the limits Yd tends in law to some random element Y , as d tends to infinity.

Then, we conclude that the ZN tend in law to Y .

We will work with the truncation

Xt,d =
d∑

j=0

�j(εt−j ),

which forms a d−dependent process. The corresponding autocovariance operator and its estima-
tor are denoted by Ch,d and ĉh,d , respectively. Similarly, we use Fθ,d and F̂θ,d to denote the
spectral density operator and its estimator.

The next lemma states that condition (i) of Lemma 4.1 holds the space H = L2
S((−π,π]),

with XN,d defined by (4.4).

Lemma 4.2. Under Assumptions 2.1 and 4.3, the L2
S((−π,π])-valued random element{√

N/q
(
F̂θ − F̂θ,d − E(F̂θ − F̂θ,d)

)
, θ ∈ (−π,π]} (4.4)

tends to zero in mean square sense, as d tends to infinity, uniformly on N , that is,

lim
d→∞ sup

N≥1
E

∥∥√
N/q

(
F̂· − F̂·,d − E(F̂· − F̂·,d )

)∥∥2
L2
S ((−π,π]) = 0. (4.5)
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Next, we verify condition (ii) of Lemma 4.1 with YN,d defined by the left-hand side of (4.6).

Lemma 4.3. Under Assumptions 2.1 and 4.3, for each fixed d , as N → ∞,√
N/q

(
F̂θ,d − EF̂θ,d; θ ∈ (−π,π]) → Gd in L2

S
(
(−π,π]), (4.6)

where Gd is mean zero Gaussian.

Finally, we verify condition (iii) of Lemma 4.1.

Lemma 4.4. Under Assumptions 2.1 and 4.3, the limit Gd in (4.6) converges in L2
S((−π,π]) to

a mean zero Gaussian distribution.

To replace the centering with the expectation by centering with F·, additional assumptions are
needed, namely

N

q

∑
|h|>q

‖Ch‖2
S → 0; (4.7)

N

q

∑
|h|≤q

∣∣∣∣1 − w

(
h

q

)(
1 − |h|

N

)∣∣∣∣2

‖Ch‖2
S → 0. (4.8)

As the proof of Theorem 4.3 shows, the left-hand sides of (4.7) and (4.8) are (up to multiplicative
constants) exact difference terms, so these conditions cannot be improved.

Theorem 4.3. If, in addition to Assumptions 2.1 and 4.3, conditions (4.7) and (4.8) hold, then
(4.1) holds.

Theorem 4.3 can be used to establish invariance principle (4.1) for specific functional time
series models whose dependence can be quantified by the rate of decay of the norms ‖Ch‖S , and
for specific kernels w and bandwidth rates q = q(N). The coefficient of ‖Ch‖2

S in (4.8) can be
directly computed for any specific kernel w, like the Bartlett and Parzen kernels (3.5) and (3.6).
For example, for the Bartlett kernel (3.5),

1 − w

(
h

q

)(
1 − |h|

N

)
= N |h| + q|h| − |h|2

qN
.

The sum in (4.8) can then be easily bounded from above using a specific bound on the rate of
decay of the ‖Ch‖2

S . If these norms decay exponentially fast, conditions (4.7) and (4.8) will
generally hold. We state a corollary which connects to the results of Section 3, and which can be
proven by the method outlined above.

Corollary 4.1. Suppose the functional time series {Xt } satisfies Assumption 4.3. If the conditions
of Theorem 3.1 hold, but replacing intervals [ 1

3 ,1) and [ 1
7 ,1) by open intervals ( 1

3 ,1) and ( 1
7 ,1),

respectively, and the series
∑

|h|>q ‖Ch‖S tends to zero with rate N(p−1−α), for some α > 0,
then (4.1) holds.
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Theorem 4.2 is difficult to prove; its proof takes up most of Section C of the Supplementary
Material [25]. We conclude this section with comments which provide some context. The proof
of Theorem 4.2 requires, after numerous other steps, an application of a central limit theorem for
triangular arrays in the space L2

S((−π,π]). We could not find a suitable theorem in an abstract
separable Hilbert space, which would be applicable in our context. We established a custom
designed result as Lemma C.1 in the Supplementary Material [25], which is proven using key
assumptions of Theorem 9 of [11] in our specialized setting. We state a simplified version of
Lemma C.1 (Theorem 4.5), which is not directly applicable in our setting, but which may be
applicable, possibly with some adjustments, in other settings. The proof is provided in Section C
to enhance possible modifications and customizations. Our Theorem 4.5 is an extension of the
following result used in Chapter 8 of [1] to establish the asymptotic normality of the spectral
density estimator at a fixed frequency.

Theorem 4.4 (Anderson [1]). Suppose ζj,N are mean zero rowwise i.i.d. and satisfy the follow-

ing conditions: (a) Eζ 2
1,N = rNσ 2

Z, rN → 1, (b) supN≥1 Eζ 4
1,N < ∞. Then, M

−1/2
N

∑MN

j=1 ζj,N
d→

N(0, σ 2
Z), for any sequence MN → ∞.

Theorem 4.4 essentially follows from the Lindeberg–Feller theorem, see, for example, Theo-
rem 5.12 in [23].

Theorem 4.5. Suppose for each j and N , Zj,N is a mean zero random element of a separable
Hilbert space H. For a fixed N , the Zj,N are i.i.d. with

κ2 :=
∑
N≥1

E‖Zj,N‖2 < ∞. (4.9)

Moreover, for each e ∈H,

κe := sup
N≥1

E〈e,Zj,N 〉4 < ∞ (4.10)

and

E〈e,Z1,N 〉2 = rNσ 2
e , rN → 1. (4.11)

Then, as N → ∞, for any sequence MN → ∞,

M
−1/2
N

MN∑
j=1

Zj,N
d→ G,

where G is a mean zero Gaussian element of H.
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Supplementary Material

Supplement (DOI: 10.3150/20-BEJ1199SUPP; .pdf). All proofs, except simple, illustrative ar-
guments, are presented in the Supplementary Material [25]. Proofs of the results stated in Sec-
tions 2 and 3 are presented in Section A. Additional results related to Theorem 3.1 are presented
in Section B. Proofs of the results stated in Section 4 are presented in Section C.
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