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Weighted Lépingle inequality
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We prove an estimate for weighted pth moments of the pathwise r-variation of a martingale in terms of the
Ap characteristic of the weight. The novelty of the proof is that we avoid real interpolation techniques.
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1. Introduction

Lépingle’s inequality [20] is a moment estimate for the pathwise r-variation of martingales.
Finite r-variation is a parametrization-invariant version of Holder continuity of order 1/7 and
plays a central role in Lyons’s theory of rough paths [21].

Lépingle’s inequality also found applications in ergodic theory [4] and harmonic analysis [24];
see [22] and [8,10] and references therein, respectively, for recent developments in these di-
rections. Weighted inequalities in harmonic analysis go back to [23], and weighted variational
inequalities have been studied since [6]. A major motivation of the weighted theory is the Ru-
bio de Francia extrapolation theorem that allows to obtain vector-valued L? inequalities for all
1 < p < oo from scalar-valued weighted L? inequalities for a single p; see [14], Section 3, for
the most basic version of that result and [13], Theorem 8.1, for a version applicable to martin-
gales.

In this article, we prove a weighted version of Lépingle’s inequality for martingales with
asymptotically sharp dependence on the A, characteristic of the weight. For dyadic martingales,
weighted variational inequalities were first obtained in [9], Lemma 6.1, using the real interpola-
tion approach as in [4,17,22,27]. The argument in the dyadic case relied on the so-called open
property of A, classes; see, for example, [16], Theorem 1.2, that is in general false for martin-
gale A, classes, see the example in [3], Section 3, and [2]. Therefore, we use a new stopping
time argument that is also simpler than the previous proofs of Lépingle’s inequality even in the
classical, unweighted, case.

1.1. Notation

Let (2, (Fn),2» i) be a filtered probability space and Foo := V2o Fn- A weight is a posi-
tive Foo-measurable function w : 2 — (0, 00). The corresponding weighted L? norm is given
by I X|lr@w) == (fQ|X|pw du)!/P. For 1 < p < oo, the martingale A, characteristic of the
weight w is defined by

0p(w) := sup|E(w|F)E(w VP~V 5)" ! (e
T
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where the supremum is taken over all adapted stopping times t. For comparison of our main
result with the unweighted case, note that for w =1 we have Q ,(w) =1forall 1 < p < co.

For 0 < r < o0, a sequence of random variables X = (X},),, and w € 2, the r-variation of X
at w is defined by

1/r
V' X(w) =V X,(w):= sup <Z|Xuj_l(a))—Xuj(a))|r) , (1.1)
j

Uy <up<---

where the supremum is taken over arbitrary increasing sequences.

1.2. Main result

For an integrable F,-measurable function X : 2 — R, the associated martingale is defined by
X, :=E(X|F,). We have the following weighted moment estimate for the pathwise r-variation
of this martingale.

Theorem 1.1. For every 1 < p < 00, there exists a constant C, < 00 such that, for every r > 2,
every filtered probability space 2, every weight w on Q, and every integrable function X : Q —
R, we have

r —
”VrXHLP(Q,w) <Cp /—r — Qp(w)max(l,l/(p l))||X||Ll’(S2,w)~ (1.2)

Remark 1.2. By the monotone convergence theorem, Theorem 1.1 extends to cadlag martin-
gales.

Remark 1.3. The example in [28], Theorem 2.1, shows that, for p = 2, the constant in (1.2)
must diverge at least as

r

log when r — 2. (1.3)

r —

Indeed, it is proved there that, if (X,,) ,11\’:0 is a martingale with i.i.d. increments that are Gaussian

random variables with zero expectation and unit variance, then (V2X)? > cNloglog N with
probability converging to 1 as N — oo for every ¢ < 1/12. In this case, choosing r such that
r —2=1/log N, by Holder’s inequality, we obtain

V2x < NVZVryrx <cvrx.

This would lead to a contradiction if the constant in (1.2) diverges slower than stated in (1.3).
The growth rate of the constant in (1.2) as r — 2 is important, for example, in Bourgain’s multi-
frequency lemma, as explained in [31], Section 3.2.

Remark 1.4. The growth rate of the constant in (1.2) as r — 2 is also related to endpoint es-
timates, in which the £” norm in (1.1) is replaced by an Orlicz space norm. The results of [29]
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for the Brownian motion suggest that it might be possible to use a Young function that decays
as x2/loglogx~! when x — 0. Such an estimate would imply an estimate of the form (1.3) for
the constant in (1.2), and it would have useful consequences for rough differential equations; see
[7], Remark 5. Our method allows to use Young functions that decay as x2/(logx~!)!*¢ when
x—0.

Remark 1.5. A Fefferman—Stein type weighted estimate that substitutes (1.2) in the case p =1
can be deduced from Corollary 2.4 and [25], Theorem 1.1.

2. Stopping times and a pathwise r-variation bound

In this section, we estimate the r-variation of an arbitrary adapted process pathwise by a linear
combination of square functions. We consider an adapted process (X,), with values in an arbi-
trary metric space (X', d) and extend the definition of r-variation (1.1) by replacing the absolute
value of the difference by the distance. We have the following metric spaces X’ in mind:

1. In Theorem 1.1, we will use X =R (and p = 2 below).

2. In applications to the theory of rough paths, one takes X to be a free nilpotent group; see
[15], Section 9.

3. When & is a Banach space with martingale cotype p € [2, 00), Corollary 2.4 can be used
to recover [27], Theorem 4.2.

Definition 2.1. Let M, :=sup,»—, ., d(Xy, X;). For each m € N, define an increasing sequence
of stopping times by

7™ () =0, r}’f;)l (@) = inf{r > 7" (@)|d (X (@), Xe )@ (@) 227" My (@)}, (2.1)
Lemma 2.2. Let 0 <t <t < 00 and m > 2. Suppose that
2 <d(Xp(@), X, (@)/(27" My () < 4. 2.2)

Then there exists j witht' < I;m)(a)) <tand

d(Xpr (@), Xi(@)) 8d(X o () (@), X, (@). (2.3)

Proof. We fix w and omit it from the notation. Let j be the largest integer with T/ := r;m) <t.

We claim that t/ > ¢'. Suppose for a contradiction that T’ < ¢’ (the case T/ = ¢’ is similar but
easier). By the hypothesis (2.2) and the assumption that 7, ¢’ are not stopping times, we obtain

2.27"M, <d(Xy, X;) <d(Xp, Xp) +d(Xe, X)) <27 My +27"M, <2-27"M,,

a contradiction. This shows /' > t’.
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It remains to verify (2.3). Assume that M < M, /2. Then, for some t/ < " < t, we have
d(Xy, Xon) > My /2 > 27" M_,», contradicting maximality of 7’. It follows that

d(X o, X m)=2""Mpy >2""M/2>d(Xy, X)/8. O
1T

Lemma 2.3. For every 0 < p <r < 00, we have the pathwise inequality

VI (Xi(@) <87 > (27" I Mo ()" Zd(}(T(_W1 (@) X o (@)". (2.4)
m=2 j=1 - !

Proof. We fix @ and omit it from the notation. Let (#;) be any increasing sequence. For each /
with d(Xy,, Xy,,,) #0, let m =m(l) > 2 be such that

2 < d(Xulv Xqu)/(z_mMqu) <4.

Such m exists because the distance is bounded by M, ;.
Let j be given by Lemma 2.2 with ' = u; and # = u;41. Then

d(Xu> Xupy, )" < Spd(XT(m)l ’ Xr(.”’>)p ’ (4 ’ 2_mZMMI-H )r_p'
J— J
Since each pair (m, j) occurs for at most one /, this implies

D d(Xy. Xy, <8° Zd(Xfﬂ"“, X ) (27" M)
J= J

l m,j

Taking the supremum over all increasing sequences (#;), we obtain (2.4). ]
Corollary 2.4. Forevery 0 < p <r < 00, we have the pathwise inequality
o0 o
r P —gp —(m=2)(r—p) P
VI (X/(@)” <8 222 _X;d(xf}’fi (@), ergm> @) (2.5)
m= j=

Proof. By the monotone convergence theorem, we may assume that X,, becomes independent
of n for sufficiently large . In this case,

Mo (@) <V/ (X,(a))) < 00.
Substituting this inequality in (2.4) and canceling V/ (X; (w))" 2 on both sides, the claim fol-
lows. O
3. Proof of the weighted Lépingle inequality

Estimates in weighted spaces L? (2, w) for differentially subordinate martingales with sharp
dependence on the characteristic Q,(w) were obtained in [30] in the discrete case (a simpler
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alternative proof is in [19]) and [12] in the continuous case (a simpler alternative proof is in
[11]). By Khintchine’s inequality, these results imply the following weighted estimate for the

martingale square function.

Theorem 3.1 (cf. [11]). Let (Xj)?‘;o be a martingale on a probability space Q2. Then, for every
1 < p < 00, we have

o 1/2
j=1

where the constant C), < 0o depends only on p, but not on the martingale X or the weight w.

< CpQ,p(w)™ >V E=DN X110 ), 3.1)
LP(Q,w)

An alternative proof that deals directly with the square function (3.1) appears in [1], but it is
carried out only for continuous time martingales with continuous paths.

Proof of Theorem 1.1. By extrapolation (see [13], Theorem 8.1), it suffices to consider p = 2.
We will in fact give a direct proof for 2 < p < oco. A similar argument also works for 1 < p <2,
but gives a poorer dependence on r than claimed in (1.2).

Let r;m) be the stopping times constructed in (2.1), and let

~ 12
2
Sy (@) == (Z}XT;-T)I(@)(Q)) - XT;.W({U) (o) )
Jj=1

denote the square function of the sampled martingale (X _e») ;. Then Corollary 2.4 with X =R
j
and p = 2 gives

. 1/2
~m=2)(r=2) g2
V’X§8<ZZ ma S(m)> :

m=2

Since 2 < p < oo, by Minkowski’s inequality, this implies

]

12
V' X[ 1@ =8 (Z P N IIZme,w)) :

m=2
Inserting the square function estimates (3.1) for the sampled martingales (X T(m)) j on the right-
J

hand side above, we obtain

o 1/2
V"X o) < 8Cp CpIIXIILr(2,u) (Z 2—“"—2)(’—2))

m=2
— —(r=2)\—1/2
=8C,(1-2 ) T, IX I Lr(@,w)-

This implies (1.2). (]
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Remark 3.2. One can also directly apply Theorem 3.1 for 1 < p < 2, without passing through
the extrapolation theorem. But this seems to lead to a faster growth rate of the constant in (1.2)
asr — 2.

Remark 3.3. The unweighted Lépingle inequality (Theorem 1.1 with w = 1) follows from
Corollary 2.4 and the usual Burkholder-Davis—Gundy (BDG) inequality.

Remark 3.4. Corollary 2.4 can be used to recover the p-variation rough path BDG inequality
[5], Theorem 4.7. For convex moderate functions F(x) = x? with 1 < p < oo, the required
estimate for the square function appearing in (2.5) can be deduced from the usual BDG inequality
and [18], Proposition 3.1. The latter result can be extended to arbitrary convex moderate functions
F using the Davis martingale decomposition.

Remark 3.5. Let p € [2,00), and let X’ be a Banach space with martingale cotype p. Using
Corollary 2.4 and the p-function bounds for X-valued martingales in [26], Theorem 10.59, we
see that, for every 1 < p < 0o, r > p, every filtered probability space €2, and every integrable
function X : Q — X, we have

,
I VrX”LP(Q) = CX,pmHXlILP(Q)- (3.2)

In fact, it is possible to obtain a slightly better dependence on r, which we omit for simplicity.
There is also an endpoint version of (3.2) at p = 1, in which X is replaced by the martingale
maximal function on the right-hand side.

The vector-valued estimate (3.2) was first proved in [27], Theorem 4.2, with an unspecified
dependence on r. The dependence on r stated in (3.2) can also be obtained using Theorem 1.3
and Lemma 2.17 in [22], as well as real interpolation, but this method does not work at the
endpoint p = 1.
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