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Stable processes conditioned to hit an
interval continuously from the outside
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Conditioning stable Lévy processes on zero probability events recently became a tractable subject since
several explicit formulas emerged from a deep analysis using the Lamperti transformations for self-similar
Markov processes. In this article, we derive new harmonic functions and use them to explain how to condi-
tion stable processes to hit continuously a compact interval from the outside.
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1. Introduction

We consider one-dimensional α-stable Lévy processes with scaling index α ∈ (0,2) killed on
entering the interval [−1,1]. In Döring et al. [8] the authors found a positive invariant function
(sometimes called positive harmonic function) for such killed processes, that is, a function h :
R \ [−1,1] → (0,∞) such that

E
x
[
1{t<T[−1,1]}h(ξt )

] = h(x), x /∈ [−1,1], t ≥ 0, (1)

where TB := inf{t ≥ 0 : ξt ∈ B} denotes the first hitting time of an open or closed set B . The
invariant function was used to condition the stable processes to avoid the interval and to relate
the conditioned processes to their h-transformed path measure:

E
x

[
1�1{t<T[−1,1]}

h(ξt )

h(x)

]
= lim

s→∞P
x(�|s + t < T[−1,1]), x /∈ [−1,1], t ≥ 0,

for � ∈ Ft , where (Ft )t≥0 is the natural enlargement of the filtration induced by ξ . As for other
processes conditioned to avoid sets the conditioned stable processes are transient. As a counter
part, the present article studies the question if stable processes can also be conditioned to hit the
interval continuously in finite time.

In recent years, the problem of conditioning processes to hit a given set B continuously has
attracted some attention. As an example, take a stable process of index smaller than 1 and a
singleton B = {0}. Moreover, denote ρ := P(ξ1 > 0) and ρ̂ := 1 − ρ. It was proved in Panti [15]
(in Kyprianou et al. [14] even for self-similar Markov processes) that

e : R \ {0} → (0,∞), x �→
{

sin(παρ̂)xα−1 if x > 0,

sin(παρ)|x|α−1 if x < 0,
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is excessive for the killed process, that is,

E
x
[
1{t<T{0}}e(ξt )

] ≤ e(x), x �= 0, t ≥ 0,

and the h-transform with e coincides with the stable process conditioned to hit 0 continuously.
Indeed, the authors showed that the killing time is finite almost surely and the left-limit at the
killing time is 0. Applications of the conditioned processes have been found for instance, in
the study of entrance and exit at infinity of stochastic differential equations driven by stable
processes, see Döring and Kyprianou [7].

In this article, we will derive (strictly) excessive functions for the stable process killed on
entering an interval, without loss of generality the interval [−1,1], that is, functions v : R \
[−1,1] → (0,∞) such that

E
x
[
1{t<T[−1,1]}v(ξt )

] ≤ v(x), x /∈ [−1,1], t ≥ 0. (2)

Unfortunately, the corresponding h-transformed process is not self-similar and hence, we can
not follow the strategy of [14] to show that this process hits the interval continuously. A second
example for a process conditioned to be absorbed by a set due to Chaumont [4] uses another
way of showing continuous absorption and it will turn out that this way is the right one in our
setting, too. Under some assumptions, the author conditioned a Lévy process to be continuously
absorbed by 0 from above, that is, to hit (−∞,0] continuously from the outside. The tool which
was used is again a Doob h-transform with an excessive function u : (0,∞) → (0,∞) which has
the additional condition that, for any compact K ⊆ (0,∞),

E
x
[
1{T

KC<T(−∞,0]}u(ξT
KC )

] = u(x), x /∈ [−1,1]. (3)

Such an excessive function is called harmonic. In Silverstein [18], it was shown that in Chau-
mont’s setting the role of u is played by the potential density of the dual ladder height process.
Considering the h-transformed process which we denote by (ξ,Px

u) and the killing time by ζ one
sees that

P
x
u(TKC < ζ) = E

x

[
1{T

KC<T(−∞,0]}
u(ξT

KC )

u(x)

]
= 1. (4)

This shows that the h-transformed process leaves all compact sets before it is killed. Chaumont
even went further and extended (4) to sets of the form K = [a,∞) which shows that the h-
transformed process hits any set of the form (0, a), a > 0, before killing, thus, absorption at 0 is
continuous.

Before presenting our results, we introduce the most important definitions. More details can
be found, for example, in Chung and Walsh [5], Bertoin [2], Kyprianou [11] or Sato [17].

Stable processes

We consider the canonical process ξ on the space of càdlàg paths equipped with the σ -algebra F
induced by the Skorohod topology. We denote by P

x the probability measure on the path space
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that makes ξ a stable process started from x ∈ R. Stable processes are Lévy processes that fulfill
the scaling property

(
(cξc−αt )t≥0,P

x
) (d)= (

(ξt )t≥0,P
cx

)
(5)

for all x ∈ R and c > 0, where α is the index of self-similarity. It turns out to be necessary that
α ∈ (0,2] with α = 2 corresponding to the Brownian motion. The continuity of sample paths
excludes the Brownian motion from our study so we restrict to α ∈ (0,2). As a Lévy process
stable processes are characterised entirely by the Lévy triplet. For α < 2, the linear and Brownian
part vanish and the Lévy measure is

	(dx) = 
(α + 1)

π

{
sin(παρ)

xα+1
1{x>0} + sin(παρ̂)

|x|α+1
1{x<0}

}
dx, x ∈R,

where ρ := P
0(ξ1 ≥ 0) is the positivity parameter. For α ∈ (0,1), we exclude the case ρ ∈ {0,1},

in which case ξ is (the negative of) a subordinator. For α ∈ (1,2) it is know that ρ ∈ [1/α,1 −
1/α] and we exclude the boundary cases ρ ∈ {1/α,1−1/α} in which case ξ has one-sided jumps.
For α = 1, we consider the symmetric Cauchy process excluding drift. The normalisation was
chosen so that the characteristic exponent satisfies

E
x
[
eiθ(ξ1−x)

] = e−|θ |α , θ ∈ R.

An important fact we will use for the parameter regimes is that the stable process exhibits (set)
transience and (set) recurrence according to whether α ∈ (0,1) or α ∈ [1,2). When α ∈ (1,2) the
notion of recurrence is even stronger in the sense that fixed points are hit with probability one.

Killed Lévy processes and h-transforms

The killed transition measures are defined as

p
[−1,1]
t (x,dy) = P

x(ξt ∈ dy, t < T[−1,1]), t ≥ 0.

The corresponding sub-Markov process is called the Lévy process killed in [−1,1]. An excessive
function for the killed process is a measurable function v : R\[−1,1] → [0,∞) such that

E
x
[
1{t<T[−1,1]}v(ξt )

] ≤ v(x), x ∈ R\[−1,1], t ≥ 0. (6)

An excessive function taking only strictly positive values is called a positive excessive function.
When v is a positive excessive function, the associated Doob h-transform is defined via the
change of measure

P
x
v(�, t < ζ) := E

x

[
1�1{t<T[−1,1]}

v(ξt )

v(x)

]
, x ∈R\[−1,1], (7)
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for � ∈ Ft , where ζ is the (possibly infinite) killing time of the process. From Chapter 11 of
Chung and Walsh [5], we know that under Px

v the canonical process is a strong Markov process
and that (7) extends from deterministic times to (Ft )t≥0-stopping times T ; that is,

P
x
v(�,T < ζ) = E

x

[
1�1{T <T[a,b]}

v(ξT )

v(x)

]
, x /∈ [−1,1], (8)

for � ∈FT . An excessive function v : R \ [−1,1] → (0,∞) which fulfills

E
x
[
1{T

KC<T[−1,1]}v(ξT
KC )

] = v(x), x /∈ [−1,1], (9)

for all compact K ⊆R \ [−1,1] is called a positive harmonic function.

Remark 1.1. The terminology of a harmonic function is not used consistently in the literature.
In many articles (also including [8]) the notion of a harmonic function coincides with the notion
of an invariant function in the sense of (1). Here, we will always use the notion of a harmonic
function for an excessive function which fulfills the additional condition (9). The crucial point on
positive harmonic functions in the sense of this article is that the h-transform leaves all compact
sets before being killed, see (4).

2. Main results

The main results of this article are two-fold. We first identify new harmonic functions (in the
sense of (9)) for the stable processes killed in the unit interval. From these harmonic functions,
we define h-transformed measures which we then identify as the limiting measures of suitable
conditionings that force the process to be absorbed at the boundary of the interval. The differ-
ent possible cases of absorption at the top or the bottom of the interval will be reflected in the
existence of different harmonic functions and their linear combinations.

2.1. Harmonic functions

In this first section, we identify two (minimal) harmonic functions. Let us define two functions
v1, v2 : R \ [−1,1] → (0,∞) by

v1(x) :=

⎧⎪⎪⎨
⎪⎪⎩

sin(παρ̂)

[
(x + 1)ψαρ(x) − (α − 1)+

∫ x

1
ψαρ(u)du

]
if x > 1,

sin(παρ)

[(|x| − 1
)
ψαρ̂

(|x|) − (α − 1)+
∫ |x|

1
ψαρ̂(u)du

]
if x < −1,

and

v−1(x) :=

⎧⎪⎪⎨
⎪⎪⎩

sin(παρ̂)

[
(x − 1)ψαρ(x) − (α − 1)+

∫ x

1
ψαρ(u)du

]
if x > 1,

sin(παρ)

[(|x| + 1
)
ψαρ̂

(|x|) − (α − 1)+
∫ |x|

1
ψαρ̂(u)du

]
if x < −1.
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The appearing auxiliary functions

ψαρ(x) = (x − 1)αρ̂−1(x + 1)αρ−1, x > 1,

already played a crucial rule to condition the stable processes to avoid an interval in [8]. For the
function ψαρ̂ the positivity parameter ρ is replaced by ρ̂, and vice versa.

Here is the main result of this section.

Theorem 2.1. Let ξ be a stable process with index α ∈ (0,2) which has jumps in both directions.
Then v1 and v−1 are harmonic functions for ξ killed on first hitting the interval [−1,1].

As described in the introduction a harmonic function is in particular excessive, hence, a new
measure can be defined as an h-transform with the harmonic function. In what follows, we will
denote the h-transforms with v1, v−1 and v := v1 + v−1 by P

x
v1

, Px
v−1

and P
x
v .

Remark 2.2. A natural question is to ask if the harmonic functions v1 and v−1 are unique, in the
sense that all harmonic functions are linear combinations of them. The answer to this question is
negative. In Döring et al. [8] the authors found an invariant function h for the process killed on
hitting [−1,1]. Furthermore, the corresponding h-transform is transient, which can be used to
show that h is also harmonic. Because h is not a linear combination of v1 and v−1, they are not
unique.

2.2. Stable processes absorbed from above (or below)

The purpose of this section is to analyse the h-transformed process (ξ,Px
v1

). Since all results for
(ξ,Px

v−1
) are analogous (replacing ρ and ρ̂) without loss of generality we only discuss (ξ,Px

v1
).

Two questions will be our main concern:

• Is the process killed in a finite time and, if so, what is the limiting behavior at the killing
time?

• How to characterize P
x
v1

through a limiting conditioning of Px?

The first question can be answered for all α simultaneously using properties of the explicit form
of v1:

Proposition 2.3. Let ξ be an α-stable process with α ∈ (0,2) and two sided jumps, then

P
x
v1

(ζ < ∞, ξζ− = 1) = 1, x /∈ [−1,1].

To answer the second question, we need to distinguish the recurrent and the transient cases:

The case α < 1

The probability that ξ never hits the interval [−1,1] is positive because the stable process is
transient. To condition ξ to be absorbed by [−1,1] from above without hitting the interval we first
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condition on {T[−1,1] = ∞} and then on some event which describes the absorption from above.
The most plausible event is T(1,1+ε) being finite for small ε > 0. Another possibility refers to the
so-called point of closest reach. Let therefore m be the time such that |ξm| ≤ |ξt | for all t ≥ 0.
Then ξm is called the point of closest reach of 0. The polarity of points for α < 1 implies ξm �= 0
almost surely under Px for all starting points x �= 0. With these definitions one could also think
of conditioning on the event {ξm ∈ (1,1 + ε)} which is contained in {T[−1,1] = ∞, T(1,1+ε) < ∞}
and, indeed, this is the right choice.

The case α ≥ 1

The first hitting time T[−1,1] is finite almost surely, hence, a different conditioning is needed.
Since T(−1−ε,1+ε) is finite as well the good conditioning is to condition ξT(−1−ε,1+ε)

to be in (1,1+
ε) and then let ε tend to 0.

The techniques we use for the conditioning center around the recent results on the so-called
deep factorisation of stable processes, see, for example, Kyprianou [10] and Kyprianou et al. [13]
and hitting distributions of stable processes, see Kyprianou et al. [12]. In particular, results on the
distribution of the point of closest reach in the case α < 1 and the distribution of the first hitting
time of the interval (−1,1) in the case α ≥ 1 are the keys to prove our results.

We come to the first characterisation of the h-transform P
x
v1

as the process conditioned to be
absorbed by [−1,1] from above in a meaningful way.

Theorem 2.4. Let ξ be an α-stable process with α ∈ (0,1) and two sided jumps. Then it holds,
for all x /∈ [−1,1] and � ∈Ft , that

P
x
v1

(�, t < ζ) = lim
δ↘0

lim
ε↘0

P
x
(
�, t < T(−(1+δ),1+δ)|ξm ∈ (1,1 + ε)

)
.

In fact, we prove a slightly more general statement which has precisely the form of a self-
similar Markov process conditioned to be absorbed at the origin in Kyprianou et al. [14] and a
Lévy process conditioned to be absorbed at the origin from above in Chaumont [4]:

P
x
v1

(�, t < T(−(1+δ),1+δ)) = lim
ε↘0

P
x
(
�, t < T(−(1+δ),1+δ)|ξm ∈ (1,1 + ε)

)
(10)

for all δ > 0.
In the case α ≥ 1 the h-transform belongs to a different conditioned process.

Theorem 2.5. Let ξ be an α-stable process with α ∈ [1,2) and two sided jumps. Then it holds,
for all x /∈ [−1,1] and � ∈Ft , that

P
x
v1

(�, t < ζ) = lim
δ↘0

lim
ε↘0

P
x
(
�, t < T(−(1+δ),1+δ)|ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)
.

With this result, we can interpret the h-transformed process as the original process conditioned
to approach the interval [−1,1] continuously from above.
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For α > 1, we can even find a second characterisation of Px
v1

as conditioned process. We need
to introduce the stable process conditioned to avoid 0 (see, e.g., Pantí [15] or Yano [19] for
general Lévy processes). For this sake define e : R \ {0} → (0,∞) via

e(x) =
{

sin(παρ̂)xα−1 if x > 0,

sin(παρ)|x|α−1 if x < 0,

which is known to be a positive invariant function for the process killed on hitting 0 when α > 1.
Denote the underlying h-transform by P

x◦ , that is,

P
x◦(�) = E

x

[
1{t<T{0}}

e(ξt )

e(x)

]
, x �= 0,� ∈Ft ,

which can be shown to correspond to conditioning the stable process to avoid the origin. We can
use P

x◦ to give a conditioning analogously to the case α < 1 also in the case α > 1. But here the
conditioning does not refer to the original process but to the process conditioned to avoid 0.

Theorem 2.6. Let ξ be an α-stable process with α ∈ (1,2) and two sided jumps. Then it holds,
for all x /∈ [−1,1] and � ∈ Ft , that

P
x
v1

(�, t < ζ) = lim
δ↘0

lim
ε↘0

P
x◦
(
�, t < T(−(1+δ),1+δ)|ξm ∈ (1,1 + ε)

)
.

It is quite remarkable to compare Theorem 2.6 and Theorem 2.4. Since conditioning to avoid
a point has no effect for α < 1 both theorems coincide. First condition to avoid the origin (trivial
for α < 1) then condition to approach 1 from above yields Px

v1
. The case α = 1 differs from α �= 1

in this respect because 0 is polar and the conditioning to approach the interval from above is not
well-defined because ξm = 0 almost surely.

2.3. Stable processes absorbed without restrictions

In this section, we want to analyse the h-transforms (ξ,Px
v) with v = v1 + v−1. The two main

aspects are the same as in Section 2.2. First, we want to analyse the behaviour of the paths of
(ξ,Px

v) at the killing time, if it is finite. Second, we give characterisations of the h-transformed
process as the original process conditioned on similar events as in Section 2.2.

In the case, α < 1 this works as one would expect, namely the h-transform using v corresponds
to the process conditioned on {|ξm| ∈ (1,1 + ε)} for ε tending to 0. For α ≥ 1, we won’t find
a representation (ξ,Px

v) as a conditioned process. Nonetheless we can show that the process
conditioned to be absorbed by [−1,1] without any restrictions on the side of the interval of
which it is absorbed, equals (ξ,Px

v1
) or (ξ,Px

v−1
) depending on some relation on ρ. This means

that the process conditioned to be absorbed without any restrictions coincides with one of the
processes conditioned to be absorbed from one side.
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Here is the result on the behaviour at the killing time.

Proposition 2.7. Let ξ be an α-stable process with α ∈ (0,2) and two sided jumps, then

P
x
v

(
ζ < ∞, |ξζ−| = 1

) = 1, x /∈ [−1,1].

As before, we want to connect the h-transformed process to some conditioned process. Again
we have to separate the cases α < 1 and α ≥ 1 and for α > 1 we give an alternative conditioned
process. The event we condition on is bigger than in Section 2.2 in all cases.

We start with the asymptotic in the case α < 1 and the characterisation of (ξ,Px
v) as condi-

tioned process as one would expect with the knowledge of Theorem 2.4.

Theorem 2.8. Let ξ be an α-stable process with α ∈ (0,1) and two sided jumps. Then it holds,
for all x /∈ [−1,1] and � ∈Ft , that

P
x
v(�, t < ζ) = lim

δ↘0
lim
ε↘0

P
x
(
�, t < T(−(1+δ),1+δ)||ξm| ∈ (1,1 + ε)

)
.

As we already mentioned, in the case α ≥ 1 the process conditioned to be absorbed by the
interval without restriction on the side of absorption is the same as the process conditioned to be
absorbed from one side, the side depending on ρ.

Theorem 2.9. Let ξ be an α-stable process with α ∈ [1,2) and two sided jumps. Then it holds,
for all x /∈ [−1,1] and � ∈Ft , that

lim
δ↘0

lim
ε↘0

P
x
(
�, t < T(−(1+δ),1+δ)|ξT(−(1+ε),1+ε)

/∈ [−1,1])

=

⎧⎪⎨
⎪⎩
P

x
v1

(�, t < ζ) if ρ ≤ 1

2
,

P
x
v−1

(�, t < ζ) if ρ >
1

2
.

We conclude with the alternative characterisation for the h-transform for α > 1. Again the
conditioning refers to the stable process conditioned to avoid 0 and the event we condition on is
the same as in the case α < 1.

Theorem 2.10. Let ξ be an α-stable process with α ∈ (1,2) and two sided jumps. Then it holds,
for all x /∈ [−1,1] and � ∈Ft , that

P
x
v(�, t < ζ) = lim

δ↘0
lim
ε↘0

P
x◦
(
�, t < T(−(1+δ),1+δ)||ξm| ∈ (1,1 + ε)

)
.
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3. Proofs

3.1. Harmonic functions

In this section, we prove Theorem 2.1. First, we give an idea how to extract the right harmonic
functions. The potential measure of ξ killed when it enters [−1,1] is defined as

U[−1,1](x,dy) := E
x

[∫ T[−1,1]

0
1{ξt∈dy} dt

]
, x, y /∈ [−1,1].

It is known that the potential measure has a density with respect to the Lebesgue measure (also
known as Green’s function), that is,

U[−1,1](x,dy) = u[−1,1](x, y)dy,

where u[−1,1] : (R \ [−1,1])2 → [0,∞) is explicitly known from Profeta and Simon [16]. More-
over, Kunita and Watanabe [9] showed that x �→ u[−1,1](x, y) is harmonic for all y /∈ [−1,1]
and, heuristically speaking, the corresponding h-transform should be the process conditioned to
be absorbed by y. Since our aim is to condition the process to be absorbed at 1 we will consider
the limit when y tends to 1. But from the formulas of [16], we see immediately that u[−1,1](x, y)

converges to 0 for y tending to 1. So there are two difficulties. The first one is that we need to
renormalise u[−1,1](x, y) such that it converges pointwise for y ↘ 1 to some function in x and
second we need to argue why in this case the limit of the (scaled) harmonic function is harmonic
again.

To abbreviate, we denote

cαρ := 2αρ παρ
(αρ)


(1 − αρ̂)
and cαρ̂ := 2αρ̂ παρ̂
(αρ̂)


(1 − αρ)
.

The first auxiliary result establishes a pointwise connection between v1 and the potential density
u[−1,1] which will be very important for the proof of harmonicity of v1. From Profeta and Simon
[16], we know that y �→ u[−1,1](x, y) has a pole in x (for α < 1) but is also integrable at x.
Hence, defining u[−1,1](x, x) := 0 does not change anything for the potential of the process
killed on entering [−1,1].

Lemma 3.1. Whenever x > y > 1 or x < −1, y > 1, it holds that

v1(x) = 2αρ̂−1cαρ

u[−1,1](x, y)

g(y)

− (
sin(παρ̂)1{x>1} + sin(παρ)1{x<−1}

)
× (1 − αρ̂)|x − y|α−1

g(y)

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du
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+ (α − 1)+
(

sin(παρ̂)1{x>1}
∫ x

1
ψαρ(u)du + sin(παρ)1{x<−1}

∫ |x|

1
ψαρ̂(u)du

)

×
(

αρ

g(y)

∫ y

1
ψαρ̂(u)du − 1

)
,

where g(y) = (y − 1)αρ(y + 1)αρ̂−1 = (y − 1)ψαρ̂(y).

Proof. We use the explicit expression for u[−1,1](x, y) from Profeta and Simon [16], where the
expression

z(x, y)=
|xy − 1|
|x − y| , x, y /∈ [−1,1], x �= y,

appears frequently. Before we start, we note that

z(x, y) − 1 =

⎧⎪⎨
⎪⎩

(x + 1)(y − 1)

x − y
if x > y > 1,

(|x| − 1)(y − 1)

y − x
if x < −1, y > 1,

and

z(x, y) + 1 =

⎧⎪⎨
⎪⎩

(x − 1)(y + 1)

x − y
if x > y > 1,

(|x| + 1)(y + 1)

y − x
if x < −1, y > 1.

Furthermore, with integration by parts we get

∫ z(x,y)

1
ψαρ(u)du

=
∫ z(x,y)

1
(u − 1)αρ̂−1(u + 1)αρ−1 du

= 1

αρ̂

[
(u − 1)αρ̂(u + 1)αρ−1]z(x,y)

1 − αρ − 1

αρ̂

∫ z(x,y)

1
(u − 1)αρ̂(u + 1)αρ−2 du

= 1

αρ̂

((
z(x, y) − 1

)αρ̂(
z(x, y) + 1

)αρ−1) + 1 − αρ

αρ̂

∫ z(x,y)

1
(u − 1)αρ̂(u + 1)αρ−2 du

and analogously

∫ z(x,y)

1
ψαρ̂(u)du

= 1

αρ

((
z(x, y) − 1

)αρ(
z(x, y) + 1

)αρ̂−1) + 1 − αρ̂

αρ

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du.
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We use the explicit form for u[−1,1](x, y) given in [16] and plug in to see, for x > y > 1,


(αρ)
(αρ̂)

21−α
u[−1,1](x, y)

= (x − y)α−1
∫ z(x,y)

1
ψαρ̂(u)du − (α − 1)+

∫ y

1
ψαρ̂(u)du

∫ x

1
ψαρ(v)dv

= (x − y)α−1

αρ

(
z(x, y) − 1

)αρ(
z(x, y) + 1

)αρ̂−1

+ (1 − αρ̂)(x − y)α−1

αρ

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

− (α − 1)+
∫ y

1
ψαρ̂(u)du

∫ x

1
ψαρ(u)du

= 1

αρ

(
(x + 1)(y − 1)

)αρ(
(x − 1)(y + 1)

)αρ̂−1

+ (1 − αρ̂)(x − y)α−1

αρ

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

− (α − 1)+
∫ y

1
ψαρ̂(u)du

∫ x

1
ψαρ(u)du

= 1

αρ
(y − 1)αρ(y + 1)αρ̂−1

(
1

sin(παρ̂)
v1(x) + (α − 1)+

∫ x

1
ψαρ(u)du

)

+ (1 − αρ̂)(x − y)α−1

αρ

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

− (α − 1)+
∫ y

1
ψαρ̂(u)du

∫ x

1
ψαρ(u)du.

Solving the equation with respect to v1 and using sin(παρ̂) = π

(αρ̂)
(1−αρ̂)

yields the claim for
x > y > 1. For x < −1, y > 1, we get similarly:

sin(παρ̂)

sin(παρ)


(αρ)
(αρ̂)

21−α
u[−1,1](x, y)

= (y − x)α−1
∫ z(x,y)

1
ψαρ̂(u)du − (α − 1)+

∫ y

1
ψαρ̂(u)du

∫ |x|

1
ψαρ̂(u)du

= (y − x)α−1

αρ

(
z(x, y) − 1

)αρ(
z(x, y) + 1

)αρ̂−1

+ (1 − αρ̂)(y − x)α−1

αρ

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du
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− (α − 1)+
∫ y

1
ψαρ̂(u)du

∫ |x|

1
ψαρ̂(u)du

= 1

αρ

((|x| − 1
)
(y − 1)

)αρ((|x| + 1
)
(y + 1)

)αρ̂−1

+ (1 − αρ̂)(y − x)α−1

αρ

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

− (α − 1)+
∫ y

1
ψαρ̂(u)du

∫ |x|

1
ψαρ̂(u)du

= 1

αρ
(y − 1)αρ(y + 1)αρ̂−1

(
1

sin(παρ)
v1(x) + (α − 1)+

∫ |x|

1
ψαρ̂(u)du

)

+ (1 − αρ̂)(x − y)α−1

αρ

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

− (α − 1)+
∫ y

1
ψαρ̂(u)du

∫ |x|

1
ψαρ̂(u)du.

Again, solving with respect to v1(x) leads to the claim. �

Corollary 3.2. It holds that

v1(x) = cαρ lim
y↘1

u[−1,1](x, y)

(y − 1)αρ
, x ∈ R \ [−1,1].

Proof. We consider the expression from Lemma 3.1 and let y tend to 1 from above. It is sufficient
to show that

−(
sin(παρ̂)1{x>1} + sin(παρ)1{x<−1}

)
× (1 − αρ̂)|x − y|α−1

g(y)

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

+ (α − 1)+
(

sin(παρ̂)1{x>1}
∫ x

1
ψαρ(u)du + sin(παρ)1{x<−1}

∫ |x|

1
ψαρ̂(u)du

)

×
(

αρ

g(y)

∫ y

1
ψαρ̂(u)du − 1

)

converges to 0 for y ↘ 1. For that it is of course sufficient to show that

1

g(y)

∫ z(x,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du and

αρ

g(y)

∫ y

1
ψαρ̂(u)du − 1

converge to 0 for y ↘ 1. Both claims can be seen readily with l’Hopital’s rule. �
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Now we prove harmonicity of v1.

Proof of Theorem 2.1. To show excessiveness, we define the measure

η(dx) := v1(x)dx on R \ [−1,1].
We will show that η is an excessive measure for the dual process killed on entering the interval,
that is, η is σ -finite and it holds that∫

R\[−1,1]
P̂

x(ξt ∈ A, t < T[−1,1])η(dx) ≤ η(A),

for all A ∈ B(R \ [−1,1]) and t ≥ 0. From Theorem XII.71 of Dellacherie and Meyer [6], it is
known that if an excessive measure has a density with respect to the duality measure (which is
the Lebesgue measure also for killed Lévy processes, see Bertoin [2], Theorem II.5), then this
density is an excessive function for the dual process killed on hitting [−1,1]. Hence, by showing
that η is an excessive measure for the dual process killed on hitting [−1,1], it follows that v1 is
an excessive function for the original process killed on entering the interval.

To show that η is excessive for the dual process, first note that η is σ -finite because v1 is
continuous on R \ [−1,1]. Next, for the dual process, we note that

Û[−1,1](y,dx) = u[−1,1](x, y)dx, x, y ∈R \ [−1,1],

where Û[−1,1] is the potential of the dual process killed on entering [−1,1] (see Theorem XII.72
of Dellacherie and Meyer [6] for a general Markov process). Let A ∈ B(R \ [−1,1]) be compact,
use Corollary 3.2 in the first equation and Fatou’s lemma in the second one:

1

cαρ

∫
R\[−1,1]

P̂
x(ξt ∈ A, t < T[−1,1])η(dx)

=
∫
R\[−1,1]

P̂
x(ξt ∈ A, t < T[−1,1]) lim

y↘1

u[−1,1](x, y)

(y − 1)αρ
dx

≤ lim inf
y↘1

1

(y − 1)αρ

∫
R\[−1,1]

P̂
x(ξt ∈ A, t < T[−1,1])u[−1,1](x, y)dx

≤ lim inf
y↘1

1

(y − 1)αρ

∫
R\[−1,1]

P̂
x(ξt ∈ A, t < T[−1,1])Û[−1,1](y,dx)

= lim inf
y↘1

1

(y − 1)αρ

∫ ∞

0

(∫
R\[−1,1]

P̂
x(ξt ∈ A, t < T[−1,1])P̂y(ξs ∈ dx, s < T[−1,1])

)
ds

= lim inf
y↘1

1

(y − 1)αρ

∫ ∞

0
P̂

y(ξt+s ∈ A, t + s < T[−1,1])ds

= lim inf
y↘1

1

(y − 1)αρ

∫ ∞

t

P̂
y(ξs ∈ A, s < T[−1,1])ds
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≤ lim inf
y↘1

1

(y − 1)αρ

∫ ∞

0
P̂

y(ξs ∈ A, s < T[−1,1])ds

≤ lim inf
y↘1

1

(y − 1)αρ

∫
A

û[−1,1](y, x)dx

≤ lim inf
y↘1

∫
A

u[−1,1](x, y)

(y − 1)αρ
dx.

From Corollary 3.2, we know that (u[−1,1](x, y))/((y − 1)αρ) converges for y ↘ 1 for all x ∈
R \ [−1,1], in particular the function y �→ (u[−1,1](x, y))/((y − 1)αρ) is bounded on (1, ε) with
ε < infA∩ (1,∞) for all x ∈ A. But since A is compact (u[−1,1](x, y))/((y − 1)αρ) is uniformly
bounded for x ∈ A. Hence, we can apply dominated convergence to deduce:

1

cαρ

∫
R\[−1,1]

P̂
x(ξt ∈ A)η(dx) ≤

∫
A

lim
y↘1

u[−1,1](x, y)

(y − 1)αρ
dx

= 1

cαρ

∫
A

v1(x)dx

= 1

cαρ

η(A).

Hence, we proved that η is an excessive measure and as mentioned above it follows with Theorem
XII.71 of [6] that v1 is an excessive function.

Now we show the characterising property of harmonicty, that is,

E
x
[
1{T

KC<T[−1,1]}v1(ξT
KC )

] = v1(x), x ∈ R \ [−1,1],

for all K ⊆ R \ [−1,1] which are compact in R \ [−1,1]. If x ∈ KC = (R \ [−1,1]) \ K the
claim is clear. So we assume x ∈ K . The idea is to use the connection between v1 and u[−1,1]
from Lemma 3.1 and Proposition 6.2 (ii) of Kunita and Watanabe [9]. The second tells us that
x �→ u[−1,1](x, y) is harmonic on (R \ [−1,1]) \ {y} for all y ∈R \ [−1,1], that is,

E
x
[
1{T

KC<T[−1,1]}u[−1,1](ξT
KC , y)

] = u[−1,1](x, y), x, y ∈R \ [−1,1], x �= y,

for all K ⊆R \ [−1,1] which are compact in R \ [−1,1] \ {y}.
Let us fix x /∈ [−1,1] and since y tends to 1 we can assume x �= y and y /∈ K . We use monotone

convergence twice and plug in the result of Lemma 3.1:

E
x
[
1{T

KC<T[−1,1]}v1(ξT
KC )

]
= lim

ε↘0
E

x
[
1{ξT

KC >1+ε or ξT
KC <−1}v1(ξT

KC )
]

= lim
ε↘0

lim
y↘1

E
x
[
1{ξT

KC >y+ε or ξT
KC <−1}v1(ξT

KC )
]

= lim
ε↘0

lim
y↘1

2αρ̂−1cαρ

g(y)
E

x
[
1{ξT

KC >y+ε or ξT
KC <−1}u[−1,1](ξT

KC , y)
]
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− lim
ε↘0

lim
y↘1

E
x

[(
sin(παρ̂)1{ξT

KC >y+ε} + sin(παρ)1{ξT
KC <−1}

)

× (1 − αρ̂)|ξT
KC − y|α−1

g(y)

∫ z(ξT
KC ,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

]

+ lim
ε↘0

lim
y↘1

(α − 1)+
(

αρ

g(y)

∫ y

1
ψαρ̂(u)du − 1

)

×E
x

[
sin(παρ̂)1{ξT

KC >y+ε}
∫ ξT

KC

1
ψαρ(u)du

+ sin(παρ)1{ξT
KC <−1}

∫ |ξT
KC |

1
ψαρ̂(u)du

]
(11)

We care about these three summands separately. We start with the last one which just appears
if α > 1. From the proof of Corollary 3.2, we already know that

αρ

g(y)

∫ y

1
ψαρ̂(u)du − 1

converges to 0 for y ↘ 0. Furthermore, we get with monotone convergence:

lim
ε↘0

lim
y↘1

E
x

[
sin(παρ̂)1{ξT

KC >y+ε}
∫ ξT

KC

1
ψαρ(u)du

+ sin(παρ)1{ξT
KC <−1}

∫ |ξT
KC |

1
ψαρ̂(u)du

]

= E
x

[
sin(παρ̂)1{ξT

KC >1}
∫ ξT

KC

1
ψαρ(u)du + sin(παρ)1{ξT

KC <−1}
∫ |ξT

KC |

1
ψαρ̂(u)du

]

= π


(1 − αρ)
(1 − αρ̂)
E

x
[
1{T

KC<T[−1,1]}h(ξT
KC )

]
,

where h is the invariant function which appears in Döring et al. [8]. But since the h-transformed
process with this invariant function is transient with infinite lifetime (see Theorem 1.3 in that
article) it leaves all compact sets almost surely. Hence, we have

E
x

[
1{T

KC<T[−1,1]}
h(ξT

KC )

h(x)

]
= P

x
h(TKC < ζ)

= P
x
h(TKC < ∞)

= 1,

thus, Ex[1{T
KC<T[−1,1]}h(ξT

KC )] = h(x) < ∞. It follows that the third term of (11) is 0. So it
remains to consider the first and the second sumand of (11). With Proposition 6.2 (ii) of Kunita
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and Watanabe [9] and Corollary 3.2, we see for the first term:

lim
ε↘0

lim
y↘1

2αρ̂−1cαρ

g(y)
E

x
[
1{T

KC<T[−1,1]}1{ξT
KC >y+ε or ξT

KC <−1}u[−1,1](ξT
KC , y)

]

= lim
y↘1

2αρ̂−1cαρ

g(y)
E

x
[
1{T

KC<T[−1,1]}u[−1,1](ξT
KC , y)

]

− lim
ε↘0

lim
y↘1

2αρ̂−1cαρ

g(y)
E

x
[
1{T

KC<T[−1,1]}1{ξT
KC ∈(1,y+ε)}u[−1,1](ξT

KC , y)
]

= lim
y↘1

2αρ̂−1cαρ

g(y)
u[−1,1](x, y)

− lim
ε↘0

lim
y↘1

2αρ̂−1cαρ

g(y)
E

x
[
1{T

KC<T[−1,1]}1{ξT
KC ∈(1,y+ε)}u[−1,1](ξT

KC , y)
]

= v1(x) − lim
ε↘0

lim
y↘1

2αρ̂−1cαρ

g(y)
E

x
[
1{T

KC<T[−1,1]}1{ξT
KC ∈(1,y+ε)}u[−1,1](ξT

KC , y)
]
.

Hence, to prove harmonicity of v1 it suffices to show

lim
y↘1

E
x

[
1{T

KC<T[−1,1],|ξT
KC −y|>ε}

|ξT
KC − y|α−1

g(y)

∫ z(ξT
KC ,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

]

= 0 (12)

for all ε > 0 and

lim
ε↘0

lim
y↘1

1

g(y)
E

x
[
1{T

KC<T[−1,1]}1{ξT
KC ∈(1,y+ε)}u[−1,1](ξT

KC , y)
] = 0. (13)

We start with (12). First, we note that

∫ z(ξT
KC ,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du ≤ (

z(ξT
KC , y) − 1

)αρ
∫ z(ξT

KC ,y)

1
(u + 1)αρ̂−2 du

≤ C1
(
z(ξT

KC , y) − 1
)αρ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1
(ξT

KC + 1)αρ(y − 1)αρ

|ξT
KC − y|αρ

if ξT
KC > y + ε

C1
(|ξT

KC | − 1)αρ(y − 1)αρ

|ξT
KC − y|αρ

if ξT
KC < −1

≤ C1
(|ξT

KC | + 1)αρ(y − 1)αρ

|ξT
KC − y|αρ

, (14)
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where C1 = ∫ ∞
1 (u + 1)αρ̂−2 du < ∞. With that we get on {|ξT

KC − y| > ε} (without loss of
generality we assume y < 2):

|ξT
KC − y|α−1

g(y)

∫ z(ξT
KC ,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

≤ C1
|ξT

KC − y|α−1

g(y)

(|ξT
KC | + 1)αρ(y − 1)αρ

|ξT
KC − y|αρ

= C1|ξT
KC − y|αρ̂−1(|ξT

KC | + 1
)αρ

(y + 1)1−αρ̂

≤ C1|ξT
KC − y|αρ̂−1(|ξT

KC − y|αρ + (y + 1)αρ
)
(y + 1)1−αρ̂

= C1(y + 1)1−αρ̂
(|ξT

KC − y|α−1 + |ξT
KC − y|αρ̂−1(y + 1)αρ

)
≤ C131−αρ̂

(
εα−1 + 3αρεαρ̂−1)

≤ C131+αρ−αρ̂
(
εα−1 + εαρ̂−1)

=: Cε.

Hence, we can use dominated convergence to switch the y-limit and the expectation in (12).
The following calculation on {|ξT

KC − y| > ε} shows that the integrand converges pointwise to 0
which shows (12):

|ξT
KC − y|α−1

g(y)

∫ z(ξT
KC ,y)

1
(u − 1)αρ(u + 1)αρ̂−2 du

≤ 2αρ̂−2
|ξT

KC − y|α−1

g(y)

∫ z(ξT
KC ,y)

1
(u − 1)αρ du

= 2αρ̂−2

αρ + 1

|ξT
KC − y|α−1

g(y)

(
z(ξT

KC , y) − 1
)αρ+1

≤ 2αρ̂−2

αρ + 1

|ξT
KC − y|α−1

(y − 1)αρ(y + 1)αρ̂−1

(|ξT
KC | + 1)αρ+1(y − 1)αρ+1

|ξT
KC − y|αρ+1

= 2αρ̂−2

αρ + 1
(|ξT

KC − y|αρ̂−2(|ξT
KC | + 1

)αρ+1
(y − 1)(y + 1)1−αρ̂

y↘1−→ 0

where we used the same estimate for z(ξT
KC , y) − 1 as in (14). This shows (12).

Now we show (13). We define a = min(inf(K ∩ (1,∞),− sup(K ∩ (−∞,−1)). Since y tends
to 1 and ε to 0, we can assume a > y + ε. It follows that ξT

KC ∈ (1, y + ε) is just possible if
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TKC = T(−a,a). So we have

E
x
[
1{T

KC<T[−1,1]}1{ξT
KC ∈(1,y+ε)}u[−1,1](ξT

KC , y)
]

≤ E
x
[
1{ξT(−a,a)

∈(1,y+ε),T(−a,a)<∞}u[−1,1](ξT(−a,a)
, y)

]
.

Further ξT(−a,a)
= y happens with zero probability and with this follows

E
x
[
1{ξT(−a,a)

∈(1,y+ε),T(−a,a)<∞}u[−1,1](ξT(−a,a)
, y)

]
= E

x
[
1{ξT(−a,a)

∈(1,y),T(−a,a)<∞}u[−1,1](ξT(−a,a)
, y)

]
+E

x
[
1{ξT(−a,a)

∈(y,ε),T(−a,a)<∞}u[−1,1](ξT(−a,a)
, y)

]
.

With the formulas for u[−1,1] of Profeta and Simon [16], we get for ξT(−a,a)
∈ (1, y):

u[−1,1](ξT(−a,a)
, y) ≤ 21−α


(αρ)
(αρ̂)
(y − ξT(−a,a)

)α−1
∫ z(ξT(−a,a)

,y)

1
(u − 1)αρ̂−1(u + 1)αρ−1 du

≤ 2−αρ̂

αρ̂
(αρ)
(αρ̂)
(y − ξT(−a,a)

)α−1(z(ξT(−a,a)
, y) − 1

)αρ̂

≤ 2−αρ̂

αρ̂
(αρ)
(αρ̂)
(y − ξT(−a,a)

)α−1
(

(ξT(−a,a)
− 1)(y + 1)

y − ξT(−a,a)

)αρ̂

= 1

αρ̂
(αρ)
(αρ̂)
(y − ξT(−a,a)

)αρ−1(ξT(−a,a)
− 1)αρ̂

≤ 1

αρ̂
(αρ)
(αρ̂)
(y − ξT(−a,a)

)αρ−1(y − 1)αρ̂ .

It follows for x > a with Theorem 1.1 of Kyprianou et al. [12] and the scaling property:

E
x
[
1{ξT(−a,a)

∈(1,y),T(−a,a)<∞}u[−1,1](ξT(−a,a)
, y)

]
≤ 1


(αρ)
(αρ̂)
(y − 1)αρ̂

E
x
[
1{ξT(−a,a)

∈(1,y),T(−a,a)<∞}(y − ξT(−a,a)
)αρ−1]

≤ sin(παρ̂)

π
(αρ)
(αρ̂)
(x + a)αρ(x − a)αρ̂(y − 1)αρ̂

∫
(1,y)

(y − u)αρ−1

(a + u)αρ(a − u)αρ̂(x − u)
du

≤ a sin(παρ̂)

π
(αρ)
(αρ̂)

(x + a)αρ(x − a)αρ̂

(a + 1)αρ(a − y)αρ̂(x − y)
(y − 1)αρ̂

∫
(1,y)

(y − u)αρ−1 du

= a sin(παρ̂)

παρ
(αρ)
(αρ̂)

(x + a)αρ(x − a)αρ̂

(a + 1)αρ(a − y)αρ̂(x − y)
(y − 1)αρ̂(y − 1)αρ.
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With this estimate, we see immediately

lim
y↘1

1

(y − 1)αρ
E

x
[
1{ξT(−a,a)

∈(1,y)}u[−1,1](ξT(−a,a)
, y)

] = 0

for x > 1. For x < −1, we use Theorem 1.1 of Kyprianou et al. [12] in a similar way to deduce the
analogous claim. Similarly we get for ξT(−a,a)

∈ (y, y + ε) (without loss of generality y + ε < 2):

u[−1,1](ξT(−a,a)
, y) ≤ 21−α


(αρ)
(αρ̂)
(ξT(−a,a)

− y)α−1
∫ z(ξT

KC ,y)

1
(u − 1)αρ−1(u + 1)αρ̂−1 du

≤ 2−αρ

αρ
(αρ)
(αρ̂)
(ξT(−a,a)

− y)α−1(z(ξT(−a,a)
, y) − 1

)αρ

= 2−αρ

αρ
(αρ)
(αρ̂)
(ξT(−a,a)

− y)αρ̂−1(ξT(−a,a)
+ 1)αρ(y − 1)αρ

≤ 2−αρ3αρ

αρ
(αρ)
(αρ̂)
(y − 1)αρ(ξT(−a,a)

− y)αρ̂−1.

Define C2 := 2−αρ3αρ

αρ
(αρ)
(αρ̂)
and we get again with Theorem 1.1 of [12] for x > 1

E
x
[
1{ξT(−a,a)

∈(y,y+ε),T(−a,a)<∞}u[−1,1](ξT(−a,a)
, y)

]
≤ C2(y − 1)αρ

E
x
[
1{ξT(−a,a)

∈(y,y+ε),T(−a,a)<∞}(ξT(−a,a)
− y)αρ̂−1]

≤ C2a sin(παρ̂)

π
(x + a)αρ(x − a)αρ̂(y − 1)αρ

∫
(y,y+ε)

(u − y)αρ̂−1

(a + u)αρ(a − u)αρ̂(x − u)
du

≤ C2a sin(παρ̂)

π

(x + a)αρ(x − a)αρ̂(y − 1)αρ

(a + y)αρ(a − (y + ε))αρ̂(x − (y + ε))

∫
(y,y+ε)

(u − y)αρ̂−1 du

= C2a sin(παρ̂)

π

(x + a)αρ(x − a)αρ̂

(a + y)αρ(a − (y + ε))αρ̂(x − (y + ε))

(y − 1)αρεαρ̂

αρ̂
.

So we have:

lim
ε↘0

lim
y↘1

1

(y − 1)αρ
E

x
[
1{T

KC<T[−1,1]}1{ξT
KC ∈(1,y+ε)}u[−1,1](ξT

KC , y)
]

≤ C2 sin(παρ̂)

παρ̂
lim
ε↘0

lim
y↘1

[
(x + a)αρ(x − a)αρ̂

(a + y)αρ(a − (y + ε))αρ̂(x − (y + ε))
εαρ̂

]

= 0.

The claim for x < −1 follows again similarly. This shows (13) and hence, we have harmonicity
of v1. �
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Remark 3.3. If α ≤ 1, another (maybe more elegant) way of proving harmonicity of v1 is to
prove that the renewal densities of the MAP which corresponds to the stable process via the
Lamperti–Kiu transform (for explicit expressions see Corollary 1.6 of [13]) are harmonic func-
tions for the MAP killed on entering the negative half-line. This claim should be true since
Silverstein [18] proved the analogous claim for a Lévy process which does not drift to −∞.
One can show that v1 and v−1 are just these renewal densities (the argument replaced by the
logarithm). Via the Lamperti–Kiu transform one could obtain harmonicity of v1 and v−1 for the
stable process killed in [−1,1].

3.2. Behaviour at the killing time

Before we start with the proofs, we should discuss more elementary properties of v1 and v−1.
First, it can be seen immediately that v1 has a pole in 1 and v−1 has a pole in −1 and hence
v := v1 + v−1 has poles in 1 and −1. Further v1 is bounded on (−∞,−1) ∪ (K,∞) for all
K > 1. For α ≤ 1 this is obvious and for α > 1 this can be seen via showing that v1 converges
for x → ±∞ (a similar convergence was shown in [8] in the proof of Lemma 3.3). Similarly
v−1 is bounded on (−∞,−K) ∪ (1,∞) for all K > 1. It follows obviously that v is bounded on
(−∞,−K1) ∪ (K2,∞) for all K1,K2 > 1.

For the first results we need to define the potential of the h-transformed process via

Uv1(x,dy) = E
x
v1

[∫ ζ

0
1{ξt∈dy} dt

]
, x, y /∈ [−1,1],

which is the expected time the process (ξ,Px
v1

) stays in dy until it is killed. With Fubini’s theorem
we obtain

Uv1(x,dy) = v1(y)

v1(x)
U[−1,1](x,dy) = v1(y)

v1(x)
u[−1,1](x, y)dy.

The following result shows on the one hand that the h-transformed process is almost surely
bounded and second that the expected time the process stays in a set of the form [−b,−1)∪ (1, b]
is finite.

Lemma 3.4. Let ξ be an α-stable process with α ∈ (0,2) and two sided jumps. Then it holds for
x /∈ [−1,1]:

(i) P
x
v1

(T(−∞,−d]∪[d,∞) < ζ,∀d > 1) = 0.
(ii) Uv1(x, [−b,−1) ∪ (1, b]) < ∞ for all b > 1.

Proof. (i) We already noticed that v1 is bounded on (−∞,−K) ∪ (K,∞) for all K > 1. So we
obtain, applying dominated convergence in the last equality,

P
x
v1

(T(−∞,−d]∪[d,∞) < ζ ∀d > 1)

= lim
d→∞P

x
v1

(T(−∞,−d]∪[d,∞) < ζ )
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= lim
d→∞E

x

[
1{T(−∞,−d]∪[d,∞)<T[−1,1]}

v1(ξT(−∞,−d]∪[d,∞)
)

v1(x)

]

= E
x

[
lim

d→∞1{T(−∞,−d]∪[d,∞)<T[−1,1]}
v1(ξT(−∞,−d]∪[d,∞)

)

v1(x)

]
.

In the case α < 1, we use that v1(y) converges to 0 for y → ±∞. If α ≥ 1, we see that
1{T(−∞,−d]∪[d,∞)<T[−1,1]} converges to 0 almost surely since (ξ,Px) is recurrent. This shows (i).

(ii) It holds

Uv1

(
x, [−b,−1) ∪ (1, b]) = 1

v1(x)

∫
[−b,−1)∪(1,b]

v1(y)u[−1,1](x, y)dy.

Since v1 is bounded and u[−1,1](x, ·) is integrable on all compact intervals, the only points where
this integral could be infinite, are the boundary points 1 and −1. From the explicit formulas
of [16], we see that u[−1,1](x, y) converges to 0 for y → ±1. Further v1(y) behaves as (y −
1)αρ̂−1 for y ↘ 1 and as (|y| − 1)αρ for y ↗ −1. Since αρ,αρ̂ ∈ (0,1) these arguments shows
Uv1(x, [−b,−1) ∪ (1, b]) < ∞. �

Combining the two statements of Lemma 3.4, we can show Proposition 2.3.

Proof of Proposition 2.3. We show that Px
v1

(ζ < ∞) = 1 and P
x
v1

(ξζ− = 1) = 1 and start with
the first equality. From Lemma 3.4 (ii), we know

P
x
v1

(∫ ζ

0
1{ξt∈[−b,−1)∪(1,b]} dt < ∞

)
= 1

for all b > 1. By the continuity of probability measures, we see

P
x
v1

(∫ ζ

0
1{ξt∈[−b,−1)∪(1,b]} dt < ∞ ∀b > 1

)

= lim
b→∞P

x
v1

(∫ ζ

0
1{ξt∈[−b,−1)∪(1,b]} dt < ∞

)
= 1.

On the other hand Lemma 3.4 (i) yields

P
x
v1

(∃d > 1 : T(−∞,−d]∪[d,∞) ≥ ζ ) = 1.

Since the intersection of two events with probability 1 has again probability 1 it follows:

P
x
v1

(ζ < ∞) = P
x
v1

(∫ ζ

0
1{ξt∈R\[−1,1]} dt < ∞

)

≥ P
x
v1

(∫ ζ

0
1{ξt∈[−b,−1)∪(1,b]} dt < ∞ ∀b > 1,∃d > 1 : T(−∞,−d]∪[d,∞) ≥ ζ

)

= 1.
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To prove Px
v1

(ξζ− = 1) = 1, we use a procedure which is inspired by Chaumont [4]. Using that
v1 is harmonic (Theorem 2.1), we see for x /∈ [−1,1] and

Ma,b = (−∞,−b) ∪ (−a,−1) ∪ (1,1 + ε) ∪ (b,∞)

with 1 < a < b and ε > 0 (obviously the complement of Ma,b is compact in R \ [−1,1]):
E

x
[
1{TMa,b

<T[−1,1]}v1(ξTMa,b
)
] = v1(x).

It follows that

P
x
v1

(TMa,b
< ζ ) = 1

v1(x)
E

x
[
1{TMa,b

<T[−1,1]}v1(ξTMa,b
)
] = 1.

From Lemma 3.4 we know on the one hand

P
x
v1

(T(−∞,−b)∪(b,∞) < ζ ∀b > 1) = 0. (15)

On the other hand we see, applying dominated convergence using that v1 is bounded on
(−∞,−1),

P
x
v1

(T(−a,−1) < ζ ∀a > 1) = lim
a↘1

P
x
v1

(T(−a,−1) < ζ )

= lim
a↘1

1

v1(x)
E

x
[
1{T(−a,−1)<T[−1,1]}v1(ξT(−a,−1)

)
]

= 1

v1(x)
E

x
[

lim
a↘1

1{T(−a,−1)<T[−1,1]}v1(ξT(−a,−1)
)
]

= 0. (16)

In the last step we used that v1(y) converges to 0 for y ↗ −1. Note that this argument does not
work if (−a,−1) is replaced by (1, a) because v1 has a pole in 1. Now we plug in (15) and (16)
to obtain for all ε > 0:

P
x
v1

(T(1,1+ε) < ζ )

= P
x
v1

({T(1,1+ε) < ζ } ∪ {T(−a,−1) < ζ ∀a > 1} ∪ {T(−∞,−b)∪(b,∞) < ζ ∀b > 1})
= lim

b→∞ lim
a↘1

P
x
v1

({T(1,1+ε) < ζ } ∪ {T(−a,−1) < ζ } ∪ {T(−∞,−b)∪(b,∞) < ζ })
= lim

b→∞ lim
a↘1

P
x
v1

(TMa,b
< ζ ) = 1.

With this in hand we show the final claim that ξζ− = 1 almost surely under Px
v1

. By (1,1 + δ)C

we mean as usual R \ [−1,1] \ (1,1 + δ).

P
x
v1

(ξζ− = 1) = P
x
v1

(∀δ > 0 ∃ε ∈ (0, δ] : ξt ∈ (1,1 + δ) ∀t ∈ [T(1,1+ε), ζ )
)

= lim
δ↘0

lim
ε↘0

P
x
v1

(
ξt ∈ (1,1 + δ) ∀t ∈ [T(1,1+ε), ζ )

)
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= lim
δ↘0

lim
ε↘0

E
x
v1

[
P

ξT(1,1+ε)
v1

(
ξt ∈ (1,1 + δ) ∀t ∈ [0, ζ )

)]
= lim

δ↘0
lim
ε↘0

E
x
v1

[
P

ξT(1,1+ε)
v1 (T(1,1+δ)C ≥ ζ )

]
= 1 − lim

δ↘0
lim
ε↘0

E
x
v1

[
P

ξT(1,1+ε)
v1 (T(1,1+δ)C < ζ)

]
= 1 − lim

δ↘0
E

x
v1

[
lim
ε↘0

P
ξT(1,1+ε)
v1 (T(1,1+δ)C < ζ)

]

= 1 − lim
δ↘0

E
x
v1

[
lim
ε↘0

P
1+ε
v1

(T(1,1+δ)C < ζ)
]
. (17)

In the second equality, we used that T(1,1+ε) < ζ almost surely and in the third equality we used
the strong Markov property of (ξ,Px

v1
). Let us consider the ε-limit inside the expectation. Using

the definition of Px
v1

we see:

P
1+ε
v1

(T(1,1+δ)C < ζ) = 1

v1(1 + ε)
E

x
[
1{T

(1,1+δ)C<T[−1,1]}v1(ξT
(1,1+δ)C

)
]
.

Since for fixed δ > 0 the function v1 is bounded on (−∞,−1) ∪ (1 + δ,∞) and limε↘0 v1(1 +
ε) = ∞ it follows that

lim
ε↘0

P
1+ε
v1

(T(1,1+δ)C < ζ) = 0

and with (17) we conclude P
x
v1

(ξζ− = 1) = 1. �

Proposition 2.7 can be proved similarly to Proposition 2.3 using the following lemma.

Lemma 3.5. Let ξ be an α-stable process with α ∈ (0,2) and two sided jumps. Then it holds:

(i) P
x
v(T(−∞,−d]∪[d,∞) < ζ ∀d > 1) = 0.

(ii) Uv(x, [−b,−1) ∪ (1, b]) < ∞ for all b > 1.

Proof. The proof is analogous to the one of Lemma 3.4. �

The proof of Proposition 2.7 consists of combining these two statements as in the proof of
Proposition 2.3.

3.3. Conditioning and h-transform

To connect the h-transform with the conditioned process, we need some connection between
the harmonic function and the asymptotic probability of the event we condition on. We have to
separate the cases α < 1 and α ≥ 1.
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3.3.1. The case α < 1

Proposition 3.6. Let ξ be an α-stable process with α ∈ (0,1) and two sided jumps. Then it holds:

π
(1 − αρ)
(1 − αρ̂)

2α
(1 − α)
v1(x) = lim

ε↘0

1

ε
P

x
(
ξm ∈ (1,1 + ε)

)
, x ∈R \ [−1,1], (18)

and

π
(1 − αρ)
(1 − αρ̂)

2α
(1 − α)
v(x) = lim

ε↘0

1

ε
P

x
(|ξm| ∈ (1,1 + ε)

)
, x ∈ R \ [−1,1]. (19)

Proof. The proof is based on Proposition 1.1 of [13] where we find an explicit expression for
the distribution of ξm. For x > 1 this gives

P
x
(
ξm ∈ (1,1 + ε)

) = 2−α
(1 − αρ)


(1 − α)
(αρ̂)

∫ x∧(1+ε)

1
z−α(x − z)αρ̂−1(x + z)αρ dz

= 2−α
(1 − αρ)


(1 − α)
(αρ̂)

∫ x∧(1+ε)

1
z−1

(
x

z
− 1

)αρ̂−1(
x

z
+ 1

)αρ

dz

= 2−α
(1 − αρ)


(1 − α)
(αρ̂)

∫ x

x
x∧(1+ε)

x

z2

z

x
(z − 1)αρ̂−1(z + 1)αρ dz

= 2−α
(1 − αρ)


(1 − α)
(αρ̂)

∫ x

1∨ x
1+ε

(
1 + 1

z

)
ψαρ(z)dz.

Applying l’Hopital’s rule to the first calculation, we obtain:


(1 − α)
(αρ̂)

2−α
(1 − αρ)
lim
ε↘0

1

ε
P

x
(
ξm ∈ (1,1 + ε)

) = lim
ε↘0

1

ε

∫ x

x
1+ε

(
1 + 1

z

)
ψαρ(z)dz

= lim
ε↘0

x

(1 + ε)2

(
1 + 1 + ε

x

)
ψαρ

(
x

1 + ε

)

= (x + 1)ψαρ(x)

= 1

sin(παρ̂)
v1(x).

Since sin(παρ̂) = π/(
(αρ̂)
(1 − αρ̂)) this shows (18) for x > 1. For x < −1, we first use
duality to deduce:

P
x
(
ξm ∈ (1,1 + ε)

) = P̂
−x

(
ξm ∈ (−1 − ε,−1)

)
= 2−α
(1 − αρ̂)


(1 − α)
(αρ)

∫ −x

1∨ −x
1+ε

(
1 − 1

z

)
ψαρ̂(z)dz,
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where the second equality is verified using a similar calculation as above. Hence, it follows, for
x < −1, that


(1 − α)
(αρ)

2−α
(1 − αρ̂)
lim
ε↘0

1

ε
P

x
(
ξm ∈ (1,1 + ε)

) = lim
ε↘0

1

ε

∫ −x

−x
1+ε

(
1 − 1

z

)
ψαρ̂(z)dz

= lim
ε↘0

−x

(1 + ε)2

(
1 − 1 + ε

−x

)
ψαρ̂

( −x

1 + ε

)

= (−x − 1)ψαρ̂(−x)

= 1

sin(παρ)
v1(x).

Again we use sin(παρ) = π

(αρ)
(1−αρ)

to obtain (18) for x < −1.
Similarly, (19) can be deduced as follows. Analogously to the proof of the first equation we

can show

π
(1 − αρ)
(1 − αρ̂)

2α
(1 − α)
v−1(x) = lim

ε↘0

1

ε
P

x
(
ξm ∈ (−(1 + ε)

)
,−1

)
), x ∈R \ [−1,1].

Since we defined v(x) = v1(x) + v−1(x) this shows (19). �

Now we are ready to prove the connection between the h-transform and the conditioned pro-
cess.

Proof of Theorems 2.4 and 2.8. We start with x > 1. First note for δ > ε > 0:

P
x
(
�, t < T(−(1+δ),1+δ), ξm ∈ (1,1 + ε)

)
= P

x
(
�, t < T(−(1+δ),1+δ), t < m, ξm ∈ (1,1 + ε)

)
.

Now we denote the shift operator in the path space by θt : D → D, that is, it holds (ξ ◦θt )s = ξs+t .
With the tower property of the conditional expectation and the Markov property in the version
including the shift-operator (see, e.g., [5] p. 8) it holds:

P
x
(
�, t < T(−(1+δ),1+δ), t < m, ξm ∈ (1,1 + ε)

)
= E

x
[
1�E

x[1{t<T(−(1+δ),1+δ)}1{ξm∈(1,1+ε)}|Ft ]
]

= E
x
[
1�E

x
[
1{t<T(−(1+δ),1+δ)}(1{ξm∈(1,1+ε)} ◦ θt )|Ft

]]
= E

x
[
1�1{t<T(−(1+δ),1+δ)}Ex[1{ξm∈(1,1+ε)} ◦ θt |Ft ]

]
= E

x
[
1�1{t<T(−(1+δ),1+δ)}Pξt

(
ξm ∈ (1,1 + ε)

)]
.

Hence, we have

P
x
(
�, t < T(−(1+δ),1+δ), ξm ∈ (1,1 + ε)

)
= E

x
[
1�1{t<T(−(1+δ),1+δ)}Pξt

(
ξm ∈ (1,1 + ε)

)]
, |x| > δ > ε.
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With the help of this application of the Markov property, we obtain

P
x
(
�, t < T(−(1+δ),1+δ)|ξm ∈ (1,1 + ε)

)
= E

x

[
1�1{t<T(−(1+δ),1+δ)}

P
ξt (ξm ∈ (1,1 + ε))

Px(ξm ∈ (1,1 + ε))

]
.

Now we would like to replace the ratio inside the expectation by v1(ξt )/v1(x) with Proposi-
tion 3.6 when ε tends to 0. For that we need to argue why we can move the ε-limit inside the
integral. Without loss of generality, we assume |x| > 1 + δ > 1 + ε. Note that for y > 1 + δ we
have again with Proposition 1.1 of [13]:

P
y
(|ξm| ∈ (1,1 + ε)

) = 2
2−α
(1 − αρ)


(1 − α)
(αρ̂)

∫ y

y
1+ε

ψαρ(z)dz

≤ 21−α
(1 − αρ)


(1 − α)
(αρ̂)

(
y − y

1 + ε

)
ψαρ

(
y

1 + ε

)

= 21−α
(1 − αρ)


(1 − α)
(αρ̂)

yε

1 + ε
ψαρ

(
y

1 + ε

)

= 21−α
(1 − αρ)


(1 − α)
(αρ̂)

ε

2 sin(παρ̂)
v

(
y

1 + ε

)
.

Now let ε be so small that 1+δ
1+ε

> 1 + δ
2 and define

Cδ := sup
|u|>1+ δ

2

v(u),

which is finite because of the properties of v. So we can estimate on the event {t < T[−1,1+δ], ξt ≥
1 + δ}:

1

ε
P

ξt
(
ξm ∈ (1,1 + ε)

) ≤ 2−α
(1 − αρ)


(1 − α)
(αρ̂) sin(παρ̂)
v

(
ξt

1 + ε

)

≤ 2−α
(1 − αρ)


(1 − α)
(αρ̂) sin(παρ̂)
Cδ.

On {t < T(−(1+δ),1+δ), ξt ≤ −(1 + δ)} an analogous argumentation shows

1

ε
P

ξt
(
ξm ∈ (1,1 + ε)

) ≤ 2−α
(1 − αρ̂)


(1 − α)
(αρ) sin(παρ)
Cδ.

So we can use dominated convergence as follows:

lim
ε↘0

P
x
(
�, t < T(−(1+δ),1+δ)|ξm ∈ (1,1 + ε)

)

= lim
ε↘0

ε

Px(ξm ∈ (1,1 + ε))
lim
ε↘0

E
x

[
1�1{t<T(−(1+δ),1+δ)}

P
ξt (ξm ∈ (1,1 + ε))

ε

]
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= lim
ε↘0

ε

Px(ξm ∈ (1,1 + ε))
E

x

[
1�1{t<T(−(1+δ),1+δ)} lim

ε↘0

P
ξt (ξm ∈ (1,1 + ε))

ε

]

= E
x

[
1�1{t<T(−(1+δ),1+δ)}

v1(ξt )

v1(x)

]
.

= P
x
v1

(�, t < T(−(1+δ),1+δ)).

In the last step, we used Proposition 3.6. This proves Theorem 2.4.
The proof of Theorem 2.8 is similar. Applying the Markov property in the shift-operator-

version, we get

P
x
(
�, t < T(−(1+δ),1+δ)||ξm| ∈ (1,1 + ε)

)
= E

x

[
1�1{t<T(−(1+δ),1+δ)}

P
ξt (|ξm| ∈ (1,1 + ε))

Px(|ξm| ∈ (1,1 + ε))

]
.

In the proof of Theorem 2.4, we already found an integrable dominating function for Pξt (|ξm| ∈
(1,1 + ε))/ε. So we can use dominated convergence as follows:

lim
ε↘0

P
x
(
�, t < T(−(1+δ),1+δ)||ξm| ∈ (1,1 + ε)

)

= lim
ε↘0

ε

Px(|ξm| ∈ (1,1 + ε))
lim
ε↘0

E
x

[
1�1{t<T(−(1+δ),1+δ)}

P
ξt (|ξm| ∈ (1,1 + ε))

ε

]

= lim
ε↘0

ε

Px(|ξm| ∈ (1,1 + ε))
E

x

[
1�1{t<T(−(1+δ),1+δ)} lim

ε↘0

P
ξt (|ξm| ∈ (1,1 + ε))

ε

]

= E
x

[
1�1{t<T(−(1+δ),1+δ)}

v(ξt )

v(x)

]
.

= P
x
v(�, t < T(−(1+δ),1+δ)),

where we used Proposition 3.6 in the last equality. �

3.3.2. The case α ≥ 1

The strategy for α ≥ 1 is as in the case α < 1. First, we need a relation between v1 and the
asymptotic probability we want to condition on. This event looks a bit different from the one in
the case α < 1.

Proposition 3.7. Let ξ be an α-stable process with α ∈ [1,2) and two sided jumps, then

1 − αρ̂

2αρπ
v1(x) = lim

ε↘0

1

ε1−αρ̂
P

x
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)
, x ∈R \ [−1,1].
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Proof. Using the scaling property and Theorem 1.1 of [12], we get for x > 1 + ε:

π

sin(παρ̂)
P

x
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)

= π

sin(παρ̂)
P

x
1+ε

(
ξT(−1,1)

∈
(

1

1 + ε
,1

))

=
(

x

1 + ε
+ 1

)αρ(
x

1 + ε
− 1

)αρ̂ ∫ 1

1
1+ε

(1 + y)−αρ(1 − y)−αρ̂

(
x

1 + ε
− y

)−1

dy

− (α − 1)

∫ x
1+ε

1
ψαρ(u)du

∫ 1

1
1+ε

(1 + y)−αρ(1 − y)−αρ̂ dy. (20)

With l’Hopital’s rule and the integration rule of Leibnitz we see:

lim
ε↘0

1

ε1−αρ̂

∫ 1

1
1+ε

(1 + y)−αρ(1 − y)−αρ̂

(
x

1 + ε
− y

)−1

dy

= lim
ε↘0

εαρ̂

1 − αρ̂

1

(1 + ε)2

(
1 + 1

1 + ε

)−αρ(
1 − 1

1 + ε

)−αρ̂(
x − 1

1 + ε

)−1

+ lim
ε↘0

εαρ̂

1 − αρ̂

∫ 1

1
1+ε

(1 + y)−αρ(1 − y)−αρ̂ x

(x − y(1 + ε))2
dy

= 2−αρ

1 − αρ̂
(x − 1)−1 (21)

and further,

lim
ε↘0

1

ε1−αρ̂

∫ 1

1
1+ε

(1 + y)−αρ(1 − y)−αρ̂ dy

= lim
ε↘0

εαρ̂

1 − αρ̂

1

(1 + ε)2

(
1 + 1

1 + ε

)−αρ(
1 − 1

1 + ε

)−αρ̂

= 2−αρ

1 − αρ̂
. (22)

Now we plug in (21) and (22) in (20) and get

lim
ε↘0

π

ε1−αρ̂
P

x
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)

= 2−αρ

1 − αρ̂
sin(παρ̂)

[
(x + 1)αρ(x − 1)αρ̂(x − 1)−1 − (α − 1)

∫ x

1
ψαρ(u)du

]

= 2−αρ

1 − αρ̂
v1(x).
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For x < −1 we note that

P
x
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
) = P̂

|x|(ξT(−(1+ε),1+ε)
∈ (−(1 + ε),−1

))
,

use again Theorem 1.1 of [12] and do a similar calculation as above to deduce

π

sin(παρ)
P

x
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)

=
( |x|

1 + ε
+ 1

)αρ̂( |x|
1 + ε

− 1

)αρ ∫ − 1
1+ε

−1
(1 + y)−αρ̂(1 − y)−αρ

( |x|
1 + ε

− y

)−1

dy

− (α − 1)

∫ |x|
1+ε

1
ψαρ̂(u)du

∫ − 1
1+ε

−1
(1 + y)−αρ̂(1 − y)−αρ dy.

A substitution on the integrals and the same limiting arguments as in the case x > 1 show

lim
ε↘0

π

ε1−αρ̂
P

x
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)

= 2−αρ

1 − αρ̂
sin(παρ)

[(|x| + 1
)αρ̂(|x| − 1

)αρ(|x| + 1
)−1 − (α − 1)

∫ |x|

1
ψαρ̂(u)du

]

= 2−αρ

1 − αρ̂
v1(x). �

Proof of Theorems 2.5 and 2.9. First, we note by a similar application of the Markov property
as in the proof of Theorem 2.4:

P
x
(
�, t < T(−(1+δ),1+δ), ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)

= E
x
[
1�1{t<T(−(1+δ),1+δ)}Pξt

(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)]

and hence,

P
x
(
�, t < T(−(1+δ),1+δ)|ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)

= E
x

[
1�1{t<T(−(1+δ),1+δ)}

P
ξt (ξT(−(1+ε),1+ε)

∈ (1,1 + ε))

Px(ξT(−(1+ε),1+ε)
∈ (1,1 + ε))

]
.

Again we want to move the ε-limit inside the integral and use Proposition 3.7. First, we use (20):

π

sin(παρ̂)
P

y
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)

=
(

y

1 + ε
+ 1

)αρ(
y

1 + ε
− 1

)αρ̂ ∫ 1

1
1+ε

(1 + u)−αρ(1 − u)−αρ̂

(
y

1 + ε
− u

)−1

du
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− (α − 1)

∫ y
1+ε

1
ψαρ(w)dw

∫ 1

1
1+ε

(1 + u)−αρ(1 − u)−αρ̂ du

≤
[(

y

1 + ε
+ 1

)αρ(
y

1 + ε
− 1

)αρ̂−1

− (α − 1)

∫ y
1+ε

1
ψαρ(w)dw

]

×
∫ 1

1
1+ε

(1 + u)−αρ(1 − u)−αρ̂ du

= 1

sin(παρ̂)
v1

(
y

1 + ε

)∫ 1

1
1+ε

(1 + u)−αρ(1 − u)−αρ̂ du.

Further,

εαρ̂−1
∫ 1

1
1+ε

(1 + u)−αρ(1 − u)−αρ̂ du ≤ εαρ̂−1
∫ 1

1
1+ε

(1 − u)−αρ̂ du

= εαρ̂−1

1 − αρ̂

(
ε

1 + ε

)1−αρ̂

≤ 1

1 − αρ̂
.

Let be ε so small that 1+δ
1+ε

> 1 + δ
2 and define

Cδ = sup
|u|≥1+ δ

2

v1(u).

Then it follows

π

ε1−αρ̂
P

y
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
) ≤ 1

1 − αρ̂
v1

(
y

1 + ε

)
≤ Cδ

1 − αρ̂
.

Similarly, we get for y < −(1 + ε):

π

ε1−αρ̂
P

y
(
ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
) ≤ 1

1 − αρ̂
v1

(
y

1 + ε

)

≤ Cδ

1 − αρ̂
.

So we can apply dominated convergence to deduce

lim
ε↘0

P
x
(
�, t < T(−(1+δ),1+δ)|ξT(−(1+ε),1+ε)

∈ (1,1 + ε)
)

= lim
ε↘0

ε1−αρ̂

Px(ξT(−(1+ε),1+ε)
∈ (1,1 + ε))



1010 L. Döring and P. Weissmann

× lim
ε↘0

E
x

[
1�1{t<T(−(1+δ),1+δ)}

P
ξt (ξT(−(1+ε),1+ε)

∈ (1,1 + ε))

ε1−αρ̂

]

= lim
ε↘0

ε1−αρ̂

Px(ξT(−(1+ε),1+ε)
∈ (1,1 + ε))

×E
x

[
1�1{t<T(−(1+δ),1+δ)} lim

ε↘0

P
ξt (ξT(−(1+ε),1+ε)

∈ (1,1 + ε))

ε1−αρ̂

]

= E
x

[
1�1{t<T(−(1+δ),1+δ)}

v1(ξt )

v1(x)

]

= P
x
v1

(�, t < T(−(1+δ),1+δ)),

where we used Proposition 3.7 in the second last equality. This finishes the proof of Theorem 2.5.
To prove Theorem 2.9, we first note that one can show analogously to the proof of Proposi-

tion 3.7:

lim
ε↘0

εαρ−1
P

x
(
ξT(−(1+ε),1+ε)

∈ (−(1 + ε),−1
)) = 1 − αρ

2αρ̂π
v−1(x), x /∈ [−1,1].

We assume without loss of generality ρ ≤ ρ̂ (i.e., ρ ≤ 1/2) and in particular it holds that

lim
ε↘0

εαρ̂−1
P

x
(
ξT(−(1+ε),1+ε)

∈ (−(1 + ε),−1
))

= lim
ε↘0

εα(ρ̂−ρ)εαρ−1
P

x
(
ξT(−(1+ε),1+ε)

∈ (−(1 + ε),−1
))

= 0.

It follows that

lim
ε↘0

P
ξt (|ξT(−(1+ε),1+ε)

| ∈ (1,1 + ε))

Px(|ξT(−(1+ε),1+ε)
| ∈ (1,1 + ε))

= lim
ε↘0

P
ξt (ξT(−(1+ε),1+ε)

∈ (1,1 + ε)) + P
ξt (ξT(−(1+ε),1+ε)

∈ (−(1 + ε),−1))

Px(ξT(−(1+ε),1+ε)
∈ (1,1 + ε)) + Px(ξT(−(1+ε),1+ε)

∈ (−(1 + ε),−1))

= lim
ε↘0

εαρ̂−1
P

ξt (ξT(−(1+ε),1+ε)
∈ (1,1 + ε)) + εαρ̂−1

P
ξt (ξT(−(1+ε),1+ε)

∈ (−(1 + ε),−1))

εαρ̂−1Px(ξT(−(1+ε),1+ε)
∈ (1,1 + ε)) + εαρ̂−1Px(ξT(−(1+ε),1+ε)

∈ (−(1 + ε),−1))

= lim
ε↘0

εαρ̂−1
P

ξt (ξT(−(1+ε),1+ε)
∈ (1,1 + ε))

εαρ̂−1Px(ξT(−(1+ε),1+ε)
∈ (1,1 + ε))

= v1(ξt )

v1(x)
.
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For ρ > 1/2, following the same argument, the first summands vanish instead of the second. To
finish the proof of Theorem 2.9 the dominated convergence argument can be transferred from the
proof of Theorem 2.5. �

3.3.3. The alternative characterisation for α > 1

As before we start with the needed asymptotic probability of the event, we want to condition on
which is, as already mentioned, the same as in the case α < 1 but under the law of the process
conditioned to avoid 0.

Proposition 3.8. Let ξ be an α-stable process with α ∈ (1,2) and two sided jumps, then

α − 1

2
v1(x) = lim

ε↘0

e(x)

ε
P

x◦
(
ξm ∈ (1,1 + ε)

)
, x /∈ [−1,1], (23)

and

α − 1

2
v(x) = lim

ε↘0

e(x)

ε
P

x◦
(|ξm| ∈ (1,1 + ε)

)
, x /∈ [−1,1]. (24)

Proof. We use the so-called point of furthest reach before hitting 0. Let m be the time such that
|ξt | ≤ |ξm| for all t ≤ T0. The Riesz–Bogdan–Żak (see Bogdan and Żak [3] for symmetric stable
processes, Kyprianou [10] for general stable processes and Alili et al. [1] for self-similar Markov
processes) tells us that the process conditioned to avoid 0 is the spatial inverse of the original (i.e.,
not h-transformed) dual process including a certain time-change. Since the time change does not
play any role for the value ξm we can extract the distribution of the point of closest reach of the
process conditioned to avoid 0 from the distribution of the point of furthest reach of the original
dual process, that is,

P
x◦
(
ξm ∈ (1,1 + ε)

) = P̂
1
x

(
ξm ∈

(
1

1 + ε
,1

))
.

Combining this with Proposition 1.2 of Kyprianou et al. [13] where one can find an explicit
expression for the distribution of the point of furthest reach before hitting 0, we get for x > 1:

2

α − 1
P

x◦
(
ξm ∈ (1,1 + ε)

)

=
∫ 1

1
x
∨ 1

1+ε

u−α

[(
u + 1

x

)αρ(
u − 1

x

)αρ̂−1

− (α − 1)x1−α

∫ ux

1
ψαρ(w)dw

]
du

=
∫ x

1∨ x
1+ε

1

x

(
x

u

)α[(
u

x
+ 1

x

)αρ(
u

x
− 1

x

)αρ̂−1

− (α − 1)x1−α

∫ u

1
ψαρ(w)dw

]
du

=
∫ x

1∨ x
1+ε

u−α

[
(u + 1)αρ(u − 1)αρ̂−1 − (α − 1)

∫ u

1
ψαρ(w)dw

]
du
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=
∫ x

1∨ x
1+ε

u−α

[
(u + 1)ψαρ(u) − (α − 1)

∫ u

1
ψαρ(w)dw

]
du

= 1

sin(παρ̂)

∫ x

1∨ x
1+ε

u−αv1(u)du.

With l’Hopital’s rule, we get

lim
ε↘0

2

α − 1

1

ε
P

x◦
(
ξm ∈ (1,1 + ε)

) = 1

sin(παρ̂)
lim
ε↘0

[
x

(1 + ε)2

(
x

1 + ε

)−α

v1

(
x

1 + ε

)]

= 1

sin(παρ̂)
x1−αv1(x)

= v1(x)

e(x)
.

This shows (23) for x > 1. For x < −1 the equality (23) follows similarly.
To show the second claim, we use

α − 1

2
v−1(x) = lim

ε↘0

e(x)

ε
P

x◦
(
ξm ∈ (−(1 + ε),−1

))
, x /∈ [−1,1],

which follows from a computation similar to (23). Using that v = v1 + v−1 the second claim
follows. �

Proof of Theorems 2.6 and 2.10. Since the process conditioned to avoid 0 is a strong Markov
process (this follows by general theory on h-transforms, see, e.g., Chung and Walsh [5]) we can
use arguments analogous to the case α < 1 to obtain, for all x /∈ [−1,1],

P
x◦
(
�, t < T(−(1+δ),1+δ)|ξm ∈ (1,1 + ε)

)
= E

x◦
[
1�1{t<T(−(1+δ),1+δ)}

P
ξt◦ (ξm ∈ (1,1 + ε))

Px◦(ξm ∈ (1,1 + ε))

]
.

In the proof of Proposition 3.8, we have already seen that

P
y◦
(
ξm ∈ (1,1 + ε)

) = α − 1

2 sin(παρ̂)

∫ y

1∨ y
1+ε

u−αv1(u)du

for y > 1 + ε. Analogously, we can show

P
y◦
(
ξm ∈ (−(1 + ε),−1

)) = α − 1

2 sin(παρ̂)

∫ y

1∨ y
1+ε

u−αv−1(u)du

for y > 1 + ε and hence, we have

P
y◦
(|ξm| ∈ (1,1 + ε)

) = α − 1

2 sin(παρ̂)

∫ y

1∨ y
1+ε

u−αv(u)du
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for y > 1 + ε. Now we fix δ > 0 and assume that ε is so small that 1+δ
1+ε

≥ 1 + δ
2 . We define again

Cδ := sup|u|≥1+ δ
2
v(u) which is finite. Note that, for y > 1 + δ, we have:

P
y◦
(|ξm| ∈ (1,1 + ε)

) = α − 1

2 sin(παρ̂)

∫ y

y
1+ε

u−αv(u)du

≤ α − 1

2 sin(παρ̂)

yε

1 + ε

(
y

1 + ε

)−α

sup
u∈[ y

1+ε
,∞)

v(u)

≤ Cδ(α − 1)

2 sin(παρ̂)

ε

(1 + ε)1−α
y1−α

≤ Cδ(α − 1)

2 sin(παρ̂)
ε(1 + δ)α−1y1−α.

So we can estimate on {t < T[−(1+δ),1+δ], ξt > 1}:

P
ξt (ξm ∈ (1,1 + ε))

ε
≤ Cδ(α − 1)

2 sin(παρ̂)
(1 + δ)α−1ξ1−α

t .

On {t < T[−(1+δ),1+δ], ξt < −1} an analogous argument shows

P
ξt (ξm ∈ (1,1 + ε))

ε
≤ Cδ(α − 1)

2 sin(παρ)
(1 + δ)α−1|ξt |1−α.

Further it holds that

1

sin(παρ̂)
E

x◦
[
1�1{t<T[−(1+δ),1+δ],ξt>1}ξ1−α

t

] = 1

e(x)
E

x
[
1�1{t<T[−(1+δ),1+δ],ξt>1}ξα−1

t ξ1−α
t

]

≤ 1

e(x)

and, analogously,

1

sin(παρ)
E

x◦
[
1�1{t<T[−(1+δ),1+δ],ξt<−1}|ξt |1−α

] ≤ 1

e(x)
.

So we can use dominated convergence and the Markov property as follows:

lim
ε↘0

P
x◦
(
�, t < T[−(1+δ),1+δ]|ξm ∈ (1,1 + ε)

)
= lim

ε↘0

ε

Px◦(ξm ∈ (1,1 + ε))

× lim
ε↘0

E
x◦
[
1�1{t<T[−(1+δ),1+δ]}

P
ξt◦ (ξm ∈ (1,1 + ε))

ε

]
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= lim
ε↘0

ε

Px◦(ξm ∈ (1,1 + ε))

×E
x◦
[
1�1{t<T[−(1+δ),1+δ]} lim

ε↘0

P
ξt◦ (ξm ∈ (1,1 + ε))

ε

]

= E
x◦
[
1�1{t<T[−(1+δ),1+δ]}

e(x)v1(ξt )

e(ξt )v1(x)

]

= E
x

[
1�1{t<T[−(1+δ),1+δ]}

v1(ξt )

v1(x)

]
.

In the second last second step, we used Proposition 3.8. Theorem 2.10 can be proven similarly
using the same dominating function. �
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