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We study randomly growing trees governed by the affine preferential attachment rule. Starting with a seed
tree S, vertices are attached one by one, each linked by an edge to a random vertex of the current tree,
chosen with a probability proportional to an affine function of its degree. This yields a one-parameter
family of preferential attachment trees (T S

n )n≥|S|, of which the linear model is a particular case. Depending

on the choice of the parameter, the power-laws governing the degrees in T S
n have different exponents.

We study the problem of the asymptotic influence of the seed S on the law of T S
n . We show that, for any

two distinct seeds S and S′, the laws of T S
n and T S′

n remain at uniformly positive total-variation distance as
n increases.

This is a continuation of Curien et al. (J. Éc. Polytech. Math. 2 (2015) 1–34), which in turn was inspired
by a conjecture of Bubeck et al. (IEEE Trans. Netw. Sci. Eng. 2 (2015) 30–39). The technique developed here
is more robust than previous ones and is likely to help in the study of more general attachment mechanisms.
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1. Introduction

Linear preferential attachment trees – or Barábasi-Albert trees – are trees that grow randomly
according to the following simple mechanism. Start with a finite tree S with k vertices – we call
it the seed tree and k its size – and construct inductively a sequence (T S

n )n≥k of random trees,
where T S

n+1 is obtained from T S
n by adding a new vertex and connecting it to a vertex of T S

n

chosen at random with a probability proportional to its degree. Thus, the tree T S
n+1 has one more

vertex than T S
n – namely n + 1 – and one more edge – namely n.

The reader might note that this model formalises the adage “the rich get richer” since vertices
with high degrees are more likely to receive new connections. This property suits a large class
of real networks (see [1]) mainly because of the emergence of power laws for the sequence of
degrees of the tree as its size grows, see [4]. Such laws are observed in a wide range of contexts,
like social networks (webgraph, citation graph, etc [15,18]) or even in biological networks such as
interaction protein networks (see [13]). The degree distribution in linear preferential attachment
trees has been deeply investigated; for an extensive overview of these traditional topics in the
preferential attachment model’s analysis, the reader is directed to [17], Ch. 8.

In the literature, there are numerous variations in the definition of preferential attachment
model. Here we will consider one where the new vertex is attached to an old vertex chosen with
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probability which is an affine function of its degree, rather than a linear one. Fix a parameter
α > 0 and S a seed tree of size k ≥ 2. The α-PA trees grown from the seed S are denoted by
(T S

n )n≥k and are defined recursively as follows. Given (T S
n )k≤n≤N for some N ≥ k with T S

N = T

for some fixed tree T , select randomly a vertex uN in T with probability:

P
(
uN = u|T S

k , . . . , T S
N with T S

N = T
) = degT (u) − 1 + α

(1 + α)N − 2
∀u ∈ T , (1)

and link it to a new vertex by an edge. The resulting tree is T S
N+1.

Note that (1 + α)N − 2 = ∑
u∈T degT (u) − 1 + α for all trees T of size N , so (1) defines

indeed a probability measure. This model, which was first introduced in [14], is a generalisation
of the Barábasi-Albert model, in that the latter is obtained when choosing α = 1. The authors of
[2] remarked that transitions probabilities (1) provide a Pólya urn representation of α-PA trees;
particularly convenient properties follow, such as estimates on the degree growth and a form of
exchangeability for the sequence (uN)N≥k . When the dependence on S is not important, we will
drop S from the notation.

Henceforth α > 0 is fixed.

The same questions as for the linear model may be asked of the affine one. For instance, one
may study the growth of degrees of given vertices in Tn. It may be proved (see [17], Chapters 8.3
& 8.4, or Remark 4.12 of this paper) that the degree of any vertex of the seed increases at poly-
nomial speed, with an exponent that depends on α and varies between 1 and 0 as α ranges from 0
to infinity. It may appear surprising that an apparently insignificant difference in the attachment
mechanism leads to different scaling exponents in the power laws governing the degree sequence,
and hence to preferential attachment models of different universality classes. More substantial
variations of the model will be discussed in Section 5.

The problem of interest in this paper is that of the recognition of the seed. Precisely, we will
study whether the seed tree has any influence on the law of the tree obtained after a large number
of iterations of the growth procedure. This question was asked (and partly solved) for the linear
model in [7]. The complete answer for the linear model was obtained in [8], and for the uniform
preferential attachment model in [6]. In both cases, the seed is shown to influence the asymptotic
law of the model. Our aim is to generalise the result to the α-PA, of which the uniform model
may be perceived as a limit.

Theorem 1.1. Let S and S′ be two finite trees of size k1, k2 ≥ 3. Then for any α > 0, the following
limit:

d
(
S,S′) = lim

n→+∞dTV
(
T S

n ,T S′
n

)
(2)

exists and is non zero when S is not graph-isomorphic to S′.

As a consequence of Theorem 1.1, the function d is a metric on finite trees with at least 3
vertices. It measures the statistical chance of distinguishing between two different seed trees
given observations of the α-PA trees grown from them.
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Remark 1.2. The existence of the limit in Theorem 1.1 stems from the fact that the sequence
dTV(T S

n , T S′
n ) is decreasing in n, which may be proved by a coupling argument.

In proving Theorem 1.1, we will look at the total variation between T S
n and T S′

n through some
integer-valued observable obtained from them. The same is done in all previous studies [6–8].

In [7], where the model is linear (that is α = 1) and S and S′ are assumed to have different
degree sequences, the authors use as observable the maximum degree. Indeed, they show that
the maximal degrees of T S

n and T S′
n have different tail distributions, which then easily leads

to d(S,S′) > 0. The key to this argument is that the degrees of vertices in the Barábasi-Albert
model evolve as a Pólya urn. When the degree distributions of S and S′ are identical, but their
geometry is different, the observable of [7] is unable to distinguish between T S

n and T S′
n . To

overcome this difficulty, a more complex observable was introduced in [8]: the number of em-
beddings of a fixed finite tree τ inside T S

n , weighted by some function of the degrees in T S
n of

the embedding of τ . The same type of observable was used in [6] and will be used below.
For n ≥ 0 and d ≥ 1, set [n]d = n(n − 1) . . . (n − d + 1). Also set [n]0 = 1 for any n ≥ 0.

A decorated tree is a couple τ = (τ, �) where τ is a tree and � is function from the vertices of τ

to the set of non-negative integers. For a decorated tree τ and a (bigger) tree T , set

Fτ (T ) :=
∑

φ:τ ↪→T

∏
u∈τ

[
degT

(
φ(u)

) − 1
]
�(u)

, (3)

where the sum is over all graph embeddings of τ in T and the product is over all vertices of τ .
For two distinct seeds S and S′, we aim to show that, for a well-chosen decorated tree τ , the

difference of the expectations of Fτ (T S
n ) and Fτ (T S′

n ) is of the same order as each of them and
as their standard deviation. This allows to control the total variation between T S

n and T S′
n using

the following bound.

Lemma 1.3. For any two real-valued, square-integrable random variables X and Y ,

dTV(X,Y ) ≥ (E[X] −E[Y ])2

(E[X] −E[Y ])2 + 2 · (E[X2] +E[Y 2]) .

Proof of Lemma 1.3. Let (X′, Y ′) be a coupling of the random variables X and Y . By using
Paley-Zigmund’s inequality, then Jensen’s one, we get:

P
(
X′ 	= Y ′) ≥ (E[X′] −E[Y ′])2

E[(X′ − Y ′)2] .

Furthermore, a simple decomposition gives:

E
[(

X′ − Y ′)2] = E
[(

X′ −E
[
X′] +E

[
X′] −E

[
Y ′] +E

[
Y ′] − Y ′)2]

≤ 2 · (Var
(
X′) + Var

(
Y ′)) + (

E
[
X′] −E

[
Y ′])2

≤ 2 · (E[(
X′)2] +E

[(
Y ′)2]) + (

E
[
X′] −E

[
Y ′])2

.
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It finally remains to note that X′, resp. Y ′, has the same moments as X, resp. Y , and that the total
variation between X and Y is obtained by taking the infimum of P(X′ 	= Y ′) over all couplings
(X′, Y ′) of X and Y . �

It comes to no surprise that the evolution of the moments of Fτ (T S
n ) is of great importance for

the proof. Let us fix τ and S and discuss briefly the first moment of Fτ (T S
n ) as n → ∞. There are

two competing factors contributing to Fτ (T S
n ). First, due to the “rich gets richer” phenomenon,

the “oldest” vertices of T S
n have degree evolving as n

1
1+α . Thus, the contribution to E[Fτ (T S

n )]
of embeddings included in the seed (or close to it) is of the order n

|�|
1+α for |�| = ∑

v∈τ �(v).
Second, one should take into account the embeddings using recently acquired vertices. There

are many such vertices, but they have small degrees. Depending on the form of τ , such embed-

dings contribute to E[Fτ (T S
n )] by a quantity that may exceed n

|�|
1+α by some logarithmic or even

polynomial factor. Thus we find

E
[
Fτ (Tn)

] ≈ logγ (τ )(n) · nλ(τ )
1+α , (4)

for some γ (τ ) ≥ 0 and λ(τ ) ≥ |�|. Both values γ (τ ) and λ(τ ) are computed explicitly in Sec-
tion 3.

Due to the coupling between α-PA started from different seeds (see Section 2), only the first
type of embeddings is sensitive to the seed. Thus, for two distinct seeds S, S′, we may expect
that

E
[
Fτ

(
T S

n

)] −E
[
Fτ

(
T S′

n

)] ≈ n
|�|

1+α , (5)

provided that a difference exists. Let us, for the sake of this explanation, assume that the standard
deviations of Fτ (T S

n ) and Fτ (T S′
n ) are of the same order as their expectations. Then, in order to

successfully apply Lemma 1.3, we should have γ = 0 and λ(τ ) = |�|.
Such asymptotics (slightly weaker actually) were already observed in [8] for α = 1; they were

proved using an amenable recursive relation for E[Fτ (Tn)]. Rather than showing that τ may be
chosen to satisfy (5) and so that γ (τ ) = 0 and λ(τ ) = |�|, the authors of [8] constructed a linear
combination over trees τ of observables Fτ (Tn) for which the logarithmic factors cancel out.
The resulting observable, properly rescaled, turns out to be a martingale that is bounded in L2

and whose expectation depends on the seed tree.
We will employ a different, arguably simpler strategy: we will prove that for any two distinct

seeds S 	= S′, the decorated tree τ may be chosen so as to observe a difference as in (5) and such
that γ (τ ) = 0 and λ(τ ) = |�|. As such, our strategy is more likely to apply to other attachment
mechanisms, as will be discussed in Section 5. Additional differences with [8], are the recurrence
formula used to prove (4), which is more complex in the affine case, and the fact that the exponent
λ(τ ) is not always equal to |�|, as opposed to the linear case, where λ(τ ) = |�| always.

Let us finally mention that the exact definition (3) of the observable is somewhat arbitrary.
Indeed, it is possible to use variations of (3), such as

∑
φ:τ ↪→T

∏
u∈τ (degT φ(u))�(u). We chose

(3) as it is inspired by the equivalent construction in [8] and has an interpretation in the planar
version of the model (see Section 2).
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Organisation of the paper

In Section 2, we introduce a planar version of the affine preferential attachment model. This
construction is not formally necessary to prove our main result, but we believe it is interesting in
its own right and helps clarify the subsequent proofs. In particular, the planar version will give
rise to a natural coupling between two α-PA trees starting from two different seeds of same size.

In Section 3, we study the asymptotics of the first and second moments of Fτ (T S
n ) as n → ∞.

The only role of this section within the proof of Theorem 1.1 is to show a bound on the second
moment of Fτ (T S

n ) for certain trees τ . These estimates use a recurrence relation for Fτ (T S
n ),

which is similar to that of [8], but more complicated due to the affine probabilities.
Section 4 contains lower bounds on the first-moment difference of Fτ (T S

n ) for two distinct
seeds S. Precisely, we prove (5) for well-chosen decorated trees τ . This is then used to prove
Theorem 1.1.

Finally, certain variations of the model and potential extensions of our result are discussed in
Section 5.

Notation

In the rest of the paper, we will use the following notations:

• for two sequences f,g : N → (0,+∞), write f (n) ≈ g(n) if there exists some constant
C > 0 such that 1

C
≤ f (n)

g(n)
≤ C;

• also f (n) =O(g(n)) if lim supn→+∞|f (n)
g(n)

| < +∞;

• and f (n) � g(n) if limn→+∞|f (n)
g(n)

| = 0.
• The size of a tree T is written |T | and stands for the number of vertices of T .
• For a graph S, write VS and ES for its sets of vertices and edges, respectively. For v ∈ VS ,

write degS(v) or deg(v) for the degree of v in S.

2. Planar affine preferential attachment model

In this section, we first define the planar version of affine preferential attachment trees, then we
present a useful coupling between any two α-PA trees derived from different seed trees of same
size. The coupling is based on the decomposition of T S

n into planted plane trees, which isolates
the roles of the seed and of the growth mechanism, respectively.

We reiterate that this planar version is not formally necessary for any of the results; it is used
merely to illustrate the arguments.

2.1. Definition via corners

We first need to introduce the notion of colouring of corners in a plane tree. A plane tree is a tree
embedded in the plane up to continuous deformation, or equivalently a tree whose vertices are
equipped with a cyclic order of their neighbours. A corner of a plane tree is an angular sector
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of the plane contained between two consecutive half-edges around a vertex. In particular, the
number of corners surrounding a vertex is equal to its degree.

Definition 2.1 (Colouring of corners). A colouring of the corners of a plane tree T is a choice
of one distinguished corner for each vertex of the tree. The distinguished corners are called “red”;
all other corners are called “blue”.

When indexing {cv,i : v ∈ VT ,1 ≤ i ≤ deg(vi)} the corners of T , we will always suppose that
the red vertices are (cv,1)v∈VT .

It will be useful to keep in mind that any plane tree with n vertices and coloured corners has n

red corners and n − 2 blue ones. We are now ready to introduce the planar version of the affine
preferential attachment model.

Definition 2.2. Fix a parameter α > 0 and a plane tree S – namely the seed tree – of size
|S| = k ≥ 2 endowed with a colouring of its corners. The planar α-PA with seed S is a growing
sequence of random plane trees (T S

n )n≥k (or (Tn)n≥k when the role of S is clear) with coloured
corners, evolving according to the following inductive principle:

(i) Tk = S;
(ii) Suppose that our sequence of plane trees is built until step n ≥ k. Then, independently

from the past of the process, select at random a corner cn of Tn with

P(cn = cu,1) = α

n(1 + α) − 2
and P(cn = cu,i) = 1

n(1 + α) − 2
∀2 ≤ i ≤ degTn

(u),

for any vertex u ∈ VTn . That is, red corners are chosen with probability proportional to α

and blue corners with probability proportional to 1.
(iii) Write un for the vertex of Tn of which cn is a corner. To obtain Tn+1 add a new vertex

vn+1 to Tn and we connect it by an edge to un through the corner cn.
(iv) All corners of Tn except cn subsist in Tn+1 and conserve their colour. The unique corner

c′′
n of the new vertex vn+1 is coloured red, as required by Definition 2.1. The randomly

selected corner cn is divided in two angular areas by the edge connecting un to vn+1.
If cn was blue in Tn, then both these corners of Tn+1 are blue. If cn was red in Tn, we
arbitrarily colour the corner to the right of the edge (un, vn+1) in red and the other in
blue.

The probabilities appearing in step (ii) indeed sum to 1 since:

n︸︷︷︸
number of red corners

· α

n · (1 + α) − 2
+ (n − 2)︸ ︷︷ ︸

number of blue corners

· 1

n · (1 + α) − 2
= 1

Observe that, the attachment principle in the planar α-PA is such that the probability for vn+1

to be attached to a vertex u of Tn is
degTn

(u)−1+α

n·(1+α)−2 . Thus, we obtain the following.

Lemma 2.3. If (Tn)n≥k is a planar α-PA started from some plane seed tree S, then the trees
(Tn)n≥k (stripped of their planar embedding) have the law of a α-PA.
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Remark 2.4. Changing the rules of the assignment of labels and colours to the new corners of a
planar α-PA affects the law of the plane tree, but only via its embedding.

In the special case α = 1, the weights of red and blue corners are equal, and the planar α-PA
is simply a uniform embedding of the abstract α-PA. This is not the case when α 	= 1. For more
on this see [8], Conj. 2.

As mentioned in the introduction, the observables Fτ have a particular interpretation in terms
of the planar model. Let τ = (τ, �) be a decorated tree and T be a plane tree with coloured
corners. Then, for any embedding φ : τ ↪→ T , the factor

∏
u∈τ [degT (φ(u))−1]�(u) is the number

of ordered choices of �(u) different blue corners around each vertex φ(u) for u ∈ τ . As in [8],
one may imagine that each vertex u ∈ τ is endowed with �(u) distinct arrows. Call a decorated
embedding an embedding of φ of τ in T together with, for each u ∈ τ and each arrow of u, a
blue corner of φ(u) to which that arrow points, in such a way that distinct arrows point to distinct
corners. Then Fτ (T ) is the number of decorated embeddings of τ in T .

2.2. Decomposition and coupling using planted plane trees

Apart from its intrinsic interest, the decomposition described below will be used in Section 4.
We begin with the definition of a planted plane tree.

Definition 2.5. A planted plane tree T� is a plane tree T with a distinguished vertex called the
root and an additional half-edge emerging from the root. This half edge divides the corner of the
root delimited by the two edges linking the root to its leftmost and its rightmost children. When
|T | = 1, the planted plane tree T� is merely a single vertex with an half-edge attached to it.

It should be noted that there is one more corner in any planted version T� of a plane tree
T . A colouring of corners for a planted plane tree T� is defined as for plane trees (see Defi-
nition 2.1) with the exception that the root is allowed to have no red corners or one red corner,
which will always be the corner to the right of the half-edge. In the former situation, we say that
T� is a blue planted plane tree, in the latter we say it is a red planted plane tree.

Since the recursive procedure used to define the planar α-PA tree is simply based on the colour-
ing of corners, we straightforwardly adapt it to define a planted planar version of the same model.
Note by T �b

n , resp. T �r
n , a blue planted plane tree, resp. a red planted plane tree, obtained

through the preferential attachment algorithm with initial condition �, which is the tree com-
posed of a single vertex with a half-edge attached to it and a blue corner, resp. a red corner,
surrounding it.

Let S be a plane seed tree of size k ≥ 2 with coloured corners indexed {cv,i : v ∈ VS,1 ≤ i ≤
degS(v)}. Fix n ≥ k and Tn be a realisation of the planar α-PA tree at step n starting from S.
For v ∈ VS and 1 ≤ i ≤ degS(v), say that a vertex u ∈ VTn \ VS is a descendent of the corner cv,i

if the unique path linking u to S arrives at S through cv,i . Additionally, say that v is also a
descendent of cv,i . The tree T

v,i
n stemming from cv,i is the planted plane tree containing all

vertices of Tn that are descendent of cv,i and all edges of Tn between such vertices; it is rooted
at v. The half-edge attached to v is such that it does not split the corner cv,i . Call these trees the
planted plane subtrees of T S

n . See Figure 1 for an illustration.
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Figure 1. An example of decomposition into red and blue planted plane tree.

Proposition 2.6. Let S be a plane seed tree of size k ≥ 2 with coloured corners indexed {cv,i :
v ∈ VS,1 ≤ i ≤ degS(v)}. For n ≥ k, let T

v,i
n be the planted plane tree stemming from cv,i and

let k
v,i
n denote its size. Write x

v,1
n = (1 + α)k

v,1
n − 1 and x

v,i
n = (1 + α)k

v,i
n − α for all v ∈ VS

and i ≥ 2. Then

• the vector (x
v,i
n )v∈VS,1≤i≤degS(v) has the distribution of a Pólya urn with 2k − 2 colours and

diagonal replacement matrix (1+α)I2k−2, starting from (α1{i=1} +1{i 	=1})v∈VS,1≤i≤degS(v);

• conditionally on (x
v,i
n )v∈VS,1≤i≤degS(v), the trees (T

v,i
n )v∈VS,1≤i≤degS(v) are independent,

with T
v,i
n having law T �r

k
v,i
n

if i = 1 and T �b

k
v,i
n

if i 	= 1.

Proposition 2.6 may be restated as follows. Given a plane seed S with |S| = k, we would like
to construct T S

n for some n ≥ k. This may be done in the following steps.

1. Generate a vector (x
v,i
n )v∈VS,1≤i≤degS(v) ∈ R2k−2 with the law of the Pólya urn of Proposi-

tion 2.6. Define sizes k
v,1
n := x

(b)
�,p+α

1+α
and k

v,i
n := x

(r)
� +1
1+α

for v ∈ VS and i ≥ 2.
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2. Randomly draw independent realisations τ
v,1
n of T �r

k
v,1
n

and τ
v,i
n of T �b

k
v,i
n

for each v ∈ VS

and i ≥ 2.
3. Graft each tree τ

v,i
n in the corner cv,i of S.

The resulting tree has the law of a planar α-PA started from S.
This decomposition allows to couple the evolution of two planar α-PA trees emerging from

distinct seeds of same size. Indeed, in spite of the notation, the first two steps do not depend on
S, only on k = |S|: in the first step, the vector (x

v,i
n ) contains 2k − 2 entries and the Pólya urn

generating it starts with k entries α and k − 2 entries 1; in the second step, k trees are of type
T �r and k − 2 of type T �b . If S, S′ are two seeds of same size k, then T S

n and T S′
n are coupled

as follows. Simulate a common vector for the sizes of the planted plane subtrees of T S
n and T S′

n ,
then simulate a common set of planted plane trees. Finally, graft these trees to S to obtain T S

n

and the same trees to S′ to obtain T S′
n .

Proof of Proposition 2.6. Fix S. Let us fist prove that the vector (x
v,i
n )v∈VS,1≤i≤degS(v) has the

distribution of the Pólya urn described in the statement. We do this by induction on n. When
n = k, all planted plane subtrees of T S

k = S have size 1. The formula relating the sizes of the

subtrees to x
v,i
n then yields x

v,1
n = α and x

v,i
n = 1 for i ≥ 2.

Suppose now that the statement is proved up to step n and let T S
n be a realisation of the planar

α-PA tree of size n. Then, each red planted plane subtree T
v,1
n has k

v,1
n red corners and k

v,1
n − 1

blue ones. Each blue planted plane subtree T
v,i
n with i ≥ 2 has k

v,i
n − 1 red corners and k

v,i
n blue

corners. It follows that, for each v

P(vn+1 descendent of cv,1) = (α + 1)k
v,1
n − 1

2n − 2
= x

v,1
n

2n − 2
and

P(vn+1 descendent of cv,i) = (α + 1)k
v,1
n − α

2n − 2
= x

v,i
n

2n − 2
for all i ≥ 2.

Finally, if vn+1 is attached to some descendant of a corner cv,i , then x
v,i
n+1 = 1 + α + x

v,i
n . This

shows that the vector (x
v,i
n+1) also has the claimed distribution.

Let us now condition on (x
v,i
n )v,i , or equivalently on (k

v,i
n )v,i for some n. Then, for each v ∈ Vs

and i ≤ degS(v), the k
v,i
n vertices of T

v,i
n , independently of the times they join Tk, . . . , Tn, attach

themselves to the planted plane subtree of the corner cv,i with a (conditional) distribution that
assigns to any red corner a weight proportional to α and to any blue corner a weight proportional
to 1. If follows readily that T

v,i
n has the law of T �r

k
v,i
n

or T �b

k
v,i
n

, depending on whether cv,i is

red or blue, respectively. It is also immediate, that the resulting trees in different corners are
independent – this independence only holds conditionally on the size vector (k

v,i
n )v,i ; moreover,

we do not claim that the evolution between step k and n is independent in different corners, only
the resulting subtrees are. �
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3. First and second moment of a class of observables

The ultimate goal of this section is to obtain precise estimates on the second moment of Fτ (Tn)

for particular decorated trees τ . In doing so, we will also prove a general result on the first
moment of Fτ (Tn) for any τ . The latter is longer to state, and is deferred to later in the section.
Below is the minimal result required in the proof of Theorem 1.1.

Theorem 3.1. Let τ be a finite decorated tree with �(u) ≥ 2 for any u ∈ τ and such that |�| =∑
u∈τ �(u) > 1 + α. For any seed S, we have the following asymptotic as n → ∞:

E
[
Fτ

(
T S

n

)2] ≈ n
2|�|
1+α .

To prove the above, we will proceed in several steps, each occupying a subsection below. First,
we prove a recurrence relation on the first moment of our observables (see Section 3.1), which
is then used in Section 3.2 to obtain an accurate estimate of E[Fτ (T S

n )] as n goes to infinity (see
Theorem 3.7). Finally, in Section 3.3, we use the previous results to prove Theorem 3.1.

3.1. A recurrence formula

Recall from the introduction that the asymptotic of E[Fτ (T S
n )] as n → ∞ is polynomial with an

exponent depending on τ . This exponent will be determined by the weight of τ defined below.

Definition 3.2 (Weight of decorated trees). Let τ be a decorated tree. If τ has size 1 or 2 and
all decorations of its vertices are 0, then the weight of τ is 1. In all other cases, the weight of τ is

w(τ ) =
∑
v∈Vτ

�(v) + 1{degτ (v)=1 and �(v)=0}.

Call a vertex v ∈ τ with �(v) = 0 and degτ (v) = 1 a loose leaf of τ . Then the weight of τ is |�|
plus the number of loose leaves.

Definition 3.2 induces a partial order on the set of decorated trees.

Definition 3.3 (Partial order on decorated trees). For any two decorated trees τ = (τ, �),
τ ′ = (τ ′, �′) we write τ ′ ≺ τ if and only if:

• w(τ ′) < w(τ ) and |τ ′| ≤ |τ |;
• or if w(τ ′) = w(τ ) and |τ ′| < |τ |;
• or if w(τ ′) = w(τ ), |τ ′| = |τ | and

∑
v∈Vτ ′ �

′(v) = |�′| < |�| = ∑
v∈Vτ

�(v).

Clearly, ≺ is a strict partial order on the set of decorated trees. We denote by 
 the associated
partial order.

There are three trees τ of weight 1: those with a single vertex and decoration 0 or 1 (they are
denoted by 0© and 1©, respectively) and that with two vertices and decorations 0 for both of them
(denoted by 0© − 0©).
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Proposition 3.4. There exists a family of nonnegative real numbers {c(σ ,τ )σ ≺ τ } such that,
for every seed S, every decorated tree τ with w(τ ) > 1 and every n ≥ |S|:

E
[
Fτ

(
T S

n+1

)|En

] =
(

1 + w(τ )

(1 + α)n − 2

)
·Fτ

(
T S

n

)

+ 1

(1 + α)n − 2

∑
σ≺τ

c(σ ,τ ) ·Fσ

(
T S

n

)
, (6)

where En is the σ -algebra generated by T S
k , . . . , T S

n . In addition, when:

• τ = 0©, Fτ (Tn) = n;
• τ = 1©, Fτ (Tn) = n − 2;
• τ = 0© − 0©, Fτ (Tn) = 2n − 2.

It is worth mentioning that the constants {c(σ ,τ ) σ ≺ τ } do not depend on n or S, but do
depend on the parameter α of the model.

The proof below is somewhat algebraic and does not use the planar α-PA. A more visual proof
that uses the notion of decorated embedding (as described at the end of Section 2.1) may be
given. It is similar to that of [8], Lem. 6, with some additional difficulties due to the colouring of
corners.

Proof. Fix the seed tree S and drop it from the notation. First, let us prove the three particular
cases.

• For τ = 0©, then Fτ (Tn) is simply the number of vertices of Tn, hence is equal to n.
• For τ = 1©, then Fτ (T ) = ∑

u∈T degT (u)−1 = 2|ET |− |VT | = |VT |−2. Hence Fτ (Tn) =
n − 2.

• For τ = 0© − 0©, then Fτ (T ) = 2|ET | since the τ may be embedded over any edge of T in
one of two directions. Hence Fτ (Tn) = 2n − 2.

Let us now prove the recurrence formula. Fix τ = (τ, �) a decorated tree with w(τ ) > 1. For a
tree T and an embedding φ : τ ↪→ T , let π(τ , φ,T ) = ∏

u∈τ [degT (φ(u)) − 1]�(u), so that

Fτ (T ) =
∑

φ:τ ↪→T

∏
u∈τ

[
degT

(
φ(u)

) − 1
]
�(u)

=
∑

φ:τ ↪→T

π(τ , φ,T ). (7)

Recall that, in passing from Tn to Tn+1, a new vertex vn is attached to a randomly chosen
vertex un of Tn. Our purpose is to compute the sum above over embeddings φ of τ in Tn+1. We
may restrict the sum only to embeddings with π(τ , φ,Tn+1) > 0. We separate such embeddings
into three categories:

1. those who do not include un or vn in their image;
2. those who include un but not vn in their image;
3. those who include both un and vn in their image.
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The embedding cannot contain vn without un in its image. Indeed, we have degTn+1
(vn) = 1,

hence, if φ is an embedding that maps a vertex v ∈ τ to vn, then for π(τ , φ,Tn+1) to be non-
zero, it is necessary that �(v) = 0. By choice of τ , if such a vertex exists, it necessarily has a
neighbour u, which then is mapped by φ onto un. Moreover, the vertex v needs to have a single
neighbour in τ , hence needs to be a loose leaf of τ .

Write F (i)
τ (Tn+1) with i = 1,2,3 for the contribution to (7) of embeddings from each of the

categories above. For the first two categories, the embeddings considered are in one to one cor-
respondence with embedding of τ in Tn (although their weights are different whether considered
in Tn or Tn+1). Thus,

F (1)
τ (Tn+1) =

∑
φ:τ ↪→Tn

π(τ , φ,Tn) ·
∏
u∈τ

1φ(u)	=un and

F (2)
τ (Tn+1) =

∑
φ:τ ↪→Tn

∑
u∈τ

1φ(u)=un

( ∏
v∈τ\{u}

[
degTn

φ(v) − 1
]
�(v)

)
· [degTn

φ(u)
]
�(u)

.

Now a basic algebraic manipulation shows that [k]� = [k − 1]� + �[k − 1]�−1 for all k ≥ 1 and
� ≥ 0. (When � = 0, the second term in the RHS is not defined. However, its prefactor cancels
it out, and we allow this abuse of notation.) Moreover,

∏
u∈τ 1φ(u)	=un = 1 − ∑

u∈τ 1φ(u)=un .
Hence,

F (1)
τ (Tn+1) +F (2)

τ (Tn+1)

=
∑

φ:τ ↪→Tn

[
π(τ , φ,Tn)

+
∑
u∈τ

1φ(u)=un�(u)

( ∏
v∈τ\{u}

[
degTn

φ(v) − 1
]
�(v)

)
· [degTn

φ(u) − 1
]
�(u)−1

]
.

Notice that
∑

φ:τ ↪→Tn
π(τ , φ,Tn) = Fτ (Tn). Moreover, recall that, for any fixed u ∈ τ and em-

bedding φ : τ ↪→ Tn, we have P(φ(u) = un|En) = degTn
φ(u)−1+α

(1+α)n−2 . Thus, when taking the expec-
tation in the above we find

E
[
F (1)

τ (Tn+1) +F (2)
τ (Tn+1)|En

] −Fτ (Tn)

=
∑
u∈τ

�(u) ·
∑

φ:τ ↪→Tn

( ∏
v∈τ\{u}

[
degTn

φ(v) − 1
]
�(v)

)

· [degTn
φ(u) − 1

]
�(u)−1 · degTn

φ(u) − 1 + α

(1 + α)n − 2
.

The sum over u ∈ τ in the right-hand side above may be limited to vertices u with �(u) > 0.
For u ∈ τ with �(u) > 0, let τ (u−) be the decorated tree (τ, �(u−)) with decorations identical to

those of τ except at the vertex u for which �(u−) = �(u)−1. Then τ (u−) ≺ τ . Write degTn
φ(u)−
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1 + α = [degTn
φ(u) − �(u)] + �(u) + α − 1 to find that the summand in the right-hand side is

1

(1 + α)n − 2

[
π(τ , φ,Tn) + (

�(u) + α − 1
) · π(

τ u−, φ,Tn

)]
.

Thus, we find

E
[
F (1)

τ (Tn+1) +F (2)
τ (Tn+1)|En

]
= Fτ (Tn) +

∑
u∈τ

�(u)

(1 + α)n − 2
· [Fτ (Tn) + (

�(u) + α − 1
) ·Fτu−(Tn)

]

=
[

1 + |�|
(1 + α)n − 2

]
Fτ (Tn) +

∑
u∈τ

�(u)(�(u) + α − 1)

(1 + α)n − 2
·Fτ u−(Tn). (8)

Finally, we turn to F (3)
τ (Tn+1). Let φ : τ ↪→ Tn+1 be an embedding contributing to F (3)

τ (Tn+1),
let v be the loose leaf mapped to vn+1 and u its only neighbour in τ . Define the following three
modifications of τ :

• τ \ v is the decorated tree obtained from τ by removing the leaf v and conserving the same
decorations for all other vertices;

• (τ \ v)− is the decorated tree obtained from τ by removing the leaf v, decreasing the dec-
oration of u by one, and conserving the same decorations for all other vertices (this is only
defined when �(u) > 0; it will implicitly only appear in such cases in the upcoming formu-
las);

• (τ \ v)+ is the decorated tree obtained from τ by removing the leaf v, increasing the deco-
ration of u by one, and conserving the same decorations for all other vertices.

It is immediate to check that all trees above are smaller than τ for the order ≺.
Write τ \ v for the tree (stripped of decoration) of all of the above. To φ associate its restriction

φ̃ : τ \ v → Tn to τ \ v. Then, by the same type of computation as above

π(τ , φ,Tn+1) =
( ∏

w∈τ\v

[
degTn+1

φ(w) − 1
]
�(w)

)

=
( ∏

v∈τ\{u,v}

[
degTn

φ(v) − 1
]
�(v)

)

· ([degTn
φ(u) − 1

]
�(u)

+ �(u)
[
degTn

φ(u) − 1
]
�(u)−1

)
. (9)

In the first line, since �(v) = 0, we removed the term coming from v from the product. The

quantity above will be weighted by P(φ(u) = un|En) = degTn
φ(u)−1+α

(1+α)n−2 . In preparation, observe
that

(d − 1 + α) · [d − 1]�(u) = [d − 1]�(u)+1 + (
�(u) + α

)[d − 1]�(u) and

(d − 1 + α) · [d − 1]�(u)−1 = [d − 1]�(u) + (
�(u) − 1 + α

)[d − 1]�(u)−1.
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Applying the above with d = degTn
(u) to (9), multiplied by P(φ(u) = un|En), we find

P
(
φ(u) = un|En

) · π(τ , φ,Tn+1)

= 1

(1 + α)n − 2
· [π(

(τ \ v)+, φ̃, Tn

) + (
2�(u) + α

) · π(τ \ v, φ̃, Tn)

+ �(u)
(
�(u) + α − 1

) · π(
(τ \ v)−, φ̃, Tn

)]
.

Summing over all embeddings and all values of u, v we find

E
[
F (3)

τ (Tn+1)|En

]
= 1

(1 + α)n − 2

∑
v loose leaf

F(τ\v)+(Tn)

+ (
2�(u) + α

) ·Fτ\v(Tn) + �(u)
(
�(u) + α − 1

) ·F(τ\v)−(Tn), (10)

where the sum in the right-hand side is over all loose leaves v of τ and u denotes their unique
neighbour.

By summing (8) and (10), we may obtain a recurrence formula similar to (6), but with one flaw.
Indeed, in such a formula the trees σ would potentially be of the type (τ \ v)+, hence have same
weight as τ . We reduce the contribution of such trees to ones of lower weight via the following
lemma.

Lemma 3.5. Let τ = (τ, �) be a decorated tree with w(τ ) ≥ 2, let v be a loose leave of τ and u
its only neighbour in τ . Then, for any tree T :

F(τ\v)+(T ) =Fτ (T ) + (
degτ (u) − �(u) − 2

) ·Fτ\v(T ). (11)

Proof. [Proof of Lemma 3.5] We proceed in two steps. Let us first express Fτ (T ) using Fτ\v(T ).
To any φ : τ ↪→ T , associate its restriction φ̃ : τ \v → T to τ \v. Conversely, any tree embedding
ψ̃ : τ \ v ↪→ T may be extended to some embedding ψ : τ ↪→ T in as many different ways as
there are neighbouring vertices of ψ̃(u) not reached by ψ , that is to say degT (ψ̃(u)) − degτ\v(u)

ways. Therefore:

Fτ (T ) =
∑

ψ̃ :τ\v→T

(
degT

(
ψ̃(u)

) − degτ\v(u)
) · π(τ \ v, ψ̃, T ). (12)

In the above equation, we further use that π(τ ,ψ,T ) = π(τ \ v, ψ̃, T ) given that v is a loose
leaf.

Next we express F(τ\v)+(T ) in terms of Fτ\v(T ). Recall that (τ \ v)+ is obtained from τ \ v
by increasing the decoration of the vertex u by one. Thus,

F(τ\v)+(T ) =
∑

ψ̃ :τ\v→T

(
degT

(
ψ̃(u)

) − 1 − �(u)
) · π(τ \ v, ψ̃, T ). (13)
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Writing degT (ψ̃(u))− 1 − �(u) = [degT (ψ̃(u))− degτ\v(u)]+ [degτ\v(u)− 1 − �(u)] and ob-
serving that degτ\v(u) = degτ (u)− 1, we deduce Lemma 3.5 by subtracting (12) from (13). �

By Lemma 3.5, equation (10) may be re-expressed as

E
[
F (3)

τ (Tn+1)|En

] = 1

(1 + α)n − 2

∑
v loose leaf

Fτ (Tn) + (
degτ (u) + �(u) + α − 2

) ·Fτ\v(Tn)

+ �(u)
(
�(u) + α − 1

) ·F(τ\v)−(Tn). (14)

Since w(τ ) > 1, the vertex u may never be a loose leaf of τ , hence degτ (u) ≥ 2 or degτ (u) = 1
but �(u) ≥ 1. In both cases, the multiplicative factor degτ (u) + �(u) + α − 2 is non-negative.
Equations (8) and (14) together yield (6). �

Remark 3.6. Following the proof we find that the constants c(σ ,τ ) appearing in (6) are non-
zero only if σ may be obtained from τ by

(i) decreasing the value of one decoration by 1 or
(ii) removing a loose leaf and conserving all other decorations or

(iii) removing a loose leaf and modifying the decoration of its unique neighbour by −1.

It is direct that all the trees σ are smaller than τ for ≺. Indeed, in most cases we have w(σ ) <

w(τ ). However, there are two cases where w(σ ) = w(τ ): when the decoration of a leaf is 1 in
τ and decreases to 0 in σ (by the procedure (i)) and when a loose leaf is removed from τ (as
in (ii)), with its unique ancestor having decoration 0, hence becoming a loose leaf of σ . In both
these cases, σ ≺ τ due to the second condition of Definition 3.3.

3.2. The first moment of Fτ (Tn)

We are ready to state the full estimate of the first moment of Fτ (T S
n ).

Theorem 3.7. For any α > 0, any seed tree S of size k ≥ 2 and any decorated tree τ , we have:

E
[
Fτ

(
T S

n

)] ≈ nmax{1,
w(τ )
1+α

} · (logn)γ (τ ),

where γ (τ ) is a nonnegative exponent equal to zero when w(τ ) < 1 + α and otherwise recur-
sively defined by:

γ (τ ) = sup
σ≺τ ,c(σ ,τ )>0,w(σ )=w(τ )

(
γ (σ ) + 1

)
if w(τ ) > 1 + α,

or by (critical case):

γ (τ ) = γc(τ ) := max
{

1, sup
σ≺τ ,c(σ ,τ )>0,w(σ )=w(τ )

(
γc(σ ) + 1

)}
if w(τ ) = 1 + α

with the convention sup∅ = 0.
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Remark 3.8. Let τ be a decorated tree with �(u) ≥ 2 for all its leaves. In particular, it contains
no loose leaves and w(τ ) = |�| = ∑

u∈τ �(u). Then Remark 3.6 indicates that c(σ ,τ ) > 0 only
for decorated trees σ obtained by lowering the decoration of some vertex u ∈ τ by 1. Moreover,
no such tree σ has any loose leaf either. Assuming in addition that w(τ ) = |�| > 1 + α, we have
w(σ ) < w(τ ) and γ (τ ) = 0.

To prove Theorem 3.7, we proceed by induction on the set of decorated trees (for the partial
order 
) and use the recurrence formula (6).

Proof of Theorem 3.7. We first note that for the three decorated trees τ with w(τ ) = 1 (thus
w(τ ) < 1 + α for any α > 0) the first moment estimate is satisfied as indicated by the explicit
formula of Proposition 3.4.

Consider now a decorated tree τ with w(τ ) ≥ 2 and suppose by induction that Theorem 3.7 is
valid for all decorated trees σ ≺ τ . Let us define for any n ≥ k the quantity ω

(τ )
n+1 equal to:

ω
(τ )
n+1 :=

n∏
�=k

(
1 + w(τ )

(1 + α)� − 2

)−1

≈ n− w(τ )
1+α , (15)

where the latter equivalent is obtained by a standard computation. Then, by multiplying (6) by
this factor and taking the expectation, we get:

E
[
ω

(τ )
n+1 ·Fτ (Tn+1)

] = E
[
ω(τ )

n ·Fτ (Tn)
] +

∑
σ≺τ

c(σ ,τ ) · ω
(τ )
n+1

(1 + α)n − 2
·E[

Fσ (Tn)
]
.

By iterating the above over n, we find

E
[
ω

(τ )
n+1 ·Fτ (Tn+1)

] =Fτ (S) +
∑
σ≺τ

c(σ ,τ )

n∑
�=k

ω
(τ )
�+1

(1 + α)� − 2
·E[

Fσ (T�)
]
. (16)

Thus, the asymptotic behaviour of E[Fτ (Tn+1)] can be derived from that of E[Fσ (T�)] for σ ≺ τ
and � ≤ n. Define the following variables

Sn(σ ,τ ) :=
n∑

�=k

ω
(τ )
�+1

(1 + α)� − 2
·E[

Fσ (T�)
]
.

The growth rate in n of Sn(σ ,τ ) depends on w(σ ) through E[Fσ (T�)]. We distinguish three
cases according to the value of w(τ ).

1st case: w(τ ) < 1 + α

In this situation, we necessarily have w(σ ) < 1 + α for any σ ≺ τ . Thus, by the induction
hypothesis:

E
[
Fσ (T�)

] ≈ �.
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The above together with (15) imply that

ω
(τ )
�+1

(1 + α)� − 2
·E[

Fσ (T�)
] ≈ �− w(τ )

1+α .

Since w(τ ) < 1 +α, the sum over � of the above – which constitutes Sn(σ ,τ ) – diverges at rate:

Sn(σ ,τ ) =
n∑

�=k

1

(1 + α)� − 2
· ω(τ )

�+1 ·E[
Fσ (T�)

] ≈ n1− w(τ )
1+α .

We then sum over every σ ≺ τ to get an asymptotic estimate for the quantity on the right of (16):

E
[
ω

(τ )
n+1 ·Fτ (Tn+1)

] =Fτ (S) +
∑
σ≺τ

c(σ ,τ )

n∑
�=k

ω
(τ )
�+1

(1 + α)� − 2
·E[

Fσ (T�)
] ≈ n1− w(τ )

1+α , (17)

since there exists at least one σ with c(σ ,τ ) > 0. Finally, dividing (17) by ω
(τ )
n+1 and using (15),

we obtain the expected estimate:

E
[
Fτ (Tn+1)

] ≈ n.

2nd case: w(τ ) = 1 + α

Now, when σ ≺ τ , we can either have w(σ ) < 1 +α or w(σ ) = 1 +α. In the former situation,
we have

1

(1 + α)n − 2
· ω(τ )

n+1 ·E[
Fσ (Tn)

] ≈ n−1,

hence,

Sn(σ ,τ ) =
n∑

�=k

1

(1 + α)� − 2
· ω(τ )

�+1 ·E[
Fσ (T�)

] ≈ log(n).

In the latter situation, by the induction hypothesis,

E
[
Fσ (Tn+1)

] ≈ n · (logn)γc(σ ).

Using (15), we find,

1

(1 + α)n − 2
· ω(τ )

n+1 ·E[
Fσ (Tn)

] ≈ n− w(τ )
1+α · (logn)γc(σ ) = n−1 · (logn)γc(σ ).

As a consequence, Sn(σ ,τ ) diverges at rate:

Sn(σ ,τ ) ≈
n∑

�=k

�−1 · (log�)γc(σ ) ≈ (logn)γc(σ )+1.
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Thus, only the terms σ with maximal weight and c(σ ,τ ) > 0 contribute to (16) significantly:

E
[
ω

(τ )
n+1 ·Fτ (Tn+1)

] ≈
∑
σ≺τ

w(σ )<1+α

c(σ ,τ ) · logn +
∑
σ≺τ

w(σ )=1+α

c(σ ,τ ) · (logn)γc(σ )+1

≈ (logn)γc(τ ).

where γc(τ ) is defined as in Theorem 3.7. Dividing the last equation by ω
(τ )
n+1 leads to the result.

3rd case: w(τ ) > 1 + α

In this case, the trees σ ≺ τ can satisfy either w(σ ) < 1 + α, w(σ ) = 1 + α, 1 + α < w(σ ) <

w(τ ), or 1 + α < w(σ ) = w(τ ). In the two first situations, by the induction hypothesis, there
exists δ > 0 such that:

1

(1 + α)� − 2
· ω(τ )

�+1 ·E[
Fσ (T�)

] � �− w(τ )
1+α · (log�)δ.

Since w(τ ) > 1 + α, the sum over � of the above converges and Sn(σ ,τ ) ≈ 1.
When 1 + α < w(σ ) < w(τ ), the induction hypothesis implies:

1

(1 + α)� − 2
· ω(τ )

�+1 ·E[
Fσ (T�)

] ≈ �
w(σ )−w(τ )

1+α
−1 · (log�)γ (σ ).

Since w(σ ) < w(τ ), the sum over � of the above converges again, and Sn(σ ,τ ) ≈ 1.
Finally, when w(σ ) = w(τ ), the induction hypothesis gives us:

1

(1 + α)� − 2
· ω(τ )

�+1 ·E[
Fσ (T�)

] ≈ �−1 · (log�)γ (σ ).

Consequently, by a direct computation, the divergence rate of Sn(σ ,τ ) may be shown to be:

Sn(σ ,τ ) ≈
n∑

�=k

�−1 · (log�)γ (σ ) ≈ (logn)γ (σ )+1.

In conclusion, by considering the asymptotic of Sn(σ ,τ ) for all σ ≺ τ with c(σ ,τ ) > 0 accord-
ing to the above, we obtain

E
[
ω

(τ )
n+1 ·Fτ (Tn+1)

] ≈
∑
σ≺τ

w(σ )<w(τ )

c(σ ,τ ) +
∑
σ≺τ

w(σ )=w(τ )

c(σ ,τ ) · (logn)γ (σ )+1 ≈ (logn)γ (τ ),

where the last equivalent is due to how γ (τ ) is defined in Theorem 3.7. Divide by ω
(τ )
n+1 to obtain

the expected result. �
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3.3. The second moment of Fτ (Tn)

We are now ready to prove the second moment estimate on Fτ (Tn) of Theorem 3.1. We will
build on the analogous result on the first moment obtained in the previous section as well as on
its proof. First, remark that the square of the observables may be written as:

Fτ (Tn)
2 =

∑
φ1,φ2:τ ↪→Tn

π(τ , φ1, Tn) · π(τ , φ2, Tn), (18)

where the sum is this time over all pairs φ1, φ2 of graph embeddings of τ in Tn. We will de-
compose the sum appearing in (18) in two parts, according to whether the embeddings φ1(τ )

and φ2(τ ) overlap or not. The same is done in [8]. Call Fτ ,τ (Tn) the first resulting quantity and
Fτ+τ (Tn) the second one:

Fτ ,τ (Tn) =
∑

φ1,φ2:τ→Tn
φ1(τ )∩φ2(τ )=∅

π(τ , φ1, Tn)π(τ , φ2, Tn),

Fτ+τ (Tn) =
∑

φ1,φ2:τ→Tn
φ1(τ )∩φ2(τ )	=∅

π(τ , φ1, Tn)π(τ , φ2, Tn).

The first moments of the two quantities above are bounded separately. First, we estimate
E[Fτ+τ (Tn)], which turns out to be the the easiest of the two. Indeed, it may be expressed
as a sum of first moments of observables for some decorated trees derived from τ . These are
computed using Theorem 3.7. To deal with E[Fτ ,τ (Tn)] we will prove a recurrence inequality
on such quantities, similar to (6) and using the same techniques.

3.3.1. An estimate on E[Fτ+τ (Tn)]
The goal of this section is to show the following.

Proposition 3.9. Let τ be a decorated tree with �(u) ≥ 2 for any u ∈ τ and such that |�| =∑
u∈τ �(u) > 1 + α. Then, for any seed S,

E
[
Fτ+τ

(
T S

n

)] =O
(
n

2|�|
1+α

)
. (19)

The proposition is based on the following lemma, which we prove below.

Lemma 3.10. Let τ = (τ, �) be a decorated tree. There exists a finite set U(τ ) of decorated trees
σ with w(σ ) ≤ 2w(τ ) and positive constants C(τ ,σ ) for σ ∈ U(τ ) (see the proof for an explicit
description) such that, for any tree T ,

Fτ+τ (T ) =
∑

σ∈U(τ )

C(τ ,σ ) ·Fσ (T ). (20)
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In the planar setting the above is very intuitive; we sketch a proof below. If T is plane, then
Fτ+τ (T ) is the number of decorated embeddings (φ1, φ2) of two copies τ1 and τ2 of τ in T ,
which overlap.

Let us first forget about the decorations and focus on graph embeddings. The union of the
images of τ1 and τ2 via such embeddings is a tree σ ; one may see σ as a merger of τ1 and τ2.
Thus, the pairs of overlapping embeddings of τ1 and τ2 in T are in bijection with the embeddings
of σ in T where σ ranges over all possible mergers of τ1 and τ2.

Now consider overlapping decorated embeddings of τ1 and τ2 in T . Then, each corner of T

may have no arrow pointing to it, an arrow of τ1, an arrow of τ2 or one arrow of τ1 and one of
τ2 pointing to it. In the first three cases, the arrows pointing to the corner will be considered as
arrows of σ ; in the last case, the arrow of τ1 and that of τ2 merge into a single arrow of σ . Thus,
any such pair of decorated embeddings corresponds to a decorated embedding of some decorated
tree σ = (σ,m) obtained as a merger of τ 1 and τ 2. In particular |m| ≤ |�1| + |�2| = 2|�|. The
constants C(τ ,σ ) are combinatorial factors that account for the different ways to merge arrows
of τ 1 and τ 2.

The actual proof given below avoids the use of the planar model and is more algebraic.

Proof of Lemma 3.10. Fix τ and T as in the lemma. Consider two embeddings �1, �2 of τ in
T whose images intersect. Since T is a tree, �1(τ ) ∪ �2(τ ) is itself a subtree of T . Moreover,
�1(τ ) ∩ �2(τ ) is the image via �1 and �2, respectively, of two isomorphic subtrees σ1 and σ2
of τ .

For two isomorphic subtrees σ1 and σ2 of τ , define the (σ1, σ2)-merger of two copies of τ as
the tree obtained by “gluing” two copies of τ along σ1 and σ2, respectively. Write M(σ1, σ2) for
this tree. To identify the two copies of τ merged to obtain M(σ1, σ2), call them τ 1 = (τ1, �1)

and τ 2 = (τ2, �2).
Each vertex of M(σ1, σ2) is clearly identified to either one vertex in τ1 \σ1, a vertex in τ2 \σ2

or to a vertex in σ1 and simultaneously to one in σ2. For a vertex u ∈ M(σ1, σ2) write �1(u) for
its decoration in τ 1, if it is identified to a vertex of τ1, otherwise set �1(u) = 0. Define �2(u) for
u ∈M(σ1, σ2) in the same way.

Then, the pairs of embeddings �1, �2 of τ in T with �1(τ ) ∩ �2(τ ) = �1(σ1) = �2(σ2) are
in bijection with the embeddings of M(σ1, σ2) in T . It follows that

Fτ+τ (T ) =
∑

(σ1,σ2)

∑
φ:M(σ1,σ2)↪→T

∏
u∈M(σ1,σ2)

[
degT

(
φ(u)

) − 1
]
�1(u)

· [degT

(
φ(u)

) − 1
]
�2(u)

, (21)

where the first sum is over all pairs of isomorphic subtrees (σ1, σ2) of τ . To reduce the above to
a formula of the type (3), we use the following combinatorial identity.

Fact 3.11. Fix non-negative integers n, �1, �2. Then

[n]�1 · [n]�2 =
min{�1,�2}∑

j=0

[n]�1+�2−j · �1! · �2!
(�1 − j)!(�2 − j)!j ! .
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Proof. First, observe that [n]� = (
n
�

) · �!. Now let us inspect the quantity
(

n
�1

)(
n
�2

)
which is the

number of pairs of subsets A1, A2 of {1, . . . , n} with �1 and �2 elements, respectively. These may
be counted as follows. First establish the set A1 ∪ A2 which can have �1 + �2 − j elements with
j ∈ {0, . . . ,min{�1, �2}}. Once A1 ∪ A2 is chosen, split it into A1 \ A2, A2 \ A1 and A1 ∩ A2.
This forms a partition of A1 ∪A2 into three sets of cardinality �1 − j , �2 − j and j , respectively.
Thus,

(
n

�1

)
·
(

n

�2

)
=

min{�1,�2}∑
j=0

(
n

�1 + �2 − j

)
(�1 + �2 − j)!

(�1 − j)!(�2 − j)!j ! .

Multiply by �1! · �2! to find the desired result. �

Let us return to the proof of Lemma 3.10. A valid decoration m for a tree in M(σ1, σ2) is one
such that, for all u ∈M(σ1, σ2),

max
{
�1(u), �2(u)

} ≤ m(u) ≤ �1(u) + �2(u). (22)

Observe that, if u is not in the images of σ1 and σ2, then m(u) is entirely determined by the
above. For vertices than are in the overlap of τ1 and τ2, m(u) may take one of several values.

Applying Fact 3.11 to the summand in (21), we find

∏
u∈M(σ1,σ2)

[
degT

(
φ(u)

) − 1
]
�1(u)

· [degT

(
φ(u)

) − 1
]
�2(u)

=
∏

u∈M(σ1,σ2)

min{�1(u),�2(u)}∑
j=0

[
degT

(
φ(u)

) − 1
]
�1(u)+�2(u)−j

· �1(u)! · �2(u)!
(�1(u) − j)!(�2(u) − j)!j !

=
∑
m

∏
u∈M(σ1,σ2)

[degT (φ(u)) − 1]m(u) · �1(u)! · �2(u)!
(m(u) − �2(u))!(m(u) − �1(u))!(�1(u) + �2(u) − m(u))!

=
∑
m

C
(
τ ,

(
M(σ1, σ2),m

)) ∏
u∈M(σ1,σ2)

[
degT

(
φ(u)

) − 1
]
m(u)

,

where the sum in the last two terms is over all valid decorations m of M(σ1, σ2) and

C
(
τ ,

(
M(σ1, σ2),m

))
:=

∏
u∈M(σ1,σ2)

�1(u)! · �2(u)!
(m(u) − �2(u))!(m(u) − �1(u))!(�1(u) + �2(u) − m(u))! .

Write M for the tree M(σ1, σ2) with decoration m. Then

∑
φ:M(σ1,σ2)↪→T

∏
u∈M(σ1,σ2)

[
degT

(
φ(u)

) − 1
]
m(u)

=FM(T ).
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Inserting this into (21), we find

Fτ+τ (T ) =
∑
M

C(τ ,M)FM(T ),

where the sum is over all trees of the form M(σ1, σ2) with valid decorations m. These form the
set U(τ ); it is immediate that they have weight at most 2w(τ ). �

We are finally ready to prove Proposition 3.9

Proof of Proposition 3.9. Fix a decorated tree as in the statement. By Theorem 3.7, for any tree
σ ∈ U(τ ) of weight strictly smaller than 2w(τ ),

E
[
Fσ

(
T S

n

)] � n
2w(τ )
1+α .

Moreover, if σ = (σ,m) ∈ U(τ ) is such that w(σ ) = 2w(τ ) then its decorations satisfy m(u) =
�1(u) + �2(u) ≥ 2 for all u ∈ σ (see (22) for how m is defined). As explained in Remark 3.8, for
any such tree

E
[
Fσ

(
T S

n

)] ≈ n
2w(τ )
1+α .

Using (20) and observing that τ has no loose leaf, we conclude that

E
[
Fτ+τ

(
T S

n

)] =O
(
n

2w(τ )
1+α

) = O
(
n

2|�|
1+α

)
.

�

3.3.2. An estimate on E[Fτ ,τ (Tn)]
We start this section by defining a wider class of observables that will be involved in a recurrence
relation which will eventually allow us to estimate E[Fτ ,τ (Tn)]. Let τ , σ be two decorated trees
and T a (bigger) tree. Then we denote by Fτ ,σ (T ) the following integer-valued observable:

Fτ ,σ (T ) :=
∑
φ1,φ2

φ1(τ )∩φ2(σ )=∅

π(τ , φ1, T ) · π(σ , φ2, T ), (23)

where the sum is over all graph embeddings φ1, resp. φ2, of τ , resp. σ , in T with no overlap
in their image. The quantity of interest to us is that with σ = τ and T = Tn. This section is
concerned with proving the following bound.

Proposition 3.12. Let Tn be an α-PA tree. Then it holds that:

E
[
Fτ ,σ (Tn)

] =O
(
E

[
Fτ (Tn)

] ·E[
Fσ (Tn)

])
. (24)

Proposition 3.12 implies directly the bound necessary for the proof of Theorem 3.1.
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Corollary 3.13. Let τ be a decorated tree with �(u) ≥ 2 for any u ∈ τ and such that |�| > 1 +α.
Then, for any seed S,

E
[
Fτ ,τ

(
T S

n

)] =O
(
n

2|�|
1+α

)
. (25)

Proof of Corollary 3.13. Apply Proposition 3.12 with σ = τ and observe that, due to Re-

mark 3.8 and the conditions on τ , we have E[Fτ (Tn)] ≈ n
|�|

1+α . �

Proposition 3.12 is obtained through a recurrence relation, similarly to how Theorem 3.7 fol-
lows from Proposition 3.4. Since we only need an upper bound, we state only a (simpler) recur-
sive inequality.

Proposition 3.14. There exists a family of nonnegative real numbers {c∗(θ ′, θ) : θ ′ ≺ θ} such
that for any two decorated trees τ ,σ 	= 0©:

E
[
Fτ ,σ (Tn+1))|Fn

]

≤
(

1 + w(τ ) + w(σ )

(1 + α) · n − 2

)
·Fτ ,σ (Tn)

+ 1

(1 + α) · n − 2

[∑
t≺τ

c∗(t,τ ) ·Ft,σ (Tn) +
∑
s≺σ

c∗(s,σ ) ·Fτ ,s(Tn)

]
. (26)

In the rest of the section, we show how Proposition 3.14, implies Proposition 3.12, then prove
Proposition 3.14. Both proofs follow similar arguments to those in Sections 3.2 and 3.1, respec-
tively.

Proof of Proposition 3.12. We are going to proceed by induction on pairs (τ ,σ ) of decorated
trees, for the partial order induced by ≺ on such pairs (precisely (t, s) ≺ (τ ,σ ) if either t 
 τ

and s ≺ σ or t ≺ τ and s 
 σ ).
Base case. We show (24) when τ is any decorated tree and σ = 0©. If φ1 is a graph embedding

of τ in Tn, its image consists of |τ | vertices of Tn. Hence, the number of ways to embed σ in Tn

without overlapping with φ1(τ ) is n − |τ |. Thus

E
[
Fτ , 0©(Tn)

] = E
[
Fτ (Tn)

] · (n − |τ |) =O
(
E

[
Fτ (Tn)

] ·E[
F 0©(Tn)

])
,

as required.
Induction step. Let τ , σ be two decorated trees, both different from 0©. Assume that (24) holds

for all pairs (t, s) with either t 
 τ and s ≺ σ or t ≺ τ and s 
 σ . In the following, we set:

ω(τ ,σ )
n :=

n∏
�=k

(
1 + w(τ ) + w(σ )

(1 + α) · � − 2

)−1
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and

Sn(t,τ ;σ ) :=
n∑

�=k

1

(1 + α)� − 2
· ω(τ ,σ )

�+1 ·E[
Ft,σ (T�)

]

for any decorated tree t ≺ τ . Iterating (26), we obtain:

E
[
ω

(τ ,σ )
n+1 ·Fτ ,σ (Tn+1)

] ≤ Fτ ,σ (S) +
∑
t≺τ

c∗(t,τ ) · Sn(t,τ ;σ ) +
∑
s≺σ

c∗(s,σ ) · Sn(s,σ ;τ ).

Thus, to prove (24), it suffices to show that Sn(t,τ ;σ ) = O(ω
(τ ,σ )
n · E[Fτ (Tn)] · E[Fσ (Tn)])

for all t ≺ τ (by symmetry, the same will also hold for Sn(s,σ ;τ ) with s ≺ σ ). Recall from
Theorem 3.7 the asymptotic

ω(τ ,σ )
n ·E[

Fτ (Tn)
] ·E[

Fσ (Tn)
]
) ≈ nmax{0,1− w(τ )

1+α
}+max{0,1− w(σ )

1+α
} · (logn)γ (τ )+γ (σ ). (27)

Fix t ≺ τ . According to the induction hypothesis and the above, the terms of Sn(t,τ ;σ ) are
bounded as

ω
(τ ,σ )
n+1

(1 + α)n − 2
·E[

Ft,σ (Tn)
]

=O
(
nmax{ w(t)−w(τ )

1+α
,1− w(τ )

1+α
}+max{0,1− w(σ )

1+α
}−1(logn)γ (t)+γ (σ )

)
. (28)

The sum of the above has different asymptotics depending on the value of the exponent of n:

1st case: max{w(t)−w(τ )
1+α

,1 − w(τ )
1+α

} + max{0,1 − w(σ )
1+α

} < 0

Then the sum of (28) converges, thus Sn(t,τ ;σ ) =O(1) = O(ω
(τ ,σ )
n ·E[Fτ (Tn)]·E[Fσ (Tn)]).

2nd case: max{w(t)−w(τ )
1+α

,1 − w(τ )
1+α

} + max{0,1 − w(σ )
1+α

} > 0

Then the sum of (28) diverges, and a standard estimate provides the precise rate of growth:

Sn(t,τ ;σ ) =O
(
nmax{ w(t)−w(τ )

1+α
,1− w(τ )

1+α
}+max{0,1− w(σ )

1+α
}(logn)γ (t)+γ (σ )

)
.

Compare the above to (27) to find

Sn(t,τ ;σ )

ω
(τ ,σ )
n E[Fτ (Tn)]E[Fσ (Tn)]
=O

(
nmax{ w(t)−w(τ )

1+α
,1− w(τ )

1+α
}−max{0,1− w(τ )

1+α
} · (logn)γ (t)−γ (τ )

)
.

Now, recall that
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• w(t) ≤ w(τ ) always;
• if w(t) ≤ w(τ ) < 1 + α, then γ (t) = γ (τ ) = 0;
• if w(t) = w(τ ) ≥ 1 + α, then γ (t) < γ (τ ).

A separate analysis of the three different situations above shows that Sn(t,τ ;σ ) = O(ω
(τ ,σ )
n ·

E[Fτ (Tn)] ·E[Fσ (Tn)]).

3rd case: max{w(t)−w(τ )
1+α

,1 − w(τ )
1+α

} + max{0,1 − w(σ )
1+α

} = 0

Then the sum of (28) diverges, and a standard estimate provides the precise rate of growth:

Sn(t,τ ;σ ) =O
(
(logn)γ (t)+γ (σ )+1).

By (27) and our assumption, we find

Sn(t,τ ;σ )

ω
(τ ,σ )
n E[Fτ (Tn)]E[Fσ (Tn)]

(29)

=O
(
nmax{ w(t)−w(τ )

1+α
,1− w(τ )

1+α
}−max{0,1− w(τ )

1+α
}(logn)γ (t)−γ (τ )+1). (30)

The power of n in the right-hand side above is negative or null. When it is negative, equation (29)
is bounded, as required. It can only be 0 in two cases: when w(τ ) < 1 + α or when w(t) =
w(τ ) ≥ 1 + α. The former is incoherent with the assumption of this 3rd case; when the latter
occurs, γ (t) ≤ γ (τ ) − 1, hence (29) is bounded. In conclusion, (29) is always bounded, which
is to say that Sn(t,τ ;σ ) =O(ω

(τ ,σ )
n ·E[Fτ (Tn)] ·E[Fσ (Tn)]). �

It remains to prove Proposition 3.14.

Proof of Proposition 3.14. The strategy followed here is the same as for Proposition 3.4. We
start by fixing τ = (τ, �τ ) and σ = (σ, �σ ) two decorated trees, both different from 0©. Recall our
notation: in passing from Tn to Tn+1 a new vertex denoted by vn is attached to a randomly chosen
vertex un of Tn. Our purpose is to compute the sum (23) over pairs of non-overlapping graph em-
beddings φ1, φ2 of τ and σ into Tn+1. We restrict the sum to embeddings with π(τ , φ1, Tn+1) > 0
and π(σ , φ2, Tn+1) > 0.

As it has already been noted in the proof of Proposition 3.4, such embeddings fall into three
distinct categories: those which do not include un nor vn in their image, those which include un

but not vn in their image and those which include both un and vn in their image. Embeddings
that include vn but not un in their image are not authorised as they only have positive weight
when the decorated tree is 0©.

A crucial remark is that two graph embeddings φ1 : τ → Tn+1, φ2 : σ → Tn+1 with no overlap
cannot be at once in one of the two last categories of embeddings. We thus enumerate three kind
of situations:

1. the images of φ1 and φ2 are both in Tn+1 \ {un, vn};
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2. the image of φ1 contains un but not vn, that of φ2 does not include any of them; or the same
situation but reversing the roles of φ1 and φ2;

3. the image of φ1 contains un and vn, that of φ2 does not include any of them; or the same
situation but reversing the roles of φ1 and φ2.

Write F (i)
τ ,σ (Tn+1) with i = 1,2,3 for the contribution to (23) of pairs of embeddings being in

the corresponding situation above. As in the proof of Proposition 3.4, the pairs of embeddings
in the two first situations are in one-to-one correspondence with non-overlapping embeddings
φ1 : τ → Tn, φ2 : σ → Tn, although their weights π(τ , φ1, Tn+1) and π(σ , φ2, Tn+1) may differ
from that in Tn. The same algebraic manipulations used for F (1)

τ (Tn+1) and F (2)
τ (Tn+1) in the

proof of Proposition 3.4 may also be applied here to find

E
[
F (1)

τ ,σ (Tn+1) +F (2)
τ ,σ (Tn+1)|En

] =
[

1 + |�τ | + |�σ |
(1 + α)n − 2

]
Fτ ,σ (Tn)

+
∑
u∈τ

�τ (u)(�τ (u) + α − 1)

(1 + α)n − 2
Fτu−,σ (Tn)

+
∑
v∈σ

�σ (v)(�σ (v) + α − 1)

(1 + α)n − 2
Fτ ,σ v−(Tn) (31)

Moreover, the quantity F (3)
τ ,σ (Tn+1) may be treated as F (3)

τ (Tn+1) in (10), and we find

E
[
F (3)

τ ,σ (Tn+1)|En

]
= 1

(1 + α)n − 2

×
( ∑

v l.l of τ

F(τ\v)+,σ (Tn)

+ (
2�τ (u) + α

)
Fτ\v,σ (Tn) + �τ (u)

(
�τ (u) + α − 1

)
F(τ\v)−,σ (Tn)

+
∑

v l.l of σ

Fτ ,(σ\v)+(Tn)

+ (
2�σ (u) + α

)
Fτ ,σ\v(Tn) + �σ (u)

(
�σ (u) + α − 1

)
Fτ ,(σ\v)−(Tn)

)
(32)

where the two sums are over the set of loose leaves of τ and σ , respectively. The above equation
is a derivative of (10). At the same stage, the last ingredient for the proof of Proposition 3.4 was
a combinatorial lemma – Lemma 3.5 – claiming that F(τ\v)+(Tn) is actually a linear combina-
tion of Fτ (Tn) and Fτ\v(Tn) when v is a loose leaf of τ . Here that is almost what we do for
F(τ\v)+,σ (Tn) and of course for Fτ ,(σ\v)+(Tn) by symmetry. The equality (11) is just turned into
an inequality.
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Lemma 3.15. Let τ = (τ, �τ ) and σ = (τ, �σ ) be two decorated trees, v a loose leave of τ and
u its only neighbour in τ . Then, for any tree T :

Fτ ,σ (T ) + C(τ ,w) ·Fτ\v,σ (T ) ≤ F(τ\v)+,σ (T ) ≤Fτ ,σ (T ) + C∗(τ ,w) ·Fτ\v,σ (T ),

with C(τ ,w) being the constant defined in Lemma 3.5 and C∗(τ ,w) := C(τ ,w) + 1.

Proof. As for Lemma 3.5, we proceed in two steps. First, we express Fτ ,σ (T ) in terms of pairs
of non-overlapping embeddings of τ \ v and σ , respectively, in T .

To any non-overlapping pair of embeddings φ1 : τ → T , φ2 : σ → T associate the restriction
φ̃1 : τ \ v → T of φ1 to the set of vertices of τ \ v together with the same embedding φ2 of σ .
Conversely, if a pair of non-overlapping embeddings ψ̃1 : τ \ v → T and φ2 : σ → T is given, we
may extend ψ̃1 to some ψ1 : τ → T which preserves the non-overlapping property with φ2. The
number of such extensions depends on how many neighbours of ψ̃1(u) are not contained in the
images of ψ̃1 and φ2. The former occupies degτ\v(u) neighbours of ψ̃1(u); the latter may occupy
0 or 1 neighbour due to the non-overlapping requirement. From this observation, and given that
π(τ , φ1, T ) = π(τ \ v, φ̃1, T ) (v being a loose leaf), we deduce that:

Fτ ,σ (T ) ≤
∑
φ̃1,φ2

φ̃1(τ\v)∩φ2(σ )=∅

(
degT

(
φ̃1(u)

) − degτ\v(u)
) · π(τ \ v, φ̃1, T ) · π(σ , φ2, T ) (33)

and

Fτ ,σ (T )

≥
∑
φ̃1,φ2

φ̃1(τ\v)∩φ2(σ )=∅

(
degT

(
φ̃1(u)

) − degτ\v(u) − 1
) · π(τ \ v, φ̃1, T ) · π(σ , φ2, T ). (34)

The two above equations correspond to (12) in the proof of Lemma 3.5. Finally, similarly to (13),
we find

F(τ\v)+,σ (T )

=
∑
φ̃1,φ2

φ̃1(τ\v)∩φ2(σ )=∅

(
degT

(
φ̃1(u)

) − 1 − �τ (u)
) · π(τ \ v, φ̃1, T ) · π(σ , φ2, T ). (35)

Subtracting (33) and (34) from (35), we obtain the desired lower and upper bounds, respec-
tively. �
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To finish the proof of Proposition 3.14, insert the upper bound of Lemma 3.15 in (32) to find

E
[
F (3)

τ ,σ (Tn+1)|En

]
≤ |{v loose leaf of τ }| + |{v loose leaf of σ }|

(1 + α)n − 2
·Fτ ,σ (Tn)

+ 1

(1 + α)n − 2

∑
v l.l. of τ

(
degτ (u) + �τ (u) + α − 1

) ·Fτ\v,σ (Tn)

+ �τ (u)
(
�τ (u) + α − 1

) ·F(τ\v)−,σ (Tn)

+ 1

(1 + α)n − 2

∑
v l.l. of σ

(
degσ (u) + �σ (u) + α − 1

) ·Fτ ,σ\v(Tn)

+ �σ (u)
(
�σ (u) + α − 1

) ·Fτ ,(σ\v)−(Tn) (36)

where the two sums are again over the set of loose leaves of τ and σ , respectively. Equations (31)
and (36) eventually lead to the expected inequality (26). �

3.3.3. Proof of Theorem 3.1

Theorem 3.1 follows directly from the estimates of the two previous sections and from the de-
composition

Fτ (Tn)
2 =Fτ ,τ (Tn) +Fτ+τ (Tn). (37)

Proof of Theorem 3.1. Take the expectation of (37) and insert (19) and (25). �

4. Observables and their difference around the seed tree

The goal of this section is to produce decorated trees τ that can distinguish between two different
seeds S and S′. Moreover, we wish the asymptotic of Fτ (T S

n ) for such trees (both for the first and

the square root of the second moment) to be of the type n
w(τ )
1+α , with a null logarithmic correction.

The main result is the following.

Theorem 4.1. For any two seed trees S 	= S′ of size k, k′ ≥ 3, there exists a decorated tree τ

with w(τ ) > 1 + α and �(u) ≥ 2 for all u ∈ τ such that

E
[
Fτ

(
T S

n

)] −E
[
Fτ

(
T S′

n

)] ≈ n
w(τ )
1+α .

The next four sections are concerned with the proof of Theorem 4.1. To start, we will consider
seeds S, S′ of same size. Finally, in Section 4.5, we prove our main result, Theorem 1.1.
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4.1. Differences only appear around the seed

We are interested here in the variation of the first moment of (3), depending on the value taken
by the seed tree S. We state the following proposition.

Proposition 4.2. For any two seed trees S, S′ of common size k ≥ 3, any decorated tree τ and
any n ≥ k:

E
[
Fτ

(
T S

n

)] −E
[
Fτ

(
T S′

n

)] = E
[
Fτ

(
T S

n , {·} ∩ S 	=∅
)] −E

[
Fτ

(
T S′

n , {·} ∩ S′ 	=∅
)]

,

where:

Fτ

(
T S

n , {·} ∩ S 	=∅
) :=

∑
φ:τ ↪→T S

n

φ(τ)∩S 	=∅

∏
u∈τ

[
degT S

n

(
φ(u)

) − 1
]
�(u)

,

and the same for S′. In other words, Fτ (T S
n , {·}∩S 	=∅) is the contribution to Fτ of embeddings

that “intersect the seed”.

The reader may be surprised that, in the statement above, we assume the location of the seed
inside Tn known, all while trying to prove that the seed may be determined. It should be clear
that, while Proposition 4.2 and other steps of the proof of Theorem 4.1 use the knowledge of the
seed, their ultimate result (that is Theorem 4.1) does not.

The proof is based on the coupling of Section 2.2, hence we use the planar α-PA formalism.

Proof. Fix seed trees S, S ′ of equal size k ≥ 3. We start by decomposing the sum over embed-
dings φ defining (3) according to whether φ(τ) ∩ S is empty or not:

E
[
Fτ

(
T S

n

)] = E
[
Fτ

(
T S

n , {·} ∩ S 	=∅
)] +E

[
Fτ

(
T S

n , {·} ∩ S =∅
)]

.

If an embedding φ of τ in T S
n does not intersect S, then φ(τ) is necessarily a proper subset of one

of the planted plane subtrees T
v,i
n , and does not intersect the root of said tree. Write Fτ (T

v,i
n ) for

the contribution to Fτ (T S
n ) of all such embeddings. Then

E
[
Fτ

(
T S

n , {·} ∩ S =∅
)] =

∑
v∈VS

degS(v)∑
i=1

E
[
Fτ

(
T v,i

n

)]
.

The right-hand side of the above does not actually depend on S, only on its size. Indeed, the
coupling described at the end of Section 2.2 indicates that the same planted plane subtrees may
be used to construct T S

n and T S′
n . While it is not necessary for this argument, one may notice that

T S
n and T S′

n may even be coupled so that

Fτ

(
T S

n , {·} ∩ S =∅
) =Fτ

(
T S′

n , {·} ∩ S′ =∅
)

a.s.

The result follows readily. �
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4.2. Blind trees: Differences appear only in the seed

Next, we aim to improve Proposition 4.2 by showing that E[Fτ (T S
n )]−E[Fτ (T S′

n )] only depends
on embeddings totally contained in the seed, not just intersecting it. This will not be true for all
trees τ , only for special ones. Some definitions are required.

Definition 4.3 (Perfect embedding). Let τ = (τ, d) be a decorated tree and T a (larger) tree.
An embedding φ : τ ↪→ T is called perfect if

d(u) = degT

(
φ(u)

) ∀u ∈ τ.

Write Dτ,d(T ) for the number of perfect embeddings from (τ, d) to T . Note that any embed-
ding of τ in T is perfect for exactly one decoration, hence contributes exactly to one Dτ,d(T ).

Definition 4.4 (Blind tree). Let τ , T1 and T2 be finite trees with |T1| = |T2|. We say that τ is a
(T1,T2)-blind tree if for any decoration d : τ →N∗:

Dτ,d(T1) = Dτ,d(T2).

Intuitively, τ is (T1, T2)-blind if it can not distinguish between T1 and T2 using observables
involving the number of embeddings and the environment around these embeddings (as are our
observables Fτ ). For instance, the tree formed of a single vertex is (T1, T2)-blind if and only if
T1 and T2 have the same degree sequence.

Let (τ, d) be a decorated tree, σ ⊆ τ a nonempty subtree of τ , and S be a seed tree. Write
Dσ,τ,d (T S

n ) for the number of perfect embeddings � of (τ, d) in T S
n with �(τ) ∩ S = �(σ). We

obviously have:

Fτ

(
T S

n , {·} ∩ S 	=∅
) =

∑
σ⊆τ

∑
d:τ→N∗

Dσ,τ,d

(
T S

n

) ·
∏
u∈τ

[
d(u) − 1

]
�(u)

. (38)

The next proposition constitutes the essential step for the upgrade of Proposition 4.2.

Proposition 4.5. Let S and S′ be two seed trees of common size k ≥ 3. For trees σ ⊆ τ with σ

which is (S,S′)-blind,

∀d : τ →N∗ and n ≥ k, E
[
Dσ,τ,d

(
T S

n

)] = E
[
Dσ,τ,d

(
T S′

n

)]
.

Proof. The idea of the proof is to decompose the embeddings contributing to Dτ,σ,d(T S
n ) ac-

cording to degrees of the vertices belonging to its image in the seed tree S. For illustration, we
will start with the simpler case when σ = τ , then move on to the general case.

Particular case σ = τ

For any seed S and n ≥ |S|,
Dτ,τ,d

(
T S

n

) =
∑

φ:τ ↪→S

∏
u∈τ

1deg
T S
n

(φ(u))=d(u).
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Due to the coupling of in Section 2.2, the probability of the event
⋂

u∈τ {degT S
n
(φ(u)) = d(u)}

only depends on the degrees of the vertices (φ(u))u∈τ in S. Write fd [degS φ(u) : u ∈ τ ] for this
probability. Then

E
[
Dτ,τ,d

(
T S

n

)] =
∑

φ:τ ↪→S

fd

[
degS φ(u) : u ∈ τ

]

=
∑

�:τ→N∗
Dτ,�(S) · fd

[
�(u) : u ∈ τ

]
. (39)

Since τ is assumed (S,S′)-blind, the quantity above remains unaltered when S is replaced by S′.

General case σ ⊂ τ

For a seed S and v ∈ S, write (T S
n \S)v for the subtree of T S

n formed of all vertices that may be
connected to v without using any edge of S. In terms of vertices {(T S

n \ S)v : v ∈ S} is a partition
of the vertices of T S

n ; in terms of edges, it is a partition of the edges of T S
n not contained in S. In

the language of Section 2.2, (T S
n \S)v is the tree obtained by gluing T

v,1
n , . . . , T

v,degS(v)
n together

at the root. Use the same notation for τ and σ : for v ∈ σ write (τ \σ)v for the subtree of τ formed
of all vertices that may be connected to v in τ without using any edge of σ .

For a decoration d of τ , and vertices v ∈ σ and v ∈ S, write D(d, v, v, T S
n ) for the number of

perfect embeddings φ of ((τ \ σ)v, d) in (T S
n \ S)v with φ(v) = v:

D
(
d, v, v, T S

n

) =
∑

φ:(τ\σ)v→(T S
n \S)v

1φ(v)=v

∏
u∈(τ\σ)v

1{deg
T S
n

(φ(u))=d(u)}.

It may not be explicit in the above, but the last product does only depend on (T S
n \ S)v for

u 	= v, since degT S
n
(φ(u)) = deg(T S

n \S)v
(φ(u)). For v ∈ S, it should be noted that degT S

n
(v) =

deg(T S
n \S)v

(v) + degS(v).

Now express Dσ,τ,d (T S
n ) as follows:

Dσ,τ,d

(
T S

n

) =
∑

φ:σ ↪→S

∏
v∈σ

D
(
d, v, φ(v), T S

n

)
. (40)

Indeed, any embedding contributing Dτ,σ,d (T S
n ) comes from an embedding of σ in S and em-

beddings of the subtrees (τ \σ)v in the corresponding subtrees of T S
n \S. The conditions that the

embedding is perfect may be verified separately in each subtree.
Now, due to the coupling of Section 2.2 and to the expression of (T S

n \ S)v in terms of
(T

v,i
n )i≥1, the expectation of the product above only depends on the degrees of the vertices φ(v)

in S:

E

[∏
v∈σ

D
(
d, v, φ(v), T S

n

)] = fσ,τ,d

[
degS

(
φ(v)

) : v ∈ σ
]
,
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for some explicit function fσ,τ,d . Injecting this in (40), we find

E
[
Dσ,τ,d

(
T S

n

)] =
∑

φ:σ ↪→S

fσ,τ,d

[
degS

(
φ(v)

) : v ∈ σ
] =

∑
�:σ→N∗

Dσ,�(S) · fσ,τ,d

[
�(v) : v ∈ σ

]
.

Since σ is assumed (S,S′)-blind, the quantity above is equal when S is replaced by S′. �

We are now ready to give a finer version of Proposition 4.2. Consider two distinct seeds S, S′
of equal size k ≥ 4 (non two distinct seeds of smaller size exist). Then there exists at least one
tree which is not (S,S′)-blind, for instance S or S′ have this property. It follows that there exists
at least one minimal tree which is not (S,S′)-blind, that is a tree τ which is not (S,S′)-blind but
for which any proper subtree σ � τ is (S,S′)-blind.

Corollary 4.6. Let τ be a minimal tree that is not (S,S′)-blind. Then for any decoration � of τ

E
[
Fτ

(
T S

n

)] −E
[
Fτ

(
T S′

n

)] = E
[
Fτ

(
T S

n , {·} ⊆ S
)] −E

[
Fτ

(
T S′

n , {·} ⊆ S′)],
where

Fτ

(
T S

n , {·} ⊆ S
) :=

∑
φ:τ ↪→S

∏
u∈τ

[
degT S

n

(
φ(u)

) − 1
]
�(u)

,

and the same for S′.

Proof. We apply (38) together with Proposition 4.5 and use the minimality of τ to obtain

E
[
Fτ

(
T S

n , {·} ∩ S 	=∅
)] −E

[
Fτ

(
T S′

n , {·} ∩ S′ 	=∅
)]

=
∑

d:τ→N∗

(∏
u∈τ

[
d(u) − 1

]
�(u)

)
· (E[

Dτ,τ,d

(
T S

n

)] −E
[
Dτ,τ,d

(
T S′

n

)])
.

Furthermore, it is clear that

E
[
Fτ

(
T S

n , {·} ⊆ S
)] =

∑
d:τ→N∗

(∏
u∈τ

[
d(u) − 1

]
�(u)

)
·E[

Dτ,τ,d

(
T S

n

)]
.

Of course, the above equality also holds when S is replaced by S′. Hence, the result. �

4.3. Evaluating the difference in the seed

In light of the above, the quantities of interest for the proof of Theorem 4.1 are of the type
E[Fτ (T S

n , {·} ⊆ S)]. We give below a more convenient expression for them based on (39).
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Lemma 4.7. Let S be a seed tree of size k and τ = (τ, �) a decorated tree. Then, for any n ≥ k

E
[
Fτ

(
T S

n , {·} ⊆ S
)] =

∑
d:τ→N∗

f(k, n;d, �) · Dτ,d(S), (41)

where f(k, n;d, �) are functions defined as follows (for decorations d such that |d| < 2k − 2).
Let (yn(u) : u ∈ τ ∪ {other}, n ≥ k) be a Pólya urn with |τ | + 1 colours, replacement matrix

M = (muv)u,v∈τ∪{other} with

muv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if u = v 	= other,

1 + α if u = v = other,

α if u 	= v = other,

0 otherwise,

and initial states yk(u) = α + d(u) − 1 for u ∈ τ and yk(other) = (1 + α)k − 2 − ∑
u∈τ yk(u).

Then

f(k, n;d, �) = E

[∏
u∈τ

[
yn(u) − α

]
�(u)

]
.

Remark 4.8. The actual definition of the variables (yn(u) : u ∈ τ ∪ {other}, n ≥ k) is not very
important; a more intuitive expression will be used (see (43)). The important aspect of (41) is
that E[Fτ (T S

n , {·} ⊆ S)] is factorised between a part that depends on n but not the seed structure
(namely f(k, n;d, �)) and one that depends on the seed structure but not on n (namely Dτ,d(S)).

Proof. Fix S and τ = (τ, �). Recall that

E
[
Fτ

(
Tn, {·} ⊆ S

)] =
∑

φ:τ ↪→S

E

[∏
u∈τ

[
degT S

n

(
φ(u)

) − 1
]
�(u)

]
, (42)

where the sum is over all embeddings of τ in S.
Let φ be an embedding of τ in S. Then the family {degT S

n
(φ(u)) : u ∈ τ } has a markovian

dynamics as n increases described as follows:

• for each u ∈ τ , with probability
deg

T S
n

(φ(u))−1+α

(1+α)n−2 , we have degT S
n+1

(φ(u)) = degT S
n
(φ(u))+1

and all other entries remain the same;
• otherwise degT S

n+1
(φ(u)) = degT S

n
(φ(u)) for all u ∈ τ .

Then, if we set

yn(u) = degT S
n

(
φ(u)

) + α − 1, for u ∈ τ and

yn(other) = (1 + α)n − 2 −
∑
u∈τ

yn(u) =
∑

v∈T S
n \φ(τ)

degT S
n
(v) + α − 1,
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we deduce readily that the family (yn(u) : u ∈ τ ∪ {other}, n ≥ k) has the dynamics of a Pólya
urn with the replacement matrix M and initial conditions given in the statement. Thus

E

[∏
u∈τ

[
degT S

n

(
φ(u)

) − 1
]
�(u)

]
= E

[∏
u∈τ

[
yn(u) − α

]
�(u)

]
= f(k, n;d, �). (43)

By inserting the above in (42) and grouping the terms of the sum by the degrees in S of the
embedding, we obtain (41). �

Corollary 4.6 and Lemma 4.7 state that, for seeds S 	= S′ of same size and τ which is a
minimal non-(S,S′)-blind tree, the difference of the observables Fτ for T S

n and T S′
n is a linear

combination of functions f(k, n;d, �):

E
[
Fτ

(
T S

n

)] −E
[
Fτ

(
T S′

n

)] =
∑

d:τ→N∗
f(k, n;d, �) · [Dτ,d(S) − Dτ,d

(
S′)] (44)

for any decoration � of τ . Thus, for our proof of Theorem 4.1, it will be of great interest to study
the asymptotics of the functions f(k, n;d, �) as n → ∞. The relevant result is the following.

Proposition 4.9. Let S be a seed tree of size k ≥ 2, τ = (τ, �) be a decorated tree and d : τ →N∗
be some decoration of τ . Then

n− |�|
1+α · f(k, n;d, �) −−−→

n→∞ C
(
k, |�|) ·

∏
u∈τ

[
d(u) + �(u) + α − 2

]
�(u)

, (45)

where C(k, |�|) > 0 is some constant depending only on k and |�|.

The above is a technical result based on the study of Pòlya urns; the rest of the section is
dedicated to proving it. It is possible to prove (45) using only the abstract quantities (yn(u) : u ∈
τ ∪ {other}, n ≥ k). We prefer however to use the more visual interpretation of these quantities
in terms of the degrees in T S

n of some embedding of τ in S.
Fix a seed S of size k, R a subtree of S and � a decoration of R.

M(R,�)
n =

∏
u∈R

[
degT S

n
(u) + α + �(u) − 2

]
�(u)

and

W(R,�)
n =

⎧⎪⎪⎨
⎪⎪⎩

1 if n = k,
n−1∏
t=k

(
1 + |�|

(1 + α)t − 2

)−1

if n ≥ k + 1.

When no ambiguity is possible, the superscript (R, �) will be omitted.

Lemma 4.10. The sequence (Mn ·Wn)n≥k is a martingale and is bounded in L2.
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Proof. We start by proving that (Mn · Wn)n≥k is a martingale. We introduce En the σ -algebra
generated by Mk, . . . ,Mn. When going from n to n + 1 one of two things can happen: ei-
ther the new vertex of T S

n+1 is attached to a vertex u ∈ R or it is attached to some other ver-

tex of T S
n . In the first case Mn is multiplied by

deg
T S
n

(u)+α+�(u)−1

deg
T S
n

(u)+α−1 ; this occurs with probability

1
(1+α)n−2 (degT S

n
(u) + α − 1). In the latter case the value of Mn remains unchanged. Thus

E(Mn+1|En) − Mn

Mn

=
∑
u∈R

degT S
n
(u) + α − 1

(1 + α)n − 2
·
(degT S

n
(u) + α − 1 + �(u)

degT S
n
(u) + α − 1

− 1

)

= |�|
(1 + α)n − 2

.

It follows that E(Mn+1|En) = (1 + |�|
(1+α)n−2 ) · Mn, which is to say that Mn ·Wn is a martingale.

That the martingale Mn ·Wn is bounded in L2 follows from:

∀u ∈ R,
[
d + α + �(u) − 2

]2
�(u)

≤ [
d + α + 2�(u) − 2

]
2�(u)

and also:

(
W(R,�)

n

)2 ≤ W(R,2�)
n ,

where 2� is the decoration of R such that for every u ∈ R, (2�)(u) = 2 · �(u). Indeed, the two
above inequalities together imply that (M

(R,�)
n · W(R,�)

n )2 ≤ M
(R,2�)
n · W(R,2�)

n for every n ≥ k.
But since M

(R,2�)
n ·W(R,2�)

n is a martingale according to what we have just proved, it is bounded
in L1, thus Mn ·Wn is for its part bounded in L2. �

Corollary 4.11. The following convergence holds almost surely and in L1:

n− |�|
1+α · Mn −−−→

n→∞ C
(
k, |�|) · ξ(R), (46)

where ξ(R) is a random variable of expectation E[ξ(R)] = ∏
u∈R[degS(u) + �(u) + α − 2]�(u)

and C(k, |�|) > 0 is a universal constant depending only on k and |�|.

Proof. As a martingale that is bounded in L2, (Mn ·Wn) converges a.s. and in L1 when n → ∞
to some random variable ξ(R). By the L1 convergence,

E
[
ξ(R)

] = E[Mk ·Wk] =
∏
u∈R

[
degS(u) + �(u) + α − 2

]
�(u)

.

Finally, as in (15), a straightforward computation proves that Wn · n |�|
1+α converges as n → ∞ to

some constant depending only on |�| and k. This implies (46). �
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Remark 4.12. If we apply Corollary 4.11 to R being formed of a single vertex u with �(u) = 1,
we obtain

n− 1
1+α degT S

n
(u) −−−→

n→∞ C(k,1) · ξ(u),

where E[ξ(u)] = degS(u) + α − 1 and C(k,1) > 0 is defined as above. Moreover, it may be

shown that ξ(u) > 0 a.s. (see [17], Lemma 8.17), which is to say that degT S
n
(u) grows as n

1
1+α .

We are now ready to prove Proposition 4.9.

Proof of Proposition 4.9. Fix some S, τ , � and d as in the proposition. Let φ be some perfect
embedding of (τ, d) in S. Write R = φ(τ) and keep in mind that degS(φ(u)) = d(u) for all
u ∈ τ . We will use the notation of Corollary 4.11 for R.

Using (43) and the fact that degT S
n
(u) → ∞ for all u ∈ τ , we have

∏
u∈τ [yn(u) − α]�(u)

Mn

=
∏
u∈τ

[degT S
n
(φ(u)) − 1]�(u)

[degT S
n
(φ(u)) + �(u) + α − 2]�(u)

−−−→
n→∞ 1.

Moreover, the ratio is always bounded from above by 1. This may be proved individually for
each term in the product: it is clear when �(u) ≥ 1; when �(u) = 0, the ratio is equal to 1. Thus,
by the dominated convergence theorem,

lim
n→∞n− |�|

1+α · f(k, n;d, �) = lim
n→∞n− |�|

1+α ·E[Mn] = C
(
k, |�|) ·

∏
u∈τ

[
d(u) + �(u) + α − 2

]
�(u)

,

where the last equality is due to Corollary 4.11. �

4.4. Proof of Theorem 4.1

In proving Theorem 4.1, we analyse differently the case where the two seeds S, S′ have same
size and that where they have distinct sizes. We start with the former.

Proof of Theorem 4.1 for seeds of common size. Fix S, S′ two distinct seeds of same size
k ≥ 4. Let τ be a minimal tree which is not (S,S′)-blind. Then, for any decoration � of τ ,
equation (44) and Proposition 4.9 imply that

lim
n→∞n− |�|

1+α · (E[
Fτ

(
T S

n

)] −E
[
Fτ

(
T S′

n

)]) =
∑

d:τ→N∗
f(∞;d, �) · [Dτ,d(S) − Dτ,d

(
S′)], (47)

where f(∞;d, �) := limn→∞ n− |�|
1+α · f(k, n;d, �) = C(k, |�|) · ∏

u∈τ [d(u) + �(u) + α − 2]�(u).
Thus, our goal is to find a decoration � : τ → N with �(u) ≥ 2 for all u ∈ τ , |�| > 1 + α and such
that the right-hand side of (47) is non-zero.

Fix some arbitrary order u1, . . . , ur for the vertices of τ (where r := |τ |) and write ≺� for the
lexicographical order induced on the set of decorations of τ . Consider the set � of decorations
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d of τ with Dτ,d(S) 	= Dτ,d(S′). This set is finite, since Dτ,d(S) = Dτ,d(S′) = 0 for all large
enough decorations. Moreover, it is not void since τ is not (S,S′)-blind. Let dmax be the maximal
element of � for ≺�.

Consider some d ∈ � with d 	= dmax and let j = min{i : d(ui) 	= dmax(ui)}. Then

f(∞;d, �)

f(∞;dmax, �)
=

∏
i≥j

[d(ui) + �(ui) + α − 2]�(ui )

[dmax(ui) + �(ui) + α − 2]�(ui )

−→ 0 (48)

when all �(ui) for i > j are fixed and �(uj ) → ∞.
Write �j for the set of decorations d ∈ � with d 	= dmax and such that min{i : d(ui) 	=

dmax(ui)} = j . Then � \ {dmax} = ⊔r
j=1 �j . Now let us construct a decoration � with the neces-

sary requirements by first choosing �(ur), then �(ur−1) etc.
First, fix �(ur) > 1 + α large enough so that∣∣∣∣ ∑

d∈�r

f(∞;d, �)

f(∞;dmax, �)
· [Dτ,d(S) − Dτ,d

(
S′)]∣∣∣∣ ≤ 1

2r
.

This is possible by (48). Observe that the values of �(ui) for i < r are irrelevant, as they do not
appear in the above. Once �(ur) is fixed, fix �(ur−1) ≥ 2 so that∣∣∣∣ ∑

d∈�r−1

f(∞;d, �)

f(∞;dmax, �)
· [Dτ,d(S) − Dτ,d

(
S′)]∣∣∣∣ ≤ 1

2r
.

Again, (48) shows that the values {�(ui); i < r − 1} do not appear in the above and that such a
choice of �(ur−1) is possible regardless of the value of �(ur) fixed before.

Continue as such until all values {�(u) : u ∈ τ } are fixed. The resulting decoration � has �(u) ≥
2 for all u ∈ τ , it is such that |�| ≥ �(ur) > 1 + α, and satisfies∣∣∣∣ ∑

d∈�j

f(∞;d, �)

f(∞;dmax, �)
· [Dτ,d(S) − Dτ,d

(
S′)]∣∣∣∣ ≤ 1

2r
, ∀j = 1, . . . , r.

When summing the above, we find∣∣∣∣ ∑
d∈�\{dmax}

f(∞;d, �) · [Dτ,d(S) − Dτ,d

(
S′)]∣∣∣∣ ≤ 1

2
f(∞;dmax, �).

Now, since Dτ,dmax(S) 	= Dτ,dmax(S
′), this implies that∣∣∣∣ ∑

d:τ→N∗
f(∞;d, �) · [Dτ,d(S) − Dτ,d

(
S′)]∣∣∣∣ ≥ 1

2
f(∞;dmax, �) > 0,

which was the desired condition. �

Proof of Theorem 4.1 for seeds of different sizes. Fix two seeds S, S′ of sizes k and k′, respec-
tively, with 3 ≤ k′ < k. Due to the Markov property, the law of (T S′

n )n≥k is a linear combination
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of laws (T R
n )n≥k with R ranging over the different values taken by T S′

k . Write Tk for the set of

trees of size k with P(T S′
k = R) 	= 0.

First we claim that there exist two trees in Tk with different maximal degree. Indeed, one
possible way of going from S′ to a tree in Tk is to always attach the new vertices to leaves. In
this scenario, the maximal degree of the resulting tree is the same as that of S′ (since that in S′ is
at least 2). In conclusion

P
(
max

{
deg

T S′
k

(u) : u ∈ T S′
k

} = max
{
degS′(u) : u ∈ S′}) > 0.

Another is to always attach the new vertex to the one of maximal degree. The resulting maximal
degree in T S′

k would then be k − k′ more than that in S′:

P
(
max

{
deg

T S′
k

(u) : u ∈ T S′
k

} = max
{
degS′(u) : u ∈ S′} + k − k′) > 0.

Thus, there exist two trees in Tk with distinct maximal degree, as claimed.
Fix τ to be the tree formed of a single vertex. A decoration for τ is then simply an integer

number. This tree has no subtree, hence Proposition 4.5 applies to it. For any decoration � ∈ N

of τ , equation (47) adapts to

lim
n→∞n− �

1+α
(
E

[
Fτ

(
T S

n

)] −E
[
Fτ

(
T S′

n

)]) =
∑
d∈N∗

f(∞;d, �)
∑
R∈Tk

P
(
T S′

k = R
)[

Dd(S) − Dd(R)
]
,

where f(∞;d, �) = C(k, �) · [d + � + α − 2]� and Dd(S) is simply the number of vertices of
degree d in S.

Write dmax for the maximal number d ∈N∗ with

∑
R∈Tk

P
(
T S′

k = R
) · [Dd(S) − Dd(R)

] 	= 0. (49)

First, observe that the set of values d satisfying (49) is finite since Dd(S) = Dd(R) = 0 for all
R ∈ Tk provided d is large enough. Second, notice that there exist at least one d satisfying (49)
since the maximal degree of R ∈ Tk is not constant.

Now, by (48),

lim
�→∞

∑
d∈N∗

f(∞;d, �)

f(∞;dmax, �)

∑
R∈Tk

P
(
T S′

k = R
) · [Dd(S) − Dd(R)

]

=
∑
R∈Tk

P
(
T S′

k = R
) · [Ddmax(S) − Ddmax(R)

] 	= 0.

In conclusion, one may fix � > 1 + α (and implicitly � ≥ 2) so that

lim
n→∞n− �

1+α
(
E

[
Fτ

(
T S

n

)] −E
[
Fτ

(
T S′

n

)]) 	= 0. �
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4.5. Proof of Theorem 1.1

Proof. Fix S, S′ two distinct seeds of sizes at least 3. Let τ be the decorated tree given by
Theorem 4.1 for these two seeds. Due to our assumptions on τ , Theorem 3.1 applies to it, and
we have

E
[
Fτ

(
T S

n

)2] =O
(
n

2|�|
1+α

)
and E

[
Fτ

(
T S′

n

)2] =O
(
n

2|�|
1+α

)
.

Lemma 1.3 then yields lim infn→∞ dTV(Fτ (T S
n ),Fτ (T S′

n )) > 0, which in turn implies Theo-
rem 1.1. �

5. Open problems and future research

Other attachment mechanisms

As mentioned in the Introduction, our approach uses the fact that the attachment mechanism is
affine to couple the evolution of trees starting from distinct seeds of same size; see the coupling
of Section 2.2 and its use in Section 4.1 and 4.2 to deduce Corollary 4.6.

Suppose now that we consider a different attachment model, where the new vertex is at-
tached to a vertex u ∈ Tn with probability proportional to g(degTn

(u)) for some function
g :N → (0,+∞). Thus, (1) becomes

P
(
uN = u|T S

k , . . . , T S
N with T S

N = T
) = g(degT (u))∑

v∈T g(degT (v))
∀u ∈ T .

Notice that, when g is not affine, the denominator above depends on the structure of T , and the
attachment probabilities cease to be a local function of u. In other words, the sequence of drawn
vertices loses its exchangeability. As a consequence, it is not possible anymore to construct a
coupling between sequences (T S

n )n≥k and (T S′
n )n≥k as in Section 2.2, where S and S′ are two

seeds of size k. Nevertheless, if S and S′ have same degree sequences, then regardless of the
form of g, one may couple the evolution of T S

n and T S′
n so that the sets of connected compo-

nents of T S
n \ S and T S′

n \ S′ are identical (here T S
n \ S stands for the graph obtained from T S

n

by removing all edges of S). The equivalent of Corollary 4.6 may then be proved in the same
manner.

This hints to the possibility of seed recognition (i.e. Theorem 1.1) for a much larger set
of models. One particular example of interest is when g(k) = kβ for some β ∈ (0,1) [10,

11]. In such models, the largest degree in T S
n is of order (logn)

1
1−β , hence much smaller

than in the affine case [3], Thm. 22. The case β = 1 is that of the linear preferential attach-
ment model treated in [8]; when β = 0 we obtain the uniform attachment model of [6]. For
β ∈ (0,1) we expect the same type of result to hold, and plan to investigate this in future
work.

Let us also mention that, when β > 1 a single vertex of T S
n has degree tending to infinity, all

other degrees are a.s. bounded by a constant, as is the diameter of T S
n [16], Thm. 1.2.
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Finding the seed

Our result may be understood as follows: given a large (but uniform in n) number of samples
of T S

n , one may recover S with high precision. A related question is to locate S given a single
instance of T S

n . One may not hope to do this with high probability, but is it possible to do it with
uniformly positive probability? Results in this direction were obtained in [5,9,12] for the uniform
and linear preferential attachment models.

One may ask whether having a uniformly positive chance of locating the seed is equivalent to
Theorem 1.1. Moreover, for specific cases such as the α-PA, is there an explicit algorithm that
locates the seed?

Beyond trees

Finally, one may consider randomly growing graphs, rather than trees. Indeed, imagine a model
where vertices are added one by one to a growing graph, with each new vertex being attached to
each old vertex independently, with a probability depending on the size of the graph and on the
degree of the old vertex. This offers great freedom for the choice of the attachment probability,
but the resulting graph ceases to be a tree; it may even have multiple connected components.
These aspects render the study of such models more delicate. However, we believe that for certain
attachment mechanisms – affine for instance – an equivalent of Theorem 1.1 would remain valid.
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