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Weighted Lépingle inequality
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We prove an estimate for weighted pth moments of the pathwise r-variation of a martingale in terms of the
Ap characteristic of the weight. The novelty of the proof is that we avoid real interpolation techniques.
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1. Introduction

Lépingle’s inequality [20] is a moment estimate for the pathwise r-variation of martingales.
Finite r-variation is a parametrization-invariant version of Hölder continuity of order 1/r and
plays a central role in Lyons’s theory of rough paths [21].

Lépingle’s inequality also found applications in ergodic theory [4] and harmonic analysis [24];
see [22] and [8,10] and references therein, respectively, for recent developments in these di-
rections. Weighted inequalities in harmonic analysis go back to [23], and weighted variational
inequalities have been studied since [6]. A major motivation of the weighted theory is the Ru-
bio de Francia extrapolation theorem that allows to obtain vector-valued Lp inequalities for all
1 < p < ∞ from scalar-valued weighted Lp inequalities for a single p; see [14], Section 3, for
the most basic version of that result and [13], Theorem 8.1, for a version applicable to martin-
gales.

In this article, we prove a weighted version of Lépingle’s inequality for martingales with
asymptotically sharp dependence on the Ap characteristic of the weight. For dyadic martingales,
weighted variational inequalities were first obtained in [9], Lemma 6.1, using the real interpola-
tion approach as in [4,17,22,27]. The argument in the dyadic case relied on the so-called open
property of Ap classes; see, for example, [16], Theorem 1.2, that is in general false for martin-
gale Ap classes, see the example in [3], Section 3, and [2]. Therefore, we use a new stopping
time argument that is also simpler than the previous proofs of Lépingle’s inequality even in the
classical, unweighted, case.

1.1. Notation

Let (�, (Fn)
∞
n=0,μ) be a filtered probability space and F∞ := ∨∞

n=0 Fn. A weight is a posi-
tive F∞-measurable function w : � → (0,∞). The corresponding weighted Lp norm is given
by ‖X‖Lp(�,w) := (

∫
�
|X|pw dμ)1/p . For 1 < p < ∞, the martingale Ap characteristic of the

weight w is defined by

Qp(w) := sup
τ

∥∥E(w|Fτ )E
(
w−1/(p−1)|Fτ

)p−1∥∥
L∞(w)

,
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where the supremum is taken over all adapted stopping times τ . For comparison of our main
result with the unweighted case, note that for w ≡ 1 we have Qp(w) = 1 for all 1 < p < ∞.

For 0 < r < ∞, a sequence of random variables X = (Xn)n, and ω ∈ �, the r-variation of X

at ω is defined by

V rX(ω) := V r
n Xn(ω) := sup

u1<u2<···

(∑
j

∣∣Xuj−1(ω) − Xuj
(ω)

∣∣r)1/r

, (1.1)

where the supremum is taken over arbitrary increasing sequences.

1.2. Main result

For an integrable F∞-measurable function X : � → R, the associated martingale is defined by
Xn := E(X|Fn). We have the following weighted moment estimate for the pathwise r-variation
of this martingale.

Theorem 1.1. For every 1 < p < ∞, there exists a constant Cp < ∞ such that, for every r > 2,
every filtered probability space �, every weight w on �, and every integrable function X : � →
R, we have

∥∥V rX
∥∥

Lp(�,w)
≤ Cp

√
r

r − 2
Qp(w)max(1,1/(p−1))‖X‖Lp(�,w). (1.2)

Remark 1.2. By the monotone convergence theorem, Theorem 1.1 extends to càdlàg martin-
gales.

Remark 1.3. The example in [28], Theorem 2.1, shows that, for p = 2, the constant in (1.2)
must diverge at least as √

log
r

r − 2
when r → 2. (1.3)

Indeed, it is proved there that, if (Xn)
N
n=0 is a martingale with i.i.d. increments that are Gaussian

random variables with zero expectation and unit variance, then (V 2X)2 ≥ cN log logN with
probability converging to 1 as N → ∞ for every c < 1/12. In this case, choosing r such that
r − 2 = 1/ logN , by Hölder’s inequality, we obtain

V 2X ≤ N1/2−1/rV rX ≤ CV rX.

This would lead to a contradiction if the constant in (1.2) diverges slower than stated in (1.3).
The growth rate of the constant in (1.2) as r → 2 is important, for example, in Bourgain’s multi-
frequency lemma, as explained in [31], Section 3.2.

Remark 1.4. The growth rate of the constant in (1.2) as r → 2 is also related to endpoint es-
timates, in which the �r norm in (1.1) is replaced by an Orlicz space norm. The results of [29]
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for the Brownian motion suggest that it might be possible to use a Young function that decays
as x2/ log logx−1 when x → 0. Such an estimate would imply an estimate of the form (1.3) for
the constant in (1.2), and it would have useful consequences for rough differential equations; see
[7], Remark 5. Our method allows to use Young functions that decay as x2/(logx−1)1+ε when
x → 0.

Remark 1.5. A Fefferman–Stein type weighted estimate that substitutes (1.2) in the case p = 1
can be deduced from Corollary 2.4 and [25], Theorem 1.1.

2. Stopping times and a pathwise r-variation bound

In this section, we estimate the r-variation of an arbitrary adapted process pathwise by a linear
combination of square functions. We consider an adapted process (Xn)n with values in an arbi-
trary metric space (X , d) and extend the definition of r-variation (1.1) by replacing the absolute
value of the difference by the distance. We have the following metric spaces X in mind:

1. In Theorem 1.1, we will use X =R (and ρ = 2 below).
2. In applications to the theory of rough paths, one takes X to be a free nilpotent group; see

[15], Section 9.
3. When X is a Banach space with martingale cotype ρ ∈ [2,∞), Corollary 2.4 can be used

to recover [27], Theorem 4.2.

Definition 2.1. Let Mt := supt ′′≤t ′≤t d(Xt ′ ,Xt ′′). For each m ∈ N, define an increasing sequence
of stopping times by

τ
(m)
0 (ω) := 0, τ

(m)
j+1(ω) := inf

{
t ≥ τ

(m)
j (ω)|d(

Xt(ω),Xτj (ω)(ω)
) ≥ 2−mMt(ω)

}
. (2.1)

Lemma 2.2. Let 0 ≤ t ′ < t < ∞ and m ≥ 2. Suppose that

2 < d
(
Xt ′(ω),Xt (ω)

)
/
(
2−mMt(ω)

) ≤ 4. (2.2)

Then there exists j with t ′ < τ
(m)
j (ω) ≤ t and

d
(
Xt ′(ω),Xt (ω)

) ≤ 8d
(
X

τ
(m)
j−1(ω)

(ω),X
τ

(m)
j (ω)

(ω)
)
. (2.3)

Proof. We fix ω and omit it from the notation. Let j be the largest integer with τ ′ := τ
(m)
j ≤ t .

We claim that τ ′ > t ′. Suppose for a contradiction that τ ′ < t ′ (the case τ ′ = t ′ is similar but
easier). By the hypothesis (2.2) and the assumption that t, t ′ are not stopping times, we obtain

2 · 2−mMt < d(Xt ′,Xt ) ≤ d(Xτ ′ ,Xt ′) + d(Xτ ′ ,Xt ) < 2−mMt ′ + 2−mMt ≤ 2 · 2−mMt,

a contradiction. This shows τ ′ > t ′.
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It remains to verify (2.3). Assume that Mτ ′ < Mt/2. Then, for some τ ′ < τ ′′ ≤ t , we have
d(Xτ ′ ,Xτ ′′) ≥ Mt/2 ≥ 2−mMτ ′′ , contradicting maximality of τ ′. It follows that

d(X
τ

(m)
j−1

,X
τ

(m)
j

) ≥ 2−mMτ ′ ≥ 2−mMt/2 ≥ d(Xt ′,Xt )/8. �

Lemma 2.3. For every 0 < ρ < r < ∞, we have the pathwise inequality

V r
t

(
Xt(ω)

)r ≤ 8ρ

∞∑
m=2

(
2−(m−2)M∞(ω)

)r−ρ
∞∑

j=1

d
(
X

τ
(m)
j−1(ω)

(ω),X
τ

(m)
j (ω)

(ω)
)ρ

. (2.4)

Proof. We fix ω and omit it from the notation. Let (ul) be any increasing sequence. For each l

with d(Xul
,Xul+1) 
= 0, let m = m(l) ≥ 2 be such that

2 < d(Xul
,Xul+1)/

(
2−mMul+1

) ≤ 4.

Such m exists because the distance is bounded by Mul+1 .
Let j be given by Lemma 2.2 with t ′ = ul and t = ul+1. Then

d(Xul
,Xul+1)

r ≤ 8ρd(X
τ

(m)
j−1

,X
τ

(m)
j

)ρ · (4 · 2−mMul+1

)r−ρ
.

Since each pair (m, j) occurs for at most one l, this implies∑
l

d(Xul
,Xul+1)

r ≤ 8ρ
∑
m,j

d(X
τ

(m)
j−1

,X
τ

(m)
j

)ρ · (2−(m−2)M∞
)r−ρ

.

Taking the supremum over all increasing sequences (ul), we obtain (2.4). �

Corollary 2.4. For every 0 < ρ < r < ∞, we have the pathwise inequality

V r
t

(
Xt(ω)

)ρ ≤ 8ρ

∞∑
m=2

2−(m−2)(r−ρ)

∞∑
j=1

d
(
X

τ
(m)
j−1(ω)

(ω),X
τ

(m)
j (ω)

(ω)
)ρ

. (2.5)

Proof. By the monotone convergence theorem, we may assume that Xn becomes independent
of n for sufficiently large n. In this case,

M∞(ω) ≤ V r
t

(
Xt(ω)

)
< ∞.

Substituting this inequality in (2.4) and canceling V r
t (Xt (ω))r−2 on both sides, the claim fol-

lows. �

3. Proof of the weighted Lépingle inequality

Estimates in weighted spaces Lp(�,w) for differentially subordinate martingales with sharp
dependence on the characteristic Qp(w) were obtained in [30] in the discrete case (a simpler
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alternative proof is in [19]) and [12] in the continuous case (a simpler alternative proof is in
[11]). By Khintchine’s inequality, these results imply the following weighted estimate for the
martingale square function.

Theorem 3.1 (cf. [11]). Let (Xj )
∞
j=0 be a martingale on a probability space �. Then, for every

1 < p < ∞, we have∥∥∥∥∥
( ∞∑

j=1

|Xj − Xj−1|2
)1/2∥∥∥∥∥

Lp(�,w)

≤ CpQp(w)max(1,1/(p−1))‖X‖Lp(�,w), (3.1)

where the constant Cp < ∞ depends only on p, but not on the martingale X or the weight w.

An alternative proof that deals directly with the square function (3.1) appears in [1], but it is
carried out only for continuous time martingales with continuous paths.

Proof of Theorem 1.1. By extrapolation (see [13], Theorem 8.1), it suffices to consider p = 2.
We will in fact give a direct proof for 2 ≤ p < ∞. A similar argument also works for 1 < p < 2,
but gives a poorer dependence on r than claimed in (1.2).

Let τ
(m)
j be the stopping times constructed in (2.1), and let

S(m)(ω) :=
( ∞∑

j=1

∣∣X
τ

(m)
j−1(ω)

(ω) − X
τ

(m)
j (ω)

(ω)
∣∣2

)1/2

denote the square function of the sampled martingale (X
τ

(m)
j

)j . Then Corollary 2.4 with X = R

and ρ = 2 gives

V rX ≤ 8

( ∞∑
m=2

2−(m−2)(r−2)S2
(m)

)1/2

.

Since 2 ≤ p < ∞, by Minkowski’s inequality, this implies

∥∥V rX
∥∥

Lp(�,w)
≤ 8

( ∞∑
m=2

2−(m−2)(r−2)‖S(m)‖2
Lp(�,w)

)1/2

.

Inserting the square function estimates (3.1) for the sampled martingales (X
τ

(m)
j

)j on the right-

hand side above, we obtain

∥∥V rX
∥∥

Lp(�,w)
≤ 8CpQp(w)‖X‖Lp(�,w)

( ∞∑
m=2

2−(m−2)(r−2)

)1/2

= 8Cp

(
1 − 2−(r−2)

)−1/2
Qp(w)‖X‖Lp(�,w).

This implies (1.2). �
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Remark 3.2. One can also directly apply Theorem 3.1 for 1 < p < 2, without passing through
the extrapolation theorem. But this seems to lead to a faster growth rate of the constant in (1.2)
as r → 2.

Remark 3.3. The unweighted Lépingle inequality (Theorem 1.1 with w ≡ 1) follows from
Corollary 2.4 and the usual Burkholder–Davis–Gundy (BDG) inequality.

Remark 3.4. Corollary 2.4 can be used to recover the p-variation rough path BDG inequality
[5], Theorem 4.7. For convex moderate functions F(x) = xp with 1 < p < ∞, the required
estimate for the square function appearing in (2.5) can be deduced from the usual BDG inequality
and [18], Proposition 3.1. The latter result can be extended to arbitrary convex moderate functions
F using the Davis martingale decomposition.

Remark 3.5. Let ρ ∈ [2,∞), and let X be a Banach space with martingale cotype ρ. Using
Corollary 2.4 and the ρ-function bounds for X -valued martingales in [26], Theorem 10.59, we
see that, for every 1 < p < ∞, r > ρ, every filtered probability space �, and every integrable
function X : � →X , we have

∥∥V rX
∥∥

Lp(�)
≤ CX ,p

r

r − ρ
‖X‖Lp(�). (3.2)

In fact, it is possible to obtain a slightly better dependence on r , which we omit for simplicity.
There is also an endpoint version of (3.2) at p = 1, in which X is replaced by the martingale
maximal function on the right-hand side.

The vector-valued estimate (3.2) was first proved in [27], Theorem 4.2, with an unspecified
dependence on r . The dependence on r stated in (3.2) can also be obtained using Theorem 1.3
and Lemma 2.17 in [22], as well as real interpolation, but this method does not work at the
endpoint p = 1.
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