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We establish the exact moduli of non-differentiability of Gaussian random fields with stationary increments.
As an application of the result, we prove that the uniform Hölder condition for the maximum local times
of Gaussian random fields with stationary increments obtained in Xiao (1997) is optimal. These results are
applicable to fractional Riesz–Bessel processes and stationary Gaussian random fields in the Matérn and
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1. Introduction

Lévy’s uniform modulus of continuity, Khinchin’s law of the iterated logarithm (also known
as local modulus of continuity), Chung’s law of the iterated logarithm, and Csörgő-Révész’s
modulus of non-differentiability, describe precisely the uniform and local maximal and minimal
oscillations of the sample functions of Brownian motion. See Csörgő and Révész [8] for more
information. Many authors have extended some of these results to more general Gaussian pro-
cesses and fields. We refer to the monographs of Marcus and Rosen [25] and Adler and Taylor
[1] for comprehensive and historical accounts on local and uniform moduli of continuity for
Gaussian processes, and to Meerschaert et al. [26] for a general method based on the property
of sectorial local nondeterminism for proving exact uniform moduli of continuity of Gaussian
processes and random fields, and to Kuelbs et al. [20], Monrad and Rootzén [27] for Chung’s
laws of the iterated logarithm (LIL) for a large class of Gaussian processes. We also mention
that Talagrand [35] refined the results on Chung’s LIL by characterizing the lower functions for
fractional Brownian motion. The results in the last three references are naturally related to the
small ball probability of Gaussian processes, which is an important topic on its own right and
has many important applications; see, for example, Kuelbs and Li [19], Talagrand [34], Li and
Linde [21], Li and Shao [22], Shao [30] for further information.

In contrast, the problem on the modulus of non-differentiability of Gaussian processes (fields)
has received much less attention. Berman [4], Geman and Horowitz [11], Csörgő and Shao [9],
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and Xiao [38] provided some sufficient conditions for the sample functions of a Gaussian process
to be nowhere differentiable. In Xiao [38], a conjecture on the modulus of non-differentiability
for Gaussian random fields was given. Recently Wang and Xiao [37] verified this conjecture for
fractional Brownian motion BH = {BH

t , t ∈ R+}. The purpose of the present paper is to extend
the result in Wang and Xiao [37] to a large class of Gaussian random fields with stationary
increments considered in Xiao [38,39]. Our main result is Theorem 1.2 below. Its proof is built
upon the general framework on limsup random fractals in Khoshnevisan et al. [17], as well as
technical ingredients such as the small ball probability estimates, a correlation inequality of Shao
[30], and the property of strong local nondeterminism.

As pointed out by Berman [4], the modulus of non-differentiability of a Gaussian random
field is closely related to the Hölder continuity of its local times. By using this connection and
Theorem 1.2, we prove in Theorem 4.1 that the uniform Hölder condition for the maximum local
times of a Gaussian random field obtained in Xiao [38] is optimal. To the best of our knowledge,
this is the only approach for determining the exact uniform Hölder condition for the local times
of Gaussian random fields.

Now we specify the Gaussian random fields under investigation in this paper. Let Y =
{Y(t), t ∈ R

N } be a real-valued, centered Gaussian random field with Y(0) = 0. We assume
that Y has stationary increments with variance function σ 2(h) = E[(Y (t + h) − Y(t))2]. We will
consider the (N,d)-Gaussian random field X = {X(t), t ∈R

N } in R
d defined by

X(t) = (
X1(t), . . . ,Xd(t)

)′
, ∀t ∈R

N, (1.1)

where the coordinator processes X1, . . . ,Xd are independent copies of Y . We call Y the associ-
ated random field of X.

Let φ(x) = x2νL(x) for x ∈ [0,1], where ν ∈ (0,1) is a constant and L : [0,1] �→ R+ is a
monotone function and slowly varying at zero, that is, limx→0 L(ξx)/L(x) = 1 for every constant
ξ > 0. We will assume that Y satisfies the following Condition (C):

(C1) There exist positive constants c1,1 and c1,2 such that for all h ∈ B(0, δ0) with some
δ0 > 0,

c1,1φ
(‖h‖) ≤ σ 2(h) ≤ c1,2φ

(‖h‖), (1.2)

where ‖ · ‖ denotes the Euclidean norm on R
N and B(0, δ0) = {h ∈R

N : ‖h‖ ≤ δ0}.
(C2) There exists a positive constant c1,3 such that for all h = (h1, . . . , hN) ∈ B(0, δ0)\{0},

max
1≤l,m≤N

∣∣∂2σ 2(h)/∂hl∂hm

∣∣ ≤ c1,3σ
2(h)/‖h‖2. (1.3)

(C3) For T > 0, Y is strongly locally φ-nondeterministic on [−T ,T ]N , namely, there ex-
ist positive constants c1,4 and r0 > 0 such that for all t ∈ [−T ,T ]N and all 0 < r ≤
min{‖t‖, r0},

Var
(
Y(t)|Y(s) : s ∈ [−T ,T ]N, r ≤ ‖s − t‖ ≤ r0

) ≥ c1,4φ(r).

Conditions (C1) and (C3) are the same as in Xiao [38] and they indicate that the random field Y

is approximately isotropic in the time-variable. Xiao [39] gave a sufficient condition in terms of
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the tail behavior at infinity of the spectral measure of Y for (C1) and (C3) to hold. (C2) is a mild
regularity condition on σ 2(h) and can usually be verified if one has information on the spectral
measure of Y . When Y is isotropic in the sense that σ 2(h) = ψ(‖h‖) for some non-negative
function ψ :R+ → R+, then (C2) holds provided |ψ ′′(x)| ≤ c1,3ψ(x)/x2 for x ∈ (0, δ0].

Clearly the multiparameter fractional Brownian motion of index H satisfies Condition (C)
with σ 2(h) = ‖h‖2H for all h ∈ R

N . Further examples of Gaussian random fields that satisfy
(C) include the fractional Riesz–Bessel processes and stationary Gaussian random fields in the
Matérn or Cauchy classes. The latter Gaussian fields play important roles in statistics. See Sec-
tion 5 for details.

For an illustration purpose, we first mention Chung’s LIL of X due to Monrad and Rootzén
[27], Talagrand [34,35], Li and Shao [22], Xiao [39], in increasing generality. In fact, the follow-
ing Chung’s LIL improves that in Xiao [39] by removing some conditions on spectral measure
of X in that paper. This can be seen from the proof of Theorem 1.2 (see Section 2). For t ∈ R

N

and r > 0, we set

M(t, r) = sup
s∈[0,r]N

∥∥X(t + s) − X(t)
∥∥.

Theorem 1.1 (Chung’s LIL). Let X = {X(t), t ∈ R
N } be an (N,d)-Gaussian random field

defined by (1.1). Suppose that the associated Gaussian random field Y has stationary increments
and satisfies Condition (C). Then, there exists a positive constant c1,5 such that

lim inf
r→0+ γ (r)M(0, r) = c1,5 a.s., (1.4)

where γ (r) = [φ(r/(log log(1/r))1/N )]−1/2.

The main purpose of the present paper is to establish the following modulus of non-
differentiability in the sense of Csörgő-Révész [7].

Theorem 1.2. Let X = {X(t), t ∈ R
N } be an (N,d)-Gaussian random field defined by (1.1).

Suppose that the associated Gaussian random field Y has stationary increments and satisfies
Condition (C). Put

β(r) = [
φ
(
r/

(
log(1/r)

)1/N )]−1/2
. (1.5)

Then, there exists a positive constant c1,6 such that for all compact rectangles I ⊆R
N ,

lim inf
r→0+ β(r) inf

t∈I
M(t, r) = c1,6 a.s. (1.6)

Consequently, the sample paths of X and its associated Gaussian field Y are almost surely
nowhere differentiable.

Remark 1.1. The following are some remarks on Theorems 1.1 and 1.2.

• (1.4) and (1.6) describe precisely the local minimal oscillations and the uniform minimal
oscillations of the sample functions of X, respectively. Together with the Khinchin-type
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law of the iterated logarithm and the uniform modulus of continuity, they provide complete
information on the regularity properties of X.

• It can be seen from the proof of Theorem 1.2 that c1,6 ∈ [(c2,3/N)ν/N , (dc2,2/N)ν/N ],
where c2,2 and c2,3 are given in (2.12) below. For Brownian motion in R, c1,5 = c1,6 =
π/

√
8; see Csörgő and Révész [7]. For fractional Brownian motion BH = {BH

t , t ∈ R+},
Wang and Xiao [37] showed that c1,6 is the small ball constant of BH (thus c1,5 = c1,6),
whose existence was established by Li and Linde [21] and Shao [30] independently. But
the exact value of c1,6 for BH is unknown. For a general Gaussian process (field), little is
known about the existence of the small ball constant nor the exact value of c1,6.

We now comment on the method for proving Theorem 1.2. We first prove a zero-one law
for the modulus of non-differentiability of Gaussian random fields which implies that the limit
inferior in (1.6) is a constant and we denote it by c1,6. By using the small ball probability estimate
for X and a standard Borel–Cantelli argument, we can see that c1,6 > 0. However, it is more
difficult to prove that c1,6 < ∞ and the method for proving the Chung’s LIL of X at a fixed
point is not of much use anymore. To be more precise, we recall that a key step for proving
Chung’s LIL of X at a fixed point, say s = 0, is to approximate X by a sequence of independent
Gaussian processes that are obtained by decomposing X as the sums of stochastic integrals over
disjoint sets. See Monrad and Rootzén [27], Talagrand [34], Li and Shao [22]. This argument
is not effective anymore for proving the upper bound in (1.6) because one has to consider all
s ∈ I ⊆R

N . Our proof is based on a different approach. The new ingredient of our present paper
is to make use of the theory on limsup random fractals of Khoshnevisan et al. [17]. In order to
apply their results, the Gaussian correlation inequality in Shao [30] will also play an important
role.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries about
Gaussian random fields with stationary increments and prove a zero-one law for the modulus of
non-differentiability of such a Gaussian field by using its stochastic integral representation. We
also recall some important inequalities for Gaussian fields. In Section 3, we prove Theorem 1.2.
In Section 4, we explore the connection between the roughness of the sample functions of X and
the regularity of its local times. As an application to Theorem 1.2, we prove a lower bound for
the uniform Hölder condition for the maximum local times of X. This solves an open problem
in Xiao [38]. Finally in Section 5 we show that the results in this paper are applicable to the
fractional Riesz–Bessel processes introduced by Anh et al. [2] and stationary Gaussian random
fields in the Matérn and Cauchy class. These Gaussian random fields play important roles in
statistics. See Chilés and Delfiner [6] and Gneiting and Schlather [13].

Throughout this paper, for s, t ∈ R
N , s ≤ t (resp. s < t) means that si ≤ ti (resp. si < ti ) for

all 1 ≤ i ≤ N . [s, t]N = [s1, t1] × · · · × [sN , tN ] is called an interval or a rectangle. Positive and
finite constants in Section i are numbered as ci,1, ci,2, . . . .

2. Preliminaries

Let Y = {Y(t), t ∈ R
N } be a real-valued, centered Gaussian random field with stationary in-

crements, Y(0) = 0, and continuous covariance function R(s, t) = E[Y(s)Y (t)]. According to
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Yaglom [40] (see also [10]), R(s, t) can be represented as

R(s, t) =
∫
RN

(
ei〈s,λ〉 − 1

)(
e−i〈t,λ〉 − 1

)
F(dλ) + 〈s,Qt〉, (2.1)

where 〈x, y〉 is the ordinary scalar product in R
N , Q is an N × N non-negative definite matrix

and F(dλ) is a nonnegative symmetric measure on R
N\{0} satisfying

∫
RN

‖λ‖2

1 + ‖λ‖2
F(dλ) < ∞. (2.2)

The measure F is called the spectral measure of Y . The density function of F (if exists) is called
the spectral density of Y .

It follows from (2.1) that Y has the following stochastic integral representation:

Y(t) =
∫
RN

(
ei〈t,λ〉 − 1

)
M(dλ) + 〈Z, t〉, (2.3)

where Z is an N -dimensional Gaussian random vector with mean 0 and M is a centered
complex-valued Gaussian random measure which is independent of Z and satisfies

E
(
M(A)M(B)

) = F(A ∩ B) and M(−A) = M(A)

for all Borel sets A,B ⊆R
N with finite F -measure. Since the linear term 〈Z, t〉 in (2.3) will not

have any effect on the problems considered in the present paper, we will assume Z = 0. This is
equivalent to assuming Q = 0 in (2.1). Consequently, we have

σ 2(h) = E
[(

Y(t + h) − Y(t)
)2] = 2

∫
RN

(
1 − cos 〈h,λ〉)F(dλ). (2.4)

To prove Theorem 1.2, we need some technical lemmas. The first lemma establishes a zero-one
law for the modulus of non-differentiability of Gaussian random fields.

Lemma 2.1 (Zero-one law). Let X = {X(t), t ∈ R
N } be an (N,d)-Gaussian random field de-

fined by (1.2). Suppose that the associated Gaussian random field Y has representation (2.3). Let
ω : R+ → R+ be a function and I ⊆R

N be a compact set. If

lim
δ→0+ δ

(
log(1/δ)

)1/2
ω(δ) = 0, (2.5)

then we have

lim inf
δ→0+ ω(δ) inf

t∈I
M(t, δ) = C′ a.s. for some 0 ≤ C′ ≤ ∞. (2.6)

Proof. Denote by B(λ, r) = {x ∈ R
N : ‖x − λ‖ ≤ r} the ball in R

N with center λ and radius
r . Let U1 = B(0,1) and Un = B(0, n) \ B(0, n − 1) for for n ≥ 2. Then U1,U2, . . . , are mu-
tually disjoint. For n ≥ 1 and t ∈ R

N , let ξn(t) := ∫
Un

(ei〈t,ξ〉 − 1)M(dξ), where M(dξ) is a
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centered complex-valued Gaussian random measure defined in (2.3). Then ξn = {ξn(t), t ∈R
N },

n = 1,2, . . . , are independent Gaussian fields. By (2.3), we express

Y(t) =
∞∑

n=1

ξn(t), t ∈ R
N.

Equip I = [0,1]N with the canonical metric

dξn(s, t) =
√
E

[(
ξn(s) − ξn(t)

)2]
, s, t ∈ I, (2.7)

and denote by N(dξn, I, ε) the smallest number of dξn -balls of radius ε > 0 needed to cover I .
Note

dξn(s, t) =
(

2
∫

Un

(
1 − cos

(〈
(s − t), ξ

〉))
F(dξ)

)1/2

≤ ‖s − t‖
(∫

Un

|ξ |2F(dξ)

)1/2

=: ‖s − t‖Kn, s, t ∈R
N. (2.8)

In the above, we have bounded 1 − cos(〈t, x〉) by |t |2|x|2/2 to obtain the inequality in (2.8).
Then it is easy to see from (2.8) that for all ε ∈ (0,1),

N(dξn, I, ε) ≤ (Kn/ε)
N .

Hence, by making use of Theorem 1.3.5 in Adler and Taylor [1], we have

sup
s,t∈I

‖s−t‖≤δ

∣∣ξn(s) − ξn(t)
∣∣ ≤ c2,1δ

((
log(Kn/δ)

)1/2 + (
log(Kn/δ)

)−1/2)
. (2.9)

Let ξn(t) = (ξ1
n (t), . . . , ξd

n (t))′, t ∈ R
N , where ξ1

n , . . . , ξd
n are independent copies of ξn =

{ξn(t), t ∈R
N }. Set

Y i
M(t) =

M∑
n=1

ξ i
n(t), 1 ≤ i ≤ d, t ∈R

N.

Let XM(t) = (Y 1
M(t), . . . , Y d

M(t))′, t ∈ R
N , where the coordinator processes Y 1

M, . . . , Y d
M are

independent copies of the Gaussian random field YM = {YM(t), t ∈ R
N }. Noting ‖x‖ ≤

d max1≤i≤d |xi | for all x ∈R
d , by (2.5) and (2.9), we have

lim
δ→0+ω(δ) sup

t∈I

sup
s∈[0,δ]N

∥∥XM(t + s) − XM(t)
∥∥ = 0 a.s. (2.10)

Therefore, the random variable

lim inf
δ→0+ ω(δ) inf

t∈I
M(t, δ) (2.11)
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is measurable with respect to the tail field of {ξn}∞n=1 and hence is constant almost surely. This
implies (2.6). �

We will make use of the following small ball probability estimate which is a consequence of
Theorem 3.1 in Xiao [39], where the lower bound follows from a result of Talagrand [33] and
the upper bound was proved by applying (C1) and (C3). See also Theorem 1.1 in Shao and Wang
[31] for a lower bound under a different condition.

Lemma 2.2. Let G = {G(t), t ∈ R
N } be a Gaussian random field valued in R satisfying Condi-

tions (C1) and (C3). Then, for all r > 0 and x ∈ (0,1),

exp

(
− c2,2r

N

(φ−1(x2))N

)
≤ P

(
max

t∈[0,r]N
∣∣G(t)

∣∣ ≤ x
)

≤ exp

(
− c2,3r

N

(φ−1(x2))N

)
, (2.12)

where φ−1(x) = inf{y : φ(y) > x} is the right-continuous inverse function of φ.

The following lemma from Talagrand [34] is needed.

Lemma 2.3. Let G = {G(t), t ∈ R
N } be a centered Gaussian field with values in R and let

S ⊂R
N be a compact set equipped with the canonical metric dG(s, t). Then, for all u > 0,

P

(
sup

s,t∈S

∣∣G(s) − G(t)
∣∣ ≥ c2,4

(
u +

∫ D

0

√
logN(dG,S, ε) dε

))
≤ exp

(
− u2

D2

)
, (2.13)

where D = sup{dG(s, t) : s, t ∈ S} is the diameter of S .

We will also need the following Fernique-type inequality for Gaussian random fields.

Lemma 2.4. Let G = {G(t), t ∈ R
N } be a Gaussian random field valued in R satisfying Condi-

tion (C1). Then, for all δ > 0, 0 < a ≤ δ and u ≥ u0 with some u0 > 0,

P

(
sup

t∈[−δ,δ]N
sup

s∈[0,a]N
∣∣G(t + s) − G(t)

∣∣ ≥ u

(√
log(2δ/a) + 1√

log(2δ/a)

)
φ1/2(a)

)

≤ e−c2,5u
2
. (2.14)

Proof. We apply Lemma 2.3 to prove (2.14). Define the Gaussian random field Z = {Z(t, s),

t, s ∈ R
N } by Z(t, s) = G(t + s) − G(t), ∀t, s ∈R

N .
By the Minkowski inequality and Condition (C1), there exists a positive constant c2,6 such

that

dZ

(
(t1, s1), (t2, s2)

) = (
E

[(
Z(t1, s1) − Z(t2, s2)

)2])1/2

≤ (
E

[(
G(t2 + s2) − G(t1 + s1)

)2])1/2 + (
E

[(
G(t2) − G(t1)

)2])1/2

≤ c2,6φ
1/2(∥∥(t2, s2) − (t1, s1)

∥∥)
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for all (t1, s1), (t2, s2) ∈ S := [−δ, δ]N × [0, a]N . Thus,

N(dZ,S, ε) ≤ aN(2δ)N

[φ−1(ε2/c2
2,6)]2N

,

where φ−1(x) = inf{y : φ(y) > x} is the right-continuous inverse function of φ. By Condition
(C1) again, dZ(0, t) ≤ c2,6φ

1/2(a). It follows that the diameter D of S is less than c2,6φ
1/2(a).

Thus, noting φ1/2(x)/xν is non-decreasing on [0,∞), some simple calculations yield

∫ D

0

√
logN(dZ,S, ε) dε ≤

∫ c2,6φ
1/2(a)

0

√
log

(2aδ)1/2

φ−1(ε2/c2
2,6)

dε

=
∫ a

0

√
log

(
(2aδ)1/2/t

)
dφ1/2(t)

= √
log(2δ/a)φ1/2(a) +

∫ a

0

1

t
√

log((2aδ)1/2/t)
φ1/2(t) dt

≤ √
log(2δ/a)φ1/2(a) + 1√

log(2δ/a)

∫ ∞

0
uφ1/2(ae−u2)

du

≤ √
log(2δ/a)φ1/2(a) + c2,7√

log(2δ/a)
φ1/2(a)

∫ ∞

0
ue−νu2

du

≤ c2,8

(√
log(2δ/a) + 1√

log(2δ/a)

)
φ1/2(a). (2.15)

Thus, by Lemma 2.3, we get (2.14). �

We also need the following lemma, which is Theorem 1.1 in Shao [30].

Lemma 2.5. Let G′ = (G′
1,G

′
2) be an R

n-valued normal random vector with mean vector 0,
where G1 = (X1, . . . ,Xk)

′, G2 = (Xk+1, . . . ,Xn)
′ and 1 ≤ k < n. Then ∀x > 0,

P
(‖G‖∞ ≤ x

) ≤ ρP
(‖G1‖∞ ≤ x

)
P
(‖G2‖∞ ≤ x

)
, (2.16)

where ‖x‖∞ denotes the maximum norm of a vector x and

ρ =
(

det(E[G1G
′
1])det(E[G2G

′
2])

det(E[GG′])
)1/2

. (2.17)
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3. Proof of Theorem 1.2

Proof of Theorem 1.2. Because of Lemma 2.1, it is sufficient to prove the following two in-
equalities:

lim inf
r→0+ β(r) inf

t∈I
M(t, r) ≥ (c2,3/N)ν/N a.s., (3.1)

and

lim inf
r→0+ β(r) inf

t∈I
M(t, r) ≤ (dc2,2/N)ν/N a.s. (3.2)

Let us first prove (3.1). Since ‖x‖ ≥ |x1| for all x = (x1, . . . , xd)′ ∈ R
d , we prove (3.1) only

for d = 1 and I = [0,1]N .
Fix an arbitrary θ > 1. For n ≥ 1, let rn = θ−n and �n = n1/N+1/νθn. For i ∈ Z

N+ and n ≥ 1,
we define two sets An and An,i as follows:

An = {
r ∈ (0,1) : rn+1 < r ≤ rn

}
,

An,i = {
t = (t1, . . . , tN )′ ∈ I : i�−1

n ≤ t < (i + 1)�−1
n

}
,

where 1 is a vector with elements 1. Observe that for all r ∈ (0,1), there exists a set An such that
r ∈ An. On the other hand, for all t ∈ I , there exists a set An,i such that t ∈ An,i. Let ti,n := i�−1

n

be a point in the set An,i, i ∈ [0, �n]N . Noticing φ(c
1/ν

3,1 x) ≥ c2
3,1φ(x) for all x ∈ [0, δ0) and by

Lemma 2.2, we have

P

(
min

i∈[0,�n]N
β(rn)M(ti,n, rn+1) ≤ c3,1

)

≤
∑

i∈[0,�n]N
P
(
β(rn)M(ti,n, rn+1) ≤ c3,1

)

≤ naNθnN
P

(
sup

s∈[0,rn+1]N
∣∣X(s)

∣∣ ≤ φ1/2
(

c
1/ν

3,1 rn

(log(1/rn))1/N

))

≤ naNθ
(N−c2,3θ

−N/c
N/ν
3,1 )n

.

For any c3,1 < (c2,3/N)ν/N , we choose θ ↓ 1 such that c2,3θ
−N/c

N/ν

3,1 > N . Hence, by the Borel–
Cantelli lemma, we have

lim inf
n→∞ min

i∈[0,�n]N
β(rn)M(ti,n, rn+1) ≥ c3,1 a.s. (3.3)

By Lemma 2.4 and a Borel–Cantelli lemma argument, we have

lim sup
n→∞

sup
t∈[−2,2]N

sup
s∈[0,�−1

n ]N
β(rn)

∣∣X(t + s) − X(t)
∣∣ = 0 a.s. (3.4)
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Note that

lim inf
r→0+ β(r) inf

t∈I
M(t, r)

≥ lim inf
n→∞ inf

r∈An

min
i∈[0,�n]N

inf
t∈An,i

β(r)M(t, r)

≥ lim inf
n→∞ min

i∈[0,�n]N
inf

t∈An,i
β(rn)M(t, rn+1)

≥ lim inf
n→∞ min

i∈[0,�n]N
β(rn)M(ti,n, rn+1)

− 2 lim sup
n→∞

max
i∈[0,�n]N

sup
t∈An,i

sup
s∈[0,rn+1]N

β(rn)
∣∣X(ti,n + s) − X(t + s)

∣∣
≥ lim inf

n→∞ min
i∈[0,�n]N

β(rn)M(ti,n, rn+1)

− 2 lim sup
n→∞

sup
t∈[−2,2]N

sup
s∈[0,�−1

n ]N
β(rn)

∣∣X(t + s) − X(t)
∣∣. (3.5)

It follows from (3.3)–(3.5) and the arbitrariness of c3,1 that (3.1) holds.
Next, we prove (3.2). We will make use of the approach for limsup random fractals in Khosh-

nevisan et al. [17]. Without loss of generality, we assume I = [0,1]N . For each n ≥ 1, we
set rn = 2−n, Mn := 2nn, Dn := {i = (i1, . . . , iN )′ ∈ Z

N+ : ik ∈ {1, . . . ,Mn}, k = 1, . . . ,N}, and
Nn := {i = (i1, . . . , iN )′ ∈ Z

N+ : ik ∈ {1, . . . , n}, k = 1, . . . ,N}. For each i = (i1, . . . , iN )′ ∈ Dn,
we define

ti,n = irnn−1.

Fix an arbitrary constant c3,2 > (dc2,2/N)ν/N . For each i ∈ Dn, we define a Bernoulli random
variable ηi,n that takes value 1 or 0 according as

β(rn) max
1≤�≤d

max
k∈Nn

∣∣X�

(
ti,n + krnn

−1) − X�(ti,n)
∣∣ ≤ c3,2 (3.6)

or not. Define Sn := ∑
i∈Dn

ηi,n, the total number of i ∈ Dn such that (3.6) holds. It follows from
the stationarity of increments of X that, for each n ≥ 1, the mean pn := E(ηi,n) is the same for
all i ∈ Dn. Moreover, by (2.12), we have uniformly over i ∈Dn (where n is large enough),

pn = P(ηi,n = 1)

=
d∏

�=1

P

(
β(rn) max

k∈Nn

∣∣X�

(
ti,n + krnn

−1) − X�(ti,n)
∣∣ ≤ c3,2

)

≥
d∏

�=1

P

(
β(rn) sup

s∈[0,1]N
∣∣X�(ti,n + srn) − X�(ti,n)

∣∣ ≤ c3,2

)
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=
(
P

(
β(rn) sup

s∈[0,1]N
∣∣Y(srn)

∣∣ ≤ c3,2

))d

≥ exp
((

c2,2/c
N/ν

3,2

)
d log(rn)

)
. (3.7)

In order to prove (3.2), we show that Sn > 0 for infinitely many n’s. For this purpose, we estimate

Var(Sn) =
∑

i,j∈Dn

Cov(ηi,n, ηj,n). (3.8)

Set τn = nb/(2−2ν)+1[min(L(1),L(rnn
−1))]−1/(2−2ν), where b > max(1,N/2 + 3ν) is a con-

stant. We make the following claim: ∀δ > 0, whenever ‖i − j‖ ≥ τn,

P(ηi,n = 1, ηj,n = 1) ≤ (1 + δ)
(
P(η1,n = 1)

)2
. (3.9)

Before we prove (3.9), let us complete the proof of (3.2).
It follows from (3.9) that for all δ > 0, whenever i, j ∈ Dn satisfy ‖j − i‖ ≥ τn, then

Cov(ηi,n, ηj,n) ≤ δE(ηi,n)E(ηi,n). Thus, by (3.8),

Var(Sn) ≤ δM2N
n p2

n +
∑

i,j∈Dn:‖i−j‖≤τn

Cov(ηi,n, ηj,n).

For the remaining covariance, we use the fact that all ηi,n’s are either 0 or 1 to see that
Cov(ηi,n, ηj,n) ≤ E(ηi,n) = pn. Thus,

Var(Sn) ≤ δM2N
n p2

n + MN
n pnτ

N
n .

It follows from the Paley-Zygmund inequality (see [16], p.8) that

P(Sn > 0) ≥ [E(Sn)]2

E(S2
n)

.

Thus, we have

P(Sn = 0) ≤ Var(Sn)

[E(Sn)]2
≤ δ + τN

n

MN
n pn

(3.10)

since E(Sn) = MN
n pn. On the other hand, it is known (see [5]) that for any a > 0, saL(s) → 0 as

s → 0. Thus, by (3.7), (3.10) and the arbitrariness of δ, we see that P(Sn = 0) → 0 as n → ∞.
Finally

P(Sn > 0 i.o.) ≥ lim sup
n→∞

P(Sn > 0) = 1,

where i.o. denotes infinitely often. This yields

lim sup
n→∞

β(rn) min
i∈Dn

max
1≤�≤d

max
k∈Nn

∣∣X�

(
ti,n + krnn

−1) − X�(ti,n)
∣∣ ≤ c3,2 a.s. (3.11)
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Thus,

lim sup
n→∞

β(rn) inf
t∈I

max
1≤�≤d

max
k∈Nn

∣∣X�

(
t + krnn

−1) − X�(t)
∣∣ ≤ c3,2 a.s. (3.12)

Noting ‖x‖ ≤ d max1≤�≤d |x�| for all x = (x1, . . . , xd)′ ∈ R
d , we have

lim inf
n→∞ β(rn) inf

t∈I
M(t, rn)

= lim inf
n→∞ β(rn) inf

t∈I
sup

u∈[0,1]N
∥∥X(t + urn) − X(t)

∥∥
≤ lim inf

n→∞ β(rn) inf
t∈I

max
k∈Nn

sup
(ki−1)n−1≤ui≤ki n

−1

1≤i≤N

∥∥X(t + urn) − X(t)
∥∥

≤ lim inf
n→∞ β(rn) inf

t∈I
max
k∈Nn

∥∥X
(
t + krnn

−1) − X(t)
∥∥

+ lim sup
n→∞

β(rn) sup
t∈I

max
k∈Nn

sup
(ki−1)n−1≤ui≤ki n

−1

1≤i≤N

∥∥X(t) − X
(
t + krnn

−1)∥∥
≤ d lim inf

n→∞ β(rn) inf
t∈I

max
1≤�≤d

max
k∈Nn

∣∣X�

(
t + krnn

−1) − X�(t)
∣∣

+ lim sup
n→∞

β(rn) sup
t∈[0,2]N

max
s∈[0,rnn−1]N

∥∥X(t + s) − X(t)
∥∥. (3.13)

By making use of Lemma 2.4 and a standard Borel–Cantelli lemma argument, we have

lim sup
n→∞

β(rn) sup
t∈[0,2]N

max
s∈[0,rnn−1]N

∥∥X(t + s) − X(t)
∥∥ = 0 a.s. (3.14)

Hence, by (3.12)–(3.14) and the arbitrariness of c3,2, (3.2) holds.
Therefore, it remains to prove (3.9). Write Zi,n(t) = Y(ti,n + t) − Y(ti,n), t ∈ I . Then for

i, j ∈ Dn and s, t ∈ [0,1]N , we have

E
[
Zi,n(s)Zj,n(t)

] = 1

2

[−σ 2((tj,n − ti,n) + (t − s)
) + σ 2((tj,n − ti,n) − s

)
+ σ 2((tj,n − ti,n) + t

) − σ 2(tj,n − ti,n)
]
. (3.15)

Let K(h) = σ 2(h) (h ∈ R
N+), ∇K = (∂K/∂u1, . . . , ∂K/∂uN)′ and H = (akm)N×N be the

matrix with entries

akm = ∂2K

∂uk∂um

(
(tj,n − ti,n) + θ3(t − θ1s + θ2s)

)
,

where θ1, θ2, θ3 ∈ [0,1]. We use Taylor’s expansion in (3.15) to see that

E
[
Zi,n(s)Zj,n(t)

] = 1

2

(∇K
(
(tj,n − ti,n) + (t − θ1s)

) − ∇K
(
(tj,n − ti,n) − θ2s

))′
s

= 1

2
(t − θ1s + θ2s)

′Hs. (3.16)
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Let Ti,n(t) = (Z1
i,n(t), . . . ,Z

d
i,n(t))

′, t ∈ R
N , where the coordinate processes Z1

i,n, . . . ,Z
d
i,n

are independent copies of the Gaussian random field Zi,n = {Zi,n(t), t ∈ R
N }. In the se-

quel, for ease of exposition, we order the points in Nn according to the following rule: for
i = (i1, . . . , iN ), j = (j1, . . . , jN) ∈ Nn, we define i ≺ j if there exists 1 ≤ k ≤ N such that
i1 = j1, . . . , ik−1 = jk−1, ik < jk with convention i0 = j0 = 0. Consider the Gaussian random
vectors X′

1,� := (Z�
i,n(krnn

−1),k ∈ Nn) and X′
2,� := (Z�

j,n(mrnn
−1),m ∈ Nn), 1 ≤ � ≤ d . Set

X′
1 = (X′

1,1, . . . ,X
′
1,d ), X′

2 = (X′
2,1, . . . ,X

′
2,d ) and X′ = (X′

1,X
′
2). Notice that X is a (2nNd)-

dimensional Gaussian random vector and its covariance matrix � is

� =
(

�1 �2
�′

2 �1

)
,

where �1 = diag(E[X1,1X
′
1,1], . . . ,E[X1,dX′

1,d ]) = diag(E[X2,1X
′
2,1], . . . ,E[X2,dX′

2,d ]) and

�2 = diag(E[X1,1X
′
2,1], . . . ,E[X1,dX′

2,d ]). Set g(rn) = c3,2β
−1(rn). By Lemma 2.5, we have

P

(
max

1≤�≤d
max
k∈Nn

∣∣Z�
i,n

(
krnn

−1)∣∣ ≤ g(rn), max
1≤�≤d

max
m∈Nn

∣∣Z�
j,n

(
mrnn

−1)∣∣ ≤ g(rn)
)

≤ ρP
(

max
1≤�≤d

max
k∈Nn

∣∣Z�
i,n

(
krnn

−1)∣∣ ≤ g(rn)
)

× P

(
max

1≤�≤d
max

m∈Nn

∣∣Z�
j,n

(
mrnn

−1)∣∣ ≤ g(rn)
)
, (3.17)

where

ρ =
(

det(�1)det(�1)

det(�)

)1/2

.

The determinant of � is

det(�) = [
det(�1)

]2 − [
det(�2)

]2 = [
det(�1,1)

]2d − [
det(�2,1)

]2d
, (3.18)

where �1,1 = E[X1,1X
′
1,1] and det(�2,1) = E[X1,1X

′
2,1].

We will make use of the following three facts:

(i) The determinant of the covariance matrix �1 can be expressed as

det(�1,1) = Var
(
Z1

i,n

(
1rnn

−1)) ∏
k∈Nn\{1}

Var
(
Z1

i,n

(
krnn

−1)|Z1
i,n

(
mrnn

−1),m ≺ k
)
,

where VarU and Var(U |V ) denote the variance of U and the conditional variance of U

given V , respectively.
(ii) The property of strong local φ-nondeterminism of X (i.e., (C3)) implies

Var
(
Z1

i,n

(
krnn

−1)|Z1
i,n

(
mrnn

−1),m ≺ k
)

= Var
(
Y

(
krnn

−1)|Y (
mrnn

−1),m ≺ k
) ≥ c3,3φ

(
rnn

−1).
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(iii) Hadamard’s inequality (see [15], p. 506) implies

det(�2,1) ≤
( ∏

k∈Nn

( ∑
m∈Nn

|akm|2
))1/2

,

where akm = E[Zi,n(krnn
−1)Zj,n(mrnn

−1)], i, j ∈ Dn with i �= j, and k,m ∈ Nn.

It follows from (i) and (ii) that

det(�1,1) ≥ [
c3,3φ

(
rnn

−1)]nN ≥ [
r2ν
n n−3ν

]nN [
L

(
rnn

−1)]nN

(3.19)

for all n large enough.
It follows from (3.16) that for all i, j ∈Dn with i �= j, and k,m ∈ Nn,∣∣E[

Zi,n
(
krnn

−1)Zj,n
(
mrnn

−1)]∣∣
= (m − θ1k + θ2k)′Hkr2

nn−2

≤ c2,2r
2
nK

(
rnn

−1(j − i + θ3(m − θ1k + θ2k)
))

/(rnn
−1‖j − i + θ3(m − θ1k + θ2k‖)2

≤ c2,3φ
(
rnn

−1
∥∥j − i + θ3(m − θ1k + θ2k)

∥∥)
/(n−1‖j − i + θ3(m − θ1k + θ2k‖)2

≤ c2,3r
2ν
n L

(
rnn

−1
∥∥j − i + θ3(m − θ1k + θ2k)

∥∥)
/(n−1‖j − i + θ3(m − θ1k + θ2k‖)2−2ν

≤ c2,3r
2ν
n max

(
L(1),L

(
rnn

−1))/(n−1‖j − i + θ3(m − θ1k + θ2k‖)2−2ν

≤ r2ν
n n−bL

(
rnn

−1) (3.20)

if ‖j − i‖ ≥ τn. Thus, by (3.20) and (iii),

det(�2,1) ≤ [
r2ν
n n−b

]nN [
L

(
rnn

−1)]nN

nNnN/2. (3.21)

It follows from (3.19) and (3.21) that there exists a sequence {an} of constants such that an → 0
and

det(�2,1) ≤ an det(�1,1). (3.22)

Thus, by (3.18) and (3.22),

det(�) ≥ (
1 − a2d

n

)
det(�1)det(�1). (3.23)

It follows that

ρ ≤ (
1 − a2d

n

)−1/2
.
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Thus, by (3.17),

P

(
max

1≤�≤d
max
k∈Nn

∣∣Z�
i,n

(
krnn

−1)∣∣ ≤ g(rn), max
1≤�≤d

max
m∈Nn

∣∣Z�
j,n

(
mrnn

−1)∣∣ ≤ g(rn)
)

≤ (
1 − a2d

n

)−1/2
P

(
max

1≤�≤d
max
k∈Nn

∣∣Z�
i,n

(
krnn

−1)∣∣ ≤ g(rn)
)

× P

(
max

1≤�≤d
max

m∈Nn

∣∣Z�
j,n

(
mrnn

−1)∣∣ ≤ g(rn)
)
. (3.24)

Noting (1 − a2d
n )−1/2 = 1 + o(1) as n → ∞, by (3.24), we have (3.9) holds. The proof of Theo-

rem 1.2 is completed. �

4. Hölder conditions of the maximum local time

As Berman [4] pointed out, the irregularity of the sample paths of a stochastic process is closely
related to the Hölder conditions for the local times. In this section, we apply Berman’s obser-
vation and Theorem 1.2 to study the uniform Hölder conditions for the local times of Gaussian
field X. Our Theorem 4.1 below solves a problem in Xiao [38].

For any rectangle I ⊂R
N and x ∈R

d , the local time L(x, I ) of Gaussian field X is defined as
the density of the occupation measure μI which is defined by

μI (A) =
∫

I

IA

(
X(s)

)
ds, A ∈ B

(
R

d
)
,

where IA denotes the indicator function of A. It can be shown (see, e.g., [11], Theorem 6.4) that
the following occupation density formula holds: for every Borel function g(t, x) ≥ 0 on I ×R

d ,∫
I

g
(
t,X(t)

)
dt =

∫
Rd

∫
I

g(t, x)L(x, dt) dx.

For any rectangle I ⊆R
N , it follows from Pitt [28] or Kahane [16] that if∫

I

∫
I

dt ds

σ (‖t − s‖) < ∞,

then almost surely the local time L(x, I ) of X exists and is square integrable. For I ∈ B(RN),
define by L∗(I ) = supx∈Rd L(x, I ) the maximum local time. Xiao [38] proved that if N > νd ,
then for any rectangle I ⊆R

N , there exists a positive constant c4,1 such that

lim sup
r→0+

sup
t∈I

L∗(B(t, r))

�(r)
≤ c4,1 a.s., (4.1)

where B(t, r) = {x ∈R
N : ‖x − t‖ ≤ r} and �(r) = rN [φ(r/(log(1/r))1/N )]−d/2.

The proof of (3.1) in Xiao [38] replies on the moment estimates for L(x,B) and a chaining
argument. However, the problem for proving an optimal lower bound corresponding to (4.1)
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(with possibly a different constant) had remained open. It turns out that the key for solving this
problem is the modulus of non-differentiability of X. The result reads as follows.

Theorem 4.1. Assume the conditions of Theorem 1.2 hold and N > νd . Then for any compact
rectangle I ⊆R

N ,

c4,2 ≤ lim sup
r→0+

sup
t∈I

L∗(B(t, r))

�(r)
≤ c4,1 a.s. (4.2)

Proof. As alluded to earlier, we need only to prove the left-hand side of (4.2). By the definition
of local times, we have that for any Borel set Q ⊆ R

N ,

|Q| =
∫

X(Q)

L(x,Q)dx

≤ L∗(Q) ·
(

sup
s,t∈Q

∥∥X(s) − X(t)
∥∥)d

, (4.3)

where |Q| is the Lebesgue measure of Q, X(Q) is the closure of the set X(Q) = {X(t), t ∈ Q}.
By making use of (1.6), with slight modifications (although Theorem 1.2 is concerned with the
special case t ∈ I and s ∈ [0, r]N , from the proof of the theorem, it is not difficult to find out the
following inequality holds), for every compact interval I ⊆R

N ,

lim inf
r→0+ inf

t∈I
sup

s∈B(t,r)

‖X(s) − X(t)‖
[φ(r/(log(1/r))1/N )]1/2

≤ c4,3 a.s.

Hence, a.s. there exist t ∈ I and a sequence {rn} such that rn ↓ 0 and

sup
s∈B(t,rn)

∥∥X(s) − X(t)
∥∥ ≤ c4,3

[
φ
(
rn/

(
log(1/rn)

)1/N )]1/2
. (4.4)

By taking Q = B(t, rn) in (4.3) and applying (4.4), we obtain that for some constant c > 0,

crN
n

[
φ
(
rn/

(
log(1/rn)

)1/N )]−d/2 ≤ L∗(B(t, rn)
)
,

which implies the left-hand side of (4.2). The proof of Theorem 4.1 is completed. �

5. Examples

In this section, we provide more examples of Gaussian random fields that satisfy Condition (C).
These include fractional Riesz–Bessel processes and stationary Gaussian random fields in the
Matérn and Cauchy classes.
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5.1. Fractional Riesz–Bessel processes

Consider an (N,d)-Gaussian random field X = {X(t), t ∈ R
N } defined by (1.1), whose associate

random field Y has a representation (2.3) with spectral density

fγ,β(λ) = c(γ,β,N)

‖λ‖2γ (1 + ‖λ‖2)β
,

where γ and β are constants satisfying

β + γ > N/2, 0 < γ < 1 + N/2 (5.1)

and c(γ,β,N) > 0 is a normalizing constant. Since the spectral density fγ,β involves both the
Fourier transforms of both the Riesz kernel and the Bessel kernel, following Anh et al. [2] we call
X an (N,d)-fractional Riesz–Bessel process with indices γ and β . Anh et al. [2] suggested that
these Gaussian random fields might be used for modelling simultaneously long range dependence
and intermittency. More precisely, the index γ decides the long range dependence and the index
ν = γ +β−N/2 determines fractal and other sample path properties of X. For any fixed t0 ∈ R

N+ ,
the tangent field of fractional Riesz–Bessel process X at t0 is fractional Brownian motion of Hurst
index ν. This explains roughly why X shares many local properties with fractional Brownian
motion.

Xiao [39] studied some sample path properties of an (N,d)-fractional Riesz–Bessel process.
The following result is a corollary of Theorems 1.2 and 4.1.

Corollary 5.1. Let {X(t), t ∈ R
N } be an (N,d)-fractional Riesz–Bessel process with indices γ

and β satisfying (5.1) and 0 < γ + β − N
2 < 1. Then, the following two statements hold:

(1) (1.6) holds with φ(x) = x2(γ+β)−N .
(2) If N > (γ + β − N/2)d , then (4.2) holds with φ(x) = x2(γ+β)−N .

Proof. It follows from Theorem 2.5 in Xiao [39] that (C1) and (C3) hold. We only need to verify
(C2). Since the spectral density fγ,β(λ) only depends on ‖λ‖, X(t) is isotropic. It follows from
(2.4) and a change of variables that

σ 2(h) = c‖h‖2ν

∫ ∞

0
(1 − cosρ)

dρ

ρ2γ+1−N(‖h‖2 + ρ2)β
. (5.2)

By differentiating the function on the right-hand side of (5.2) twice one can verify (C2). This
completes the proof of Corollary 5.1. �

5.2. The Matérn class

The Matérn covariance functions are widely used in spatial statistics, geostatistics, machine
learning, image analysis, and other scientific areas. We refer to Guttorp and Gneiting [14] for
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a historical account on Matérn covariance functions, and to Chilés and Delfiner [6] and Stein
[32] for their applications in statistics.

In Stein’s parametrization (see [32], p. 31), the Matérn covariance function M(h|ν,α,φ) on
R

N , is defined as

M(h|ν,α,φ) = π1/221−νφ

�(ν + 1/2)α2ν

(
α‖h‖)ν

Kν

(
α‖h‖), h ∈R

N, (5.3)

where ν, α, φ are positive constants and Kν is a modified Bessel function of the second kind. In
this parametrization, the Matérn spectral density takes the following simple form (cf. [32]):

f (λ) = φ

(α2 + ‖λ‖2)ν+N/2
. (5.4)

The parameter ν is critical and determines the smoothness of the corresponding Gaussian random
field Y = {Y(t), t ∈R}. If 0 < ν < 1, then the sample function of Y is a.s. nowhere differentiable;
if ν > 1, then there is a modification of Y whose sample function is a.s. continuously differen-
tiable. We say that an (N,d)-Gaussian random field X = {X(t), t ∈ R

N } belongs to the Matérn
class if its associated random field Y is stationary with covariance function (5.3).

Given the spectral density function (5.4), one can use the same method as in the proof of
Corollary 4.1 to conclude the following.

Corollary 5.2. Let X = {X(t), t ∈ R
N } be a Gaussian random field that belongs to the Matérn

class with smoothness parameter ν ∈ (0,1). Then the following two statements hold:

(1) (1.6) holds with φ(x) = x2ν .
(2) If N > νd , then (4.2) holds with φ(x) = x2ν .

5.3. The Cauchy class

The Cauchy class consists of stationary (N,d)-Gaussian random fields X = {X(t), t ∈ R
N }

whose associated random field Y satisfies E[Y(t)] = 0 and E[Y 2(t)] = 1 for t ∈ R
N , and has

correlation function

C(h) = (
1 + ‖h‖γ

)−β/γ
, h ∈R

N. (5.5)

Any combination of the parameters γ ∈ (0,2] and β > 0 is permissible. The Cauchy class pro-
vides flexible power-law correlations and generalizes stochastic models recently discussed and
synthesized in geostatistics (see [6,36]), physics (see [24,29]), hydrology (see [18]), and time
series analysis (see [3,12]).

It follows from (5.5) that

C(h) ∼ 1 − (β/γ )‖h‖γ , as ‖h‖ → 0. (5.6)

As shown by Gneiting and Schlather [13] or Lim and Teo [23], (5.6) implies that the fractal
dimension of the graph of an (N,d)-Cauchy model X = {X(t), t ∈ R

N } is determined by γ .
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On the other hand, X has long range dependence if and only if γ ≤ N . Therefore, the Gaussian
random fields in the Cauchy class provide examples where the fractal index and the Hurst index
of long memory may vary independently of each other.

The following corollary gives precise results on the modulus of non-differentiability and local
times of the Cauchy random fields.

Corollary 5.3. Let X = {X(t), t ∈ R
N } belong to the Cauchy class with indices γ ∈ (0,2) and

β > 0. Then the following two statements hold:

(1) (1.6) holds with φ(x) = xγ .
(2) If N > γd/2, then (4.2) holds with φ(x) = xγ .

Proof. Since σ 2(h) = 2−2C(h), one can verify directly that Conditions (C1) and (C2) hold and
φ(x) = xγ .

In order to verify (C3), we first consider the spectral density f (λ) of Y given by

f (λ) = 1

(2π)N

∫
RN

e−i〈λ,h〉C(h)dh (5.7)

and study its asymptotic properties as ‖λ‖ → ∞. Notice that, if β > N , then C(·) ∈ L1(RN).
In this case, the spectral density f is the inverse Fourier transform of C(·) and is continuous.
If β ≤ N , (5.7) can be understood in the distribution sense. By Proposition 3.2 of Lim and Teo
[23], one has

f (λ) ∼ c5,1‖λ‖−(N+γ ) as ‖λ‖ → ∞. (5.8)

It follows from (5.8) and Theorem 2.1 of Xiao [39] that (C3) is satisfied with φ(x) = xγ . Hence,
by Theorems 1.2 and 4.1, we obtain the desired results. �

Remark 5.1. When γ = 2 and β > 0, Proposition 3.2 of Lim and Teo [23] gives

f (λ) ∼ c5,2‖λ‖−(N+1−β)/2e−‖λ‖ as ‖λ‖ → ∞.

In this case, it is not known if the corresponding Gaussian random field Y has the property of
strong local nondeterminism. We are not able to provide precise information on the modulus of
non-differentiability of Y .
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