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We investigate the length of the longest common substring for encoded sequences and its asymptotic be-
haviour. The main result is a strong law of large numbers for a re-scaled version of this quantity, which
presents an explicit relation with the Rényi entropy of the source. We apply this result to the zero-inflated
contamination model and the stochastic scrabble. In the case of dynamical systems, this problem is equiv-
alent to the shortest distance between two observed orbits and its limiting relationship with the correlation
dimension of the pushforward measure. An extension to the shortest distance between orbits for random
dynamical systems is also provided.
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1. Introduction

Finding patterns on symbolic strings has been a widely studied subject matter on Genetics, Prob-
ability and Information Theory over the years. The investigations about how much information
a n-string has on the whole realization of the process are naturally linked with the concept of
redundancy and compression algorithms. On the other hand, the overlap between (some propor-
tion of) two different strings can give us some knowledge about the similarity of the sources that
generate those processes. Moreover, repetition and similarity are two well-exploited concepts in
the study of DNA sequences.

In view of repetition, one of the earliest studied quantities was the well-known Ornstein–Weiss
return time. A strong law of large numbers for this quantity and its explicit relationship with the
entropy of the source was stated in [32] and the convergence in distribution has been widely
studied (see, e.g., the reviews [2,24,37]). An interesting and intuitive link between return times
and the notion of data compression schemes can be found in [41], and a consistent estimator
for the entropy based on that quantity was provided in [26]. We remark also the first return of a
string to its own n-cylinder (which is an outspread of the return times investigation), which can
be found in [1,3,5–7,22,23,38], and references therein.
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On the other hand, the notion of coincidence has been exploited on the context of waiting times
[19,41,42]. In [42] it was proved an exponential limiting distribution for the waiting time (prop-
erly re-scaled), when the source-measure is ψ -mixing with exponential decay of correlations.
We recall that in this paper the author considered two independent copies of the same process.

On the Erdös–Rényi scenario, the similarity between two sources has also been widely in-
vestigated (we refer the reader to [17,18,29,31] and references therein). As a recent example,
we recall the shortest path between two observables defined in [4]. In this work, the authors
proved an almost-sure linear increasing, a large deviation principle and a weak convergence for
the shortest path function. All these results were linked to the divergence between two measures,
which is essentially a measure of similarity between the two source-measures.

Holding on the same scenario, a remarkable matching quantity has been studied in [9]:
Mn(x, y), the length of the longest matching consecutive subsequence (or longest common sub-
string) between two sequences. More precisely, if x and y are two realizations of the stochastic
processes (Xn)n∈N and (Yn)n∈N,

Mn(x, y) = max
{
k : xi+k−1

i = y
j+k−1
j for some 0 ≤ i, j ≤ n − k

}
,

where xi+k−1
i (respectively y

j+k−1
j ) denotes the substring xixi+1 · · ·xi+k−1 (respectively

yjyj+1 · · ·yj+k−1).
If the two processes are independent and identically distributed, and generated by the same

source P, the authors proved that Mn/(log1/p n) → 2 for almost every realization (x, y), with
p = P(X0 = Y0) [9]. Furthermore, they also proved that the same result holds for Markov chains,
but with p being the largest eigenvalue of the matrix [(pij )

2], where [pij ] is the transition matrix.
This result was recently generalized in [14] for α-mixing processes with exponential decay and
ψ -mixing processes with polynomial decay with a limit depending on the Rényi entropy of P and
in [33] for random sequences in random environment. We recall that weak convergence theorems
for sequence matching where also investigated over the last years (e.g., [29,31]).

Further generalizations of such quantity has also appeared on the literature. An interesting
example was the sequence matching with scores introduced in [8]. In this paper, the authors
consider that each symbol in the alphabet has a particular score (or weight). Therefore, each
match score becomes a function which depends on the match size and the weights of the symbols
as well. In the i.i.d. case and for Markov chains, they obtain a strong law of large numbers for the
highest-scoring matching substring. A generalization for this statement (for instance, allowing
incomplete matches) can be found in [17,18].

Following the direction of the pattern investigation between strings, one can ask if some of the
above mentioned results hold if we transform our sequences following certain rules of modifica-
tion. In other words: what happens if we consider encoded sequences as our interest objects of
investigation?

In this paper, we study a version of the longest matching substring problem when the orbits
are encoded by a measurable function (which we call encoder or observation, depending on the
context). We call it the longest common substring between encoded strings. More precisely, let χ

(respectively χ̃ ) be an alphabet, χN (respectively, χ̃N) the space of all sequences with symbols
in χ (respectively χ̃ ) and let f : χN → χ̃N be a measurable function (following the terminology
of [25], we will call f an encoder (one can also see [39] where f is called a coder)). Given two
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sequences x, y ∈ χN, we define the n-length of the longest common substring for the encoded
pair (f (x), f (y)) by

M
f
n (x, y) = max

{
k : f (x)i+k−1

i = f (y)
j+k−1
j for some 0 ≤ i, j ≤ n − k

}
,

where f (x)i+k−1
i and f (y)

j+k−1
j denotes the substrings (of the encoded sequences f (x) and

f (y)) of length k beginning in f (x)i and f (x)j respectively.

In the symbolic case, we prove an almost sure convergence for M
f
n . Namely, we provide nec-

essary conditions on the encoder as well as in the source to prove that M
f
n grows logarithmically

fast in n. It is in fact a law of large numbers with limiting rate linked with the Rényi entropy of
the pushforward measure (denoted by H2(f∗P)). Namely, if P is the source-measure, then

lim
n→∞

M
f
n (x, y)

logn
= 2

H2(f∗P)
P⊗ P-a.s. (�)

In the context of stochastic coding, (�) shows to be rather applicable. As a first illustration of
this feature, we generalize the results from the stochastic scrabble given by [8], from a Markov
chain to a general α-mixing process with exponential decay. The second application deals with
the stochastic noise (or contamination encoder), which can be viewed in [16,21].

Recently, [14] showed that the problem of the longest common substring for stochastic pro-
cesses is related to the shortest distance between two orbits and, to the best of our knowledge,
this was the first article where this quantity was defined and studied. Following this idea, we
can observe that, in dynamical systems, the correspondent of the longest common substring for
the encoded pair is the shortest distance between observed orbits. Formally, let f : X → Y be
a measurable function, called the observation. If we consider a dynamical system (X,T ,μ), we
investigate the asymptotic behavior of

m
f
n (x, y) = min

i,j=0,...,n−1

(
d
(
f

(
T ix

)
, f

(
T jy

)))
, (1)

and prove that its limiting behavior is related to the correlation dimension of the pushforward
measure f∗μ (denoted Cf∗μ). If f is the identity in X, we recover the shortest distance between
two orbits problem, studied in [14]. In that paper, the authors provide a law of large numbers
and related it with the correlation dimension of the source measure. In the present paper, we
generalize this result for a family of observations, concluding that the limiting rate is given by
the dimension of the pushforward measure f∗μ (under suitable conditions on f ). Namely, for
rapidly mixing systems,

lim
n→∞

logm
f
n (x, y)

− logn
= 2

Cf∗μ
μ ⊗ μ-a.s., (��)

provided that Cf∗μ exists.
In [30,34,35], the study of observed orbits (in particular, the study of return and hitting time)

was used to obtain results for random dynamical systems. Following this idea, we combine (��)
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with a particular observation f to obtain the following strong law of large numbers for random
dynamical systems (provided that Cν exists)

lim
n→∞

logm
ω,ω̃
n (x, x̃)

− logn
= 2

Cν

μ ⊗ μ-a.s., (� � �)

where m
ω,ω̃
n (x, x̃) is the shortest distance between two random orbits ({x,Tωx, . . . , T n

ω x} and
{x̃, Tω̃x̃, . . . , T n

ω̃
x̃}) and Cν is the correlation dimension of the stationary measure (we refer the

reader to Section 4 for more details). We present then a collection of applications for this state-
ment. The first one treats non i.i.d. random dynamical systems. The second deals with random
perturbed dynamics. We finish the applications with random hyperbolic toral automorphisms.

The rest of this paper is organized as follows. In Section 2, we study the relation between
the longest common substring for encoded sequences and the Rényi entropy. We state precisely
result (�) and apply it to the stochastic scrabble and the the zero-inflated contamination model.
In Section 3, we analyse the behaviour of the shortest distance between observed orbits of a
dynamical system and present result (��). Section 4 deals with the case of random dynamical
systems and states result (� � �), as well as some applications.

2. Reaching Rényi entropy via string matching of encoded
sequences

The present section is dedicated to study of the longest common substring of encoded sequences.
We start by presenting some terminology and definitions, in order to introduce the problem.

Let (�,F,P) be a probability space, where � = χN for some alphabet χ , F the sigma-algebra
generated by the n-cylinders in � and P is a stationary probability measure on F . If σ is the left
shift on �, we can see (�,F,P, σ ) as a symbolic dynamical system with P σ -invariant. Let
�̃ = χ̃N for some alphabet χ̃ and F̃ the sigma-algebra generated by the n-cylinders in �̃.

Definition 2.1. Let f : � → �̃ be an encoder. Given two sequences x, y ∈ �, we define the
n-length of the longest common substring for the encoded pair (f (x), f (y)) by

M
f
n (x, y) = max

{
k : f (x)i+k−1

i = f (y)
j+k−1
j for some 0 ≤ i, j ≤ n − k

}
,

where f (x)i+k−1
i and f (y)

j+k−1
j denote the substrings of length k beginning in f (x)i and f (y)j

respectively.

For y ∈ � (respectively, �̃) we denote by Cn(y) the n-cylinder containing y, that is, the set
of sequences z ∈ � (respectively, �̃) such that zi = yi for any i = 0, . . . , n − 1. We denote Fn

0
(respectively F̃n

0 ) the sigma-algebra on � (respectively, �̃) generated by all n-cylinders.

Definition 2.2. The lower and upper Rényi entropies of a measure P are defined as

H 2(P) = − lim
k→∞

1

k
log

∑
Ck

P(Ck)
2 and H 2(P) = − lim

k→∞
1

k
log

∑
Ck

P(Ck)
2,
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where the sums are taken over all k-cylinders. When the limit exists we denote by H2(P) the
common value.

In general, the existence of the Rényi entropy is not known. However, it was computed in
some particular cases: Bernoulli shift, Markov chains and Gibbs measure of a Hölder-continuous
potential [23]. The existence was also proved for φ-mixing measures [28], for weakly ψ -mixing
processes [23] and for ψg-regular processes [6]. In Section 2.1, we will prove that for Markov
chains, the Rényi entropy does not depend on the initial distribution but only on the transition
matrix and that one can compute the Rényi entropy even if the measure is not stationary.

Definition 2.3. Consider the dynamical system (�,P, σ ). We say that it is α-mixing if there
exists a function α :N→ R where α(g) converges to zero when g goes to infinity and such that

sup
A∈Fn

0 ;B∈Fm
0

∣∣P(
A ∩ σ−g−nB

) − P(A)P(B)
∣∣ ≤ α(g), (2)

for all m,n ∈ N.
We say that the system is ψ -mixing if there exists a function ψ : N→R where ψ(g) converges

to zero when g goes to infinity and such that

sup
A∈Fn

0 ;B∈Fm
0

∣∣∣∣P(A ∩ σ−g−nB) − P(A)P(B)

P(A)P(B)

∣∣∣∣ ≤ ψ(g), (3)

for all m,n ∈ N. In the cases that α(g) or ψ(g) decreases exponentially fast to zero, we say that
the system has an exponential decay.

Now we are ready to present the main result of this section. It states that, under suitable con-
ditions and large values of n, the longest common substring behaves like logn, for almost all
realizations.

Theorem 2.4. Consider f : � → �̃ an encoder such that H 2(f∗P) > 0. For P⊗P-almost every
(x, y) ∈ � × �,

lim
n→∞

M
f
n (x, y)

logn
≤ 2

H 2(f∗P)
· (4)

Moreover, if

(i) the system (�,P, σ ) is α-mixing with an exponential decay (or ψ -mixing with ψ(g) =
g−a for some a > 0);

(ii) Cn ∈ F̃n
0 implies f −1Cn ∈Fh(n)

0 , where h(n) = o(nγ ), for some γ > 0,

then, for P⊗ P-almost every (x, y) ∈ � × �,

lim
n→∞

M
f
n (x, y)

logn
≥ 2

H 2(f∗P)
· (5)
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Therefore, if the Rényi entropy exists, we get for P⊗ P-almost every (x, y) ∈ � × �,

lim
n→∞

M
f
n (x, y)

logn
= 2

H2(f∗P)
· (�)

Remark 2.5. We emphasize that to obtain this result one cannot apply directly Theorem 7 of
[14] since in general the pushforward measure f∗P is not stationary (see, e.g., Section 2.3).

Proof. For simplicity, we assume α(g) = e−g . The ψ -mixing case can be obtained by a simple
modification. The proof of this theorem follows the lines of the proof of the Theorem 7 in [14],
but an extra care is needed (mainly in the second part of the proof) since we are working with
pre-image of cylinders (instead of cylinders in [14]).

In the first part of the proof, for ε > 0 we denote

kn =
⌈

2 logn + log logn

H2(f∗P) − ε

⌉
.

Let us also denote

A
f
i,j (y) = σ−i

[
f −1Ckn

(
f

(
σ jy

))]
and

S
f
n (x, y) =

∑
i,j=1,...,n

1
A

f
i,j (y)

(x).

We first show that the event {Mf
n ≥ kn} occurs only finitely many times. It follows from defi-

nition of S
f
n and Markov’s inequality that

P⊗ P
({

(x, y) : Mf
n (x, y) ≥ kn

}) = P⊗ P
({

(x, y) : Sf
n (x, y) ≥ 1

}) ≤ E
(
S

f
n

)
.

Moreover, by computing the expected value of S
f
n we get

E
(
S

f
n

) =
∫ ∫ ∑

i,j=1,...,n

1
A

f
ij (y)

(x) dP(x) dP(y)

=
∑

i,j=1,...,n

∫
P
(
f −1Ckn

(
f

(
σ jy

)))
dP(y)

= n2
∫

f∗P
(
Ckn

(
f (y)

))
dP(y).

Thus,

P⊗ P
({

(x, y) : Mf
n (x, y) ≥ kn

}) ≤ n2
∫

f∗P
(
Ckn

(
f (y)

))
dP(y).
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For large values of n, by definition of H 2(f∗P) it holds

∫
f∗P

(
Ckn

(
f (y)

))
dP(y) =

∑
Ckn

f∗P(Ckn)
2 ≤ e−kn(H 2(f∗P)−ε).

Moreover by definition of kn,

P⊗ P
({

(x, y) : Mf
n (x, y) ≥ kn

}) ≤ n2e−kn(H 2(f∗P)−ε) ≤ 1

logn
.

Choosing a subsequence {nκ}κ∈N such that nκ = 
eκ2� we have that

P⊗ P
({

(x, y) : Mf
nκ

(x, y) ≥ knκ

}) ≤ 1

κ2
.

Since the last quantity is summable in κ , the Borel–Cantelli lemma gives that if κ is large
enough, then for almost every pair (x, y) it holds

M
f
nκ

(x, y) < knκ

and then

M
f
nκ

(x, y)

lognκ

≤ 1

H 2(f∗P) − ε

(
2 + 1 + log lognκ

lognκ

)
. (6)

We observe that for all n, there exists κ such that eκ ≤ n ≤ eκ+1. In addition, since (M
f
n )n∈N

is an increasing sequence, we get

M
f
nκ

(x, y)

lognκ+1
≤ M

f
n (x, y)

logn
≤ M

f
nκ+1(x, y)

lognκ

. (7)

Taking the limit superior in the above inequalities and observing that limκ→∞ lognκ

lognκ+1
= 1 by (7)

we obtain

lim
n→∞

M
f
n (x, y)

logn
= lim

κ→∞
M

f
nκ

(x, y)

lognκ

.

Thus, by (6) we have

lim
n→∞

M
f
n (x, y)

logn
≤ 2

H 2(f∗P) − ε
.

Since ε can be arbitrarily small, (4) is proved.
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Despite some similarities with Theorem 7 in [14], we emphasize that second part of the present
proof is quite different, in particular since the length of the encoded sequences may be changed
by the encoder.

We will now prove (5). In order to do that denote, for ε > 0,

kn =
⌊

2 logn + b log logn

H2(f∗P) + ε

⌋

where b is a constant to be chosen.
Note that by definition of S

f
n we have

P⊗ P
({

(x, y) : Mf
n (x, y) < kn

}) = P⊗ P
({

(x, y) : Sf
n (x, y) = 0

})
≤ P⊗ P

({
(x, y) : ∣∣Sf

n (x, y) −E
(
S

f
n

)∣∣ ≥ ∣∣E(
S

f
n

)∣∣}).
By Chebyshev’s inequality we deduce that

P⊗ P
({

(x, y) : Mf
n (x, y) < kn

}) ≤ var(Sf
n )

E(S
f
n )2

.

We have to estimate the variance of S
f
n .

We see at once that

var
(
S

f
n

) =
∑

1≤i,i′,j,j ′≤n

cov(1
A

f
ij

,1
A

f

i′j ′
)

=
∑

1≤i,i′,j,j ′≤n

∫ ∫
1f −1Ckn (f (σ j y))

(
σ ix

)
1

f −1Ckn (f (σ j ′
y))

(
σ i′x

)

− n4
(∑

Ckn

f∗P(Ckn)
2
)2

. (8)

Let g = g(n) = (logn)β , for some β > max{1, γ }. There are four cases to consider.
Case 1: |i − i′| > g + kn. Using the α-mixing condition, we have∫ (∫

1f −1(Ckn (f (σ j y)))

(
σ (i−i′)x

)
1

f −1(Ckn (f (σ j ′
y)))

(x) dP(x)

)
dP(y)

≤ α
(
g + kn − h(kn)

)
+

∫ (∫
1f −1(Ckn (f (σ j y)))(x) dP(x)

∫
1

f −1(Ckn (f (σ j ′
y)))

(x) dP(x)

)
dP(y)

= α
(
g + kn − h(kn)

) +
∫

f∗P
(
Ckn

(
f

(
σ jy

)))
f∗P

(
Ckn

(
f

(
σ j ′

y
)))

dP(y). (9)

To estimate the first term of the sum above, we analyse two cases.
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Case 1.1: |j − j ′| > g + kn. In this case, we have∫
f∗P

(
Ckn

(
f

(
σ jy

)))
f∗P

(
Ckn

(
f

(
σ j ′

y
)))

dP(y)

=
∫

f∗P
(
Ckn

(
f

(
σ j−j ′

y
)))

f∗P
(
Ckn

(
f (y)

))
dP(y)

=
∑

Ckn ,C′
kn

∫
f −1(Ckn )∩σ j−j ′

(f −1(C′
kn

))

f∗P(Ckn)f∗P
(
C′

kn

)
dP(y)

=
∑

Ckn ,C′
kn

f∗P(Ckn)f∗P
(
C′

kn

)
P
(
f −1(Ckn) ∩ σ j−j ′(

f −1(C′
kn

)))
.

Using the α-mixing condition in the last expression, we get that∫
f∗P

(
Ckn

(
f

(
σ jy

)))
f∗P

(
Ckn

(
f

(
σ j ′

y
)))

dP(y)

≤
∑

Ckn ,C′
kn

f∗P(Ckn)f∗P
(
C′

kn

)(
f∗P(Ckn)f∗P

(
C′

kn

))

+
∑

Ckn ,C′
kn

f∗P(Ckn)f∗P
(
C′

kn

)(
α
(
g + kn − h(kn)

))

= α
(
g + kn − h(kn)

) +
(∑

Ckn

f∗P(Ckn)
2
)2

. (10)

Case 1.2 |j − j ′| ≤ g + kn. By Hölder’s inequality it follows that,∫
f∗P

(
Ckn

(
f

(
σ jy

)))
f∗P

(
Ckn

(
f

(
σ j ′

y
)))

dP(y)

≤
(∫

f∗P
(
Ckn

(
f

(
σ jy

)))2
dP(y)

)1/2(∫
f∗P

(
Ckn

(
f

(
σ j ′

y
)))2

dP(y)

)1/2

=
∑
Ckn

f∗P(Ckn)
3

≤
(∑

Ckn

f∗P(Ckn)
2
)3/2

(11)

where the last inequality comes from the subadditivity of the function z(x) = x2/3.
Case 2. |i − i′| ≤ g + kn:
Case 2.1 |j − j ′| > g + kn:
By symmetry, this case is analogous to the Case 1.2.
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Case 2.2. |j − j ′| ≤ g + kn:

∫ ∫
1f −1(Ckn (f (σ j y)))

(
σ ix

)
1

f −1(Ckn (f (σ j ′
y)))

(
σ i′x

)
dP(x) dP(y)

≤
∫ ∫

1f −1(Ckn (f (σ j y)))

(
σ ix

)
dP(x) dP(y)

=
∑
Ckn

f∗P(Ckn)
2. (12)

Putting the estimates (10), (11), (12) together in (8) we get

var(Sf
n )

E(S
f
n )2

≤ 3n4α(g + kn − h(kn)) + 4n3(g + kn)(
∑

Ckn
f∗P(Ckn)

2)3/2

(n2
∑

Ckn
f∗P(Ckn)

2)2

+ 4n2(g + kn)
2 ∑

Ckn
f∗P(Ckn)

2

(n2
∑

Ckn
f∗P(Ckn)

2)2
. (13)

We estimate each term on the right separately. Using the definition of kn and of the Rényi
entropy, for n large enough, we have for the first term

3n4α(g + kn − h(kn))

(n2
∑

Ckn
f∗P(Ckn)

2)2
≤ 3n4α(g + kn − h(kn))

(logn)−2b
.

By hypothesis, h(kn) = o((logn)γ ). Therefore, by definition of g and kn, for n large enough
we have g + kn − h(kn) > log(n4). Hence,

3n4α(g + kn − h(kn))

(n2
∑

Ckn
f∗P(Ckn)

2)2
≤ 3(logn)2b. (14)

To estimate the second term, we obtain

4n3(g + kn)(
∑

Ckn
f∗P(Ckn)

2)3/2

(n2
∑

Ckn
f∗P(Ckn)

2)2

≤ 4(g + kn)(logn)b/2

≤ 4(logn)β+b/2 + 2(logn)1+b/2 + b log(logn)(logn)b/2

H 2(f∗P) + ε
. (15)
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Finally for the third term, we get

4n2(g + kn)
2 ∑

Ckn
f∗P(Ckn)

2

(n2
∑

Ckn
f∗P(Ckn)

2)2

≤ 4(g + kn)
2(logn)b

≤ 8(logn)2β+b + 4(logn)2+b + b2(log(logn))2(logn)b

(H 2(f∗P) + ε)2
. (16)

Taking b < −4β and substituting (14), (15) and (16) into (13), we obtain

P⊗ P
({

(x, y) : Mf
n (x, y) < kn

}) ≤ O
(
(logn)−1). (17)

Thus, taking a subsequence {nκ}κ = 
eκ2� as in the proof of (4), we can use Borel–Cantelli
lemma to obtain (5).

Finally, if the Rényi entropy exists, by (4) and (5) we conclude the proof of the theorem. �

In what follows, we compute the Rényi entropy for Markov chains and then we apply the
above stated theorem to some well-known cases of probability’s literature. The first one is a
contamination encoder that flips to zero some symbols of the sequence and the second one gives
a weight on each symbol of χ .

2.1. Rényi entropy of Markov chains

In the sequel, we present an entropy invariance statement by change of initial distribution. In par-
ticular, we will use this result in the example of the stochastic scrabble (Section 2.3) to compute
the entropy of the pushforward measure.

Theorem 2.6. Let (Xn)n∈N be a Markov chain in a finite alphabet χ , with irreducible and ape-
riodic transition matrix P = [(pij )] and stationary measure μ. For any Markov measure ν with
initial distribution π and transition matrix P it holds

H2(ν) = H2(μ) = − logp

where p is the largest eigenvalue of the matrix [(pij )
2].

Proof. First of all, we observe that the second equality is a well-known result (see, e.g., [23]
Section 2.2). For the first equality, we will show the following two inequalities

H 2(ν) ≤ H2(μ) (18)

and

H 2(ν) ≥ H2(μ). (19)
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For convenience here, we will adopt the following notation for strings of stochastic processes:
{Xm

n = xm
n } = {Xn = xn,Xn+1 = xn+1, . . . ,Xm = xm} for every non-negative integers n, m such

that n ≤ m and for any realization x = x∞
0 .

We will use corollary (3.13) from [20], which states that there exists γ ∈ (0,1) such that for
all k > 1

sup
xk∈χ

∣∣ν(Xk = xk) − μ(xk)
∣∣ ≤ γ k.

A straightforward computation gives that for every n > k > 1

sup
x0,xk∈χ

∣∣ν(Xk = xk | X0 = x0) − μ(xk)
∣∣ ≤ γ k

and for every xn
k ∈ χn−k+1

∣∣ν(
Xn

k = xn
k

) − μ
(
xn
k

)∣∣ ≤ cγ kμ
(
xn
k

)
with c = (infx0{μ(x0)})−1 < +∞.

Let (an)n∈N be a non-decreasing and unbounded sequence in n taking values on the non-
negative integers and such that n ≥ an = o(n). Without loss of generality we will only consider
the strings xn

0 such that ν(Xn
0 = xn

0 ) > 0. On the one hand, we get

ν
(
Xn

0 = xn
0

) ≤ ν
(
Xn

an
= xn

an

)
≤ [

cγ anμ
(
xn
an

) + μ
(
xn
an

)]
.

Therefore,

1

n
log

∑
xn

0

ν
(
Xn

0 = xn
0

)2 ≤ 2

n
log

(
cγ an + 1

) + 1

n
log

∑
xn

0

μ
(
xn
an

)2

= 2

n
log

(
cγ an + 1

) + 1

n
log

∑
x

an−1
0

∑
xn
an

μ
(
xn
an

)2

≤ 2

n
log

(
cγ an + 1

) + 1

n
log |χ |an + 1

n
log

∑
xn
an

μ
(
xn
an

)2
.

One can observe that the two first terms in the last line vanish as n → ∞. Moreover, by
stationarity of μ we obtain

limn→∞
1

n
log

∑
xn

0

ν
(
Xn

0 = xn
0

)2 ≤ limn→∞
1

n
log

∑
xn
an

μ
(
xn
an

)2

= lim
n→∞

1

n − an

log
∑

x
n−an
0

μ
(
x

n−an

0

)2 = H2(μ)
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which gives us (18).
On the other hand, first notice that for strings such that ν(Xn

0 = xn
0 ) > 0, we have for n large

enough

ν
(
Xn

0 = xn
0

) = π(x0)Px0x1 · · ·Pxan−1xan
Pxanxan+1 · · ·Pxn−1xn

≥ π(x0)ρ
an

1

ν(Xan = xan)
ν
(
Xn

an
= xn

an

)
≥ π(x0)ρ

an

μ(xan) + γ an

[
μ

(
xn
an

)(
1 − γ an

)]
≥ dρan

[
μ

(
xn
an

)(
1 − γ an

)]
where ρ := minPij >0 Pij and d = 1

2 minπ(x0)>0 π(x0).
Now

1

n
log

∑
xn

0

ν
(
Xn

0 = xn
0

)2 ≥ 2

n
log

(
dρan

) + 1

n
log

∑
xn

0

[
μ

(
xn
an

)(
1 − γ an

)]2

≥ 2

n
log

(
dρan

) + 2

n
log

(
1 − γ an

) + 1

n
log

∑
xn
an

[
μ

(
xn
an

)]2
.

Taking the limit inferior and observing that the first two terms in the last line vanish and the third
one converges to H2(μ) as n diverges, we obtain (19). This last statement concludes the proof. �

2.2. The zero-inflated contamination model

Let {ξi}i∈N be a sequence of i.i.d. random variables taking values on {0,1}, independently of P,
and governed by a Bernoulli measure such that μ(ξi = 1) = 1 − ε, where ε ∈ (0,1) is the noise
parameter. Let fξ : � → � be a perturbation given by fξ (z) = {ξizi}i∈N. This defines the zero
inflated contamination model (see [16,21]).

Then, if H 2(fξ ∗ P) > 0, for P⊗ P-almost every (z, t) ∈ � × �,

lim
n→∞

M
fξ
n (z, t)

logn
≤ 2

H 2(fξ ∗ P)
.

Moreover, if the system (�,P, σ ) is α-mixing with an exponential decay, for P ⊗ P-almost
every (z, t) ∈ � × �,

lim
n→∞

M
fξ
n (z, t)

logn
≥ 2

H 2(fξ ∗ P)
.

Indeed, for k large enough f −1
ξ Ck ∈ Fmε(k)

0 , where mε(k) is the proportion of 1’s in the k-

cylinder Ck(ξ). Let μ⊗N denote the product measure that governs the stochastic process {ξi}i∈N.
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One can observe that by the law of large numbers μ⊗N-almost every realization ξ has an ε-
proportion of zeros, i.e.

lim
k→∞

mε(k)

k
= 1 − ε.

Thus, for μ⊗N-almost every ξ , there exists ε1 > 0 such that mε(k) = o(k1+ε1) and thus one can
apply Theorem 2.4.

Moreover, if P is a Bernoulli measure we can explicitly compute the Rényi entropy of fξ ∗ P.
Namely, by using the binomial theorem, for k large enough we get

∑
Ck

[
P
(
f −1

ξ Ck

)]2 =
mε(k)∑
j=1

(
mε(k)

j

)
p2j (1 − p)2(mε(k)−j)

= [
p2 + (1 − p)2]mε(k) .

Therefore the Rényi entropy is given by

H2(fξ ∗ P) = − lim
k→∞

mε(k)

k
log

(
p2 + (1 − p)2)

= −(1 − ε) log
(
p2 + (1 − p)2).

We observe that if χ = {a1, . . . , an} is a finite alphabet and P(X = ai) = pi , by similar compu-
tations (and the multinomial theorem) we obtain

H2(fξ ∗ P) = −(1 − ε) log

(∑
i

p2
i

)
= (1 − ε)H2(P).

Thus, by Theorem 2.4, we get that for μN-almost every realization of {ξi}i∈N it holds

M
fξ
n

logn
−→
n→∞

2

(1 − ε)H2(P)
P⊗ P-a.s.

The case fξ = Id is equivalent to ε = 0 (no contamination), and if ε is close to 1 we expect

to observe larger values for M
fξ
n (in view of Theorem 2.4). This can be summarized with the

following assertion: the more contamination, the more coincidences appear between the encoded
strings. This is a rather intuitive feature of the string matching problem, which indicates that
sequences which had lost much information tends to present more similarity.

2.3. Highest-scoring matching substring

In this example, we will consider the case in which a shorter match can be better scored than
a long one, depending on the symbols that compose the matched strings. For this, we assume
that each string is scored according to the symbols that compose it. In this sense, suppose that
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each letter a ∈ χ is associated to a weight v(a) ∈ N
∗. We also denote the score of a string zm−1

0

by V (zm−1
0 ) = ∑m−1

j=0 v(zj ). If x and y are two realizations of the χ -valued stochastic processes
(Xn)n and (Yn)n,

Vn(x, y) = max
0≤i,j≤n−m

{
V

(
zm−1

0

) : there exists 1 ≤ m ≤ n such that zm−1
0 = xi+m−1

i = y
j+m−1
j

}
is the nth highest-scoring matching substring [8]. The authors also named it stochastic Scrab-
ble, because of the namesake board game. For two copies independently generated by the same
Markov source P with positive transition probabilities [pij ], they stated the following result:

lim
n→∞

Vn

logn
= 2

− logp
P× P-a.s., (20)

where p ∈ (0,1) is the largest root of det(P − λV ) = 0, with P = [p2
ij ] and λV = [δij λ

v(i)].
One can observe that this result (20) can be obtained as particular case of Theorem 2.4. Indeed,

inspired by [8], we can construct a specific encoder f that stretches the sequences depending on
the weights of its letters. Formally

f : χN → χN

x∞
0 → x0x0 · · ·x0︸ ︷︷ ︸

v(x0)

x1x1 · · ·x1︸ ︷︷ ︸
v(x1)

· · ·xnxn · · ·xn︸ ︷︷ ︸
v(xn)

· · · (21)

With this particular encoder, we get that M
f
n (x, y) = Vn(x, y) and thus to get (20) we need to

compute H2(f∗P) and check that conditions (i) and (ii) of Theorem 2.4 are satisfied.
We recall that if (Xn) is a Markov chain in χ = {1,2, . . . , d}, we can see f (Xn) as a Markov

Chain in χ̃ , which is a (
∑

i∈χ v(i))-sized alphabet, given by

χ̃ = {11,12, . . . ,1v(1),21,22, . . . ,2v(2), . . . , d1, d2, . . . , dv(d)}.
In this context, we will consider that f : χN → χ̃N. Furthermore, if Q = [Qij ], 1 ≤ i, j ≤ d is
the transition matrix for (Xn) we get that the transition matrix Q∗ for the chain (f (Xn)) on χ̃ is
given by

Q∗
i�i�+1

= 1 if 1 ≤ � ≤ v(i) − 1 and 1 ≤ i, j ≤ d;
Q∗

iv(i)j1
= Qij if 1 ≤ i, j ≤ d;

Q∗
ij = 0 otherwise.

Notice that, if vmin = mini∈χ {v(i)} is the minimum weight, we get for any cylinder Cn,

f −1Cn ∈ F
� n

vmin
�

0 ,

and since n/vmin = o(n1+ε) for all ε > 0, condition (ii) of Theorem 2.4 is then satisfied. We
recall that an irreducible and aperiodic positive recurrent Markov chain is an α-mixing process
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with exponential decay of correlation (see, e.g., Theorem 4.9 in [27]) which implies condition
(i).

Finally, to obtain (20), we need to compute H2(f∗P). As in [8], to assure aperiodicity for the
encoded process f (Xn) we assume that gdc{v(1), v(2), . . . , v(d)} = 1.

Moreover, by Theorem (2.6), we know that the Rényi entropy of its stationary measure μ is
given by H2(μ) = − logp, where p is the largest positive eigenvalue of the matrix [(Q∗)2

ij ],
1 ≤ i, j ≤ (

∑
i∈χ v(i)) (it was proved in [8] that this p is the same as the one defined in (20)).

Moreover, we observe that f∗P is a Markov measure with initial distribution π and transition
matrix Q∗, where π is defined by π(i1) = P(X0 = i) and π(ij ) = 0 for any i ∈ χ and 1 < j ≤
v(i). It is important to notice that in general, f∗P is not stationary.

Thus, by Theorem (2.6), we have H2(μ) = H2(f∗P) and we can combine it with equation (�)
in Theorem 2.4 to conclude that, for P×P almost every pair of realizations, as n diverges it holds

Vn

logn
−→ 2

− logp
.

We remark that this example generalizes [8] to α-mixing processes with exponential decay and
ψ -mixing with polynomial decay, since we can apply Theorem 2.4 to this encoder f , and then
obtain information on the highest scoring Vn.

3. Shortest distance between observed orbits

In [14] it was explained that, in the case of dynamical systems, investigating the longest common
substring is similar to the study of the shortest distance between orbits. Mixing this idea with the
fact that studying statistical properties of observations of dynamical systems could be more sig-
nificant for experimentalists (see, e.g., [15,34,35]), we will analyse in this section the behaviour
of the shortest distance between two observed orbits.

Let (X,A, T ,μ) be a dynamical system where (X,d) is a metric space, A is a σ -algebra on
X, T : X → X is a measurable map and μ an invariant probability measure on (X,A) that is,
μ(T −1(A)) = μ(A), for all A ∈ A.

Definition 3.1. Let f : X → Y ⊂ R
N be a measurable function, called the observation. We

define the shortest distance between two observed orbits as follows

m
f
n (x, y) = min

i,j=0,...,n−1

(
d
(
f

(
T ix

)
, f

(
T jy

)))
.

For a measure ν on X, we define the lower and upper correlation dimension of ν by

Cν = lim
r→0

log
∫
X

ν(B(x, r)) dν(x)

log r
and Cν = lim

r→0

log
∫
X

ν(B(x, r)) dν(x)

log r
.

If the limit exists, we denote by Cν the common value.
We will show that the shortest distance between two observed orbits is related with the corre-

lation dimension of the pushforward measure f∗μ. Recall that the pushforward measure is given
by f∗μ(·) := μ(f −1(·)).
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Theorem 3.2. Let (X,A, T ,μ) be a dynamical system. Consider an observation f : X → Y

such that Cf∗μ > 0. Then for μ ⊗ μ-almost every (x, y) ∈ X × X

lim
n→∞

logm
f
n (x, y)

− logn
≤ 2

Cf∗μ
. (22)

We recall that the condition Cf∗μ = 0 can lead to unknown values for the above limit. How-

ever, one can observe that if m
f
n = 0 on a set of positive measure, our result implies immediately

that Cf∗μ = 0. The following simple example illustrates this fact.

Example 3.3. Let X = [0,1] and μ = Leb the Lebesgue measure on X. Given A ⊂ X with
μ(A) > 0 we define a function f : X → X by

f (x) =
{

x, if x ∈ Ac

c, if x ∈ A

where c ∈ [0,1] is a constant. For any transformation T which is μ-invariant, we have
m

f
n (x, y) = 0 for every x, y ∈ A, and thus Cf∗μ = 0. One can also observe that if T is er-

godic, for n sufficiently large m
f
n (x, y) = 0 for almost every x, y. Indeed, by Poincaré recur-

rence theorem, we obtain that, for almost every x, y, the orbits of x and y will visit A, i.e.
it exist n1, n2 ∈ N such that T n1(x) ∈ A and T n2(y) ∈ A. Therefore, for n sufficiently large
m

f
n (x, y) = d(f (T n1(x)), f (T n2(y))) = 0. In fact, with a simple computation, one can show

that Cf∗μ = 0.

Proof of Theorem 3.2. For ε > 0, we define

kn = 2 logn + log logn

Cf∗μ − ε
.

We also define

A
f
ij (y) = T −i

[
f −1B

(
f

(
T jy

)
, e−kn

)]
and

S
f
n (x, y) =

∑
i,j=1,...,n

1
A

f
ij (y)

(x).

Using Markov inequality, we get that

μ ⊗ μ
({

(x, y) : mf
n (x, y) < e−kn

}) = μ ⊗ μ
({

(x, y) : Sf
n (x, y) > 0

}) ≤ E
(
S

f
n

)
.

Using the invariance of μ, we can compute the expected value of S
f
n

E
(
S

f
n

) = n2
∫

f∗μ
(
B

(
f (y), e−kn

))
dμ(y).
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Thus, for n large enough, by definition of Cf∗μ and kn, we obtain

μ ⊗ μ
({

(x, y) : mf
n (x, y) ≤ e−kn

}) ≤ n2e
−kn(Cf∗μ−ε) = 1

logn
.

Choosing a subsequence {nκ}κ∈N such that nκ = 
eκ2�, we can use Borel–Cantelli lemma as
in the proof of (4) to obtain

lim
n→∞

logm
f
n (x, y)

− logn
≤ 2

Cf∗μ − ε
.

Since ε can be arbitrarily small, the proof is complete. �

As in [14], to obtain an equality in (22), we will need more assumptions on the system.

(H1) Let Hα(X,R) be the space of Hölder observables. For all ψ,φ ∈ Hα(X,R) and for all
n ∈ N

∗, we have:∣∣∣∣
∫

X

ψ ◦ f
(
T nx

)
φ ◦ f (x)dμ(x) −

∫
X

ψ ◦ f dμ

∫
X

φ ◦ f dμ

∣∣∣∣ ≤ ‖ψ ◦ f ‖α‖φ ◦ f ‖αθn

with θn = an and a ∈ [0,1).
(HA) There exist r0 > 0, ξ ≥ 0 and β > 0 such that for f∗μ-almost every y ∈ R

N and any
r0 > r > ρ > 0,

f∗μ
(
B(y, r + ρ)\B(y, r − ρ)

) ≤ r−ξ ρβ.

One can observe that, if f is Lipschitz, assuming hypothesis (H1) is weaker than assuming a
exponential decay of correlations (for Hölder observables) for the system (X,A, T ,μ). Indeed,
note that if f is Lipschitz then ψ ◦ f is Hölder for every Hölder function ψ .

Theorem 3.4. Let (X,A, T ,μ) be a dynamical system and consider a Lipschitz observation
f : X → Y such that Cf∗μ > 0. If the system satisfies (H1) and (HA), then for μ ⊗ μ-almost
every (x, y) ∈ X × X

lim
n→∞

logm
f
n (x, y)

− logn
≥ 2

Cf∗μ
.

Furthermore, if Cf∗μ exists, we get

lim
n→∞

logm
f
n (x, y)

− logn
= 2

Cf∗μ
(��)

for μ ⊗ μ-almost every (x, y) ∈ X × X.

In what follows one will observe that the proof follows the lines of the symbolic case where
M

f
n will be substitute by − logm

f
n and cylinders of size k will be substitute by balls of radius
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e−k . Thus, we will only write the main lines of the proof, giving more details when the proof
diverge from the symbolic one.

To prove Theorem 3.4, the main difficulty and difference with the symbolic case is that we
cannot apply mixing as simply. In particular, we can only apply mixing to Hölder observables
and indicator functions are not even continuous. To overthrow this difficulty, we will first prove
in the following lemma that a particular function is Hölder. In the proof of Theorem 3.4, we will
apply the mixing property to this particular function.

Lemma 3.5. Let (X,A, T ,μ) be a dynamical system with observation f . If it satisfies (HA),
then there exist 0 < r0 < 1, c ≥ 0 and ζ ≥ 0 such that for any 0 < r < r0, the function ψ1 : x →
f∗μ(B(x, r)) belongs to Hα(X,R) and

‖ψ1‖α ≤ 2r−ζ .

Proof. Let x, y ∈ X and 0 < r < r0, if ‖x − y‖ < r we have∥∥f∗μ
(
B(y, r)

) − f∗μ
(
B(x, r)

)∥∥ ≤ f∗μ
(
B

(
x, r + ‖x − y‖)) − f∗μ

(
B

(
x, r − ‖x − y‖)).

Thus, by (HA), ∥∥f∗μ
(
B(y, r)

) − f∗μ
(
B(x, r)

)∥∥ ≤ r−ξ‖x − y‖β.

On the other hand, if ‖x − y‖ ≥ r then

∥∥f∗μ
(
B(y, r)

) − f∗μ
(
B(x, r)

)∥∥ ≤ 2 ≤ 2

r
‖x − y‖.

Thus, ψ1 is Hölder and ‖ψ1‖α ≤ 2r−ζ with ζ = max{1, ξ }. �

In the sequel, we present the proof of Theorem 3.4. This proof mainly follows the ideas of the
proof of [14], Theorem 5.

Proof of Theorem 3.4. Without loss of generality, we will assume here that θn = e−n. Let b <

−4. Given ε > 0, we define

kn = 2 logn + b log logn

Cf∗μ + ε
.

By Chebyshev’s inequality, we get that

μ ⊗ μ
({

(x, y) : mf
n (x, y) ≥ e−kn

}) ≤ var(Sf
n )

E(S
f
n )2

.

We now proceed to estimate the variance of S
f
n .
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We see at once that

var
(
S

f
n

) =
∑

1≤i,i′,j,j ′≤n

cov(1
A

f
ij

,1
A

f

i′j ′
)

=
∑

1≤i,i′,j,j ′≤n

∫ ∫
1f −1B(f (T j y),e−kn )

(
T ix

)
1

f −1B(f (T j ′
y),e−kn )

(
T i′x

)

− n4
(∫

f∗μ
(
B

(
f (y), e−kn

))
dμ(y)

)2

. (23)

One can observe that this equation is similar to (8), thus as in the symbolic case we would like
to apply the mixing property to estimate the previous sum. However, in this case our assumption
(H1) only allows us to use mixing with Hölder functions thus we will approximate our character-
istic functions by Lipschitz (and thus Hölder) functions following the construction of the proof
of Lemma 9 in [36].

Let ρ > 0 (to de defined properly later). Let ηe−kn : [0,∞) → R be the 1
ρe−kn

-Lipschitz func-
tion such that 1[0,e−kn ] ≤ ηe−kn ≤ 1[0,(1+ρ)e−kn ] and set ϕf (y),e−kn (x) = ηe−kn (d(f (y), x)). Since

f is L-Lipschitz it follows that ϕf (y),e−kn ◦ f is L
ρe−kn

-Lipschitz. Moreover, we have

1f −1B(f (T j y),e−kn )(x) = 1B(f (T j y),e−kn )

(
f (x)

)
= 1[0,e−kn ]

(
d
(
f

(
T jy

)
, f (x)

))
≤ ηe−kn

(
d
(
f

(
T jy

)
, f (x)

))
= ϕf (T j y),e−kn

(
f (x)

)
. (24)

We are now able to apply the mixing property and as in the symbolic case, we will consider
four different cases. Let us fix g = g(n) = log(nγ ) for some γ > 0 to be defined later.

Case 1: |i − i′| > g. By (H1) and (24), we obtain∫ ∫
1f −1B(f (T j y),e−kn )

(
T ix

)
1

f −1B(f (T j ′
y),e−kn )

(
T i′x

)
dμ(x)dμ(y)

=
∫ ∫

1f −1B(f (T j y),e−kn )

(
T i−i′x

)
1

f −1B(f (T j ′
y),e−kn )

(x) dμ(x)dμ(y)

≤
∫ ∫

ϕf (T j y),e−kn

(
f

(
T i−i′x

))
ϕ

f (T j ′
y),e−kn

(
f (x)

)
dμ(x)dμ(y)

≤
∫ (∫

ϕf (T j y),e−kn

(
f

(
T i−i′x

))
dμ(x)

∫
ϕ

f (T j ′
y),e−kn

(
f (x)

)
dμ(x)

)
dμ(y)

+ θg‖ϕf (T j y),e−kn ‖‖ϕ
f (T j ′

y),e−kn ‖

≤ L2

ρ2e−2kn
θg +

∫
f∗μ

(
B

(
f

(
T jy

)
, (1 + ρ)e−kn

))
f∗μ

(
B

(
f

(
T j ′

y
)
, (1 + ρ)e−kn

))
dμ(y).
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This estimate is similar to (9), however one needs to take extra care to estimate the second part
(and not use mixing immediately as in the discrete case) since the radius of the balls is not e−kn

anymore. Indeed, we need the radius to be e−kn so that when we will use mixing again we will
obtain a term which will simplify with the last term in (8). To do so, we can observe that using
(HA) we obtain∫

f∗μ
(
B

(
f

(
T jy

)
, (1 + ρ)e−kn

))
f∗μ

(
B

(
f

(
T j ′

y
)
, (1 + ρ)e−kn

))
dμ(y)

−
∫

f∗μ
(
B

(
f

(
T jy

)
, e−kn

))
f∗μ

(
B

(
f

(
T j ′

y
)
, e−kn

))
dμ(y)

≤
∫

f∗μ
(
B

(
f

(
T jy

)
, (1 + ρ)e−kn

))(
f∗μ

(
B

(
f

(
T j ′

y
)
, (1 + ρ)e−kn

))
− f∗μ

(
B

(
f

(
T j ′

y
)
, e−kn

)))
dμ(y)

+
∫

f∗μ
(
B

(
f

(
T j ′

y
)
, e−kn

))(
f∗μ

(
B

(
f

(
T jy

)
, (1 + ρ)e−kn

))
− f∗μ

(
B

(
f

(
T jy

)
, e−kn

)))
dμ(y)

≤
∫

f∗μ
(
B

(
f

(
T jy

)
, (1 + ρ)e−kn

))
eξknρβ dμ(y)

+
∫

f∗μ
(
B

(
f

(
T j ′

y
)
, e−kn

))
eξknρβ dμ(y).

Therefore, choosing ρ = n−δ for some δ > 0 to be defined later, we have for n large enough∫ ∫
1f −1B(f (T j y),e−kn )

(
T ix

)
1

f −1B(f (T j ′
y),e−kn )

(
T i′x

)
dμ(x)dμ(y)

≤ L2

ρ2e−2kn
θg + 2eξknρβ

∫
f∗μ

(
B

(
f

(
T jy

)
,2e−kn

))
dμ(y)

+
∫

f∗μ
(
B

(
f

(
T jy

)
, e−kn

))
f∗μ

(
B

(
f

(
T j ′

y
)
, e−kn

))
dμ(y).

One can observe that in this estimate we have now an additional term that was not present in
the symbolic setting (9) which is due to the need to approximate characteristic functions by
Lipschitz functions. To deal with the third term of the last inequality, we need to consider two
different cases.

Case 1.1: |j − j ′| > g. We can use the mixing property (H1) to the particular function defined
in Lemma 3.5 ∫

f∗μ
(
B

(
f

(
T jy

)
, e−kn

))
f∗μ

(
B

(
f

(
T j ′

y
)
, e−kn

))
dμ(y)

≤ 4θge
2ζkn +

(∫
f∗μ

(
B

(
f (y), e−kn

))
dμ(y)

)2

and we obtain an estimate similar to (10).
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Case 1.2: |j − j ′| ≤ g. Using Holder’s inequality together and the invariance of μ, as in (11),
we have ∫

f∗μ
(
B

(
f

(
T jy

)
, e−kn

))
f∗μ

(
B

(
f

(
T j ′

y
)
, e−kn

))
dμ(y)

≤
∫

f∗μ
(
B

(
f (y), e−kn

))2
dμ(y).

Case 2.1: |i − i′| ≤ g and |j − j ′| > g. In this case, we obtain the same estimate as in the Case
1.2 using the following symmetry:

1f −1B(f (T �y),e−kn )

(
T mx

) = 1f −1B(f (T mx),e−kn )

(
T �y

)
for all �,m ∈N and all x and y.

Case 2.2: |i − i′| ≤ g and |j − j ′| ≤ g. The boundedness of the indicator function and invari-
ance of μ give that,∫ ∫

1f −1B(f (T j y),e−kn )

(
T ix

)
1

f −1B(f (T j ′
y),e−kn )

(
T i′x

)
dμ(x)dμ(y)

≤
∫ ∫

1f −1B(f (T j y),e−kn )

(
T ix

)
dμ(x)dμ(y) =

∫
f∗μ

(
B

(
f (y), e−kn

))
dμ(y).

Putting all the previous estimates in (23), we obtain

var(Sf
n )

E(S
f
n )2

≤ n4L2ρ−2e2knθg + 4n4θge
2ζkn + 2n4eξknρβ

∫
f∗μ(B(f (y),2e−kn)) dμ(y)

(n2
∫

f∗μ(B(f (y), e−kn)) dμ(y))2

+ 4n2g2
∫

f∗μ(B(f (y), e−kn)) dμ(y) + 4n3g
∫

f∗μ(B(f (y), e−kn))2 dμ(y)

(n2
∫

f∗μ(B(f (y), e−kn)) dμ(y))2
.

(25)

This estimate is comparable to (13) (in the symbolic setting), except for the third term coming
from our approximation of characteristic functions, and the terms will be dealt with in a similar
way. To help the reader understanding the following majorations, we can observe that

n−2(logn)−b = e−kn(Cf∗μ+ε) �
∫

f∗μ
(
B

(
f (y), e−kn

))
dμ(y) ≤ 1.

Recalling that ρ = n−δ , we can choose δ large enough (depending on ξ , β , Cf∗μ, b and ε) so
that

2n4eξknρβ
∫

f∗μ(B(f (y),2e−kn)) dμ(y)

(n2
∫

f∗μ(B(f (y), e−kn)) dμ(y))2
≤ 1

n
. (26)
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Recalling that g = log(nγ ), we can observe that we can choose γ large enough (depending on
δ, Cf∗μ, ζ , b and ε) so that

n4L2ρ−2e2knθg

(n2
∫

f∗μ(B(f (y), e−kn)) dμ(y))2
≤ 1

n
(27)

and so that

4n4θge
2ζkn

(n2
∫

f∗μ(B(f (y), e−kn)) dμ(y))2
≤ 1

n
. (28)

For the fourth term, we have

4n2g2
∫

f∗μ(B(f (y), e−kn)) dμ(y)

(n2
∫

f∗μ(B(f (y), e−kn)) dμ(y))2
≤ 4g2

n2e−kn(Cf∗μ+ε)

≤ 4γ 2(logn)2+b. (29)

To estimate the last term, one cannot use immediately the subadditivity as in (11), thus we will
use the following lemma.

Lemma 3.6 (Lemma 14 [14]). Let Z ⊂ R
N and let ν be a probability measure on Z. There

exists a constant K > 0 depending only on N such that for every r small enough

∫
Z

ν
(
B(y, r)

)2
dν(y) ≤ K

(∫
Z

ν
(
B(y, r)

)
dν(y)

)3/2

.

Applying the previous lemma with Z = Y and ν = f∗μ we obtain

4n3g
∫

f∗μ(B(f (y), e−kn))2 dμ(y)

(n2
∫

f∗μ(B(f (y), e−kn)) dμ(y))2
≤ 4gK

n(
∫

f∗μ(B(f (y), e−kn)) dμ(y))1/2

≤ 4gK

n
e

kn(Cf∗μ+ε)

2

≤ 4Kγ (logn)1+ b
2 . (30)

Since b < −4 and substituting (27), (26), (28), (29) and (30) into (25), we get

μ ⊗ μ
({

(x, y) : mf
n (x, y) ≥ e−kn

}) ≤ O
(
(logn)−1).

Thus, taking a subsequence nκ = 
eκ2�. As in the proof of Theorem 3.2, by Borel–Cantelli
lemma we obtain

lim
n→∞

logm
f
n (x, y)

− logn
= lim

κ→∞
logm

f
nκ

(x, y)

− lognκ

≥ 2

Cf∗μ + ε
.
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Since ε can be arbitrarily small, the theorem follows. �

Following the idea of [34,35] that the study of observation of dynamical systems can be used
to study random dynamical systems, we will show in the next section that the previous result can
be applied to obtain information on the shortest distance between two random orbits.

4. Shortest distance between orbits for random dynamical
systems

Let X ⊂ R
N and let (�, θ,P) be a probability measure preserving system, where � is a met-

ric space and B(�) its Borelian σ -algebra. We first introduce the notion of random dynamical
system.

Definition 4.1. A random dynamical system T = (Tω)ω∈� on X over (�,B(�),P, θ) is gener-
ated by maps Tω such that (ω, x) → Tω(x) is measurable and satisfies:

T 0
ω = Id for all ω ∈ �,

T n
ω = Tθn−1(ω) ◦ · · · ◦ Tθ(ω) ◦ Tω for all n ≥ 1.

The map S : �×X → �×X defined by S(ω,x) = (θ(ω),Tω(x)) is the dynamics of the random
dynamical systems generated by T and is called skew-product.

Definition 4.2. A probability measure μ is said to be an invariant measure for the random dy-
namical system T if it satisfies

1. μ is S-invariant
2. π∗μ = P

where π : � × X → � is the canonical projection.

Let (μω)ω denote the decomposition of μ on X, that is, dμ(ω,x) = dμω(x)dP(ω). We denote
by ν = ∫

μω dP the marginal of ν on X.

Definition 4.3. We define the shortest distance between two random orbits by

mω,ω̃
n (x, x̃) = min

i,j=0,...,n−1

(
d
(
T i

ω(x), T
j

ω̃
(x̃)

))
.

As in the deterministic case, we need a hypothesis for the measure and an (annealed) expo-
nential decay of correlations for the random dynamical system. Namely,

(a) There exist r0 > 0, ξ ≤ 0 and β > 0 such that for almost every y ∈ X and any r0 > r >

ρ > 0,

ν
(
B(y, r + ρ)\B(y, r − ρ)

) ≤ r−ξ ρβ.
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(b) (Annealed decay of correlations) ∀n ∈ N
∗, ψ and φ Hölder observables from X to R,∣∣∣∣

∫
�×X

ψ
(
T n

ω (x)
)
φ(x)dμ(ω,x) −

∫
�×X

ψ dμ

∫
�×X

φ dμ

∣∣∣∣ ≤ ‖ψ‖α‖φ‖αθn

with θn = e−n.

Theorem 4.4. Let T be a random dynamical system on X over (�,B(�),P, θ) with an invariant
measure μ such that Cν > 0. Then for μ ⊗ μ-almost every (ω, x, ω̃, x̃) ∈ � × X × � × X,

lim
n→∞

logm
ω,ω̃
n (x, x̃)

− logn
≤ 2

Cν

.

Moreover, if the random dynamical system satisfies assumptions (a) and (b), then

lim
n→∞

logm
ω,ω̃
n (x, x̃)

− logn
≥ 2

Cν

and if Cν exists, then

lim
n→∞

logm
ω,ω̃
n (x, x̃)

− logn
= 2

Cν

. (� � �)

To prove this theorem, we will just apply Theorem 3.2 and Theorem 3.4 to the skew-product
S with a well-chosen observation, following the idea given in [34].

Proof. We use Theorem 3.2 and Theorem 3.4 for the dynamical system (�×X,B(�×X),μ,S)

with the observation f defined by

f : � × X → X

(ω,x) → x.

Indeed, with this particular observation f , studying the observed orbit of (ω, x) under the skew-
product S is similar to studying the random orbit of x with respect to ω since

f
(
Sn(ω,x)

) = f
(
θnω,T n

ω (x)
) = T n

ω (x).

Thus, for all z and t ∈ � × X we can link the shortest distance between two observed orbits and
the shortest distance between two random orbits. Set z = (ω, x) and t = (ω̃, x̃) then

m
f
n (z, t) = min

i,j=0,...,n−1

(
d
(
f

(
Si(ω, x)

)
, f

(
Sj (ω̃, x̃)

)))
= min

i,j=0,...,n−1

(
d
(
T i

ωx,T
j

ω̃
x̃
))

= mω,ω̃
n (x, x̃).
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Moreover, we can identify the pushforward measure: f∗μ = ν. Therefore, in view of the lower
and upper correlation dimensions, the following statement finishes the proof

Cf∗μ = Cν and Cf∗μ = Cν. �

In what follows, we present a collection of examples for which Theorem 4.4 holds. They
illustrate some well-known random dynamical systems on the literature.

4.1. Non-i.i.d. random dynamical system

The first example is a non-i.i.d. random dynamical system for which it was computed recurrence
rates in [30] and hitting times statistics in [34].

Consider the two linear maps which preserve Lebesgue measure Leb on X = T
1, the one-

dimensional torus:

T1 : X → X and T2 : X → X

x → 2x x → 3x.

The following skew product gives the dynamics of the random dynamical system:

S : � × X → � × X

(ω,x) → (
θ(ω),Tω(x)

)
with � = [0,1], Tω = T1 if ω ∈ [0,2/5) and Tω = T2 if ω ∈ [2/5,1] where ω is the following
piecewise linear map:

θ(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ω if ω ∈ [0,1/5)

3ω − 1/5 if ω ∈ [1/5,2/5)

2ω − 4/5 if ω ∈ [2/5,3/5)

3ω/2 − 1/2 if ω ∈ [3/5,1].
Note that the random orbit is constructed by choosing one of these two maps following a

Markov process with the stochastic matrix

A =
(

1/2 1/2
1/3 2/3

)
.

The associated skew-product S is Leb ⊗ Leb-invariant. It is easy to check that Lebesgue
measure satisfies (a). Moreover, by [12] the skew product S has an exponential decay of cor-
relations. Since in this example ν = Leb, we have Cν = 1 and Theorem 4.4 implies that for
Leb ⊗ Leb ⊗ Leb ⊗ Leb-almost every (ω, x, ω̃, x̃) ∈ [0,1] ×T

1 × [0,1] ×T
1,

lim
n→∞

logm
ω,ω̃
n (x, x̃)

− logn
= 2.



Matching strings in encoded sequences 2047

4.2. Randomly perturbed dynamical systems

Consider a deterministic dynamical system (X,T ,μ) where X is a compact Riemannian mani-
fold, T is a map and μ is a T -invariant probability measure. We will present a random dynam-
ical system constructed by perturbing the map T with a random additive noise. For ε > 0, set
�ε = B(0, ε) and let Pε be a probability measure on �ε . For each ω ∈ �ε , we denote the family
of transformations {Tω}ω where the map Tω : X → X are given by

Tω(x) = T (x) + ω.

Denote T the i.i.d. dynamical system on X over (�N
ε ,PN

ε , σ ). In the case where X = T
d , for

some expanding and piecewise expanding maps, if ε is sufficiently small, it was proved (see,
e.g., [10,13,40]) that the random dynamical system has a stationary measure με absolutely con-
tinuous with respect to Lebesgue measure with density hε such that 0 < hε ≤ hε ≤ hε < ∞ and
the system has an exponential decay of correlations. Thus, since the assumptions (a) and (b)
are satisfied one can apply Theorem 4.4 and obtain information on the behavior of the shortest
distance m

ω,ω̃
n .

4.3. Random hyperbolic toral automorphisms

A linear toral automorphism is a map T : T2 → T
2 defined by the matrix action x → Ax, where

the matrix A has integer entries and detA = ±1. We say that T is hyperbolic if A has eigenvalues
with modulus different from 1. For more simplicity, we will use the notation A for both the matrix
and the associated automorphism.

For an hyperbolic toral automorphism A, we denote EA
u the subspace spanned by eA

u , the
eigenvector associated to the eigenvalue whose absolute value is greater than 1 and we denote
EA

s the subspace spanned by eA
s , the eigenvector associated to the eigenvalue whose absolute

value is less than 1.
Following the definition from [11], we say that a pair (A0,A1) of hyperbolic toral automor-

phisms has the cone property if there exists an expansion cone E such that

1. AiE ⊂ E ,
2. there exists λE > 1 such that |Aix| ≥ λE |x| for x ∈ E ,
3. E

Ai
u ∩ ∂E = 0, where ∂E denote the boundary of E ,

and there exists a contraction cone C such that C ∩ E = 0 and

1. A−1
i C ⊂ C,

2. there exists λC < 1 such that |A−1
i x| ≥ λ−1

C |x| for x ∈ C,

3. E
Ai
s ∩ ∂C = 0.

One can observe that for example a pair of hyperbolic toral automorphisms with positive
entries, or a pair of hyperbolic toral automorphisms with negative entries, has the cone property.

Let � = {0,1} and θ = σ be the left shift on �N. Let A0, A1 two hyperbolic automorphisms
satisfying the cone property. Let A0 be chosen with a probability q and A1 with a probability
1 − q , i.e. P =PN with P(0) = q and P(1) = 1 − q .
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Then, for the i.i.d. random dynamical system on T
2 over (�N,PN, σ ), the Lebesgue measure

is stationary (and thus hypothesis (a) is satisfied) and the system has an exponential decay of
correlations (see [11]).

Note that ν = Leb ⊗ Leb implies that Cν = 2. Then, by Theorem 4.4 we get for P⊗ Leb ⊗P⊗
Leb-almost every (ω, x, ω̃, x̃) ∈ � ×T

2 × � ×T
2,

lim
n→∞

logm
ω,ω̃
n (x, x̃)

− logn
= 1.
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