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On the best constant in the martingale version
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ADAM OSĘKOWSKI

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
Banacha 2, 02-097 Warsaw, Poland. E-mail: ados@mimuw.edu.pl

Let X = (Xt )t≥0 ∈ H 1 and Y = (Yt )t≥0 ∈ BMO be arbitrary continuous-path martingales. The paper con-
tains the proof of the inequality

E

∫ ∞
0

∣∣d〈X,Y 〉t
∣∣ ≤ √

2‖X‖H 1‖Y‖BMO2 ,

and the constant
√

2 is shown to be the best possible. The proof rests on the construction of a certain special
function, enjoying appropriate size and concavity conditions.
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1. Introduction

A classical result of Fefferman asserts that the space BMO, the class of functions of bounded
mean oscillation, can be identified with the dual space of H 1. This fact was originally obtained in
Fefferman [4] in the analytic setting, and was later extended to the probabilistic context by Getoor
and Sharpe [5]. The purpose of this paper is to provide the best constant in the corresponding
martingale inequality.

We start with the introduction of the basic notion and notation. Let (�,F,P) be a com-
plete probability space, equipped with a right-continuous filtration (Ft )t≥0 such that F0 con-
tains all the sets of probability zero. Throughout, we assume that any local martingale adapted
to this filtration is continuous: for example, it is well known that the Brownian filtration enjoys
this property. Furthermore, for technical reasons, we will assume that the probability space is
not too small: there exists a Brownian motion on it. For any adapted martingale X = (Xt )t≥0,
we denote the corresponding square bracket by 〈X,X〉: see Dellacherie and Meyer [3] for the
definition. The maximal function of X is given by X∗ = supt≥0 |Xt | and we use the notation
X∗

t = sups∈[0,t] |Xs | (where t ≥ 0) for the corresponding truncated version. The Hardy norm of
X is given by ‖X‖H 1 = EX∗, and the space H 1 is defined as the class of all martingales whose
Hardy norms are finite. The space H 1 is a Banach space, and the aforementioned result of Fef-
ferman, Getoor and Sharpe asserts that its dual is equal to BMO, the definition of which we now
recall. Following Getoor and Sharpe [5], given 1 ≤ p < ∞, a uniformly integrable martingale
Y = (Yt )t≥0 belongs to the class BMOp , if

‖Y‖BMOp = sup
t≥0

∥∥E[|Y∞ − Yt |p|Ft

]1/p∥∥∞ < ∞.
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It can be shown that all the seminorms ‖ · ‖BMOp are equivalent, and hence all the classes BMOp

coincide. Therefore, we may skip the lower index and write BMO for the class. Throughout the
paper, we will work with the norm ‖ · ‖BMO2 denoted, for notational simplicity, by ‖ · ‖BMO: the
reason for the choice of the parameter p = 2 comes from the identity

‖Y‖2
BMO2

= sup
t≥0

essup
(
E

(
Y 2∞|Ft

) − Y 2
t

)
,

which makes the bounded mean oscillation easier to handle (see below).
BMO functions and martingales have quite strong integrability properties and there is a natural

question about the identification of best constants in the corresponding estimates. This subject
has been studied in the literature. We mention here the works of Ivanisvili et al. [6], Korenovskii
[8], Osękowski [9,10], Slavin and Vasyunin [11,12] and Vasyunin and Volberg [14]. We also
refer the interested reader to the survey of Kazamaki [7], which presents an overview of various
related objects from a slightly wider perspective.

In this paper, we continue this line of research and determine the best constant in the martingale
version of H 1 − BMO duality estimate. Here is the main result.

Theorem 1.1. Let X = (Xt )t≥0 ∈ H 1 and Y = (Yt )t≥0 ∈ BMO be arbitrary continuous-path
martingales. Then the random variable 〈X,Y 〉∞ is integrable and

E〈X,Y 〉∞ ≤ √
2‖X‖H 1‖Y‖BMO. (1)

The constant
√

2 is the best possible: for each ε > 0, there exists a probability space and a pair
X,Y as above for which

E〈X,Y 〉∞ > (
√

2 − ε)‖X‖H 1‖Y‖BMO. (2)

Actually, our argumentation will allow us to establish the stronger bound

E

∫ ∞

0

∣∣d〈X,Y 〉t
∣∣ ≤ √

2‖X‖H 1‖Y‖BMO (3)

(which is also sharp, in the light of (2)). Our approach will exploit the so-called Bellman function
(or Burkholder’s) method: the estimate (1) will be deduced from the existence of a certain special
function, enjoying appropriate size and concavity requirements. This technique is presented in
the next section, and our main result is established in Section 3.

2. On the method of proof

2.1. Geometric properties of BMO martingales

We start with certain geometrical interpretation of BMO martingales, which will be helpful in
our considerations below (see also Stolyarov and Zatitsky [13] which handles this topic from
a wider perspective). Our first observation is that BMO martingales can be identified with
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two-dimensional martingales with values in appropriate parabolic domains. To be precise, sup-
pose that Y = (Yt )t≥0 is a BMO martingale satisfying ‖Y‖BMO ≤ c, and let Z = (Zt )t≥0 =
(E(Y 2∞|Ft ))t≥0 be the associated auxiliary martingale. Then the martingale pair (Y,Z) takes
values in the parabolic domain

Pc = {
(y, z) : y2 ≤ z ≤ y2 + c2}.

Indeed, we have Zt − Y 2
t ≤ ‖Y‖2

BMO (by the definition of BMO norm) and Zt ≥ Y 2
t (by Jensen’s

inequality). Furthermore, with probability one, the terminal random variable (Y∞,Z∞) =
(Y∞, Y 2∞) takes values in the lower boundary of Pc . A beautiful fact is that the above implication
can be reversed: any uniformly integrable martingale (Y,Z) taking values in Pc and terminating
at the lower boundary of this domain gives rise to the BMO martingale of norm not exceeding c.
This process is just the first coordinate of the pair (Y,Z).

The first consequence of the above identification is that for each (y, z) ∈ Pc there is a BMO
martingale Y with ‖Y‖BMO ≤ c such that EY∞ = y and EY 2∞ = z. To see this, note there exists
a line segment I passing through (y, z), with endpoints (y−, z−), (y+, z+) lying at the lower
boundary of Pc (i.e., satisfying z− = (y−)2 and z+ = (y+)2), and entirely contained within Pc .
Let (Y,Z) be an arbitrary martingale starting from (y, z), taking values in I and stopped upon
reaching one of the endpoints (y±, z±) (which occurs with probability 1). For instance, we can
take Y to be a one-dimensional Brownian motion starting from y and stopped when visiting y±,
and Z to be an appropriate affine transformation of Y . Then Y is the desired BMO martingale.

As the second consequence, it is easy to explain an important operation, the so-called “splic-
ing” of BMO martingales, whose origins go the works of Burkholder [1] concerning martingale
transforms. Namely, suppose that Y−, Y+ are two martingales satisfying ‖Y±‖BMO ≤ c. De-
note EY± = y±, EZ± = E(Y±)2 = z±; the above discussion implies that the points (y±, z±)

lie within Pc . Suppose that the entire line segment I with endpoints (y−, z−), (y+, z+) lies in-
side Pc , and let (y, z) = α(y−, z−) + (1 − α)(y+, z+) be an arbitrary point from this segment
(0 ≤ α ≤ 1). Let B = (B1,B2) be an arbitrary martingale started at (y, z), taking in the segment
I , and stopped upon reaching one of the endpoints (y±, z±) at time τ . (For instance, if y− �= y+,
we can take B1 to be the one-dimensional Brownian motion started at y and stopped when reach-
ing y±, and B2 to be an appropriate affine transformation of B1). Now we can “glue” the martin-
gales Y− and Y+ along B . Namely, consider the martingale (Y,Z) given by (Yt ,Zt ) = (B1

t ,B2
t )

when t ≤ τ , and extended to the full time interval by the requirements:
• On the set {(Yτ ,Zτ ) = (y−, z−)}, the conditional distribution of ((Yt ,Zt ))t≥τ coincides with

the distribution of (Y−,Z−).
• On the set {(Yτ ,Zτ ) = (y+, z+)}, the conditional distribution of ((Yt ,Zt ))t≥τ coincides with

the distribution of (Y+,Z+).
Thus we have obtained a martingale which equals B on [0, τ ] and then behaves as Y− or

Y+, depending on whether it left I through (y−, z−) or (y+, z+). It follows directly from the
above construction (and the assumption I ⊂ Pc) that the martingale Y – the first coordinate of the
“spliced process” (Y,Z) – is a BMO martingale satisfying EY∞ = y, EY 2∞ = z and ‖Y‖BMO ≤ c.
Moreover, if Y± were assumed to be bounded, then so is Y .

We would like to point out that the above splicing can be carried out simultaneously with the
presence of additional processes. For example, suppose that Y± are two BMO martingales satis-
fying ‖Y±‖BMO ≤ c, EY±∞ = y±, E(Y±∞)2 = z± and assume that the line segment with endpoints
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(y±, z±) is contained within Pc . Next, suppose that X± are two uniformly integrable martin-
gales satisfying EX±∞ = x± and let α ∈ [0,1] be a fixed parameter. Then we can splice the pairs
(X±, Y±) into one pair (X,Y ) such that EX∞ = αx− + (1 − α)x+, EY∞ = αy− + (1 − α)y+
and EY 2∞ = αz− + (1 − α)z+. Indeed, it suffices to add to the “splicing process” B = (B1,B2)

an extra coordinate responsible for gluing of X.

2.2. Associated special functions

The proof of our main result will rest on properties of a certain special function associated with
(1). We are interested in the best constant C in the inequality

E〈X,Y 〉∞ ≤ CEX∗‖Y‖BMO, (4)

where X, Y are continuous-path martingales belonging to H 1 and BMO, respectively. Consider
the domain

D = {
(x1, x2, y, z) ∈ R× (0,∞) ×R×R : |x1| ≤ x2, y

2 ≤ z ≤ y2 + 1
}
.

In what follows, for a given C2 function U : D → R, the symbol D2
x1,y,zU stands for the Hessian

matrix of U considered as a function of x1, y and z, that is,

D2
x1,y,zU =

⎡
⎣Ux1x1 Ux1y Ux1z

Uyx1 Uyy Uyz

Uzx1 Uzy Uzz

⎤
⎦ .

Theorem 2.1. Suppose that a C2 function U : D → R satisfies the conditions

U(x1, x2,0, z) ≤ 0 for all (x1, x2;0, z) ∈ D, (5)

U(x1, x2, y, z) ≥ x1y − Cx2 for all (x1, x2;y, z) ∈ D, (6)

x2 �→ U(x1, x2, y, z) is decreasing for all x1, y, z. (7)

Furthermore, assume that the Hessian matrix D2
x1,y,zU is negative semidefinite on D. Then the

inequality (4) holds true.

Proof. By homogeneity, it is enough to study this estimate under the additional assumption
‖Y‖BMO ≤ 1. Furthermore, we may assume that Y0 = 0, replacing Y with Y − Y0 if necessary.
Fix ε > 0. The argument rests on Itô’s formula applied to the composition of U with the semi-
martingale S = (X,X∗ ∨ ε,Y,Z). As the result, for any stopping time τ ,

U(Sτ ) = I0 + I1 + I2 + 1

2
I3,

where

I0 = U(S0),
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I1 =
∫ τ

0
Ux1(Ss)dXs +

∫ τ

0
Uy(Ss)dYs +

∫ τ

0
Uz(Ss)dZs,

I2 =
∫ τ

0
Ux2(Ss)d

(
X∗

s ∨ ε
)
,

I3 =
∫ τ

0
D2

x1,y,zU(Ss)d[X,Y,Z].

Here, in I3 we have used the abbreviated notation for the sum of all the nontrivial second-order
terms, that is,

I3 =
∫ τ

0
Ux1x1(Ss)d[X,X]s + 2

∫ τ

0
Ux1y1(Ss)d[X,Y ]s + 2

∫ τ

0
Ux1y2(Ss)d[X,Z]s + · · · .

Before we proceed, let us emphasize here that this is the place where we use the fact (assumed
in the introductory section) that all adapted martingales have continuous paths. Thanks to this
condition, there is no term involving the jumps of the processes which seems to be difficult to
control efficiently.

Let us analyze the behavior of I0, I1, I2 and I3. By (5), we get U(S0) ≤ 0. The integrals
appearing in I1 are local martingales; if (τn)n≥0 is a localizing sequence for each of them and
we put τ = τn, then I1 has expectation zero. The term I2 is nonpositive by (7), since the process
(X∗

t ∨ ε)t≥0 is nondecreasing. Finally, we have I3 ≤ 0, which is a direct consequence of the fact
that D2

x1,y,z ≤ 0 and a simple approximation of integrals in I3 by Riemann sums. Putting all the
observations together, we see that EU(Sτn) ≤ 0, which by (6) yields

EXτnYτn ≤ CE
(
X∗

τn
∨ ε

) ≤ C
(
EX∗ + ε

)
.

The process XY − 〈X,Y 〉 is a local martingale, so performing another localization if necessary
(i.e., replacing τn with τn ∧ σn, where (σn)n≥0 is some localizing sequence for XY − 〈X,Y 〉),
the above estimate yields

E〈X,Y 〉τn ≤ C
(
EX∗ + ε

)
, n = 0,1,2, . . . . (8)

It remains to carry out an appropriate limiting procedure. It will be shown below (see Re-
mark 3.1), that the assumptions X ∈ H 1 and Y ∈ BMO imply that E

∫ ∞
0 |d〈X,Y 〉t | < ∞, which

gives us an integrable majorant of the sequence (〈X,Y 〉τn)
∞
n=0. Therefore, by Lebesgue’s domi-

nated convergence theorem, (8) gives

E〈X,Y 〉∞ ≤ C
(
EX∗ + ε

)
,

and it remains to let ε → 0 to get the claim. �

Remark 2.2. The following simple and informal observation plays an important role when one
tries to guess the structure of extremal martingales (i.e., those for which equality, or almost
equality is attained in (4)). Namely, one should try to ensure that all the intermediate inequalities
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(encountered in the course of the above proof) actually become equalities. In particular, this
suggests that the pair (X,Y ) should be chosen so that the integral

I3(t) =
∫ t

0
D2

x1,y,zU(Ss)d[X,Y,Z]s

is constant as a function of time: see the proof of Theorem 2.1. This has two important con-
sequences: first, the Hessian D2

x1,y,zU should be degenerate, and second, the process S should

evolve – locally – along the direction of degeneration of D2
x1,y,zU . As we shall see, this will lead

us later to a nontrivial interplay between extremal X and Y in Fefferman’s inequality.

Theorem 2.1 shows that the estimate (4) follows once we have constructed a function satis-
fying appropriate size and concavity-type conditions. Interestingly, a reverse implication is also
true: the validity of (4) yields the existence of a certain special function. This fact will play a
fundamental role in the proof of sharpness of (1), as it will enable us to shorten the argument
and avoid many technical issues arising in the analysis of explicit examples. This approach is
not new: for example, it was used by Burkholder [2] to get lower bounds for the constants in
martingale transform estimates and to give a new proof of the sharpness of Doob’s maximal
inequalities.

We need more definitions. For any (x, y, z) ∈ R
3 such that y2 ≤ z ≤ y2 + 1, let M(x,y, z)

denote the class of all pairs (X,Y ) of bounded martingales satisfying ‖Y‖BMO ≤ 1, EX∞ = x,
EY∞ = y and EY 2∞ = z. By the arguments in Section 2.1, we know that each class M(x,y, z) is
nonempty. Now, introduce an abstract function U0 : D → R, given by

U0(x1, x2, y, z) = sup
{
E

(
X∞Y∞ − C

(
X∗ ∨ x2

)) : (X,Y ) ∈ M(x1, y, z)
}
.

Here, the probability space and the filtration are allowed to vary.
The crucial properties of U0 are studied in the two theorems below.

Theorem 2.3. Suppose that the estimate (4) holds true for any martingales X ∈ H 1 and Y ∈
BMO. Then the function U0 is finite on D and satisfies (5), (6) and (7).

Proof. To see that U0 is finite, pick an arbitrary point (x1, x2, y, z) from D and any pair (X,Y ) ∈
M(x1, y, z). Then

E
(
X∞Y∞ − C

(
X∗ ∨ x2

)) ≤ E
(
X∞Y∞ − CX∗) = x1y +E

(〈X,Y 〉∞ − CX∗),
since X and Y are bounded. By (4), the latter expression is bounded from above by x1y and
hence also U0(x1, x2, y, z) ≤ x1y < ∞, since (X,Y ) ∈ M(x1, y, z) was chosen arbitrarily. The
estimate (5) also follows from the assumed inequality (4). Indeed, pick (X,Y ) ∈ M(x1,0, z).
Then EX∞Y∞ = E〈X,Y 〉∞ ≤ CEX∗ ≤ CE(X∗ ∨ x2), that is,

E
(
X∞Y∞ − C

(
X∗ ∨ x2

)) ≤ 0.

Taking the supremum over all X, Y , we get (5). To prove (6), let X ≡ x1 be a constant martingale
and let Y be an arbitrary BMO martingale satisfying ‖Y‖BMO ≤ 1, EY∞ = y and EY 2∞ = z. Then
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(X,Y ) ∈ M(x1, y, z), and hence

U0(x1, x2, y, z) ≥ E
(
X∞Y∞ − C

(
X∗ ∨ x2

)) = x1y − Cx2,

which is (6). The condition (7) is obvious from the very definition of U0. �

It turns out that the function U0 also satisfies a certain version of the last condition of Theo-
rem 2.1. However, in general, U0 does not have to be of class C2, and hence we need to express
the condition D2

x1,y,zU
0 ≤ 0 in a slightly different manner which does not refer to any differen-

tiability of the special function. Recall the notation

P1 = {
(y, z) : y2 ≤ z ≤ y2 + 1

}

for the parabolic region.

Theorem 2.4. Let (y±, z±) be two points such that the whole line segment joining them is
contained within P1. Assume further that α ∈ (0,1) and x±

1 are two real numbers satisfying
|x−

1 | ≤ |x+
1 |. Set x1 = αx−

1 + (1 − α)x+
1 , y = αy− + (1 − α)y+ and z = αz− + (1 − α)z+. Then

for any x2 ≥ |x1| we have

U0(x1, x2, y, z)

≥ αU0(x−
1 ,

∣∣x+
1

∣∣ ∨ x2, y
−, z−) + (1 − α)U0(x+

1 ,
∣∣x+

1

∣∣ ∨ x2, y
+, z+)

. (9)

Proof. Fix arbitrary two pairs (X±, Y±) belonging to M(x±
1 , y±, z±). Since the line segment

with endpoints (y±, z±) is contained in P1, the arguments from Section 2.1 imply that these
martingales can be spliced into one martingale (X,Y ) ∈ M(x,y, z), at some time τ . However,
note that the maximal function X∗ does not splice: on Xτ = x±

1 , the conditional distribution
of (X∗)t≥τ does not coincide with the distribution of (X±)∗. However, we have an appropriate
estimate: since |x−

1 | ≤ |x+
1 |, we have

X∗ = max
{

sup
t∈[0,τ ]

|Xt |, sup
t≥τ

|Xt |
}

≤ ∣∣x+
1

∣∣ ∨ sup
t≥τ

|Xt |,

which implies

U0(x1, x2, y, z) ≥ E
(
X∞Y∞ − C

(
X∗∞ ∨ x2

))
= αE

(
X−∞Y−∞ − C

((
X−∞

)∗ ∨ ∣∣x+
1

∣∣ ∨ x2
))

+ (1 − α)E
(
X+∞Y+∞ − C

((
X+∞

)∗ ∨ ∣∣x+
1

∣∣ ∨ x2
))

.

Taking the supremum over all (X±, Y±) as above, we get the claim. �

We conclude this section by providing certain additional properties of U0, which will be quite
helpful later.
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Lemma 2.5. Let (x1, x2, y, z) be an arbitrary point from D. Then for any λ > 0 and a ∈ R we
have the identities

U0(λx1, λx2, y, z) = λU0(x1, x2, y, z), (10)

U0(x1, x2, y + a, z + 2ay + a2) = ax1 + U0(x1, x2, y, z) (11)

and

U0(x1, x2, y, z) = U0(−x1, x2,−y, z). (12)

In addition, for any δ > 0 we have

U0(x1, x2 + δ, y, z) ≥ U0(x1, x2, y, z) − Cδ. (13)

Proof. To show (10), pick an arbitrary pair (X,Y ) ∈ M(x1, y, z). Then we have (λX,Y ) ∈
M(λx1, y, z), so

U0(λx1, λx2, y, z) ≥ E
(
λX∞Y∞ − C

[(
λX∗) ∨ (λx2)

])
= λE

(
X∞Y∞ − C

(
X∗ ∨ x2

))
.

Hence U0(λx1, λx2, y, z) ≥ λU0(x1, x2, y, z), since (X,Y ) was arbitrary; the reverse bound fol-
lows by replacing x1, x2, λ by λx1, λx2 and λ−1, respectively. The proof of (11) is similar: for
any pair (X,Y ) ∈ M(x1, y, z) we have (X,Y +a) ∈ M(x1, y +a, z+2ay +a2) (indeed we have
E(Y∞ + a)2 = EY 2∞ + 2aEY∞ + a2 = z + 2ay + a2). Consequently,

U0(x1, x2, y + a, z + 2ay + a2) ≥ E
(
X∞(Y∞ + a) − C

(
X∗ ∨ x2

))
= ax1 +E

(
X∞Y∞ − C

(
X∗ ∨ x2

))
,

and hence U0(x1, x2, y + a, z + 2ay + a2) ≥ ax1 + U0(x1, x2, y, z), by taking the supremum
over all (X,Y ). Replacing y, a with y + a and −a, respectively, we get the reverse bound. The
identity (12) follows directly from the definition of U0 and the equivalence (X,Y ) ∈ M(x1, y, z)

iff (−X,−Y) ∈ M(−x1,−y, z). Finally, to show (13), pick an arbitrary (X,Y ) ∈ M(x1, y, z).
Since a ∨ (b + c) ≤ a ∨ b + c for any nonnegative numbers a, b, c, we may write

U0(x1, x2 + δ, y, z) ≥ E
(
X∞Y∞ − CX∗ ∨ (x2 + δ)

) ≥ E
(
X∞Y∞ − C

((
X∗ ∨ x2

) − δ
))

and it remains to take the supremum over all (X,Y ) as above. �

3. Proof of Theorem 1.1

The contents of this section is split into three parts. First, we will prove the validity of (1), by
providing an explicit formula for the special function U as in Theorem 2.1. Then we will show
how to modify the approach to get the stronger estimate (3). The main technical difficulty lies in
the proof of the sharpness of (1), which is done in Section 3.3. The construction of an appropriate



1920 A. Osękowski

pair (X,Y ) for which the equality is (almost) attained is very complicated; the process has a
complicated fractal-type behavior. However, it turns out that Theorem 2.3 enables us to avoid
most of these issues.

3.1. A special function and its properties

Let U : D →R be given by

U(x1, x2;y, z) = x1y − 1

2
√

2

(
x2

1

x2
+ 2

(
y2 − z

)
x2 + 3x2

)
.

Let us check that this object meets all the requirements of Theorem 2.1, with C = √
2. First, U

has the appropriate regularity (it is even of class C∞). The inequality (5) is straightforward: since
(x1, x2,0, z) ∈ D, we have z ≤ 1 and

U(x1, x2;0, z) = − 1

2
√

2

(
x2

1

x2
− 2zx2 + 3x2

)
≤ − 1

2
√

2
(−2x2 + 3x2) ≤ 0.

The majorization (6) is equivalent to x2 − x2
1

x2
+2(z−y2)x2 ≥ 0, which follows immediately from

the estimates defining the domain D. To show (7), it is enough to prove that the partial derivative
with respect to x2 is nonpositive: but we have

Ux2(x1, x2, y, z) = 1

2
√

2

(
x2

1

x2
2

− 2
(
y2 − z

) − 3

)
≤ 0.

Finally, the condition on the “partial Hessian” D2
x1,y,zU is also very easy to check: a direct

computation reveals that

D2
x1,y,zU(x1, x2, y, z) =

⎡
⎢⎢⎣

− 1√
2x2

1 0

1 −√
2x2 0

0 0 0

⎤
⎥⎥⎦ , (14)

and this matrix is obviously negative semidefinite. This gives the proof of (1).

3.2. On the estimate (3)

The above function can be modified to yield the stronger bound (3). To understand the passage,
we start with complicating the above proof a little bit, adding an extra dimension to the special
function. Namely, denote the term x1y in the formula for U as an additional variable and consider
the function of five variables

Ũ (w,x1, x2, y, z) = w − 1

2
√

2

(
x2

1

x2
+ 2

(
y2 − z

)
x2 + 3x2

)
,
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defined on R × D. This function inherits most of the structural properties from U : we have
the estimates Ũ (0, x1, x2,0, z) ≤ 0, U(w,x1, x2, y, z) ≥ w − √

2x2 and the section x2 �→
U(w,x1, x2, y, z) is nonincreasing for each w, x1, y and z. The only condition which changes
significantly, is the Hessian requirement: we have

⎡
⎣ Ũx1x1 Ũx1y + Ũw Ũx1z

Ũyx1 + Ũw Ũyy Ũyz

Ũzx1 Ũzy Ũzz

⎤
⎦ =

⎡
⎢⎢⎣

− 1√
2x2

1 0

1 −√
2x2 0

0 0 0

⎤
⎥⎥⎦ ≤ 0 (15)

at each point of the domain. Now we repeat the reasoning from Section 2. We assume that
‖Y‖BMO ≤ 1 and apply Itô’s formula to the composition of Ũ and the semimartingale S =
((〈X,Y 〉t ,Xt ,X

∗
t ∨ ε,Yt ,Zt ))t≥0. All the calculations are essentially the same, the additional

first-order term
∫ t

0 Uw(Ss) d〈X,Y 〉s is handled with the use of the modified Hessian requirement
above. Thus, we obtain

E〈X,Y 〉τn ≤ √
2E

(
X∗ ∨ ε

)
for some localizing sequence (τn)n≥0, and then limiting arguments yield (1).

To get (3), we observe that the following stronger version of (15) is valid:

⎡
⎣ Ũx1x1 Ũx1y ± Ũw Ũx1z

Ũyx1 ± Ũw Ũyy Ũyz

Ũzx1 Ũzy Ũzz

⎤
⎦ =

⎡
⎢⎢⎣

− 1√
2x2

±1 0

±1 −√
2x2 0

0 0 0

⎤
⎥⎥⎦ ≤ 0.

Consequently, the whole above proof carries over if we compose Ũ with the semimartingale
S = ((

∫ t

0 |d〈X,Y 〉s |,Xt ,X
∗
t ∨ ε,Yt ,Zt ))t≥0. We get

E

∫ τn

0

∣∣d〈X,Y 〉s
∣∣ ≤ √

2E
(
X∗ ∨ ε

)

for an appropriate localizing sequence (τn)n≥0. Letting n → ∞ and then ε → 0 yields the desired
stronger bound, by Lebesgue’s monotone convergence theorem.

Remark 3.1. The above proof shows that if X ∈ H 1 and Y ∈ BMO, then the random variable∫ ∞
0 |d〈X,Y 〉s | is integrable.

3.3. On the optimality of the constant
√

2

Suppose that Fefferman’s inequality (4) holds with some constant C. By Theorem 2.3, this gives
rise to the associated special function U0. Our plan is to exploit the structural properties of this
function to get the estimate C ≥ √

2: this will be done in Lemmas 3.2 and 3.4 below. The reader
can proceed directly to these statements, however, we feel that the parameters appearing there are
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quite mysterious and it is convenient to shed some light on them, explaining first the geometry
of the extremal martingales.

We start with the description of the BMO martingale Y satisfying ‖Y‖BMO ≤ 1. By the discus-
sion in Section 2, such a martingale is uniquely determined by a uniformly integrable martingale
(Y,Z) taking values in the parabolic region P1 and terminating at the lower boundary of this
domain. We assume that (Y,Z) starts from (0,1) and Y is a one-dimensional Brownian motion,
stopped appropriately, as the following evolution scheme indicates. Set τ0 ≡ 0.

Rule I. Suppose that for some n, the variable (Yτn,Zτn) lies at the upper boundary of P1:
we have Yτn = y0, Zτn = z0 for some y0, z0 satisfying z0 = y2

0 + 1. Then (Y,Z) starts moving
along the line tangent to the upper boundary, until Y gets to y0 − 1

2 or to y0 +δ: the corresponding
stopping time is denoted by τn+1. If the first possibility happens, proceed to Rule II. If the second
scenario occurs, then (Yτn+1 ,Zτn+1) has found itself at the point (y0 + δ, z0 + 2y0δ). The line
passing through this point and (1 + 2δ, (1 + 2δ)2 + 1) is tangent to the upper boundary, and the
process starts moving along this new line, until Y gets to the point y0 + 2δ − 1

2 or to y0 + 2δ:
denote the corresponding stopping time by τn+2. If the first possibility happens, we go to Rule
II; otherwise, (Yτn+2 ,Zτn+2) is again at the upper boundary and we may go to the beginning of
Rule I.

Rule II. Suppose that for some n, the random variable (Yτn,Zτn) has found itself at a point
(y0, z0) with z0 − y2

0 = 3
4 . This point lies at the line segment connecting (y0 + 1

2 , (y0 + 1
2 )2) and

(y0 − 1
2 , (y0 − 1

2 )2 + 1) (actually, this line is tangent to the upper boundary at the latter point).
The process moves along this segment until it reaches one of its endpoints: denote the associated
stopping time by τn+1. If it gets to (y0 + 1

2 , (y0 + 1
2 )2) first, then (Yτn+1 ,Zτn+1) belongs to the

lower boundary and the evolution stops ultimately. If the martingale reaches the second endpoint,
then it is on the upper boundary and we proceed to Rule I.

This completes the description of the evolution of Y . Note that the process (Y,Z) is self-
similar in the sense that for any fixed parameter a ∈ R, the evolution of (Y + a,Z + 2aY + a2)

follows the same rules (the only thing which changes is the starting position). The construction
of X depends heavily on Remark 2.2 above. As stated there, we should find X so that the process
S = (X,X∗, Y,Z) moves along degeneration directions of D2

x1,y,zU . By (14), we see that this
will be the case if we have the equality

dXt = √
2X∗

t dYt (16)

for each t ; we add the initial condition X0 ≡ 1 and may hope that the pair (X,Y ) will lead us to
the best constant

√
2 in (1).

However, the rigorous verification that limδ→0 E〈X,Y 〉∞/(‖X‖H 1‖Y‖BMO) = √
2 would be

very elaborate, in particular it would require the computation of the H 1 norm of X. Fortunately,
the two evolution rules given above can be reformulated in the language of the abstract function
U0 and then some simple manipulations yield the optimality of the constant

√
2. Rule I gives the

following estimate: see Remark 3.3 below for the careful explanation.

Lemma 3.2. We have the inequality

U0(1,1,0,1) ≥ (2 + √
2)U0

(
1 −

√
2

2
,1,−1

2
,1

)
+ 1

2 − √
2
.
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Proof. For the sake of convenience, we split the reasoning into three parts.
Step 1. By (9), (13) and finally (10), we have

U0(1,1,0,1)

≥ 1

1 + 2δ
U0(1 + √

2δ,1 + √
2δ, δ,1) + 2δ

1 + 2δ
U0

(
1 −

√
2

2
,1 + √

2δ,−1

2
,1

)

≥ 1

1 + 2δ
U0(1 + √

2δ,1 + √
2δ, δ,1) + 2δ

1 + 2δ
U0

(
1 −

√
2

2
,1,−1

2
,1

)
+ o(δ)

= 1 + √
2δ

1 + 2δ
U0(1,1, δ,1) + 2δ

1 + 2δ
U0

(
1 −

√
2

2
,1,−1

2
,1

)
+ o(δ).

Step 2. An application of (11) (with x1 = x2 = z = 1, y = −δ and a = 2δ) gives

U0(1,1, δ,1) = 2δ + U0(1,1,−δ,1). (17)

Step 3. The second term in (17) is handled by (9) and (13) again:

U0(1,1,−δ,1)

≥ (1 − 2δ)U0
(

1 +
√

2δ

1 − 2δ
,1 +

√
2δ

1 − 2δ
,0,1

)
+ 2δU0

(
1 −

√
2

2
,1,−1

2
,1

)
+ o(δ)

≥ (1 − 2δ)

(
1 +

√
2δ

1 − 2δ

)
U0(1,1,0,1) + 2δU0

(
1 −

√
2

2
,1,−1

2
,1

)
+ o(δ).

Putting all the above facts together, we obtain the estimate

U0(1,1,0,1) ≥ 1 + √
2δ

1 + 2δ
· (1 − 2δ)

(
1 +

√
2δ

1 − 2δ

)
U0(1,1,0,1)

+
[

2δ

1 + 2δ
+ 1 + √

2δ

1 + 2δ
· 2δ

]
U0

(
1 −

√
2

2
,1,−1

2
,1

)

+ 1 + √
2δ

1 + 2δ
· 2δ + o(δ).

Moving the first term on the right to the left-hand side, dividing throughout by δ and letting
δ → 0 yields the claim. �

Remark 3.3. The first inequality in Step 1 above corresponds to the first part of Rule I, applied
to (y0, z0) = (0,1). Indeed: the martingale (Y,Z) starting from (0,1) must move horizontally
(this is the tangent direction) until it gets to (δ,1) or (− 1

2 ,1), which happens with probabilities
(1 + 2δ)−1 and 2δ(1 + 2δ)−1, respectively. At the same time, according to (16), the martingale
X moves proportionally to Y , so it gets to 1 +√

2δ or 1 −√
2/2 (we may treat X∗ as 1: the error
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here disappears as δ → 0). The equality of Step 2 corresponds, in a sense, to the self-similarity of
the process Y . As the second part of Rule I states, if (Y,Z) got to the point (δ,1), then it should
move along the line segment joining (2δ, (2δ)2 + 1) and (2δ − 1/2, (2δ)2 − 2δ + 1). The idea
behind (17) is to look at the evolution of the pair (Y −2δ,1), corresponding to shifted martingale
Y − 2δ. Then, by the above requirement, this new pair starts from (−δ,1) and moves until it gets
to (0,1) or to (−1/2,1), which gives the estimate for U0 appearing in Step 3.

We turn our attention to the translation of Rule II into the language of U0.

Lemma 3.4. We have the inequality

U0
(

1 −
√

2

2
,1,−1

2
,1

)
≥ U0(1,1,0,1)

2 + √
2

− C√
2

+ 1

2
,

where C is the constant in the assumed inequality (4).

Proof. By (9), we obtain

U0
(

1 −
√

2

2
,1,−1

2
,1

)

≥
√

2

1 + √
2
U0(1,1,0,0) + 1

1 + √
2
U0

(
−

√
2

2
,1,−1 + √

2

2
,1 + √

2

)

≥ − C
√

2

1 + √
2

+ 1

1 + √
2
U0

(
−

√
2

2
,1,−1 + √

2

2
,1 + √

2

)
,

where in the last passage we have exploited (6). To handle the second term on the right, we use
(9) again:

U0
(

−
√

2

2
,1,−1 + √

2

2
,1 + √

2

)

≥ (
√

2 − 1)U0
(

−1 +
√

2

2
,1,

1

2
− √

2,3 − √
2

)
+ (2 − √

2)U0(−1,1,−√
2,3).

However, both terms on the right can be simplified, by (11); namely,

U0
(

−1 +
√

2

2
,1,

1

2
− √

2,3 − √
2

)
= −

(
−1 +

√
2

2

)√
2 + U0

(
−1 +

√
2

2
,1,

1

2
,1

)

= −
(

−1 +
√

2

2

)√
2 + U0

(
1 −

√
2

2
,1,−1

2
,1

)

and

U0(−1,1,−√
2,3) = U0(−1,1,0,1) + √

2 = U0(1,1,0,1) + √
2.
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Putting all the facts together, we obtain the desired estimate. �

Now the proof of the sharpness follows easily: the combination of the above two lemmas
yields

U0(1,1,0,1) ≥ U0(1,1,0,1) + (2 + √
2)

(
− C√

2
+ 1

2

)
+ 1

2 − √
2
,

which is equivalent to C ≥ √
2. This shows that the constant

√
2 we obtained in (1) is indeed the

best possible.

Acknowledgements

The author would like to thank anonymous referees for the careful reading of the first version of
the paper and many valuable comments and suggestions. The research was supported by Naro-
dowe Centrum Nauki (Poland), grant no. DEC-2014/14/E/ST1/00532.

References

[1] Burkholder, D.L. (1984). Boundary value problems and sharp inequalities for martingale transforms.
Ann. Probab. 12 647–702. MR0744226

[2] Burkholder, D.L. (1991). Explorations in martingale theory and its applications. In École d’Été
de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 1–66. Berlin: Springer.
MR1108183 https://doi.org/10.1007/BFb0085167

[3] Dellacherie, C. and Meyer, P.-A. (1982). Probabilities and Potential. B: Theory of Martingales. North-
Holland Mathematics Studies 72. Amsterdam: North-Holland. MR0745449

[4] Fefferman, C. (1971). Characterizations of bounded mean oscillation. Bull. Amer. Math. Soc. 77 587–
588. MR0280994 https://doi.org/10.1090/S0002-9904-1971-12763-5

[5] Getoor, R.K. and Sharpe, M.J. (1972). Conformal martingales. Invent. Math. 16 271–308. MR0305473
https://doi.org/10.1007/BF01425714

[6] Ivanisvili, P., Osipov, N.N., Stolyarov, D.M., Vasyunin, V.I. and Zatitskiy, P.B. (2016). Bellman
function for extremal problems in BMO. Trans. Amer. Math. Soc. 368 3415–3468. MR3451882
https://doi.org/10.1090/tran/6460

[7] Kazamaki, N. (1994). Continuous Exponential Martingales and BMO. Lecture Notes in Math. 1579.
Berlin: Springer. MR1299529 https://doi.org/10.1007/BFb0073585

[8] Korenovskiı̆, A.A. (1992). The connection between mean oscillations and exact exponents of summa-
bility of functions. Math. USSR-Sb. 71 561–567.
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