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We establish conditions to characterize probability measures by their Lp-quantization error functions in
both R

d and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and
dynamic (convergence for the Lp-Wasserstein distance). We first propose a criterion on the quantization
level N , valid for any norm on R

d and any order p based on a geometrical approach involving the Voronoï
diagram. Then, we prove that in the L2-case on a (separable) Hilbert space, the condition on the level N

can be reduced to N = 2, which is optimal. More quantization based characterization cases in dimension 1
and a discussion of the completeness of a distance defined by the quantization error function can be found
at the end of this paper.

Keywords: probability distribution characterization; vector quantization; Voronoï diagram; Wasserstein
convergence

1. Introduction

Vector quantization was originally developed as an optimal discretization method for signal trans-
mission and compression by the Bell laboratories in the 1950s. Many seminal and historical con-
tributions on vector quantization and its connections with information theory were gathered and
published later in [10]. In the unsupervised learning area, vector quantization has a close connec-
tion with the automatic classification (clustering) through the k-means algorithm. More recently,
in the 1990s, it became an efficient tool in numerical probability to compute regular and condi-
tional expectations (see [1,15] and [17]) with in view the pricing of derivative products. Thus,
a quantization based numerical schemes have been developed for American option pricing (see
[2]), and for the simulation of Backward Stochastic Differential Equation or nonlinear filtering
(see [18]). For a first mathematically rigorous monograph of various aspects of vector quanti-
zation theory, we refer to [7] (and the references therein). For more engineering applications to
signal compression, see, for example, [6] among an extensive literature.

In all these applications, either of probabilistic or statistical nature, vector quantization is used
to produce a kind of skeleton of a probability distribution. To be more precise, let (�,A,P)

denote a probability space and let X be a random variable defined on (�,A,P) and valued in
(E, | · |E), where E is R

d or a separable Hilbert space H and | · |E denotes respectively the
norm on R

d or the norm on H induced by the inner product (· | ·)H . Let μ denote the probability
distribution of X, denoted by PX = μ or Law(X) = μ and assume that μ has a finite pth moment,
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p ∈ [1,+∞). The quantization grid (also called codebook in signal compression or cluster center
in machine learning theory) is a finite set of points in E, denoted by � = {x1, . . . , xN } ⊂ E.
Let us define the distance between a point ξ and a set A in E by d(ξ,A) = mina∈A |ξ − a|E .
The Lp-mean quantization error of �, defined by ep(μ,�) := ‖d(X,�)‖p = [∫

E
mina∈� |ξ −

a|pEμ(dξ)] 1
p , is used to describe the accuracy level of representing the probability measure μ by

�. Let N ≥ 1. A quantization grid �∗,(N) satisfying

ep

(
μ,�∗,(N)

) = inf
�⊂E,

card(�)≤N

[
Ed(X,�)p

] 1
p = inf

�⊂E,
card(�)≤N

[∫
E

min
a∈�

|ξ − a|pEμ(dξ)

] 1
p

(1.1)

is called an Lp-optimal quantization grid (or optimal grid in short) at level N . We refer to [7],
Theorem 4.12, for the existence of such an optimal grid on R

d and to [14], Proposition 2.1, or
[5] on (separable) Hilbert spaces. There is usually no closed form for optimal grids, however, in
the quadratic case (p = 2), it can be computed by the stochastic optimization methods such as
the CLVQ algorithm or the randomized Lloyd algorithm (see [16], Section 3, [12] and [19]).

Optimal grids �∗,(N) “carries” the information of the initial measure. For example, let
μ ∈ Pp+ε(R

d) for some ε > 0, where Pp(E) := {μ probability distribution on E s.t.
∫
E

|ξ |pE ×
μ(dξ) < +∞}. Let μ = h ·λd be an absolutely continuous distribution (λd denotes the Lebesgue
measure). If for every level N ≥ 1, �∗,(N) is an optimal quantization grid of μ at level N , then

1

N

∑
x∈�∗,(N)

δx
(Rd )===⇒ μ̃ = hd/(d+p)(ξ)∫

hd/(d+p)dλd

λd(dξ), as N → +∞, (1.2)

where, for a Polish space S,
(S)==⇒ denotes the weak convergence of probability measures on S.

We refer to [7], Theorem 7.5, for a proof of this result. This weak convergence (1.2) emphasizes
that, an absolutely continuous probability measure μ is entirely characterized by the sequence of
Lp-optimal quantization grids �∗,(N) at levels N , N ≥ 1.

We consider now the Lp-mean quantization error function as follows.

Definition 1.1 (Quantization error function). Let μ ∈ Pp(Rd), p ∈ [1,+∞). The Lp-mean
quantization error function of μ at level N , denoted by eN,p(μ, ·), is defined by:

eN,p(μ, ·) : (Rd
)N −→ R+

x = (x1, . . . , xN) �−→ eN,p(μ,x) =
[∫

Rd

min
1≤i≤N

|ξ − xi |pμ(dξ)

] 1
p

.

(1.3)

The definition of eN,p(μ, ·) obviously depends on the associated norm on R
d and the

variable of eN,p(μ, ·) is a priori an N -tuple in (Rd)N . However, for a finite grid � ⊂
R

d , if the level N ≥ card(�), then for any N -tuple x� = (x�
1 , . . . , x�

N) ∈ (Rd)N such
that � = {x�

1 , . . . , x�
N }, we have ep(μ,�) = eN,p(μ,x�). For example, ep(μ, {x1, x2}) =

e2,p(μ, (x1, x2)) = e3,p(μ, (x1, x1, x2)), etc. Note that eN,p is a symmetric function on (Rd)N
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and that, owing to the above definition,

inf
�⊂Rd ,card(�)≤N

ep(μ,�) = inf
x∈(Rd )N

eN,p(μ,x). (1.4)

Therefore, throughout this paper, with a slight abuse of notation, we will also denote the Lp-
quantization error at level N for a grid � of size at most N by eN,p(μ,�).

The equality (1.4) directly shows that the optimal grids are characterized by the Lp-mean
quantization error functions. Next, we show that the quantization error function eN,p(μ, ·) is
entirely characterized by the probability distribution μ.

Notice that for any μ ∈Pp(Rd), the function eN,p(μ, ·) defined in (1.3) is 1-Lipschitz contin-
uous for every N ≥ 1 since for any x = (x1, . . . , xN), y = (y1, . . . , yN) ∈ (Rd)N ,∣∣eN,p(μ,x) − eN,p(μ,y)

∣∣
=

∣∣∣∣[∫
Rd

min
1≤i≤N

|ξ − xi |pμ(dξ)

] 1
p −

[∫
Rd

min
1≤j≤N

|ξ − yj |pμ(dξ)

] 1
p
∣∣∣∣

≤
[∫

Rd

∣∣∣ min
1≤i≤N

∣∣∣ξ − xi

∣∣∣− min
1≤j≤N

|ξ − yj |
∣∣∣pμ(dξ)

] 1
p

(by the Minkowski inequality)

≤
[∫

Rd

max
1≤i≤N

|xi − yi |pμ(dξ)

] 1
p = max

1≤i≤N
|xi − yi |. (1.5)

We recall now the definition of the Lp-Wasserstein distance.

Definition 1.2 (Lp-Wasserstein distance). Let (S, d) be a Polish space and S = Bor(S, d) be its
Borel σ -field. For p ∈ [1,+∞), let Pp(S) denote the set of probability measures on (S,S) with
a finite pth-moment. The Lp-Wasserstein distance Wp(μ, ν) between μ,ν ∈ Pp(S), denoted by
Wp(μ, ν), is defined by

Wp(μ, ν) =
(

inf
π∈�(μ,ν)

∫
S×S

d(x, y)pπ(dx, dy)

) 1
p

= inf
{[
Ed(X,Y )p

] 1
p ,X,Y : (�,A,P) → (S,S) with PX = μ,PY = ν

}
, (1.6)

where in the first line of (1.6), �(μ,ν) denotes the set of all probability measures on (S2,S⊗2)

with respective marginals μ and ν.

If we consider eN,p(μ,x) as a function of μ ∈ Pp(Rd), then eN,p is also 1-Lipschitz in μ. In
fact, let X, Y be two random variables with probability distributions PX = μ and PY = ν. For
every N -tuple x = (x1, . . . , xN) ∈ (Rd)N , we have∣∣eN,p(μ,x) − eN,p(ν, x)

∣∣
=

∣∣∣∥∥∥ min
i=1,...,N

|X − xi |
∥∥∥

p
−

∥∥∥ min
i=1,...,N

|Y − xi |
∥∥∥

p

∣∣∣
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≤
∥∥∥ min

i=1,...,N
|X − xi | − min

i=1,...,N
|Y − xi |

∥∥∥
p

(by the Minkowski inequality)

≤
∥∥∥ max

i=1,...,N

∣∣|X − xi | − |Y − xi |
∣∣∥∥∥

p
≤ ‖X − Y‖p. (1.7)

As this inequality holds for every couple (X,Y ) of random variables with marginal distribu-
tions μ and ν, it follows that for every level N ≥ 1,∥∥eN,p(μ, ·) − eN,p(ν, ·)∥∥sup := sup

x∈(Rd )N

∣∣eN,p(μ,x) − eN,p(ν, x)
∣∣ ≤ Wp(μ, ν). (1.8)

Hence, if (μn)n≥1 is a sequence in Pp(Rd) converging for the Wp-distance to μ∞ ∈ Pp(Rd),
then ∥∥eN,p(μn, ·) − eN,p(μ∞, ·)∥∥sup ≤ Wp(μn,μ∞)

n→+∞−−−−→ 0. (1.9)

Definition 1.1, and the inequalities (1.5), (1.7), (1.8), (1.9) can be directly extended to any sep-
arable Hilbert space H . Inequalities (1.8) and (1.9) show that for every N ≥ 1, and p ∈ [1,+∞),
the quantization error function eN,p(μ, ·) is characterized by the probability distribution μ.
Hence, the characterization relations between a probability measure μ, its Lp-quantization error
function and its optimal grids can be synthesized by the following scheme:

The characterization of a probability measure μ by its Lp-optimal quantization grids suggests
to consider the “reverse” questions of (1.8) and (1.9): When is a probability measure μ ∈Pp(Rd)

characterized by its Lp-quantization error function eN,p(μ, ·)? And if so, does the convergence
in an appropriate sense of the Lp-quantization error functions characterizes the convergence of
their probability distributions for the Wp-distance?

These questions can be formalized as follows (the first one in a slightly extended sense):

• Question 1 – Static characterization:
If for μ,ν ∈ Pp(Rd), eN,p(μ, ·) = eN,p(ν, ·)+C for some real constant C, then do we
have μ = ν (and C = 0)?
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• Question 2 – Characterization of Wp-convergence:
If for μn,n ≥ 1, μ∞ ∈ Pp(Rd), eN,p(μn, ·) converges pointwise to eN,p(μ∞, ·), then

do we have Wp(μn,μ∞)
n→+∞−−−−→ 0?

For any N1,N2 ∈ N
∗ with N1 ≤ N2, it is clear that eN2,p(μ, ·) = eN2,p(ν, ·) (resp.

eN2,p(μn, ·) n→+∞−−−−→ eN2,p(μ∞, ·)) implies eN1,p(μ, ·) = eN1,p(ν, ·) (resp. eN1,p(μn, ·) n→+∞−−−−→
eN1,p(μ∞, ·) ). Hence, beyond these two above questions, we need to determine an as low as
possible level N for which both answers are positive. For this purpose, we define

Nd,p,|·| := min
{
N ∈N

∗ such that answers to Questions 1 and 2

for eN,p are positive
}
. (1.10)

The paper is organized as follows. We first recall in Section 1.1 some properties of the Wasser-
stein distance Wp . Then in Section 2, we begin to analyze the problem of probability distribu-
tion characterization in a general finite dimensional framework by considering any dimension
d , any order p and any norm on R

d . We show that a positive answer to Questions 1 and 2 fol-
lows from the existence of a bounded open Voronoï cell in a Voronoï diagram of size N , which
in turn can be derived from a minimal covering of the unit sphere by unit closed balls cen-
tered on the sphere. As a consequence, we define for N ≥ Nd,p,|·| a quantization based distance
QN,p := ‖eN,p(μ, ·) − eN,p(ν, ·)‖sup which we will prove to be topologically equivalent to the
Wasserstein distance Wp . The results in this section are established for p ≥ 1, but several results
can be extended to the case 0 < p < 1 by the usual adaptations of the proofs.

In Section 3, we consider the quadratic case (i.e. the order p = 2) and extend the character-
ization result to probability distributions on a separable Hilbert space H with the norm | · |H
induced by the inner product (· | ·)H . In this section, we will prove by a purely analytical method
that NH,2,|·|H = 21 and the topological equivalence of Wasserstein distance W2 and the distance
QH

2,2(μ, ν) := ‖e2,2(μ, ·) − e2,2(ν, ·)‖sup on P2(H).
Section 4 is devoted to the one-dimensional setting. Quantization based characterization not

yet covered by the discussion in Section 2 and Section 3 are established. Furthermore, we prove
that Q1,1 is a complete distance on P1(R) and give a counterexample to show that the distances
QN,2, N ≥ 2 are not complete on P2(R) in Section 4.2.

1.1. Preliminaries on Wasserstein distance

Let (S, d) be a general Polish metric space. The relation between weak convergence and conver-
gence for the Wasserstein distance Wp (see Definition 1.2) is recalled in Theorem 1.1. We recall
below some useful facts about the Lp-Wasserstein distance that will be called upon further on.

1Since the dimension of the Hilbert space that we discuss in this section can be finite or infinite, we write directly H

instead of d in the subscript of Nd,p,|·|.
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The first one is that, for every p ∈ [1,+∞), Wp is a distance on Pp(S) (Wp
p if p ∈ (0,1)), see,

for example, [22], Theorem 7.3, for the proof and [3] for a recent reference. Next, the metric
space (Pp(S),Wp) is separable and complete, see, for example, [4] for the proof. More gen-
erally, we refer to [23], Chapter 6, for an in depth presentation of Wasserstein distance and its
properties.

Theorem 1.1 (see [22], Theorem 7.12). Let μn ∈ Pp(S) for every n ∈ N
∗ ∪ {∞}. Let p ∈

[1,+∞). Then,

(a) Wp(μn,μ∞) → 0 if and only if⎧⎪⎨⎪⎩
(α) μn

(S)==⇒ μ∞,

(β) ∃x0 ∈ S,

∫
S

d(x0, ξ)pμn(dξ) →
∫

S

d(x0, ξ)pμ∞(dξ).

(b) If

∃x0 ∈ S, lim
R→+∞ sup

n≥1

∫
d(x0,ξ)p≥R

d(x0, ξ)pμn(dξ) = 0, (1.11)

then (μn)n≥1 is relatively compact for the Wasserstein distance Wp .

2. General quantization based characterizations on R
d

This section is devoted to establishing a general criterion that positively answers to Questions 1
and 2 in any dimension d , for any order p and any norm on R

d . The idea is to design an approx-
imate identity (ϕε)ε>0

2 based on the quantization error function eN,p(μ, ·). Our construction of
(ϕε)ε>0 relies on a purely geometrical idea: it is based on a specified Voronoï diagram contain-
ing a bounded open Voronoï cell that we introduce in Section 2.1. The static characterization
is established in Theorem 2.1. Furthermore, Theorem 2.2 shows that a pointwise convergence
of the quantization error functions is enough to imply the Wp-convergence of a Pp(Rd)-valued
sequence.

2.1. A review of Voronoï diagram, existence of bounded cells

Let � = {x1, . . . , xN } be a grid of size N . The Voronoï cell generated by xi ∈ � is defined by

Vxi
(�) =

{
ξ ∈R

d : |ξ − xi | = min
1≤j≤N

|ξ − xj |
}
, (2.1)

and (Vxi
(�))1≤i≤N is called the Voronoï diagram of �, which is a finite covering of Rd (see [7]).

A Borel measure partition (Cxi
(�))1≤i≤N is called a Voronoï partition of Rd induced by � if for

2By approximate identity we mean ϕε ∈ L1(Rd ,B(Rd ), λd ), ε > 0, such that
∫
Rd ϕεdλd = 1, supε>0

∫
Rd |ϕε|dλd <

+∞ and limε→0
∫
{|ξ |>η} ϕε(ξ)λd (ξ) = 0 for every η > 0.
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every i ∈ {1, . . . ,N}, Cxi
(�) ⊂ Vxi

(�). We also define the open Voronoï cell generated by xi ∈ �

by

V o
xi

(�) =
{
ξ ∈R

d : |ξ − xi | < min
1≤j≤N,j �=i

|ξ − xj |
}
. (2.2)

If the norm | · | on R
d is strictly convex, we have V̊xi

(�) = V o
xi

(�) and V o
xi

(�) = Vxi
(�),

where Å and A denote the interior and the closure of A. Examples of strictly convex norms are
the isotropic �r -norms for 1 < r < +∞ defined by |(a1, . . . , ad)|r = (|a1|r + · · · + |ad |r )1/r .
However, this is not true for any norm on R

d , typically not for the �1-norm (see [7], Figure 1.2)
or the �∞-norm.

We recall that A ⊂R
d is star-shaped with respect to a ∈ A if for every b ∈ A and any λ ∈ [0,1],

a + λ(b − a) ∈ A.

Proposition 2.1. (see [7], Proposition 1.2) Let � = {x1, . . . , xN } be a grid of size N ≥ 1. For
every i ∈ {1, . . . ,N}, Vxi

(�) and V o
xi

(�) are star-shaped relative to xi .

Now we discuss a sufficient condition to obtain a Voronoï diagram containing a bounded open
Voronoï cell. The first result in this direction is a rewriting Proposition 1.10 in [7] for Euclidean
norms (stated here in view of our applications).

Proposition 2.2 (| · | Euclidean norm). Let (b1, . . . , bd+1) be an affine basis of Rd and let

b0 ∈ ˚Conv({b1, . . . , bd+1}) �= ∅. Set � = {0, b1 − b0, . . . , bd+1 − b0}. Then, the open Voronoï
cell V o

0 (�) generated by 0 is bounded.

Let us provide now a geometrical criterion for a general norm | · | on R
d , let B̄|·|(x, r) denote

the closed ball centered at x with radius r and let S|·|(x, r) denote its sphere.

Proposition 2.3. Let a1, . . . , ak ∈ S|·|(0,1) such that S|·|(0,1) ⊂ ⋃k
i=1 B̄|·|(ai,1) (such a cover-

ing exists since S|·|(0,1) is compact). If we choose � = {0, a1, . . . , ak}, then the Voronoï open set
V o

0 (�) ⊂ B̄|·|(0,1) and λd(V o
0 (�)) > 0.

Proof. As S|·|(0,1) ⊂ ⋃k
i=1 B̄|·|(ai,1), for every ξ ∈ S|·|(0,1), there exists j ∈ {1, . . . , k} such

that |ξ − aj | ≤ 1 = |ξ |. If � = {0, a1, . . . , ak}, then

∀ξ ∈ S|·|(0,1), ∃j ∈ {1, . . . , k} such that ξ ∈ Vaj
(�). (2.3)

Assume that there exists ξ ∈ V o
0 (�) \ B̄|·|(0,1). Since V o

0 (�) is star-shaped relatively to 0 and
1
|ξ | ∈ (0,1), we have ξ

|ξ | ∈ S|·|(0,1) ∩ V o
0 (�). This contradicts (2.3) since V o

0 (�) ∩ Vaj
(�) �=

∅, j = 1, . . . , k. Consequently, V o
0 (�) ⊂ B̄|·|(0,1). Finally, V o

0 (�) is an open set containing 0,
therefore, λd(V o

0 (�)) > 0. �

The idea of the above proposition is to cover the unit sphere centered at the origin by a fi-
nite number of unit balls centered on the unit sphere. This leads us to introduce the following
definition.
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Definition 2.1. We define the minimal sphere covering number c(d, | · |) as follows,

c
(
d, | · |) := min

{
k : ∃{a1, . . . , ak} ⊂ S|·|(0,1) such that S|·|(0,1) ⊂

k⋃
i=1

B̄|·|(ai,1)

}
< +∞.

The index c(d, | · |) is finite since the unit sphere is a compact set in R
d . Among all the

possible norms, we will focus on the isotropic �r -norms on R
d . We show some examples of the

minimal covering number c(d, | · |r ) in the following proposition (whose proof is postponed to
the Appendix).

Proposition 2.4.

(i) c(1, | · |) = 2, where | · | denotes the absolute value.
(ii) c(2, | · |1) = 2 and c(2, | · |r ) = 3 for every 1 < r < +∞.

(iii) c(d, | · |∞) = 2 for every dimension d .
(iv) Let r ≥ 1 such that 2r ≥ d , then c(d, | · |r ) ≤ 2d .

2.2. A general condition for the probability measure characterization

Let � = {x1, . . . , xN } be a grid in which there exists at least an xi0 ∈ � such that the open Voronoï
cell V o

xi0
(�) is bounded and non-empty. Based on such a grid, one can construct an approximate

identity as follows. Let ϕ : Rd → R+ be the function defined by ϕ(ξ) = mina∈�\{xi0 } |ξ − a|p −
mina∈� |ξ − a|p . The function ϕ is clearly nonnegative, continuous and {ϕ > 0} = V o

xi0
(�) so

that supp(ϕ) = V o
xi0

(�) is compact. Hence,
∫

ϕ dλd ∈ (0,+∞) since ϕ(xi0) = d(xi0,� \ {xi0}) >

0 and we can normalize ϕ by setting ϕ1(ξ) := ϕ(xi0 +ξ)∫
ϕ dλd

. For every ε > 0, we define ϕε(ξ) :=
1
εd ϕ1(

ξ
ε
), then (ϕε)ε>0 is clearly an approximate identity (see [8], Section 1.2.4).

The following theorem gives conditions on the Lp-quantization error function to characterize
a probability measure.

Theorem 2.1 (Static characterization). Let p ∈ [1,+∞), let | · | be a norm on R
d and let

N ≥ c(d, | · |) + 1, or N ≥ d + 2 if | · | is Euclidean. Then, the answer to Question 1 is positive
i.e. if there exists a constant C such that e

p
N,p(μ, ·) = e

p
N,p(ν, ·)+C, μ,ν ∈ Pp(Rd), then μ = ν.

The constant C is a posteriori 0.

Proof. Following Propositions 2.2 and 2.3, we choose a grid � = {0, a1, . . . , aN−1} such that
V o

0 (�) is bounded and λd(V o
0 (�)) > 0. We define ϕ : Rd → R+, by ϕ(ξ) = mina∈�\{0} |ξ −

a|p − mina∈� |ξ − a|p = (mina∈�\{0} |ξ − a|p − |ξ |p)+ and (ϕε)ε>0 by ϕε(ξ) := 1
Cϕεd ϕ(

ξ
ε
),
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where Cϕ = ∫
ϕ dλd . For any x ∈ R

d ,

ϕε ∗ μ(x) =
∫
Rd

ϕε(x − ξ)μ(dξ) =
∫
Rd

1

εd

ϕ(
x−ξ

ε
)∫

ϕ dλd

μ(dξ)

= 1

Cϕεd

∫
Rd

(
min

a∈�\{0}

∣∣∣∣x − ξ

ε
− a

∣∣∣∣p − min
a∈�

∣∣∣∣x − ξ

ε
− a

∣∣∣∣p)μ(dξ)

= 1

Cϕεd+p

[∫
Rd

min
a∈�\{0} |x − εa − ξ |pμ(dξ) −

∫
Rd

min
a∈�

|x − εa − ξ |pμ(dξ)

]
.

If we define two N -tuples x̃ and x̃0 as x̃ = (x − εa1, x − εa1, x − εa2, . . . , x − εaN−1) and
x̃0 = (x, x − εa1, x − εa2, . . . , x − εaN−1), then∫

Rd

min
a∈�\{0} |x − εa − ξ |pμ(dξ) = e

p
N,p(μ, x̃) and∫

Rd

min
a∈�

|x − εa − ξ |pμ(dξ) = e
p
N,p(μ, x̃0).

Hence, ϕε ∗ μ(x) = 1
Cϕεd+p (e

p
N,p(μ, x̃) − e

p
N,p(μ, x̃0)).

The assumption e
p
N,p(μ, ·) = e

p
N,p(ν, ·) + C implies that e

p
N,p(μ, x̃) − e

p
N,p(μ, x̃0) =

e
p
N,p(ν, x̃) − e

p
N,p(ν, x̃0), so that, for every x ∈R

d and every ε > 0, ϕε ∗ μ(x) = ϕε ∗ ν(x).
One can finally conclude that μ = ν by letting ε → 0 since (ϕε)ε>0 is an approximate identity

(see [20], Theorem 6.32). Hence, C = 0. �

The following theorem shows that the pointwise convergence of the Lp-mean quantization
error function is a necessary and sufficient condition for Wp-convergence of probability distri-
butions in Pp(Rd).

Theorem 2.2 (Wp-convergence characterization). Let p ∈ [1,+∞) and let | · | be any norm
on R

d . Let μn ∈Pp(Rd) for n ∈N
∗ ∪ {∞}. The following properties are equivalent:

(i) Wp(μn,μ∞)
n→+∞−−−−−→ 0,

(ii) ∀N ≥ 1, eN,p(μn, ·) n→+∞−−−−−→ eN,p(μ∞, ·) uniformly on R
d ,

(iii) ∃N ≥ c(d, | · |) + 1 or N ≥ d + 2 if | · | is Euclidean such that, eN,p(μn, ·) n→+∞−−−−−→
eN,p(μ∞, ·) pointwise on R

d .

Proof of Theorem 2.2. (i) ⇒ (ii) is obvious from (1.9).
(ii) ⇒ (iii) is obvious.

(iii) ⇒ (i) First of all, it follows from the convergence eN,p(μn, ·) n→+∞−−−−→ eN,p(μ∞, ·) that

e
p
N,p(μn,0)

n→+∞−−−−−→ e
p
N,p(μ∞,0) i.e.∫

Rd

|ξ |pμn(dξ)
n→+∞−−−−−→

∫
Rd

|ξ |pμ∞(dξ) < +∞,

(2.4)
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where 0 = (0, . . . ,0). In particular, the sequence (
∫
Rd |ξ |pμn(dξ))n≥1 is bounded. Hence, the

sequence of probability measures (μn)n≥1 is tight.
Let μ̃∞ be a weak limiting probability distribution of (μn)n≥1 that is, there exists a subse-

quence α(n) of n such that μα(n)
(Rd )==⇒ μ̃∞ as n → +∞.

Let x = (x1, . . . , xN) be any N -tuple in (Rd)N . We define a continuous function fx : Rd →R

by fx(ξ) := min1≤i≤N |ξ − xi |p − |ξ |p . Hence, owing to the elementary inequality vp − up ≤
pvp−1(v − u) for any 0 ≤ u ≤ v < +∞, we derive

∣∣fx(ξ)
∣∣ ≤ max

i∈{1,...,N}
p
(|ξ | + |xi |

)p−1|xi | ≤ Cx,p

(
1 + |ξ |p−1), (2.5)

where Cx,p is a constant depending on x and p.

Owing to (2.4) and (2.5), the sequence (
∫

f

p
p−1

x dμn)n≥1 is bounded, hence fx is uniformly
integrable with respect to (μn)n≥1 since p

p−1 > 1, so that fx is uniformly integrable with respect

to any subsequence (μα(n))n≥1. It follows that
∫
Rd fx(ξ)μα(n)(dξ) → ∫

Rd fx(ξ)μ̃∞(dξ), as n →
+∞, where ∫

Rd

fx(ξ)μα(n)(dξ) =
∫
Rd

(
min

i∈{1,...,N} |ξ − xi |p − |ξ |p
)
μα(n)(dξ)

= e
p
N,p(μα(n), x) − e

p
N,p(μα(n),0), and∫

Rd

fx(ξ)μ̃∞(dξ) = e
p
N,p(μ̃∞, x) − e

p
N,p(μ̃∞,0).

On the other hand, e
p
N,p(μα(n), x) − e

p
N,p(μα(n),0) converges to e

p
N,p(μ∞, x) − e

p
N,p(μ∞,0)

owing to the pointwise convergence in (iii) at 0 = (0, . . . ,0) and x = (x1, . . . , xN).
Therefore, e

p
N,p(μ̃∞, x) − e

p
N,p(μ̃∞,0) = e

p
N,p(μ∞, x) − e

p
N,p(μ∞,0), which implies that

for every x ∈ (Rd)N , e
p
N,p(μ̃∞, x)− e

p
N,p(μ∞, x) = C, where C = e

p
N,p(μ̃∞,0)− e

p
N,p(μ∞,0)

is a real constant. It follows from Theorem 2.1 that μ̃∞ = μ∞, which implies that μ∞ is the

only limiting distribution of (μn)n≥1 for the weak convergence and consequently μn
(Rd )==⇒ μ.

We have already proved that
∫
Rd |ξ |pμn(dξ)

n→+∞−−−−→ ∫
Rd |ξ |pμ∞(dξ) from (2.4), which finally

shows that Wp(μn,μ∞)
n→+∞−−−−→ 0 owing to Theorem 1.1. �

A careful reading of the proof shows that the following “à la Paul Lévy” characterization result
holds for limiting functions of Lp-quantization error functions.

Corollary 2.1. Let p ∈ [1 + ∞). Let (μn)n≥1 be a Pp(Rd)-valued sequence. If

eN,p(μn, ·) n→+∞−−−−→ f pointwise for some N such that static characterization holds true
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(Question 1), then there exists μ∞ ∈ Pp(Rd) such that μn
(Rd )==⇒ μ∞ as n → +∞ and

f p = e
p
N,p(μ∞, ·) + lim

n

∫
Rd

|ξ |pμn(dξ) −
∫
Rd

|ξ |pμ∞(dξ).

Now we will take advantage of what precedes to introduce a quantization based distance on
Pp(Rd). Let Cb((R

d)N ,R) denote the space of bounded R-valued continuous functions defined
on (Rd)N equipped with the sup norm ‖ · ‖sup. Let p ∈ [1,+∞). If μ ∈ Pp(Rd), eN,p(μ, ·) −
eN,p(δ0, ·) ∈ Cb((R

d)N ,R) (note that eN,p(δ0, (x1, . . . , xN)) = mini=1,...,N |xi |) since inequal-
ity (1.8) implies that ‖eN,p(μ, ·) − eN,p(δ0, ·)‖sup ≤ Wp(μ, δ0) = [∫

Rd |ξ |pμ(dξ)]1/p < +∞.
Then, we define a function QN,p on Pp(Rd) by

(μ, ν) �−→QN,p(μ, ν) :=∥∥(eN,p(μ, ·) − eN,p(δ0, ·)
)− (

eN,p(ν, ·) − eN,p(δ0, ·)
)∥∥

sup

=∥∥eN,p(μ, ·) − eN,p(ν, ·)∥∥sup. (2.6)

For any μ,ν ∈ Pp(Rd), inequality (1.8) implies QN,p(μ, ν) ≤ Wp(μ, ν) < +∞ so that
QN,p(μ, ν) ∈ [0,+∞). Combining Theorems 2.1 and 2.2 implies the following result.

Corollary 2.2. Let p ∈ [1,+∞).

(a) Nd,p,|·| ≤ c(d, | · |) + 1 for any norm and Nd,p,|·| ≤ d + 2 if | · | is Euclidean.
(b) If N ≥ c(d, | · |) + 1 or N ≥ d + 2 if | · | is Euclidean, then QN,p defined by (2.6) is a

distance on Pp(Rd) and QN,p is topologically equivalent to the Wasserstein distance Wp .

Comments on optimality. If we consider only the quadratic case p = 2 and a norm | · | induced
by an inner product, the result in Corollary 2.2(a) is in fact not optimal. In the next section, we
will prove that in such a setting, Nd,2,|·| = 2 and this result can also be extended to any separable
(possibly infinite-dimensional) Hilbert space.

3. Quadratic quantization based characterization on a
separable Hilbert space: NH,2 = 2

Let H denote a separable Hilbert space with the inner product (· | ·)H . Let | · |H denote the norm
on H induced by (· | ·)H . When there is no ambiguity, we drop the index H and write (· | ·)
and | · |. The separable Hilbert space is a very common setup for applications, for example, in
functional data analysis: one can set H = L2([0, T ], dt) and X = (Xt )t∈[0,T ] a bi-measurable
process such that

∫ T

0 EX2
t dt < +∞. For more information about functional data analysis with

an L2-setup, we refer to [9] among others.
We first prove in the quadratic case (p = 2), that both static (see further Proposition 3.1) and

W2-convergence (see further Theorem 3.1) characterizations can be obtained at level N = 2
by an analytical method. Then we will show that NH,2 := NH,2,|·|H = 2 and for any μ,ν ∈
P2(H), Q2,2(μ, ν) := ‖e2,2(μ, ·) − e2,2(ν, ·)‖sup is a well-defined distance on P2(H) which is
topologically equivalent to W2.
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Proofs of quadratic quantization based characterizations rely on the following lemma.

Lemma 3.1.

(a) Let μ,ν ∈P2(H). If for every u ∈ H , |u| = 1, μ ◦ (ξ �→ (ξ | u))−1 = ν ◦ (ξ �→ (ξ | u))−1,
then μ = ν.

(b) Let μn ∈ P2(H) for every n ∈ N
∗ ∪ {∞}. If

∫
H

|ξ |2μn(dξ)
n→+∞−−−−−→ ∫

H
|ξ |2μ∞(dξ)

and for every u ∈ H , |u| = 1, μn ◦ (ξ �→ (ξ | u))−1 (R)==⇒ μ∞ ◦ (ξ �→ (ξ | u))−1, then
W2(μn,μ∞) → 0.

Proof. As (H, | · |) is separable, let (hk)k≥1 be a countable orthonormal basis of (H, | · |).
(a) Let X, Y be random variables with respective distributions μ and ν and let λ ∈ H . We de-

fine for every m ≥ 1, X(m) := ∑m
k=1(X | hk)hk , Y (m) := ∑m

k=1(Y | hk)hk and λ(m) := ∑m
k=1(λ |

hk)hk . For m ≥ 1, let u(m) = λ(m)

|λ(m)| (convention 0
|0| = 0), then we have

(
λ | X(m)

) =
+∞∑
k=1

(λ | hk)
(
X(m) | hk

) =
m∑

k=1

(λ | hk)(X | hk) = ∣∣λ(m)
∣∣(X | u(m)

)
.

Similarly, (λ | Y (m)) = |λ(m)|(Y | u(m)). Let i be such that i2 = −1. It follows that

Eei(λ|X(m)) = Eei|λ(m)|(X|u(m)) =
∫

H

ei|λ(m)|ξμ ◦ (
ξ �→ (

u(m) | ξ))−1
(dξ)

=
∫

H

ei|λ(m)|ξ ν ◦ (
ξ �→ (

u(m) | ξ))−1
(dξ) = Eei(λ|Y (m)).

Since we can arbitrarily choose λ, we have for every m ≥ 1, Law(X(m)) = Law(Y (m)). Let F :
H →R be a bounded continuous function. Then, for every m ≥ 1, EF(X(m)) = EF(Y (m)) which
implies EF(X) = EF(Y ) by letting m → +∞. Hence, μ = ν.

(b) For every n ≥ 1, let Xn be random variables with distribution μn and let X∞ be a ran-
dom variable with distribution μ∞. We define for every n ≥ 1 and for every m ≥ 1, X

(m)
n :=∑m

i=1(Xn | hi)hi and X
(m)∞ := ∑m

i=1(X∞ | hi)hi . Following the lines of item (a), we get for ev-

ery m ≥ 1, X
(m)
n

(H)==⇒ X
(m)∞ as n → +∞, since the convergence of characteristic function implies

weak convergence.
Now, let F : H → R be a Lipschitz continuous function with Lipschitz coefficient [F ]Lip :=

supx,y∈H
|F(x)−F(y)|

|x−y| . For every (temporarily) fixed m ≥ 1,

lim
n

∣∣EF(Xn) −EF(X∞)
∣∣

≤ lim
n

∣∣EF(Xn) −EF
(
X(m)

n

)∣∣+ lim
n

∣∣EF
(
X(m)

n

)−EF
(
X(m)∞

)∣∣+ ∣∣EF
(
X(m)∞

)−EF(X∞)
∣∣

≤ lim
n

∣∣EF(Xn) −EF
(
X(m)

n

)∣∣+ 0 + ∣∣EF
(
X(m)∞

)−EF(X∞)
∣∣ (

since X(m)
n

(H)==⇒ X(m)∞
)
.
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Then, for every n ≥ 1,∣∣EF(Xn) −EF
(
X(m)

n

)∣∣ ≤ E
∣∣F(Xn) − F

(
X(m)

n

)∣∣ ≤ [F ]LipE
∣∣Xn − X(m)

n

∣∣
≤ [F ]Lip

∥∥Xn − X(m)
n

∥∥
2.

Similarly, we also have |EF(X
(m)∞ ) −EF(X∞)| ≤ [F ]Lip‖X∞ − X

(m)∞ ‖2.
It follows from Fatou’s lemma for the weak convergence and the convergence assumption

made on E|Xn|2 that

lim sup
n

∥∥Xn − X(m)
n

∥∥2
2 = lim sup

n
E
∣∣Xn − X(m)

n

∣∣2 = lim sup
n

[
E|Xn|2 −E

∣∣X(m)
n

∣∣2]
= E|X∞|2 − lim inf

n
E
∣∣X(m)

n

∣∣2 ≤ E|X∞|2 −E
∣∣X(m)∞

∣∣2
= ∥∥X∞ − X(m)∞

∥∥2
2. (3.1)

Hence, for every m ≥ 1,

lim
n

∣∣EF(Xn) −EF(X∞)
∣∣ ≤ lim sup

n
[F ]Lip

∥∥Xn − X(m)
n

∥∥
2 + [F ]Lip

∥∥X∞ − X(m)∞
∥∥

2

≤ 2[F ]Lip
∥∥X∞ − X(m)∞

∥∥
2.

Then, ‖X∞ − X
(m)∞ ‖2 → 0 as m → +∞ by the Lebesgue dominated convergence theorem since

|X∞ − X
(m)∞ | ≤ |X∞| ∈ L2(P) so that EF(Xn) → EF(X∞) as n → +∞. Thus, Xn

(H)==⇒ X∞
and we can conclude that Wp(μn,μ∞) → 0 by applying Theorem 1.1. �

Proposition 3.1 (Static characterization). Let μ,ν ∈ P2(H). If e2
2,2(μ, ·) = e2

2,2(ν, ·) + C for
some real constant C, then μ = ν and C = 0.

Proof. Let a, b ∈ H , then e2
2,2(μ, (a, b)) = ∫

H
|ξ − a|2 ∧ |ξ − b|2μ(dξ).

As e2
2,2(μ, (a, b)) = e2

2,2(ν, (a, b)) + C for every (a, b) ∈ H 2, in particular, if a = b,
∫
H

|ξ −
a|2μ(dξ) = ∫

H
|ξ − a|2ν(dξ) + C. Hence, using that (x − y)+ = x − x ∧ y, we have

∀a, b ∈ H,

∫
H

(|ξ − a|2 − |ξ − b|2)+μ(dξ) =
∫

H

(|ξ − a|2 − |ξ − b|2)+ν(dξ). (3.2)

Note that |ξ − a|2 − |ξ − b|2 = 2(b − a | ξ − a+b
2 ). Hence, if we take a = λu and b = λ′u with

λ,λ′ ∈ R, λ′ > λ for some common u ∈ H with |u| = 1, we obtain(|ξ − a|2 − |ξ − b|2)+ = 2
(
λ′ − λ

)(
(ξ | u) − λ + λ′

2

)
+
.

As a consequence of (3.2), we derive that

∀λ,λ′ ∈R, λ′ > λ,

∫
H

(
(ξ | u) − λ + λ′

2

)
+
μ(dξ) =

∫
H

(
(ξ | u) − λ + λ′

2

)
+
ν(dξ).
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In turn, this implies, by letting λ′ → λ,

∀u ∈ H, |u| = 1,∀λ ∈R,

∫
H

(
(ξ | u) − λ

)
+μ(dξ) =

∫
H

(
(ξ | u) − λ

)
+ν(dξ). (3.3)

The function λ �→ ((ξ | u) − λ)+ is right differentiable with 1(ξ |u)>λ as a right derivative and μ-
integrable. Hence, by the Lebesgue differentiation theorem, we can right differentiate the equality
(3.3) which yields for every u ∈ H , |u| = 1 and for every λ ∈ R, μ((ξ | u) > λ) = ν((ξ | u) > λ).

Hence, for every u ∈ H , |u| = 1, μ ◦ (ξ �→ (ξ | u))−1 = ν ◦ (ξ �→ (ξ | u))−1 since they have
the same survival function. We conclude by Lemma 3.1(a) that μ = ν and C = 0. �

The following theorem shows the equivalence of W2-convergence of (μn)n≥1 in P2(H) and
the pointwise convergence of quadratic quantization error function (e2,2(μn, ·))n≥1.

Theorem 3.1 (W2-convergence characterization). Let μn ∈ P2(H) for every n ∈ N
∗ ∪ {∞}.

The following properties are equivalent:

(i) W2(μn,μ∞)
n→+∞−−−−−→ 0,

(ii) e2,2(μn, ·) n→+∞−−−−−→ e2,2(μ∞, ·) uniformly,

(iii) e2,2(μn, ·) n→+∞−−−−−→ e2,2(μ∞, ·) pointwise.

Before proving Theorem 3.1, we recall the convergence of left and right derivatives of a con-
verging sequence of convex functions. Let ∂−f (respectively ∂+f ) denote the left derivative
(resp. right derivative) of a convex function f .

Lemma 3.2 (See, e.g., [13], Theorem 2.5). Let fn : R → R, n ∈ N
∗, be a sequence of convex

functions converging pointwise to a function f : R → R. Let G := {x ∈ R | ∂−f (x) �= ∂+f (x)}.
Then for every point x ∈R \ G,

lim
n

∂+fn(x) = lim
n

∂−fn(x) = f ′(x).

Proof of Theorem 3.1. (i) ⇒ (ii) is obvious from (1.9).
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) For every (a, b) ∈ H 2,

e2
2,2

(
μn, (a, b)

) =
∫

H

|ξ − a|2 ∧ |ξ − b|2μn(dξ)
n→+∞−−−−→ e2

2,2

(
μ∞, (a, b)

)
=

∫
H

|ξ − a|2 ∧ |ξ − b|2μ∞(dξ).

In particular, ∀a ∈ H,
∫
H

|ξ − a|2μn(dξ)
n→+∞−−−−→ ∫

H
|ξ − a|2μ∞(dξ). Hence, using that (x −

y)+ = x − x ∧ y, we get

∀a, b ∈ H,

∫
H

(|ξ − a|2 − |ξ − b|2)+μn(dξ)
n→+∞−−−−→

∫
H

(|ξ − a|2 − |ξ − b|2)+μ∞(dξ).
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Following the lines of the proof of Proposition 3.1, we get

∀λ ∈ R,∀u ∈ H, |u| = 1,

∫
H

(
(ξ | u) − λ

)
+μn(dξ)

n→+∞−−−−→
∫

H

(
(ξ | u) − λ

)
+μ∞(dξ). (3.4)

For μ ∈ P2(H) and u ∈ S|·|(0,1), we define the real-valued convex function φμ by φμ :
λ �→ ∫

((ξ | u) − λ)+μ(dξ). It follows from (3.4) that (φμn)n≥0 converges pointwise to φμ∞ .
Moreover, φμn , φμ∞ are right-differentiable and their right derivatives are given by ∂+φμn(λ) =
μn((ξ | u) > λ) and ∂+φμ∞(λ) = μ∞((ξ | u) > λ) respectively. Note that the functions 1 −
∂+φμn and 1 − ∂+φμ∞ are the cumulative distribution functions of the probability distribu-
tions μn ◦ (ξ �→ (ξ | u))−1 and μ∞ ◦ (ξ �→ (ξ | u))−1 and that the set of discontinuity points
of 1 − ∂+φμ∞ and ∂+φμ∞ , is G = {λ : μ∞({ξ : (ξ | u) = λ}) > 0}.

We know from Lemma 3.2 that for every λ ∈ R \ G, ∂+φμn(λ)
n→+∞−−−−→ ∂+φμ∞(λ) and that

∂−φμ∞ is continuous on R \ G. Hence,

∀u ∈ H, |u| = 1, μn ◦ (
ξ �→ (ξ | u)

)−1 (R)==⇒ μ∞ ◦ (
ξ �→ (ξ | u)

)−1
. (3.5)

Moreover, e2,2(μn, (0,0)) converges to e2,2(μ∞, (0,0)), which also reads
∫
H

|ξ |2μn(dξ) →∫
H

|ξ |2μ∞(dξ). Consequently, it follows from Lemma 3.1(b) that W2(μn,μ∞) → 0 as n →
+∞. �

Remark 3.1. Proposition 3.1 and Theorem 3.1 directly imply that NH,2,|·|2 ≤ 2. In fact, for every
a ∈ H ,

e2
1,2(μ,a) =

∫
H

|ξ − a|2H μ(dξ) =
∫

H

|ξ |2H μ(dξ) − 2

(∫
H

ξμ(dξ) | a
)

H

+ |a|2H .

Thus, if μ,ν ∈ P2(H) are such that∫
H

|ξ |2H μ(dξ) =
∫

H

|ξ |2H ν(dξ) and
∫

H

ξμ(dξ) =
∫

H

ξν(dξ), (3.6)

then we have e1,2(μ, ·) = e1,2(ν, ·). But condition (3.6) is clearly not sufficient to have μ = ν.
Consequently, NH,2,|·|2 = 2.

Like what we did in Section 2.2, we define a function QH
2,2 on (P2(H))2 by (μ, ν) �→

QH
2,2(μ, ν) = ‖e2,2(μ, ·) − e2,2(ν, ·)‖sup. Then inequality (1.8) implies that QH

2,2(μ, ν) ∈
[0,+∞). Moreover, Proposition 3.1 and Theorem 3.1 lead the following corollary.

Corollary 3.1. The distances QH
2,2 and W2 are topologically equivalent on P2(H).

We conclude this section by an “à la Paul Lévy” characterization of a limit of quantization
error functions.
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Theorem 3.2 (À la Paul Lévy characterization). Let (H, | · |H ) be a separable Hilbert space.
Let (μn)n≥1 be a P2(H)-valued sequence and let f : H → R+ be such that

e2,2(μn, ·) n→+∞−−−−→ f pointwise.

Then there exists μ∞ ∈ P2(H) such that μn
(Hw)=⇒ μ∞ (where (Hw) stands for the weak topology

on H ) and

f 2 = e2,2(μ∞, ·)2 + lim
n

∫
H

|ξ |2μn(dξ) −
∫

H

|ξ |2μ∞(dξ).

Proof. The sequence e2,2(μn, (0,0))2 = ∫
H

|ξ |2μn(dξ), n ≥ 1, is bounded, hence the sequence
(μn)n≥1 is tight for the weak topology (Hw) on H , which generates the same Borel σ -field as the

strong one. Consequently there exists a subnet μϕ(n)
(Hw)=⇒ μ∞ ∈ P2(H) since the mapping ξ �→

|ξ |2 is weakly lower semi-continuous and non-negative (see [21], Lemma 2.3 and Theorem 3.1
and [11], Chapter 2, for the definition of subnet). Now note that, for a fixed x = (x1, x2) ∈ H 2,
the mapping ξ �→ min(|ξ − x1|2, |ξ − x2|2) − |ξ |2 = min(|x1|2 − 2(x1 | ξ), |x2|2 − 2(x2 | ξ)) is
weakly continuous and (μn)n≥1-uniformly integrable since it is sublinear. Hence,

e2
2,2(μϕ(n), x)

−→
∫

H

min
(|x1|2 − 2(x1 | ξ), |x2|2 − 2(x2 | ξ)

)
μ∞(dξ) + f 2((0,0)

)
as n → +∞

= e2
2,2(μ∞, x) + f 2((0,0)

)−
∫

H

|ξ |2μ∞(dξ).

For two such limiting distributions μ∞ and μ′∞, it follows from what precedes that e2
2,2(μ∞, ·) =

e2
2,2(μ

′∞, ·) + C∞ for some real constant C∞. Hence, μ∞ = μ′∞ by Proposition 3.1, which in

turn implies that μn
(Hw)=⇒ μ∞. �

4. Further quantization based characterizations on R

Let | · | denote the absolute value on R. Results from Section 2 (Theorem 2.1 and 2.2, Proposi-
tion 2.4(i)) imply that N1,p := N1,p,|·| ≤ 3 for any p ≥ 1. Moreover, Proposition 3.1 and Theo-
rem 3.1 imply that N1,2 = 2. Other quantization based characterizations are developed in Sec-
tion 4.1. Then we discuss the completeness of the distance Q1,1 (defined in (2.6)) on P1(R) and
of Q2,2 on P2(R) with opposite answers in Section 4.2.

4.1. Quantization based characterization on R

Proposition 4.1 (p = 1).
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(a) Let μ,ν ∈ P1(R). If e1,1(μ, ·) = e1,1(ν, ·) + C for some real constant C, then μ = ν and
C = 0.

(b) If μn ∈ P1(R), n ∈ N
∗ ∪ {∞}, the following properties are equivalent:

(i) W1(μn,μ∞)
n→+∞−−−−−→ 0,

(ii) e1,1(μn, ·) n→+∞−−−−−→ e1,1(μ∞, ·) uniformly,

(iii) e1,1(μn, ·) n→+∞−−−−−→ e1,1(μ∞, ·) pointwise.
(c) The distance Q1,1 and W1 are topologically equivalent on P1(R) and N1,1 = 1.

Proof. (a) The function e1,1(μ, ·) reads x �→ ∫
R

|ξ − x|μ(dξ), hence it is convex and its right
derivative is given by x �→ −1 + 2μ(] − ∞, x]). So if e1,1(μ, ·) = e1,1(ν, ·) + C, we have
μ(] − ∞, x]) = ν(] − ∞, x]) for all x ∈ R, which implies μ = ν (and C = 0).

(b) It is obvious that (i) ⇒ (ii) and (ii) ⇒ (iii). Now we prove (iii) ⇒ (i).
For every n ≥ 1, e1,1(μn, ·) can also be written as a �→ ∫

R
|ξ − a|μn(dξ), which is convex

with right derivative at a given by −1 + 2μn(] − ∞, a]). Consequently, if e1,1(μn, ·) con-
verges pointwise to e1,1(μ∞, ·) on R, then μn(] − ∞, a]) converges pointwise to μ∞(] − ∞,

a]) for all a ∈ R such that μ∞({a}) = 0 by Lemma 3.2. This implies μn
(R)==⇒ μ∞. The conver-

gence of the first moment follows from e1,1(μn,0)
n→+∞−−−−→ e1,1(μ∞,0). Hence, we conclude

that W1(μn,μ∞)
n→+∞−−−−→ 0 by Theorem 1.1.

(c) The claim (c) is a direct result from (a) and (b). �

Proposition 4.2 (Even integer p ≥ 2). Let p be an even integer, p ≥ 2.

(a) Let μ,ν ∈ Pp(R) such that e
p

2,p(μ, ·) = e
p

2,p(ν, ·) + C for some real constant C. Then
μ = ν.

(b) If μn ∈ Pp(R), n ∈N
∗ ∪ {∞}, the following properties are equivalent:

(i) Wp(μn,μ∞)
n→+∞−−−−−→ 0,

(ii) e2,p(μn, ·) n→+∞−−−−−→ e2,p(μ∞, ·) uniformly,

(iii) e2,p(μn, ·) n→+∞−−−−−→ e2,p(μ∞, ·) pointwise.
(c) The distances Q2,p and Wp are topologically equivalent on Pp(R) and N1,p = 2.

The proof of Proposition 4.2 is based on the following lemma.

Lemma 4.1. Let p be an even number, p ≥ 2. Let μ ∈ Pp(R) be absolutely continuous with
density f i.e. μ(dξ) = f (ξ) dξ . If f is continuous, then for any a, b ∈ R with a < b,

e
p−2
2,p−2

(
μ, (a, b)

)
= 1

p(p − 1)

(
∂2e

p

2,p

∂a2

(
μ, (a, b)

)+ ∂2e
p

2,p

∂b2

(
μ, (a, b)

)− 2
∂2e

p

2,p

∂a∂b

(
μ, (a, b)

))
. (4.1)

Proof of Lemma 4.1. Assume that a < b, then e
p

2,p(μ, (a, b)) = ∫ a+b
2−∞ |ξ − a|pf (ξ) dξ +∫ +∞

a+b
2

|ξ − b|pf (ξ) dξ . Hence, the function e
p

2,p(μ, (a, b)) is continuously differentiable in a,
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since, for any even number p ≥ 2, we have ∂|ξ−a|pf (ξ)
∂a

= p(a − ξ)p−1f (ξ) and

sup
a′∈(a−1,a+1)

∣∣p(
a′ − ξ

)p−1
f (ξ)

∣∣ ≤ p2p−1f (ξ)
[|a + 1|p−1 ∨ |a − 1|p−1 + |ξ |p−1] ∈ L1(λ)

since
∫
R

|ξ |pf (ξ) dξ < +∞. Likewise, e
p

2,p(μ, (a, b)) is continuously differentiable in b with
partial derivatives

∂e
p

2,p(μ, (a, b))

∂a
= p

∫ a+b
2

−∞
(a − ξ)p−1f (ξ) dξ and

∂e
p

2,p(μ, (a, b))

∂b
= p

∫ +∞
a+b

2

(b − ξ)p−1f (ξ) dξ.

Moreover, we have ∂(a−ξ)p−1f (ξ)
∂a

= (p − 1)(a − ξ)p−2f (ξ) and

sup
a′∈(a−1,a+1)

∣∣(p − 1)
(
a′ − ξ

)p−2
f (ξ)

∣∣
≤ (p − 1)2p−2f (ξ)

[|a + 1|p−2 ∨ |a − 1|p−2 + |ξ |p−2] ∈ L1(dξ)

since
∫
R

|ξ |pf (ξ) dξ < +∞. By a similar reasoning, one derives that e
p

2,p(μ, (a, b)) is continu-
ously twice differentiable with second order partial derivatives

∂2e
p

2,p

∂a2

(
μ, (a, b)

) = p

[∫ a+b
2

−∞
(p − 1)(a − ξ)p−2f (ξ) dξ − 1

2p
(b − a)p−1f

(
a + b

2

)]
,

∂2e
p

2,p

∂b2

(
μ, (a, b)

) = p

[∫ +∞
a+b

2

(p − 1)(b − ξ)p−2f (ξ) dξ − 1

2p
(b − a)p−1f

(
a + b

2

)]
,

∂2e
p

2,p

∂a∂b

(
μ, (a, b)

) = ∂2e
p

2,p

∂b∂a

(
μ, (a, b)

) = −p
1

2p
(b − a)p−1f

(
a + b

2

)
.

Hence, for every (a, b) ∈ R
2 such that a < b,

∂2e
p

2,p

∂a2

(
μ, (a, b)

)+ ∂2e
p

2,p

∂b2

(
μ, (a, b)

)− 2
∂2e

p

2,p

∂a∂b

(
μ, (a, b)

)
= p(p − 1)e

p−2
2,p−2

(
μ, (a, b)

)
. �

Proof of Proposition 4.2. (a) Step 1: μ and ν are absolutely continuous with continuous density
functions. Note that e

p

2,p(μ, ·) = e
p

2,p(ν, ·) + C implies either μ = ν by Proposition 3.1 if p = 2,

or, if p > 2 e
p−2
2,p−2(μ, ·) = e

p−2
2,p−2(ν, ·) (after differentiation) by Lemma 4.1. We can conclude by

induction.
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Step 2 (General case). Let X, Y be two random variables with the respective distributions μ

and ν, such that

∀(a, b) ∈ R
2, e

p

2,p

(
X, (a, b)

) = e
p

2,p

(
Y, (a, b)

)+ C. (4.2)

Let Z be a random variable with probability distribution PZ = N (0,1), independent of X and
Y . For every ε > 0,

e
p

2,p

(
X + εZ, (a, b)

) =
∫∫

min
x∈{a,b} |ξ + εz − x|pμ(dξ)PZ(dz)

=
∫

e
p

2,p

(
X, (a, b) − εz

)
PZ(dz). (4.3)

We derive from (4.2) and (4.3) that

∀(a, b) ∈ R
2, e

p

2,p

(
X + εZ, (a, b)

) = e
p

2,p

(
Y + εZ, (a, b)

) + C. (4.4)

Moreover, the random variables X + εZ and Y + εZ have distributions N (0, ε2) ∗ μ and
N (0, ε2) ∗ ν respectively, both with continuous densities. It follows from Step 1 that Law(X +
εZ) = Law(Y + εZ) for every ε > 0 so that Law(X) = Law(Y ) by letting ε → 0.

(b) It is obvious that (i) ⇒ (ii) and (ii) ⇒ (iii). Now we prove (iii) ⇒ (i). It follows from

Lemma 4.1 that e2,p(μn, ·) n→+∞−−−−→ e2,p(μ∞, ·) implies e2,p−2(μn, ·) n→+∞−−−−→ e2,p−2(μ∞, ·)
and, by induction, yields e2,2(μn, ·) n→+∞−−−−→ e2,2(μ∞, ·), so that Theorem 3.1 and Theorem 1.1
imply that μn converges weakly to μ∞. The convergence of the pth moment follows from

e2,p(μn,0)
n→+∞−−−−→ e2,p(μ∞,0). Hence, Wp(μn,μ∞)

n→+∞−−−−→ 0 by Theorem 1.1.
(c) The claim (a) and (b) directly imply that if p is an even integer, p ≥ 2, the distances Q2,p

and Wp are topologically equivalent on Pp(R) and N1,p ≤ 2. Now we prove that N1,p = 2. Note

that for every x ∈ R, e
p

1,p(μ,x) = ∫
R

|ξ − x|pμ(dξ) = ∫
R
(ξ2 − 2ξx + x2)

p
2 μ(dξ), which is

polynomial in x and whose coefficients are the kth moments of μ, k ∈ {1, . . . , p}. Thus, as soon
as two different distributions μ and ν have the same first p moments, ep

1,p(μ, ·) = e
p

1,p(ν, ·). This
implies N1,p > 1. �

4.2. About completeness of (P1(R),Q1,1) and (P2(R),QN,2)

We know from [4] that for p ≥ 1, (Pp(R),Wp) is a complete space and we have proved that
Q1,1 (respectively Q2,2) is topologically equivalent to W1 (resp. W2) on P1(R) (resp. P2(R)).
Now we discuss whether Q1,1 and Q2,2 are complete distances.

Proposition 4.3. The metric space (P1(R),Q1,1) is complete.

Proof. The inequality (1.8) directly implies that a Cauchy sequence in (P1(R),W1) is also a
Cauchy sequence in (P1(R),Q1,1). Now let (μn)n≥1 be a Cauchy sequence in (P1(R),Q1,1).
It follows from the definition of Q1,1 that (e1,1(μn, ·) − e1,1(δ0, ·))n≥1 is a Cauchy sequence in
(Cb(R,R),‖ · ‖sup).
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As (Cb(R,R),‖ · ‖sup) is complete, there exists a function g ∈ Cb(R,R) such that

∥∥(e1,1(μn, ·) − e1,1(δ0, ·)
)− g

∥∥
sup

n→+∞−−−−→ 0. (4.5)

Note that for any a ∈ R, e1,1(δ0, a) = |a|. The sequence e1,1(μn,0)− e1,1(δ0,0) = e1,1(μn,0)

is also a Cauchy sequence in R. Therefore, (e1,1(μn,0))n≥1 = (
∫
R

|ξ |μn(dξ))n≥1 is bounded,
which implies that (μn)n≥1 is tight. It follows from Prohorov’s theorem that there exists a sub-
sequence (μϕ(n))n≥1 weakly converging to μ̃∞. Moreover, by Fatou’s lemma in distribution,
μ̃∞ ∈ P1(R) since

∫
R

|ξ |μ̃∞(dξ) ≤ lim infn
∫
R

|ξ |μϕ(n)(dξ) < +∞.
Now, we prove that g = e1,1(μ̃, ·)−e1,1(δ0, ·). First, let us define a function fa(ξ) := |ξ −a|−

|ξ |. For every a ∈R, fa is bounded and continuous. Hence, the weak convergence of (μϕ(n))n≥1

implies that
∫
R

fa(ξ)μϕ(n)(dξ)
n→+∞−−−−→ ∫

R
fa(ξ)μ̃∞(dξ).

Besides,
∫
R

fa(ξ)μϕ(n)(dξ) = ∫
R
[|ξ − a| − |ξ |]μϕ(n)(dξ) = e1,1(μϕ(n), a) − e1,1(μϕ(n),0),

which converges to (g(a) + e1,1(δ0, a)) − (g(0) + e1,1(δ0,0)) as n → +∞ by (4.5). Hence, for
every a ∈ R,

(
g(a) + e1,1(δ0, a)

)− (
g(0) + e1,1(δ0,0)︸ ︷︷ ︸

=0

) =
∫
R

fa(ξ)μ̃∞(dξ) = e1,1(μ̃∞, a) − e1,1(μ̃∞,0),

that is, e1,1(μ̃∞, a) − e1,1(δ0, a) − g(a) = e1,1(μ̃∞,0) − g(0). Setting C = e1,1(μ̃∞,0) − g(0),
we derive that for every a ∈R,

e1,1(μ̃∞, a) − e1,1(δ0, a) − g(a) = C. (4.6)

Now we prove that C = 0. Generally, for any ν ∈P1(R), one has

lim
a→+∞

(
e1,1(ν, a) − e1,1(δ0, a)

)
= lim

a→+∞
(
e1,1(ν, a) − |a|) = lim

a→+∞
(
e1,1(ν, a) − a

)
= lim

a→+∞

(∫
R

|ξ − a|ν(dξ) − a

)
= lim

a→+∞

(∫
{ξ≥a}

(ξ − a)ν(dξ) +
∫

{ξ<a}
(a − ξ)ν(dξ) − a

)
= lim

a→+∞

(∫
{ξ≥a}

ξν(dξ) − 2
∫

{ξ≥a}
aν(dξ) +

∫
{ξ<a}

(−ξ)ν(dξ)

)
.

As ν ∈ P1(R) that is,
∫
R

|ξ |ν(dξ) < +∞, we derive that lima→+∞
∫
ξ<a

(−ξ)ν(dξ) =∫
R
(−ξ)ν(dξ) and lima→+∞

∫
{ξ≥a} ξν(dξ) = 0. This implies

0 ≤ lim
a→+∞

∫
{ξ≥a}

aν(dξ) ≤ lim
a→+∞

∫
{ξ≥a}

ξν(dξ) = 0.
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After a similar calculation with lima→−∞(e1,1(ν, a) − e1,1(δ0, a)), we get

lim
a→+∞

[
e1,1(ν, a) − e1,1(δ0, a)

] =
∫
R

(−ξ)ν(dξ) and

lim
a→−∞

[
e1,1(ν, a) − e1,1(δ0, a)

] =
∫
R

ξν(dξ).

(4.7)

Combining (4.6) and (4.7) with ν = μ̃∞ shows that

lim
a→+∞g(a) = −C −

∫
R

ξμ̃∞(dξ) and lim
a→−∞g(a) = −C +

∫
R

ξμ̃∞(dξ).

On the other hand, for every n ≥ 1, (4.7) applied to ν = μϕ(n) implies

lim
a→±∞ e1,1(μϕ(n), a) − e1,1(δ0, a) = ∓

∫
R

ξμϕ(n)(dξ).

Up to a new extraction of μϕ(n), still denoted by μϕ(n), we may assume that
∫
R

ξμϕ(n)(dξ) →
C̃ ∈ R as n → +∞ since (e1,1(μn,0))n≥1 = (

∫
R

|ξ |μn(dξ))n≥1 is bounded.
Now the uniform convergence (4.5) implies that

lim
n

lim
a→±∞

[
e1,1(μϕ(n), a) − e1,1(δ0, a) − g(a)

] = 0

so that C̃ = C + ∫
R

ξμ̃∞(dξ) = −C + ∫
R

ξμ̃∞(dξ), which in turn implies C = 0, i.e. g =
e1,1(μ̃∞, ·) − e1,1(δ0, ·). Then it follows from (4.5) that∥∥(e1,1(μn, ·) − e1,1(δ0, ·)

)− (
e1,1(μ̃∞, ·) − e1,1(δ0, ·)

)∥∥
= ∥∥e1,1(μn, ·) − e1,1(μ̃∞, ·)∥∥sup

n→+∞−−−−→ 0.

Hence, W1(μn, μ̃∞) → 0 by applying Proposition 4.1, that is, (μn)n≥1 is a Cauchy sequence
in (P1(R),W1). The completeness of (P1(R),W1) implies immediately that (P1(R),Q1,1) is
complete. �

Theorem 4.1. For any N ≥ 2, the metric space (P2(R),QN,2) is not complete.

We will build a sequence on P2(R) which is Cauchy for QN,2 but not for W2. First, we have
the following result.

Lemma 4.2. Let (μn)n≥1 be a P2(R
d)-valued sequence which converges weakly to μ∞ and, for

n ∈ N
∗ ∪ {∞}, let Xn denote a μn-distributed random variable. Assume that limn E|Xn|2 exists

and is finite. Then

sup
a∈Rd

∣∣∣e2,2
(
μn, (a, a)

)−
√

e2
2,2

(
μ∞, (a, a)

)+ C0

∣∣∣ n→+∞−−−−→ 0, (4.8)

where C0 = limn E|Xn|2 −E|X∞|2 ∈ [0,+∞).
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Proof of Lemma 4.2. An elementary computation shows that

e2
2,2

(
μn, (a, a)

) =
∫
Rd

|ξ − a|2μn(dξ) =
∫
Rd

|ξ |2μn(dξ) − 2

(∫
Rd

ξμn(dξ)

∣∣∣ a

)
+ |a|2.

As (
∫
Rd |ξ |2μn(dξ))n≥1 is bounded and μn

(Rd )===⇒ μ∞, we have
∫
Rd ξμn(dξ) →∫

Rd ξμ∞(dξ). It follows that

e2
2,2

(
μn, (a, a)

) =
∫
Rd

|ξ |2μn(dξ) − 2

(∫
Rd

ξμn(dξ)

∣∣∣ a

)
+ |a|2

n→+∞−−−−−→
∫
Rd

|ξ |2μ∞(dξ) + C0 − 2

(∫
Rd

ξμ∞(dξ)

∣∣∣ a

)
+ |a|2

= e2
2,2

(
μ∞, (a, a)

)+ C0.

Therefore, for every compact set K in R
d , we have

sup
a∈K

∣∣∣e2,2
(
μn, (a, a)

)−
√

e2
2,2

(
μ∞, (a, a)

)+ C0

∣∣∣ n→+∞−−−−→ 0, (4.9)

owing to Arzelá–Ascoli theorem, since all functions eN,p are 1-Lipschitz continuous (see (1.5)).
On the other hand, we have∣∣∣e2,2

(
μn, (a, a)

)−
√

e2
2,2

(
μ∞, (a, a)

)+ C0

∣∣∣
= |e2

2,2(μn, (a, a)) − (e2
2,2(μ∞, (a, a)) + C0)|

e2,2(μn, (a, a)) +
√

e2
2,2(μ∞, (a, a)) + C0

≤ |E(|Xn|2 − 2(a | Xn) + |a|2) −E(|X∞|2 − 2(a | X∞) + |a|2) − C0|
‖Xn − a‖2 + ‖X∞ − a‖2

≤ 2|(a | EX∞ −EXn)| + |E|Xn|2 −E|X∞|2 − C0|
‖Xn − a‖2 + ‖X∞ − a‖2

≤ 2|a||EX∞ −EXn| + |E|Xn|2 −E|X∞|2 − C0|
|‖Xn‖2 − |a|| + |‖X∞‖2 − |a|| . (4.10)

Let A := 2 supn∈N∪{∞} E|Xn|2, then

sup
|a|>A

∣∣∣e2,2
(
μn, (a, a)

)−
√

e2
2,2

(
μ∞, (a, a)

)+ C0

∣∣∣
≤ sup

|a|>A

2|a||EX∞ −EXn| + |E|Xn|2 −E|X∞|2 − C0|
|a| − ‖Xn‖2 + |a| − ‖X∞‖2
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≤ sup
|a|>A

2|a||EX∞ −EXn| + |E|Xn|2 −E|X∞|2 − C0|
2|a| − A

≤ sup
|a|>A

2|EX∞ −EXn| + |E|Xn|2 −E|X∞|2 − C0|
A

n→+∞−−−−→ 0. (4.11)

Hence, (4.9) and (4.11) imply that

sup
a∈Rd

∣∣∣e2,2
(
μn, (a, a)

)−
√

e2
2,2

(
μ∞, (a, a)

)+ C0

∣∣∣ n→+∞−−−−→ 0. �

Let Z : � →R be N (0,1)-distributed. We define for every n ∈N,

Xn := e
n
2 Z− n2

4 . (4.12)

For n ≥ 1, let μn denote the probability distribution of Xn. It is obvious that Xn converges a.s.

to X∞ = 0, so that μ∞ = δ0. Moreover, for every p > 0, EX
p
n = e

pn2

8 (p−2). Hence, EXn =
e− n2

8 −→ 0 = EX∞ as n → +∞ so that W1(μn,μ∞) → 0 whereas EX2
n = 1 for every n ∈N.

Hence, EX2
n does not converge to EX2∞ = 0, which entails that μn does not converge to μ∞ for

the Wasserstein distance W2 and thus μn is not a W2-Cauchy sequence. We first prove (μn)n≥1

is a Cauchy sequence in (P2(R),Q2,2). The proof relies on the following three lemmas.

Lemma 4.3. Let Z : � → R be N (0,1)-distributed. Then, ∀z > 0, P(Z ≥ z) ≤ e
− z2

2

z
√

2π
.

Proof. P(Z ≥ z) = ∫ +∞
z

1√
2π

e− x2
2 dx ≤ ∫ +∞

z
x
z

1√
2π

e− x2
2 dx = e

− z2
2

z
√

2π
. �

Lemma 4.4. Define (Xn) as in (4.12), then supK≥0 KE(Xn − K)+ → 0 as n → +∞.

Proof. We have

KE(Xn − K)+ = K

∫ ∞

0
P
(
(Xn − K)+ ≥ u

)
du = K

∫ +∞

0
P(Xn > u + K)du

= K

∫ +∞

K

P(Xn ≥ v)dv = K

∫ +∞

K

P
(
e

n
2 Z− n2

4 ≥ v
)
dv

= K

∫ +∞

K

P

(
Z ≥ n

2
+ 2

n
lnv

)
dv

= K

∫ ∞

lnK

P

(
Z ≥ n

2
+ 2

n
u

)
eu du (setting u = lnv).
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By Lemma 4.3, P(Z ≥ n
2 + 2

n
u) ≤ 1√

2π

e
− 1

2 ( n
2 + 2

n u)2

n
2 + 2

n
u

= 1√
2π

e
− n2

8 − 2
n2 u2−u

n
2 + 2

n
u

. It follows that,

KE(Xn − K)+ ≤ K

∫ ∞

lnK

e
− n2

8 − 2
n2 u2−u

n
2 + 2

n
u

eu du√
2π

≤ Ke− n2
8

n
2 + 2

n
lnK

∫ ∞

lnK

e
− 2

n2 u2 du√
2π

= Ke− n2
8

n
2 + 2

n
lnK

∫ ∞
2
n

lnK

e− w2
2

n

2

dw√
2π

(
by setting w = 2

n
u

)

= Ke− n2
8

n
2 + 2

n
lnK

n

2
P

(
Z ≥ 2

n
lnK

)

≤ nKe− n2
8

2( n
2 + 2

n
lnK)

e
− 1

2
4
n2 (lnK)2

√
2π 2

n
lnK

(by Lemma 4.3)

= n

2
√

2π
e− n2

8
Ke

− 2
n2 (lnK)2

(1 + 4
n2 lnK) lnK

= n

2
√

2π
e− n2

8
e

lnK(1− 2
n2 lnK)

(1 + 4
n2 lnK) lnK

. (4.13)

Since the function u �→ u(1 − 2
n2 u) attains its maximum at u = n2

4 with maximum value n2

8 , we
will discuss the value of KE(Xn − K)+ in the following three cases:

(i) K ≥ e
n2
4 , (ii) eρ n2

4 ≤ K ≤ e
n2
4 , (iii) 0 ≤ K ≤ eρ n2

4 ,

with the same fixed ρ ∈ (0, 1
2 ) in both (ii) and (iii).

Case (i): K ≥ e
n2
4 , then lnK ≥ n2

4 . It follows that

KE(Xn − K)+ ≤ n

2
√

2π
e− n2

8
e

lnK(1− 2
n2 lnK)

(1 + 4
n2 lnK) lnK

≤ n

2
√

2π
e− n2

8
e

n2
8

(1 + 4
n2 × n2

4 ) n2

4

= 1

n
√

2π
→ 0.
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Case (ii): eρ n2
4 ≤ K ≤ e

n2
4 with a fixed ρ ∈ (0, 1

2 ), then ρ n2

4 ≤ lnK ≤ n2

4 . It follows that

KE(Xn − K)+ ≤ ne− n2
8

2
√

2π

e
lnK(1− 2

n2 lnK)

(1 + 4
n2 lnK) lnK

≤ ne− n2
8

2
√

2π

e
n2
8

(1 + 4
n2 × ρ n2

4 )ρ n2

4

= 2

n(1 + ρ)ρ
√

2π
→ 0.

Case (iii): 0 ≤ K ≤ eρ n2
4 with the same ρ ∈ (0, 1

2 ) as in the situation (ii), then

KE(Xn − K)+ ≤ e
ρ
4 n2

EXn = e
ρ
4 n2 · e− n2

8 = e
1
4 (ρ− 1

2 )n2 n→+∞−−−−→ 0.

Therefore, supK>0 KE(Xn − K)+
n→+∞−−−−→ 0. �

By Lemma 4.2, supa∈Rd |e2,2(μn, (a, a))−
√

e2
2,2(μ∞, (a, a)) + C0| n→+∞−−−−→ 0. Consequently,

it is reasonable to guess that eN,2(μn, ·) ‖·‖sup−−−−−→
n→+∞

√
e2
N,2(μ∞, ·) + 1 so that (μn)n∈N is a Cauchy

sequence in (P2(R
d),QN,2). Let gN :RN →R+ be defined by

(a1, . . . , aN) �→ gN

(
(a1, . . . , aN)

) :=
√

e2
N,2

(
μ∞, (a1, . . . , aN)

)+ 1 =
√

min
1≤i≤N

|ai |2 + 1.

Proposition 4.4. For every N ≥ 2,

sup
(a1,...,aN )∈RN

∣∣eN,2
(
μn, (a1, . . . , aN)

)− gN

(
(a1, . . . , aN)

)∣∣ n→+∞−−−−→ 0.

Therefore, (μn)n∈N is a Cauchy sequence in (P2(R),QN,2) by the definition of QN,2.

Proof. We proceed by induction.
� N = 2. Since the functions g2 and e2,2(μn, ·) are symmetric, it is only necessary to

show that sup(a,b)∈R2,|a|≤|b| |e2,2(μn, (a, b)) − g2(a, b)| n→+∞−−−−→ 0. Note that when |a| ≤ |b|,
g2(a, b) = √|a|2 + 1 = g2(a, a). We discuss now the value of |e2,2(μn, (a, b)) − g2(a, b)| in
the following four cases,

(i) 0 ≤ a ≤ b,
(ii) a ≤ 0 ≤ b,{

(ii, α) a ≤ 0 ≤ b with |a| ≤ 1
2 |b|,

(ii, β) a ≤ 0 ≤ b with 1
2 |b| ≤ |a| ≤ |b|,

(iii) b ≤ 0 ≤ a, with |a| ≤ |b|,
(iv) b ≤ a ≤ 0.
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Cases (iii) and (iv): b < 0 and a+b
2 < 0. The random variables Xn are positive so that |x −a| ≤

|x − b|. Hence e2,2(μn, (a, b)) = e2,2(μn, (a, a)). With a slight abuse of notation, we will write
in what follows (a, b) ∈ (iii) for (a, b) ∈ {(a, b) ∈ R

2 | b ≤ 0 ≤ a, and |a| ≤ |b|}. We will adopt
the same notation for other cases too. Then for the case (iii) and (iv), it is obvious by applying
Lemma 4.2 that

sup
(a,b)∈(iii)∪(iv)

∣∣e2,2
(
μn, (a, b)

)− g2(a, b)
∣∣

= sup
(a,b)∈(iii)∪(iv)

∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣ n→+∞−−−−→ 0.

Case (i): 0 ≤ a ≤ b. We have

sup
(a,b)∈(i)

∣∣e2,2
(
μn, (a, b)

)− g2(a, b)
∣∣

≤ sup
(a,b)∈(i)

∣∣e2,2
(
μn, (a, b)

)− e2,2
(
μn, (a, a)

)∣∣+ ∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(i)

∣∣∣∣
√∫

R

|ξ − a|2 ∧ |ξ − b|2μn(dξ) −
√∫

R

|ξ − a|2μn(dξ)

∣∣∣∣
+ ∣∣e2,2

(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(i)

√∫
R

[|ξ − a|2 − (|ξ − a|2 ∧ |ξ − b|2)]μn(dξ) + ∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣

(since |√α −√
β| ≤ √

β − α for β > α > 0)

≤ sup
(a,b)∈(i)

√∫
R

(|ξ − a|2 − |ξ − b|2)+μn(dξ) + ∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(i)

√∫
R

2(b − a)

(
ξ − b + a

2

)
+
μn(dξ) + ∣∣e2,2

(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(i)

2

√∫
R

b

2

(
ξ − b

2

)
+
μn(dξ) + ∣∣e2,2

(
μn, (a, a)

)− g2(a, a)
∣∣

≤ 2
√

sup
K≥0

KE(Xn − K)+ + sup
a∈R

∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣ n→+∞−−−−→ 0.

Case (ii, α): a ≤ 0 ≤ b, with |a| ≤ 1
2 |b|. We have

sup
(a,b)∈(ii,α)

∣∣e2,2
(
μn, (a, b)

)− g2(a, b)
∣∣

≤ sup
(a,b)∈(ii,α)

∣∣e2,2
(
μn, (a, b)

)− e2,2
(
μn, (a, a)

)∣∣+ ∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣
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≤ sup
(a,b)∈(ii,α)

√∫
R

2(b − a)

(
ξ − b + a

2

)
+
μn(dξ) + ∣∣e2,2

(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(ii,α)

√∫
R

3 · b
(

ξ − b

4

)
+
μn(dξ) + ∣∣e2,2

(
μn, (a, a)

)− g2(a, a)
∣∣

≤ 2
√

3 ·
√

sup
K≥0

KE(Xn − K)+ + sup
a∈R

∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣ n→+∞−−−−→ 0.

Case (ii, β): a ≤ 0 ≤ b, with 1
2 |b| ≤ |a| ≤ |b|. One has

sup
(a,b)∈(ii,β)

∣∣e2,2
(
μn, (a, b)

)− g2(a, b)
∣∣

≤ sup
(a,b)∈(ii,β)

∣∣e2,2
(
μn, (a, b)

)− e2,2
(
μn, (a, a)

)∣∣+ ∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(ii,β)

|e2
2,2(μn, (a, b)) − e2

2,2(μn, (a, a))|
e2,2(μn, (a, b)) + e2,2(μn, (a, a))

+ ∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(ii,β)

∫
R

2(b − a)(ξ − b+a
2 )+μn(dξ)

‖Xn − a‖2
+ sup

a∈R

∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(ii,β)

2(b − a)E(Xn − b+a
2 )+

‖Xn − a‖2
+ sup

a∈R

∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣.

As ‖Xn − a‖2 = (EX2
n︸︷︷︸

=1

−2aEXn︸ ︷︷ ︸
≥0

+|a|2)1/2 ≥ √
1 + |a|2, we have

sup
(a,b)∈(ii,β)

∣∣e2,2
(
μn, (a, b)

)− g2(a, b)
∣∣

≤ sup
(a,b)∈(ii,β)

2(b + |a|)E[Xn − b+a
2 ]+√

1 + |a|2 + sup
a∈R

∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣

≤ sup
(a,b)∈(ii,β)

4bEXn√
1 + b2

4

+ sup
a∈R

∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣

≤ 8EXn + sup
a∈R

∣∣e2,2
(
μn, (a, a)

)− g2(a, a)
∣∣ n→+∞−−−−→ 0.

� From N to N + 1. Assume now that sup(a1,...,aN )∈RN |eN,2(μn, (a1, . . . , aN))− gN(a1, . . . ,

aN)| goes 0 as n → +∞. Then, for the level N + 1, we assume without loss of generality that
|a1| ≤ |a2| ≤ · · · ≤ |aN+1| since gN+1 and eN,2(μn, ·) are symmetric. Under this assumption,

gN+1(a1, . . . , aN+1) = g2(a1, a1) =
√

|a1|2 + 1. (4.14)
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We discuss now the value of sup(a1,...,aN+1)∈RN+1 |eN+1,2(μn, (a1, . . . , aN+1)) − gN+1(a1, . . . ,

aN+1)| in the following cases:

(i) ∃i ∈ {2, . . . ,N + 1} such that ai < 0,
(ii) 0 ≤ a1 ≤ a2 ≤ · · · ≤ aN+1,

(iii) a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1,{
(iii, α) a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1,with |a1| ≤ 1

2 |aN+1|,
(iii, β) a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1,with 1

2 |aN+1| ≤ |a1| ≤ |aN+1|.
Case (i): ∃i ∈ {2, . . . ,N + 1} such that ai < 0. For every n ≥ 1, Xn is a.s. positive. Hence,

|Xn − a1| ≤ |Xn − ai | a.s. since we assume that |a1| ≤ |a2| ≤ · · · ≤ |aN+1|. Therefore,

eN+1,2
(
μn, (a1, . . . , aN+1)

) = eN,2
(
μn, (a1, . . . , ai−1, ai+1, . . . , aN+1)

)
.

It follows from (4.14) that

sup
(a1,...,aN+1)∈RN+1

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

)− gN+1(a1, . . . , aN+1)
∣∣

= sup
(a1,...,ai−1,ai+1,...,aN+1)∈RN

∣∣eN,2
(
μn, (a1, . . . , ai−1, ai+1, . . . , aN+1)

)
− gN(a1, . . . , ai−1, ai+1, . . . , aN+1)

∣∣,
which converges to 0 as n → +∞ owing to the assumption on the level N .

Case (ii): 0 ≤ a1 ≤ a2 ≤ · · · ≤ aN+1.

sup
0≤a1≤a2≤···≤aN+1

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

)− gN+1(a1, . . . , aN+1)
∣∣

≤ sup
0≤a1≤a2≤···≤aN+1

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

)− eN,2
(
μn, (a1, . . . , aN)

)∣∣
+ sup

0≤a1≤a2≤···≤aN+1

∣∣eN,2
(
μn, (a1, . . . , aN)

)− gN(a1, . . . , aN)
∣∣. (4.15)

The second term on the right-hand side of (4.15) converges to 0 as n → +∞ owing to the
assumption on the level N .

For the first term on the right-hand side of (4.15), we have

sup
0≤a1≤a2≤···≤aN+1

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

) − eN,2
(
μn, (a1, . . . , aN)

)∣∣
= sup

0≤a1≤a2≤···≤aN+1

√∫
R

min
1≤i≤N

|ξ − ai |2μn(dξ)

−
√∫

R

[
min

1≤i≤N
|ξ − a|2

]
∧ |ξ − aN+1|2μn(dξ)
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≤ sup
0≤a1≤a2≤···≤aN+1

√∫
R

min
1≤i≤N

|ξ − ai |2 −
[

min
1≤i≤N

|ξ − ai |2
]
∧ |ξ − aN+1|2μn(dξ)

= sup
0≤a1≤a2≤···≤aN+1

√∫
R

(
min

1≤i≤N
|ξ − ai |2 − |ξ − aN+1|2

)
+μn(dξ)

≤ sup
0≤a1≤a2≤···≤aN+1

√∫
R

(|ξ − a1|2 − |ξ − aN+1|2
)
+μn(dξ)

= sup
0≤a1≤a2≤···≤aN+1

√∫
R

2(aN+1 − a1)

(
ξ − a1 + aN+1

2

)
+
μn(dξ)

≤ sup
0≤a1≤a2≤···≤aN+1

√∫
R

2 · aN+1

(
ξ − aN+1

2

)
+
μn(dξ)

≤ 2 ·
√

sup
K≥0

KE(Xn − K)+
n→+∞−−−−→ 0.

Case (iii, α): a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1 with |a1| ≤ 1
2 |aN+1|.

sup
(a1,...,aN+1)∈(iii,α)

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

)− gN+1(a1, . . . , aN+1)
∣∣

≤ sup
(a1,...,aN+1)∈(iii,α)

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

)− eN,2
(
μn, (a1, . . . , aN)

)∣∣
+ sup

(a1,...,aN+1)∈(iii,α)

∣∣eN,2
(
μn, (a1, . . . , aN)

)− gN(a1, . . . , aN)
∣∣. (4.16)

Like in Case (ii), the second term on the right-hand side of (4.16) converges to 0 as n → +∞.
For the first term of the right-hand side of (4.16), we have

sup
(a1,...,aN+1)∈(iii,α)

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

) − eN,2
(
μn, (a1, . . . , aN)

)∣∣
≤ sup

(a1,...,aN+1)∈(iii,α)

√∫
R

2(aN+1 − a1)

(
ξ − a1 + aN+1

2

)
+
μn(dξ)

≤ sup
(a1,...,aN+1)∈(iii,α)

√∫
R

3 · aN+1

(
ξ − aN+1

4

)
+
μn(dξ)

≤ 2
√

3 ·
√

sup
K≥0

KE(Xn − K)+ −→ 0.

Case (iii, β): a1 ≤ 0 ≤ a2 ≤ · · · ≤ aN+1 with 1
2 |aN+1| ≤ |a1| ≤ |aN+1|.
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Since we assume |a1| ≤ |a2| ≤ · · · ≤ |aN+1|, then for any i ∈ {2, . . . ,N + 1}, we have 1
2 |ai | ≤

|a1| ≤ |ai |. It follows that

sup
(a1,...,aN+1)∈(iii,β)

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

)− gN+1(a1, . . . , aN+1)
∣∣

≤ sup
(a1,...,aN+1)∈(iii,β)

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

)− e2,2
(
μn, (a1, a1)

)∣∣
+ sup

a1∈R

∣∣e2,2
(
μn, (a1, a1)

)− gN(a1, a1)
∣∣. (4.17)

The second part of (4.17), supa1∈R |e2,2(μn, (a1, a1)) − gN(a1, a1)| converges to 0 as n → +∞
owing to Lemma 4.2. Then for the first part of (4.17), we have

sup
(a1,...,aN+1)∈(iii,β)

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

) − e2,2
(
μn, (a1, a1)

)∣∣
= sup

(a1,...,aN+1)∈(iii,β)

e2
2,2(μn, (a1, a1)) − e2

N+1,2(μn, (a1, . . . , aN+1))

eN+1,2(μn, (a1, . . . , aN+1)) + e2,2(μn, (a1, a1))

≤ sup
(a1,...,aN+1)∈(iii,β)

∫
R

|ξ − a1|2 − min1≤i≤N+1 |ξ − ai |2μn(dξ)

‖Xn − a1‖2

≤ sup
(a1,...,aN+1)∈(iii,β)

∫
R
(|ξ − a1|2 − min2≤i≤N+1 |ξ − a2|2)+μn(dξ)

‖Xn − a1‖2

≤ sup
(a1,...,aN+1)∈(iii,β)

1

‖Xn − a1‖2

[
N+1∑
i=2

∫
R

(|ξ − a1|2 − |ξ − ai |2
)
+μn(dξ)

]
.

Since a1 < 0, ‖Xn − a1‖2 = (EX2
n − 2a1EXn + |a1|2)1/2 ≥ √

1 + |a1|2. Therefore,∫
R
(|ξ − a1|2 − |ξ − ai |2)+μn(dξ)

‖Xn − a1‖2
=

∫
R

2(ai − a1)(ξ − ai+a1
2 )+μn(dξ)

‖Xn − a1‖2

≤ 4aiEXn√
1 + |a1|2

≤ 4aiEXn

1
2ai

= 8EXn.

for i ∈ {2, . . . ,N + 1}. Consequently,

sup
(a1,...,aN+1)∈(iii,β)

∣∣eN+1,2
(
μn, (a1, . . . , aN+1)

)− e2,2
(
μn, (a1, a1)

)∣∣
≤ 8NEXn = 8Ne−n2/8 −→ 0.

This completes the proof. �

Proof of Theorem 4.1. Let μn be the probability distribution of Xn defined in (4.12). If for some
N ≥ 2, (P2(R),QN,2) were complete, then there exists a probability measure μ̃ in P2(R) such
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that QN,2(μn, μ̃) −→ 0. Then, W2(μn, μ̃) −→ 0 by applying Proposition 4.2, which creates a
contradiction. �

Remark 4.1. The extension of this result to a Hilbert or simply multidimensional setting, al-
though likely, is not straightforward.

Appendix: Some examples of c(d, | · |r)

Proof of Proposition 2.4. (i) is obvious.
(ii) c(2, | · |1) = 2 is obvious (see Figure 1). Now we prove that c(2, | · |r ) = 3 for every

r ∈ (1,+∞).
We choose a1 = (0,1), a2 = ((1 − 2−r )

1
r ,− 1

2 ) and a3 = (−(1 − 2−r )
1
r ,− 1

2 ). We will first
show that S|·|r (0,1) ⊂ ⋃

1≤i≤3 B̄|·|r (ai,1).
Let (x, y) be any point on S|·|r (0,1), then |x|r + |y|r = 1.

• If 1
2 ≤ y ≤ 1, then (1−y)r ≤ yr so that |(x, y)−a1|rr = |x|r +(1−y)r = 1−yr +(1−y)r ≤

1, that is, (x, y) ∈ B̄|·|r (a1,1).
• If −1 ≤ y ≤ 1

2 and x ≥ 0, then

∣∣(x, y) − a2
∣∣r
r
= ∣∣x − (

1 − 2−r
) 1

r
∣∣r +

∣∣∣∣y + 1

2

∣∣∣∣r = ∣∣(1 − |y|r) 1
r − (

1 − 2−r
) 1

r
∣∣r +

∣∣∣∣y + 1

2

∣∣∣∣r
≤ ∣∣|y|r − 2−r

∣∣+ ∣∣∣∣y + 1

2

∣∣∣∣r ,

Figure 1. a1 = (− 1
2 , 1

2 ), a2 = ( 1
2 ,− 1

2 ),then S|·|1 (0,1) ⊂ ⋃
i=1,2 B̄|·|1(ai ,1).
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the last inequality is due to the fact that the function u �→ u− 1
r is 1

r
-Hölder. As r ≥ 1, the

function y �→ ||y|r − 2−r | + |y + 1
2 |r is convex over [−1, 1

2 ]. Consequently, it attains its
maximum either at −1 or at 1

2 . Hence, |(x, y) − a2|rr is upper bounded by 1 since

if y = −1,
∣∣|y|r − 2−r

∣∣+ ∣∣∣∣y + 1

2

∣∣∣∣r = 1 − 2−r + 2−r = 1,

if y = 1

2
,

∣∣|y|r − 2−r
∣∣+ ∣∣∣∣y + 1

2

∣∣∣∣r = ∣∣2−r − 2−r
∣∣+ 1r = 1.

This implies that (x, y) ∈ B̄|·|r (a2,1).
• If −1 ≤ y ≤ 1

2 and x ≤ 0, then (x, y) ∈ B̄|·|r (a3,1) by the symmetry of the unit sphere.

Next, we will show c(2, | · |r ) > 2 for every 1 < r < +∞. Let a1 and a2 denote the two centers
of balls on the sphere S|·|(0,1). Since the �r -ball is centrally symmetric with respect to (0,0),

we fix a1 = (x, y) such that x ∈ [( 1
2 )

1
r ,1], y ∈ [0, ( 1

2 )
1
r ] and xr + yr = 1.

• Case 1. We choose a2 such that a2 is centrally symmetric to a1 with respect to the center
(0,0), that is, a2 = (−x,−y).

We prove z1 = (y,−x) /∈ ⋃
i=1,2 B̄|·|r (ai,1) and z2 = (−y, x) /∈ ⋃

i=1,2 B̄|·|r (ai,1). In
fact, if y = 0, then |a1 − z1|r = |a2 − z1|r = 2 > 1. If y > 0, then

|a1 − z1|rr = |a2 − z1|rr = |a1 − z2|rr = |a2 − z2|rr = (x + y)r + (x − y)r

≥ (x + y)r > 1.

• Case 2. The point a2 is not centrally symmetric to a1.
Let Ha1 := {η = (η1, η2) ∈R

2 s.t. x · η2 = y · η1}, which is the straight line (with respect
to the Euclidean distance) across the origin and a1. Then between z1 and z2, there exists at
least one point which is not in the same side of Ha1 as a2, and this point can not be covered
by

⋃
i=1,2 B̄|·|r (ai,1).

Figure 2 illustrates that c(2, | · |r ) = 3 when r = 3.
(iii) Let a1 = (−1,0, . . . ,0) and a2 = (1,0, . . . ,0). We will show that S|·|∞(0,1) ⊂⋃
i=1,2 B̄|·|∞(ai,1).
Let x = (x1, . . . , xd) ∈ S|·|∞(0,1). There exists i0 such that max1≤i≤d |xi | ≤ |xi0 | = 1.

• If i0 = 1, and x1 = −1, then |x − a1|∞ = |x1 + 1| ∨ maxi={2,...,d} |xi | ≤ 1, that is, x ∈
B̄|·|∞(a1,1).

• If i0 = 1, and x1 = 1, then |x − a2|∞ = |x1 − 1| ∨ maxi={2,...,d} |xi | ≤ 1, that is, x ∈
B̄|·|∞(a2,1).

• If i0 ≥ 2, and x1 ≤ 0, then |x − a1|∞ = |x1 + 1| ∨ 1 ≤ 1, that is, x ∈ B̄|·|∞(a1,1).
• If i0 ≥ 2, and x1 ≥ 0, then |x − a2|∞ = |x1 − 1| ∨ 1 ≤ 1, that is, x ∈ B̄|·|∞(a2,1).

Consequently, we conclude that S|·|∞(0,1) ⊂ ⋃
i=1,2 B̄|·|∞(ai,1) and c(d, | · |∞) > 1 is obvious.

(iv) Let ai = (0, . . . ,1, . . . ,0) – the ith coordinate of ai is equal to 1 and the others equal to 0.
We will show that S|·|r (0,1) ⊂ ⋃d

i=1(B̄|·|r (ai,1) ∪ B̄|·|r (−ai,1)).
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Figure 2. c(2, | · |3) = 3.

For any x = (x1, . . . , xd) ∈ S|·|r (0,1), then there exists i0 ∈ {1, . . . , d} such that |xi0 | ≥ 1
2 .

Otherwise 1 = ∑
1≤i≤d |xi |r < d × 2−r ≤ 1, which yields a contradiction.

• If xi0 ≥ 1
2 , then |x − ai0 |r = (1 − xi0)r +∑

i �=i0
|xi |r = (1 − xi0)r + 1 − (xi0)r . As xi0 ≤ 1

2 ,

we have (1 − xi0)r − (xi0)r ≤ 0, so that |x − ai0 |r ≤ 1, which implies that x ∈ B̄|·|r (ai0,1).
• If xi0 ≤ − 1

2 , one can similarly prove that x ∈ B̄|·|r (−ai0,1).

Consequently, we can conclude that S|·|r (0,1) ⊂ ⋃d
i=1(B̄|·|r (ai,1) ∪ B̄|·|r (−ai,1)). �
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