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The recurrence and transience of persistent random walks built from variable length Markov chains are
investigated. It turns out that these stochastic processes can be seen as Lévy walks for which the persistence
times depend on some internal Markov chain: they admit Markov random walk skeletons. A recurrence ver-
sus transience dichotomy is highlighted. Assuming the positive recurrence of the driving chain, a sufficient
Fourier criterion for the recurrence, close to the usual Chung–Fuchs one, is given and a series criterion is
derived. The key tool is the Nagaev–Guivarc’h method. Finally, we focus on particular two-dimensional
persistent random walks, including directionally reinforced random walks, for which necessary and suffi-
cient Fourier and series criteria are obtained. Inspired by (Adv. Math. 208 (2007) 680–698), we produce a
genuine counterexample to the conjecture of (Adv. Math. 117 (1996) 239–252). As for the one-dimensional
case studied in (J. Theoret. Probab. 31 (2018) 232–243), it is easier for a persistent random walk than its
skeleton to be recurrent. However, such examples are much more difficult to exhibit in the higher dimen-
sional context. These results are based on a surprisingly novel – to our knowledge – upper bound for the
Lévy concentration function associated with symmetric distributions.

Keywords: concentration functions; Fourier and series recurrence criteria; Fourier perturbations; Markov
operators; Markov random walks; persistent random walks; variable length Markov chain

1. Introduction

Classical random walks are usually defined from a sequence of independent and identically dis-
tributed i.i.d. increments {Xk}k≥1 by S0 = 0 and for every n ≥ 1,

Sn :=
n∑

k=1

Xk. (1.1)

In the continuity of [12] we aim at investigating the asymptotic behaviour, and more specif-
ically the recurrence and transience, of a multidimensional Persistent Random Walk (PRW) for
which the increments are driven by a Variable Length Markov Chain (VLMC) built from some
probabilized context tree (see Section 1.1 for a definition). This construction furnishes a wide
class of models for the dependence of the increments which can be easily adapted to various
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contexts. The toy model in [12] is built from a VLMC with a double-infinite comb as context
tree and the increments belongs to {−1,1} ⊂ Z. The characterization of the recurrent versus
transient behaviour is difficult for a general probabilized context tree (see [11] for some zoology
for instance). Before investigating a larger class of models, we focus in Section 1.1 on a particular
context tree generalizing in Z2 the double-infinite comb already studied. The latter is naturally
called a quadruple-infinite comb and the resulting PRW is termed the quadruple-infinite comb
PRW. Originally motivated by PRWs, the aim of this paper is twofold.

First, as pointed out in Section 1.1.2, such PRWs or their time continuous linear interpola-
tion are closely related to Markov Random Walks (MRW) and Markov Levy Walks (MLW)
respectively. Those models, already studied in the litterature (see [3,19,20,26,51] and references
therein) under strong moment conditions on the jumps, are natural extensions of Random Walks
and Levy Walks. In this paper, a criterion, similar to the Chung–Fuchs integral test in the context
of Random Walks, is proved.

Secondly, it turns out that quadruple-infinite comb PRWs are anisotropic generalization of
Directionally Reinforced Random Walks (DRRWs) introduced in [38]. More precisely, DRRWs
are quadruple-infinite comb PRWs for which the i.i.d. waiting times taking values in {1,2, . . .} do
not depend on some internal Markov chain and the successive directions (four possibilities) are
chosen uniformly and independently among all, excepted the previous one (thus three uniform
choices). Note that a DRRW is completely characterized by the distribution of the waiting times
whereas the model of PRW, with more parameters, is more flexible. The authors in [48] answered
partially by the negative to the conjecture in [38], Section 3, p. 247. This question is definitively
closed in this paper.

1.1. The quadruple-infinite comb model

Let us start with the general construction of VLMCs built from a probabilized context tree on
the alphabet A := {e,n,w,s}. In the sequel, we associate with every � ∈ A the corresponding
direction in Z2 in such a way that (−→e ,−→n ) stands for the canonical basis whereas (−→w ,−→s ) is the
opposite one. Hence, the letters e, n, w and s will stand for moves to the east, north, west and
south respectively.

Let L = A−N be the set of left-infinite words and consider a complete tree on A: each node
has 0 or card(A) children. The set of leaves is denoted by C and elements of C are (possibly
infinite) words on A. To each leaf c ∈ C, called a context, is attached a distribution qc on A.
Endowed with this probabilistic structure, such a tree is named a probabilized context tree. The
related VLMC – here denoted by {Un}n≥0 – is the Markov Chain on L whose transitions are
given by

P(Un+1 = Un�|Un) = q←−
pref(Un)

(�), (1.2)

where
←−
pref(w) ∈ C is defined as the shortest prefix of w = · · ·w−1w0, read from right to left,

appearing as a leaf of the context tree. The kth increment Xk of the corresponding PRW is
identified with the rightmost letter of Uk . In particular, we can write Un = · · ·Xn−1Xn. The set
of leaves of the quadruple-infinite comb encodes the memory of the VLMC and consists of words
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on the alphabet A of the form

C := {�n�′ : � �= �′ ∈A, n ≥ 1
}∪ {�∞ : � ∈A

}
. (1.3)

The prefix function is then formally defined by
←−
pref(· · ·�′�n) = �n�′ and

←−
pref(�∞) = �∞. One

can summarize the probabilistic structure as follows: for n ≥ 1 introduce αn : A × A → [0,1]
and pn :A2 ×A2 → [0,1] so that for all �, �′, �′′ ∈A with � �= �′ and �′ �= �′′

q�n�′(�) =: 1 − αn

(
�′, �

)
and q�n�′

(
�′′)=: αn

(
�′, �

)
pn

((
�′, �

); (�, �′′)). (1.4)

For � = �′ or �′ = �′′, the quantities αn(�
′) and pn((�

′, �); (�, �′′)) are set to zero. Also introduce
α∞ :A×A → [0,1] and p∞ :A2 ×A2 → [0,1] with

q�∞(�) =: 1 − α∞(�, �) and q�∞
(
�′′)=: α∞(�, �)p∞

(
(�, �); (�, �′′)), (1.5)

for all �, �′′ ∈ A. These quantities are interpreted as transition probabilities – see Figure 1 –
and characterize the probabilized context tree. It is worth noting that a DRRW is in particular a
quadruple-infinite comb PRW for which αn(�, �

′) depends only on n ≥ 1 when � �= �′ and such
that pn((�

′, �); (�, �′′)) is constant equal to 1/3 when � �= �′ and �′ �= �′′.

Remark 1.1. For one-dimensional PRWs, the probability for a change of direction depends
only on the time spent since the last change of direction. In the higher dimensional case, this
probability depends additionally on the direction of the previous run.

In the following, we refer carefully to Figure 2 below that illustrates our notations and assump-
tions by a realization of a linear interpolation {St }t≥0 of a quadruple-infinite comb PRW.

�∞

�∞

�∞�′′

1 − α∞(�, �)

α∞(�, �)p∞((�, �); (�, �′′))

· · ·�′�n

· · ·�′�n+1

· · ·�′�n�′′

1 − αn(�′, �)

αn(�′, �)pn((�′, �); (�, �′′))

Figure 1. Transition probabilities of the quadruple-infinite comb.
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Figure 2. Piecewise interpolation of the PRW.

1.1.1. Associated MRW

Let P be the Markov kernel on A×A defined for every �′, �, �′′ ∈ A with �′ �= � and �′′ �= � by

P
((

�′, �
); (�, �′′)) :=

∞∑
n=1

(
n−1∏
k=1

(
1 − αk

(
�′, �

)))
αn

(
�′, �

)
pn

((
�′, �

); (�, �′′)), (1.6)

P
(
(�, �); (�, �′′)) :=

∞∑
n=1

(
1 − α∞

(
�, �
))n−1

α∞
(
�, �
)
p∞
((

�, �
); (�, �′′)). (1.7)

To get a stochastic matrix, we choose adequately the entries P((�′, �); (�, �)) and P((�, �); (�, �))
when necessary and set all other entries equal to zero. For sake of simplicity, in the sequel, we
make the following assumption.

Assumption 1.1. One has (X0,X1) = (n,e) with probability one and the state (n,e) belongs
to an irreducible class S ⊂ A×A \� of the Markov kernel P where � ⊂ A×A is the diagonal
subset.

Obviously, regarding the study of the asymptotic behaviour of the PRW, there is no loss of
generality assuming such conditions. Note that, under this assumption, for every c ∈ S ,

∞∑
n=1

(
n−1∏
k=1

(
1 − αk(c)

))
αn(c) = 1. (1.8)
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Roughly speaking, this assumption disallows a too strong reinforcement, that is a too fast de-
creasing rate for the transition probabilities αn(c) of changing directions. As a matter of facts,
the transition probabilities between two changes of letters – named breaking or moving times –
are encoded by the Markov kernel P . In fact, let {Bn}n≥0 be the almost surely finite break-
ing times defined inductively by B0 = 0 and Bn+1 = inf{k > Bn : Xk �= Xk+1}. These breaking
times correspond to those where the PRW changes of direction. It turns out that the so called
internal (configuration or driven) chain {Cn}n≥0 defined by

Cn := (XBn,XBn+1), (1.9)

is an irreducible Markov chain on S starting from (n,e) whose Markov kernel – still denoted
by P abusing notation – is the restriction of P to S × S . The waiting times Tn+1 := Bn+1 − Bn

are not independent contrary to the one-dimensional case. However, the distribution of Tn+1

depends only on (Cn,Cn+1). The skeleton random walk – the PRW observed at the breaking
times – {Zn}n≥0 on Z2 is then defined as

Zn := SBn =
n∑

i=1

(
Ti∑

k=Ti−1+1

Xk

)
, (1.10)

where T0 = 0. Obviously, Z is not a RW. Nevertheless, taking into account the additional infor-
mation given by the internal Markov chain, Z is rather a MRW, also named a Markov Additive
Process (MAP), semi-Markov process or hidden Markov chain (see [2,4] for instance). To be
more specific, it means the process {(Zn,Cn)}n≥0 is Markovian on Z2 × S and satisfies

L
(
(Zn+1 − Zn,Cn) | {(Zk,Ck)

}
0≤k≤n

)= L
(
(Zn+1 − Zn,Cn) | Cn

)
. (1.11)

Here the latter conditional distributions do not depend on n ≥ 0. Thereafter, we introduce for
every c, s ∈ S such that P(c, s) > 0 the conditional jump and waiting time distributions

μc,s(dx) := P(Zn+1 − Zn ∈ dx|Cn = c,Cn+1 = s),

μc(dt) :=
∑
s∈S

P(c, s)μc,s(dx),

(1.12)
νc,s(dt) = P(Tn+1 ∈ dt | Cn = c,Cn+1 = s),

νc(dt) =
∑
s∈S

P(c, s)νc,s(dt).

Here, writing a configuration c as (ci, co), we get μc,s(n
−→
co ) = νc,s(n) and μc(n

−→
co ) = νc(n), the

latter denoting the distribution of the nth term of the summand in (1.8) and the former equals to

pn(c; s)αn(c)
∏n−1

k=1(1 − αk(c))

P (c, s)
. (1.13)
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1.1.2. A generic MLW structure for PRWs

Therefore, at the sight of the considerations above, a PRW can be constructed as follows:

• introduce a Markov chain {Cn}n≥0 on S with transition kernel P ;
• consider independent sequences of i.i.d. random variables {(τn(c, s),

−→τn (c, s))}n≥1 – them-
selves independent of {Cn}n≥0 – taking values in {1,2, . . .} × Z2 for every c, s ∈ S and
whose respective distributions are the push-forward images of μc,s by x �−→ (‖x‖, x);

• the piecewise linear interpolation of the initial discrete-time PRW is then given by

St :=
N(t)∑
n=1

−→τn (Cn−1,Cn) + (t − BN(t))
−−−−→τN(t)+1(CN(t),CN(t)+1), (1.14)

with

N(t) := max{n ≥ 0 : Bn ≤ t} and Bn := τ1(C0,C1) + · · · + τn(Cn−1,Cn); (1.15)

• and the skeleton MRW is obtained setting

Zn := SBn =
n∑

k=1

−→τk (Ck−1,Ck). (1.16)

Following the terminology of [35], the continuous-time persistent process {St }t≥0 is virtually a
Lévy Walk (LW), except that the waiting times, as well as the jumps, are no longer i.i.d. nor even
independent. Original LWs are basically Continuous Time Random Walks (CTRWs) for which
the waiting times and the sizes of jumps are coupled and usually proportional. In our context,
the continuous interpolation (1.14) of the skeleton MRW is called a Markov Lévy Walk (MLW)
to fit the nomenclature of the skeleton MRW and the LW structure. As a matter of facts, a LW
is nothing but a MLW for which μc,s no longer depends on c, s ∈ S . As well explained in [35]
and also in [5,39,40,49], these kind of stochastic processes model a wide panoply of phenomena
involving anomalous diffusions. These processes are termed anomalous since their standard de-
viations grow at a polynomial rate of order α �= 1/2 with the time compare to the standard square
root order. In addition, it extends the notion of diffusion in the sense that the marginal densities
solve a fractional Fokker–Planck equation. For instance, CTRWs are anomalous diffusions.

Obviously, there are many other possible choices for the internal chain, all of them leading to
different cutting of the trajectories of the original PRW. For instance, remarking that a PRW is an
additive functional of the underlying VLMC, one may choose for internal chain the VLMC itself.
The jump distributions are then deterministic. With this choice, the geometry of the ambient
space and the symmetries are forgotten. Somehow, the valuable information is entirely encoded
in the internal chain, that is, the VLMC. On the other side, there is the choice intuitively made
here for which the internal chain takes values in the finite set S . Thus, the internal chain is
much simpler whereas the jumps are no longer (conditionally) deterministic and encode a whole
portion of the trajectory of the original PRW. In view of the assumptions of Theorem 2.1, it
is needed to find a trade-off between the complexity of the internal chain and how faithful the
additive component of the MRW describes the trajectory of the PRW.
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Actually, the choice intuitively made so far for the double or the quadruple-infinite comb
PRW has a natural interpretation in the terms of the context tree geometry. This involves the
notion of Longest Internal Suffix (LIS) introduced in [10] and recalled here. Keeping the notation
introduced in Section 1.1, consider θ the left-shift operator defined for every (possibly infinite)
words ω := ω1ω2 · · · on the alphabet A by θ(ω) = ω2ω3 · · · and set for every context c ∈ C,

�- lis(c) := θτ(c)−1(c) ∈ C, with τ(c) := inf
{
n ≥ 1 : θn(c) /∈ C

}
. (1.17)

The longest internal suffix of c is defined by θτ(c)(c). It is abbreviated as the LIS of c and it
is the longest suffix of c which is an internal node of the context tree. On the contrary, the �-LIS
of c defined above is the shortest suffix of c which is always a context. Remark that applying the
shift operator to the �-LIS gives the LIS, so that the letter � refers to the letter before the LIS.

We denote by G ⊂ C the set of �-LISs. The latter is a good candidate for the state space of the
internal Markov chain (called internal state space in the sequel). For this choice, we retrieve for
instance {e,n,w,s}2 for the quadruple-infinite comb model. Also, we retrieve {ud,du} for the
double-infinite comb model. The latter is defined analogously with the binary alphabet {u,d} –
standing for up and down moves respectively – and leaves {und,dnu : n ≥ 1} ∪ {u∞,d∞}. This
comb model is used in [12] to study one-dimensional PRW.

To go further, define inductively the sequence of breaking times as follows

B0 = 0 and Bn+1 := inf
{
k > Bn : �- lis(

←−
prefUk) �= �- lis(

←−
prefUBn)

}
, (1.18)

and set as previously Tn+1 := Bn+1 − Bn and T0 = 0 but also

Cn := lis(
←−
prefUBn) and Zn := SBn =

n∑
i=1

(
Ti∑

k=Ti−1+1

Xk

)
. (1.19)

Then assuming
←−
prefU0 ∈ G, it turns out that {(Zn,Cn)}n≥0 is a MRW skeleton of the PRW and

the latter can be recovered adding the information given by the conditional excursions

eg,h(dξ) := P

(
n �−→

n∧Ti∑
k=Ti−1+1

Xk ∈ dξ

∣∣∣∣C0 = g,C1 = h

)
. (1.20)

Remark 1.2. There is no reason for a context tree to admit a finite set of LISs. That is why,
in the sequel, internal Markov chains evolving in a possibly infinite countable state space are
considered. It is worth noting these considerations are not artificial: consider for instance a one-
dimensional PRW with increments in {−1,1} whose memory is encoded through the length of
last rise together with the length of the last descent.

1.2. Overview of the article

Foremost, note that in Section 2 is considered a general MLW on Rd , d ≥ 1. Such processes are
easily defined adapting slightly the construction in Section 1.1.2.
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In Section 2.1, it is first proved that the MLW, as well as its embedded skeleton MRW, are
either recurrent or transient supposing the internal Markov chain is recurrent (Proposition 2.1).
If in addition the internal Markov chain is assumed positive recurrent, then it is shown that
Z is recurrent if and only some series is infinite as for classical RWs (Proposition 2.2). This
characterization consists in extending a result of [2] to multidimensional MRWs.

In Theorem 2.1 of Section 2.2 are stated Fourier and Series criteria characterizing the type
(recurrent or transient) of the skeleton MRW. Eventhough, the proof of this result basically fol-
lows the ideas of the Nagaev–Guivarc’h perturbation method, it is worth noting that no moment
conditions are assumed so that virtually all kinds of jump distributions can be considered. Also,
let us point out that when the VLMC (Un) no longer admits an invariant probability measure, the
random time between two change of directions is no longer integrable (see the proof of this fact
for the double-infinite comb VLMC in [9]).

Some probabilistic and operator Assumptions 2.1 and 2.2 together with some Sector Assump-
tion 2.3 are obviously required and mostly relevant in the case of an infinite internal state space.
As already noted, the analytic criterion (2.11) is nothing but the natural extension of the classical
Chung–Fuchs integral test for MRWs: in place of the characteristic function appears the princi-
pal eigenvalue of some Fourier perturbation associated with the internal Markov operator. This
principal eigenvalue admits the asymptotic expansion (2.7). Note that because of the different
nature of Fourier analysis in the lattice and non lattice cases, this section only deals with MRW
taking values in Zd . However, those results are not specific to PRWs and might be usefull in
other context involving MRWs.

Unfortunately, in view of [48], Theorem 4, p. 684, Theorem 2.1 only gives a sufficient cri-
terion for the recurrence of a MLW. The result in [48] also answers nearly by the negative to
the conjecture about two-dimensional DRRWs in [38], Section 3, p. 247. Informally, it is asked
whether a DRRW is recurrent simultaneously with the RW defined as the DRRW observed at the
successive times of returns in its initial direction. As already pointed out by the authors, the given
example in [48] do no fit well to the usual framework of DRRW since their waiting times can be
equal to zero with positive probability. This may appear anecdotal, however, their ingenious and
technical construction involves in a crucial way unimodality arguments that can not be applied
for true DRRWs. Nevertheless, it still provides a counter-example for our general MLWs and
related MRW skeletons.

In Section 2.3, returning to the quadruple-infinite comb model, a complete characterization of
the recurrence of PRWs is stated in Proposition 2.1. For this specific model, the margins of the re-
sulting skeleton are independent symmetric one-dimensional RWs. The admissible probabilistic
structure is detailed in Assumptions 2.4 and includes DRRWs.

Our results are based on the fundamental Lemma 2.1 and Theorem 2.2 involving an appro-
priate Borel–Cantelli lemma. Let us stress that, to our knowledge, the result in Lemma 2.1 is
surprisingly not mentioned anywhere. At the end of this section, the conjecture [38], Section 3,
p. 247, for DRRWs, and actually for a wider class of two-dimensional PRWs, is definitively
answered by the negative. We follow the constructive probabilistic approach presented in [48]
which crucially relies on an unimodality assumption for the jump distribution. This assumption
is dropped in the present paper by using the important Lemma 2.1.

Finally, the two remaining sections are devoted to the proofs of Proposition 2.3 and The-
orem 2.1 of Section 3, the fundamental Lemma 2.1 and its consequences in Theorem 2.2, of
Corollary 2.1 and Theorem 2.3 of Section 4.
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2. Recurrence and transience criteria

In this section, we consider a Markov chain {Cn}n≥0 on a discrete and countable state space
S whose Markov kernel is denoted by P . Also, we denote by π(dc) a corresponding invariant
measure, normalized to be a probability measure when possible. Let {τn(c, s),

−→τn (c, s)}n≥0 be a
sequence of i.i.d. random variables taking values in [0,∞) × Rd whose common distribution,
depending only on (c, s), is denoted by mc,s(dt, dx). Moreover, let us introduce the first and
second marginal distributions of mc,s denoted respectively, by νc,s(dt) and μc,s(dx) and set

μc(dx) :=
∑
s∈S

P(c, s)μc,s(dx) and νc(dt) :=
∑
s∈S

P(c, s)νc,s(dt). (2.1)

Thereafter, one can construct as in (1.14)–(1.16) above a MLW denoted by {St }t≥0 evolving in
Rd whose skeleton {Zn}n≥0 is a MRW coupled with C as an internal Markov process. In order
to ensure the continuity of S, it is assumed that, for every c, s ∈ S with P(c, s) > 0,

mc,s

({0} × (Rd \ {0}))= 0. (2.2)

In the sequel Pc (resp. Pν ) denotes the probability distribution on the path space conditionally
on C0 = c (resp. C0 is distributed as ν) and S0 = Z0 = 0.

2.1. Dichotomy results

The following proposition states a zero-one law for MLWs and MRWs leading to the standard
dichotomy between recurrence versus transience.

Proposition 2.1 (Zero-one law and dichotomy recurrence/transience). Assume that the in-
ternal Markov chain C is irreducible and recurrent. Then, for any c ∈ S and any Borel subset
A ⊂Rd , it holds

Pc

(⋂
t≥0

⋃
u≥t

{Su ∈ A}
)

∈ {0,1} and Pc

(⋂
n≥0

⋃
k≥n

{Zk ∈ A}
)

∈ {0,1}. (2.3)

In particular, a MLW (resp. MRW) is either recurrent or transient in the sense that either for any
c ∈ S ,

Pc

(
lim

t→∞‖St‖ = ∞
)

= 1
(

resp. Pc

(
lim

n→∞‖Zn‖ = ∞
)

= 1
)
, (T)

or for any c ∈ S there exists r > 0 (a priori depending on c) such that

Pc

(
lim inf
t→∞ ‖St‖ < r

)
= 1

(
resp. Pc

(
lim inf
n→∞ ‖Zn‖ < r

)
= 1
)
. (R-1)

Remark 2.1. Considering the original set of questions about PRWs built from VLMCs, an anal-
ogous zero-one law holds substituting {St }t≥0 with the discrete-time process {Sn}n≥0.
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Proof. Let c ∈ S be arbitrarily chosen and introduce the successive visit times {σn}n≥0 of c.
Define

Xn := {−−−→τσn+k(Cσn+k−1,Cσn+k)
}

1≤k≤σn+1−σn
, (2.4)

for all n ≥ 0. Since the excursions between two visits of c are i.i.d. under Pc , so it is for {Xn}n≥0.
Therefore, the zero-one law (2.3) follows from the Hewitt–Savage zero-one law [29], Theo-
rem 3.15, p. 53, noting that the asymptotic events belong to the exchangeable σ -field of {Xn}n≥0.

Specifying the zero-one law (2.3) to the events considered in (T) and (R-1) so that they occur
with probability zero or one, it only remains to prove these probabilities do not depend on the ini-
tial configuration c. To this end, suppose that S (resp. Z) goes to infinity for one configuration c.
Then, the irreducibility of C and the translation invariance property (1.11) of Markov additive
processes imply S goes to infinity with positive probability, and in turn with probability one, for
any internal state. �

Assuming in addition C is π -positive recurrent, one can improve (R-1) for MRWs. To this
end, introduce the recurrent set R and the set of possible states P – following the terminology
and notations of [2] – defined by

R := {x ∈ Rd : ∀ε > 0,Pπ

(
Zn ∈ B(x, ε) i.o.

)= 1
}

and,

P := {x ∈ Rd : ∀ε > 0,∃n ≥ 0,Pπ

(
Zn ∈ B(x, ε)

)
> 0
}
,

where B(x, ε) ⊂ Rd stands for the open ball of radius ε > 0 centered at x ∈ Rd . Note that R
and P are both closed subsets. Now let  ⊂ Rd be the smallest closed subgroup containing the
support of the distribution mixture

μπ(dx) :=
∑
c∈S

π(c)μc(dx), (2.5)

where μc(dx) is given in (2.1).

Proposition 2.2 (Recurrence features for MRWs and series criterion). Assume that the in-
ternal Markov chain is irreducible and π -positive recurrent. Then one has P =R=  when the
MRW is recurrent. Furthermore, the alternative (R-1) is equivalent for the MRW to each of the
following statements.

1. For some (or equivalently any) ε > 0 and some (or any) initial distribution ν,

Pν

(
lim inf
n→∞ ‖Zn‖ < ε

)
= 1. (R-2)

2. For some (or any) ε > 0 and some (or any) initial state c ∈ S ,

∞∑
n=0

Pc

(
Zn ∈ B(0, ε)

)= ∞. (R-3)
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Remark 2.2. Regarding the recurrence set associated with S the question seems to be more
intricate since it depends strongly on the geometry of each conditional jump μc,s(dx). For in-
stance, one can be easily convinced that it is possible for two recurrent PRWs to have both
recurrent skeletons in Z2 but distinct recurrent set given respectively by R2 and {(x, y) ∈ R2 :
x ∈ Z or y ∈ Z}.

Proof. First, we deduce from the partition exhibited in [6] for stationary random walks and
from the zero-one law in Proposition 2.1 that (R-1) is equivalent to (R-2) when ν = π , and thus
for any (or some) arbitrary ν since π is fully supported. Besides, one can easily see that the
relevant Propositions in [2], pp. 127–130, can be adapted to a multidimensional framework. The
first Proposition for instance which is originally taken from [7], p. 56, can be more generally
obtained for multidimensional MRW using [6] together with the dichotomy Proposition 2.1. It
follows that the recurrent alternative is equivalent to (R-3) and P =R= . �

2.2. A general sufficient Fourier criterion

In this section, an integral test using Fourier analysis is given for general MRWs. A similar
criterion might be proved for MLWs, however, Fourier analysis being substantially different in
the lattice and non lattice case we restrict ourself to MRWs taking values in Zd .

Definition 2.1 (Aperiodic MRW). A MRW is called to be periodic if for some c ∈ S , x ∈ Zd

and proper subgroup  �Zd it holds μc(x + ) = 1. On the contrary, it is called aperiodic.

In the sequel, we make the following probabilistic assumptions.

Assumption 2.1 (Probabilistic assumptions).

(P1) The Markov chain C is irreducible, aperiodic (classical sense) and π -positive recurrent.
(P2) The Markov random walk Z is aperiodic in Zd .

We introduce for every t ∈ Td – the d-dimensional torus Rd/2πZd – the operator on L1(π)

defined for every f ∈ L1(π) and c ∈ S by

Ptf (c) := Ec

[
eitZ1f (C1)

]
. (2.6)

For t = 0, we simply write P for P0. There exists an extensive literature regarding such Fourier
perturbations and we refer to [3,19,20,24,26,51], for instance. We recall that the peripheral spec-
trum – the set of spectral values with maximal modulus – is well defined for bounded operators.
Moreover, we say that a Markov operator has a spectral gap when its spectrum outside a centered
ball of radius 1−ρ is finite for some 0 < ρ < 1. Below, 1 stands for constant function on S equal
to 1.

Assumption 2.2 (Operator assumptions). There exists a Banach space (B,‖ · ‖B) such that:

(O1) the constant function 1 ∈ B and the canonical injection B −→ L1(π) is continuous;
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(O2) the operators Pt acts continuously on B for every t ∈ Td ;
(a) the restricted Markov kernel P : B −→ B admits a spectral gap;
(b) the map t �−→ Pt is continuous for the subordinated operator norm induced by ‖·‖B;
(c) the peripheral spectrum of Pt : B −→ B only consists of eigenvalues when it is

outside the open unit disk.

For instance, those assumptions are satisfied for B = Lp(π) with p ∈ [1,∞] if all the Pt are
quasi-compact. We allude to [18,22,23,25,31–33,41,45] for more general consideration about
these properties but also – when there exist Lyapunov functions – for the interesting situation
of weighted-supremum spaces corresponding to geometric ergodicity. Before stating the last as-
sumptions, let us draw some important consequences.

Proposition 2.3 (The eigenvalue of maximal modulus). Under Assumptions 2.1 and 2.2, for
any sufficiently small neighbourhood V ⊂ Td of the origin and any t ∈ V one has:

1. the spectrum of Pt admits a unique element of maximal modulus λ(t);
2. λ(t) is an eigenvalue of algebraic multiplicity one;
3. |λ(t)| ≤ 1 and |λ(t)| = 1 if and only if t = 0;
4. the map t �−→ λ(t) is continuous and admits the asymptotic expansion

λ(t) =
t→0

μ̂π (t) +O
(‖Pt − P‖2), (2.7)

where μ̂π is the characteristic function of the mixture distribution (2.5).

As it shall appear in the proof, it is possible to continue the asymptotic expansion given in
(2.7). In addition to Assumptions 2.1 and 2.2, to avoid some tangential convergence making the
recurrence criteria more intricate to expose, we need the following technical hypothesis.

Assumption 2.3 (Sector condition). For any sufficiently small neighbourhood V ⊂ Td of the
origin, there exists K > 0 such that for all t ∈ V ,∣∣�(λ(t)

)∣∣≤ K�(1 − λ(t)
)
. (2.8)

Roughly speaking, the sector condition forbids a too strong drift term. In the classical con-
text of Random Walks, if the jumps have a second order moment this condition is equivalent
for their characteristic function to the null drift condition. On the contrary, if their tails satisfy
some general regularly varying conditions then (see [43] for more details) the sector condition
is always satisfied. Finally, most of the operators encountered are sectorial and one can consult
[34], Chapter 2, and [36] for a rigorous definition and elementary properties.

As an example, when the underlying Banach space is L2(π), this assumption can be stated in
a more handy way in terms of the associated sectorial forms (we refer to [30] and particularly its
Chapters Five and Six for more details). Introduce the sesquilinear form

Et [f,g] =
∑
c∈S

(f − Ptf )(c)g(c)π(c). (2.9)
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Note that for t = 0, it is nothing but the usual Dirichlet form associated with the driving chain.
Then one can consider the real and imaginary part of the latter form respectively, given by

Rt (f, g) := Et [f,g] + Et [g,f ]
2

and It (f, g) := Et [f,g] − Et [g,f ]
2i

. (2.10)

It turns out that Rt is symmetric and positive (definite when t �= 0) but also that condition (2.8) is
equivalent to the usual sector condition |It | ≤ CRt . Typically, this inequality trivially holds when
the internal chain C is π -reversible and the jumps satisfy the symmetry μc,s(dx) = μs,c(−dx)

for every c, s ∈ S . In that case, the imaginary part vanishes and the spectrum is real.
The following theorem deal with a Fourier-like criterion for MRWs. Compared to (R-3), the

series criterion given here is slightly more general since it holds for an arbitrary initial distribution
ν dominated by π , that is, there exists c > 0 such that ν ≤ cπ .

Theorem 2.1 (Fourier and series criterion). Under Assumptions 2.1, 2.2 and 2.3 the MRW is
recurrent or transient accordingly as

lim
r↑1

∫
V

�
(

1

1 − rλ(t)

)
dt = ∞ or lim

r↑1

∫
V

�
(

1

1 − rλ(t)

)
dt < ∞, (2.11)

for some (or any) neighbourhood V of the origin for which λ(t) is well-defined. Besides, the
integral above is infinite or finite accordingly as

∞∑
n=0

Pν(Zn = 0) = ∞ or
∞∑

n=0

Pν(Zn = 0) < ∞, (2.12)

for some (or any) initial distribution ν dominated by π .

Recall that the first term in the expansion (2.7) is μ̂π (t) so that the integral criterion (2.11) can
be interpreted as a perturbation of the classical one obtained for a random walk with μπ as jump
distribution. Also, one can note using the sector condition that this criterion can be rewritten in
terms of ∫

V

1

�(1 − λ(t))
dt = ∞ or

∫
V

1

�(1 − λ(t))
dt < ∞. (2.13)

Besides, it could be interesting to compare (2.11) with the conjecture stated in [2], p. 126,
namely: such MRW is recurrent if, and only if∑

c∈S
π(c)

∫
(−ε,ε)

�
(

1

1 − μ̂c(t)

)
dt = ∞. (2.14)

Here μ̂c(t) denote the characteristic function of μc(dx) defined in (2.1).
Finally, the series criterion (2.12) is obvious for any initial distribution ν when the internal

state space is finite or when the internal operator satisfies some Doeblin’s condition. It is also
possible to suppose the MRW satisfying some scaling limit as in [27] to get the same series
criterion.
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Remark 2.3. Theorem 2.1 may applies in many contexts: PRWs built from VLMCs obviously
but also, for instance, additive functional of Markov chains and non-homogeneous random walks.
We can refer to [46] and [28] respectively. To a lesser extent, it could apply to random walks in
random environment subject to generalizing it to uncountable internal state spaces (the environ-
ments viewed from the particles) and non-lattice jumps.

An illustration of Theorem 2.1

To see what imply the Assumptions of Theorem 2.1, we give a concrete and simple application
in the field of non-homogeneous random walks, similar to those investigated in [28], pp. 6–9.

First, assume that the internal Markov chain C is given by the house-of-cards process
on N whose transitions P(n,0) = pn and P(n,n + 1) = 1 − pn with pn ∈ (0,1) and ε :=
infn≥0 pn > 0. One can easily check that C is irreducible, π -positive recurrent and aperiodic
with

π(n) =
∏n−1

k=0(1 − pk)∑
n≥0
∏n−1

k=0(1 − pk)
.

Besides, since ε > 0, P satisfy the classical Doeblin’s condition. Therefore, it is well-known –
see, for instance, [50], Chapter 2, – that ‖|P n −π(·)1‖∞ ≤ (1 − ε)n. In other words, the Markov
kernel P : L∞(π) −→ L∞(π) has a spectral gap. Note that the hypothesis (O1) is trivially satis-
fied here.

At this stage, we need to specify our assumptions on the conditional jumps in (2.1) associated
with Z. To this end, introduce μn,n+1, μn,0 and μn = (1 − pn)μn,n+1 + pnμn,0 the associated
conditional distributions and assume that Z is aperiodic and

lim
t→0

sup
n∈N

∣∣μ̂n(t) − 1
∣∣= 0.

It is not difficult to see that t �−→ Pt is then continuous as bounded operator on L∞(π). Also,
we need to illustrate Assumption (O2(c)). As a matter of facts, this condition is in many cases a
direct product of the other hypotheses.

Regarding the Assumption (O2(c)), it can be deduced from previous assumptions — in many
cases, such a deduction is possible. In facts, for this example, let us consider, for every k ≥ 0, the
linear contraction Tk : L∞(π) −→ L∞(π) defined by Tkf (n) = f (n)1{n≤k} and remark that

γk := sup
‖f ‖∞≤1

π
(|f − Tkf |)−−−→

k→∞ 0.

Besides, ∥∥P n
t f
∥∥∞ ≤ ∥∥P n|f |∥∥∞ ≤ (1 − ε)n‖f ‖∞ + π

(|f |).
It turns out for n and k large enough that∥∥P n

t − P n
t Tk

∥∥∞ ≤ 2(1 − ε)n + γk < 1.
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Since P n
t Tk is a finite-rank operator, it is compact, and since Pt is a contraction on L∞ the

Lemma of [14], Chap. VIII.8.2, p. 709, applies so that (O2(c)) is satisfied. The reader could
consult [31] and [21] for other tools in this spirit.

In order to verify the sector Assumption 2.3 and to apply Theorem 2.1, suppose for instance
that for every n ∈ N the distributions μn,0 and μn,n+1 are supported on Z and respectively given
for every k ∈ Z by

μn,0(k) = cα

1 + |k − mn|1+α
and μn,n+1(k) = Cβ

1 + |k − Mn|1+β
. (2.15)

We assume furthermore that 0 < α,β < 2 with α,β �= 1 and (pnmn)n∈N, ((1 − pn)Mn)n∈N are
two bounded sequences. Note that cα and Cβ are two positive normalizing constants.

The aperiodicity condition is then trivially satisfied and we can deduce from [1] that

‖Pt − P‖ ≤ sup
n∈N

∣∣μ̂n(t) − 1
∣∣=O

(|t |α∧β∧1),
where ∧ stand the minimum operators. Furthermore, one can prove from [1] that

1 − μ̂π (t) = γα|t |α + γβ |t |β − i

[∑
n∈N

πn

(
pnmn + (1 − pn)Mn

)]
t + o

(|t |α∧β∧1),
where γα and γβ are two positive constants. Therefore, one can see that the sector condition
holds according to ∑

n∈N
πn

(
pnmn + (1 − pn)Mn

)= 0 or α ∧ β < 1.

In the two latter situation Theorem 2.1 applies. In the first one, the recurrence of Z is equivalent
to α ∧ β > 1 whereas it is always transient in the second one.

2.3. Necessary and sufficient criteria for the quadruple-infinite comb

We first need to extend an oscillation criterion used in [48] for unimodal symmetric distributions.

Theorem 2.2 (Series and Fourier criterion). Let {Hn}n≥0 and {Vn}n≥0 be two independent
RWs on Z starting from the origin, the second one being symmetric. Then

P(Hn+1 = 0,VnVn+1 ≤ 0, i.o.) = 1

⇐⇒
∞∑

n=0

P(Hn+1 = 0)P(0 ≤ Vn ≤ Vn+1 − Vn) = ∞. (2.16)

Furthermore, if the two-dimensional random walk {(Hn,Vn)}n≥0 is transient, this criterion is
equivalent to the Fourier integral criterion

lim
r↑1

∫
V

∫
V

�
(

�V (r, s)

1 − ϕH (t)ϕV (s)

)
ds dt = ∞, (2.17)
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where V ⊂ T2 is any sufficiently small neighbourhood of the origin, ϕH and ϕV are the charac-
teristic functions of the jumps associated with H and V and �V is the trigonometric series

�V (r, s) =
∞∑

n=0

rnTV (n) cos(ns). (2.18)

Here TV (n) denotes the two-sided tail distribution of the symmetric jumps of V .

This result for symmetric and unimodal distribution involves in [48] a Borel–Cantelli lemma
which crucially relies on the unimodality assumption. Actually, instead of unimodality, applying
Lemma 2.1 below on Lévy concentration functions, only symmetry is required. Recall that the
Lévy concentration function of a real random variable X is defined for all λ ≥ 0 by

Q(X,λ) = sup
x∈R

P(x ≤ X ≤ x + λ). (2.19)

The following fundamental Lemma means – roughly speaking – that the supremum is reached
near the origin for the symmetric distributions.

Lemma 2.1 (Lévy concentration function). Let {Mn}n≥0 be a symmetric random walk. Then
there exist two positive universal constants L and C such that for all p > 0 for which the char-
acteristic function of the jumps is non-negative on [−p,p] and all n ≥ 1 and λ ≥ L/p,

P(0 ≤ Mn ≤ λ) ≤ Q(Mn,λ) ≤ CP(0 ≤ Mn ≤ λ). (2.20)

Remark 2.4. One can obtain similar bounds replacing the condition 0 ≤ Mn ≤ λ in (2.20) by
the symmetric one |Mn| ≤ λ/2. Besides, one can note that Q(Mn,λ) = P(|Mn| ≤ λ/2) when the
jump distribution is unimodal and non-atomic.

At this stage, Theorem 2.2 provides a necessary and sufficient criteria for a wide class of
PRWs, built from a quadruple infinite comb as in Section 1.1, under the following assumptions.
We refer also to the beginning of Section 2.

Assumption 2.4 (Generalized DRRWs). Let {Sn}n≥0 be a quadruple-infinite comb PRW start-
ing from the origin, the initial time being a vertical-to-horizontal move and such that

(H1) the distribution associated with the persistence time τn((�, �
′), (�′, �′′)) depend only on

the current horizontal h= {e,w} or vertical v= {n,s} direction �′ of the walker. They
are denoted by νh(dt) or νv(dt) respectively;

(H2) the probabilities to change from the current direction into an orthogonal one only depend
on the final direction (among east, north, west or south) and are constant with respect to
the absolute directions (horizontal or vertical). Those are denoted by

pe = pw = 1 − pv

2
and pn = ps = 1 − ph

2
, (2.21)
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in such way that ph and pv stand respectively for the probabilities to stay in the current
horizontal and vertical direction at each breaking time.

Remark 2.5. In [48], Theorem 2, p. 682, it is proved that DRRWs are transient in Zd for d ≥ 3.
Therefore, the higher dimensional cases modeled by Assumption 2.4 seem to be irrelevant (it
still would require a proof) and are not investigated in this paper.

This framework includes two types of PRWs which are of particular interest when the waiting
time distributions are equal, that is νh(dt) = νv(dt):

• Original DRRWs if ph = pv = 1/3.
• DRRWs without U-turns (non-backtracking DRRWs) if ph = pv = 0.

Non-backtracking DRRWs are natural generalizations of the symmetric 1-dimensional PRWs
investigated in [12] and was the original motivation of this work.

Let us introduce a symmetric Rademacher random variable ε, two geometric random variables
Gh and Gv with parameters 1 − ph and 1 − pv, and two sequences of i.i.d. random variables
{τhk }k≥1 and {τvk }k≥1 distributed as νh(dt) and νv(dt). We assume that all of these are indepen-
dent of each other. Then we can consider two independent random walks {Hn}n≥0 and {Vn}n≥0
whose respective jumps are distributed as

ε

Gh∑
k=1

(−1)k−1τhk and ε

Gv∑
k=1

(−1)k−1τvk , (2.22)

and state a necessary and sufficient criterion for the recurrence of these specific PRWs.

Corollary 2.1 (Necessary and sufficient criteria). Under Assumption 2.4 the origin is recurrent
for {Sn}n≥0 if and only if

∞∑
n=0

P(Hn+1 = 0)P(0 ≤ Vn ≤ Vn+1 − Vn) or

(2.23)∞∑
n=0

P(Vn+1 = 0)P(0 ≤ Hn ≤ Hn+1 − Hn) = ∞.

Thereafter, we answer by the negative to the conjecture in [38] (by presenting a constructive
method to build recurrent PRWs with transient MRW skeletons).

Theorem 2.3 (Definitive invalidation of the conjecture). There exist waiting time distributions
on the positive integers {1,2, . . .} such that the associated DRRWs and non-backtracking DRRWs
in Z2 are recurrent whereas their MRW skeletons are transient.

We can deduce from the Fourier criterion (2.17) that such distributions are necessarily non-
integrable. Recall that in the case of non integrable persistent times, there is no invariant proba-
bility measure for the associated VLMC. Inspired by [47], one could ask for a proof relying on
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Fourier analysis. Such an approach has seemed to us tedious. That is why our preferences go to
a more concrete probabilistic proof in the spirit of [17,48].

3. Proofs of Section 2.2

Let us start with Proposition 2.3 which lay the groundwork for Theorem 2.1.

Proof of Proposition 2.3. First, we get from Assumptions (P1) and (O1) that in the complex
Banach space B we have ker(P −I ) = span(1). Together with the spectral gap condition (O2(a))
and since any isolated element of the spectrum is an eigenvalue, the spectral radius of P is
necessarily equal to 1. Besides, the eigenvalue 1 is necessarily of algebraic multiplicity one.
Otherwise, the operator P − I would induce a surjective map from ker(P − I )2 � span(1) to
span(1) and thus there would exist f ∈ B such that Pf = f + 1, in contradiction with the
Perron-Frobenius theorem. Furthermore, another application of this theorem shows that if λ is
an eigenvalue of P on the unit circle then λ = 1. This ends the proof of the first and second point
of the proposition in the case when t = 0.

Furthermore, the two properties shown above are somehow open in the sense that they still hold
for small continuous perturbations of P . More precisely, in virtue of the continuity hypothesis
(O2(b)), we can apply [30], Theorem 3.16, p. 212. It follows there exist δ, ε > 0 and a positively-
oriented curve  enclosing 1 such that, for any bounded linear perturbation H smaller than δ for
the operator norm, there exists a unique element λ(H) ∈ σ(P + H) – the spectrum of P + H

– in the interior of . The latter is an element of maximal modulus but also an eigenvalue of
algebraic multiplicity one and the distance d(σ (P +H),) is lower-bounded by ε. The proof of
the two first points then follows by setting H = Pt − P .

To prove the third point, let us denote by ρ(T ) the spectral radius of a bounded linear operator
T on a Banach space. Another application of [30], Theorem 3.16, implies that T �−→ ρ(T ) is
upper semi-continuous so it is for t �−→ ρ(Pt ). Consequently, the function t �−→ ρ(Pt ) reaches
its maximum M on any compact set K ⊂ Td at some point t∗ ∈ K . Let λ be a peripheral spectral
value of Pt∗ so that |λ| = M . Assume that M ≥ 1. It comes from Assumption (O2(c)) that Pt∗h =
λh for some eigenvector h ∈ B. Since the modulus of a characteristic function is lower than one,
the triangle inequality implies that for every c ∈ S ,

M
∣∣h(c)

∣∣≤∑
s∈S

∣∣μ̂c,s

(
t∗
)∣∣∣∣h(s)

∣∣P(c, s) ≤ P |h|(c), (3.1)

where μ̂c,s stands for the characteristic function of μc,s given in (2.1). Since P n|h| converge
pointwise towards π(|h|)1 then necessarily M = 1. Supposing now M = 1 and t∗ �= 0 we obtain,
again from the latter convergence, that |h| ≤ π(|h|)1 and then |h| = π(|h|)1 since π has full
support and π(π(h)1−h) = 0. This implies that |μ̂c,s(t

∗)| = 1 as soon as P(c, s) �= 0. However,
this property is equivalent for the MRW to be periodic, which is excluded. As a consequence, for
any neighbourhood V ⊂ Td of the origin,

sup
t∈Td\V

ρ(Pt ) < 1. (3.2)

Since |λ(t)| = ρ(Pt ) on V the proof of the third point is completed.
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It remains to prove the last and fourth point. Again, we use the perturbation theory exposed in
[30] but taking care about the (possibly) infinite dimensional context using the Cauchy holomor-
phic functional calculus. With the notations above, since the resolvent RH (ξ) := (P +H − ξ)−1

is holomorphic outside the (compact) spectrum of P + H , we can consider for all H with
‖H‖ ≤ δ the following so called Dunford integral

QH := − 1

2πi

∫


RH (ξ) dξ. (3.3)

Let H0 be any perturbation with ‖H0‖ ≤ δ. Recall that d(σ (P + H0),) ≥ ε and thus

sup
ξ∈

∥∥RH0(ξ)
∥∥≤ 1

ε
.

As a consequence, for any H such that ‖H‖ < ε, and any ξ ∈ , one can write

RH+H0(ξ) = RH0(ξ) +
∑
p≥1

(−HRH0(ξ)
)p

. (3.4)

Recall that ‖ ·‖ is a subordinated norm. It follows that QH+H0 −QH0 =O(H) and hence H �−→
QH is continuous on a neighbourhood of the origin.

Moreover, writing the Laurent series expansion of RH (ξ) around λ(H), it is well known that
QH is the continuous projector on the generalized eigenspace associated with λ(H). Since the
latter is of multiplicity one, this space is one-dimensional so that, denoting by Tr the linear trace
defined on the finite rank operator ideal,

λ(H) − 1 = Tr
(
QH (P + H)

)− 1 = Tr
(
(P + H − 1)QH

)
. (3.5)

Lemma 3.1. The trace operator is continuous on the space E of rank-one bounded linear
operators endowed with the induced subordinated norm and |Tr(T )| ≤ ‖T ‖ for all T ∈ E.

Proof. Let (Tn) be a sequence of continuous rank-one operators converging to T . There exist
continuous linear forms (ϕn), ϕ and vectors (vn), v such that Tr(Tn) = ϕn(vn) and Tr(T ) = ϕ(v),
where Tn and T are respectively represented as ϕn ⊗ vn and ϕ ⊗ v. We can assume without loss
of generality that (vn) and v are of norm 1. Thereafter, if we consider e such that ϕ(e) = 1
we get that limn→∞ |ϕn(e)| = 1 and ϕn(e)vn −→ v. Thus replacing vn by (ϕn(e))vn and ϕn

by (ϕn(e))
−1ϕn we can assume that vn −→ v. Then, necessarily ϕn −→ ϕ for the subordinated

norm. In particular, we deduce the convergence Tr(Tn) −→ Tr(T ). Since the upper-bound is
obvious this ends the proof of the Lemma. �

It turns out from the continuity of the perturbed eigenprojector, the representation (3.5) and
Lemma 3.1 above that H �−→ λ(H) is continuous on a neighbourhood of the origin. As a conse-
quence, we get the continuity of λ(t) on a neighbourhood of the origin writing λ(t) = λ(Pt −P).
Finally, we shall prove the asymptotic expansion (2.7). To this end, we continue the work initi-
ated for (3.5), (3.4) and (3.3). First note (P + H − 1)RH (ξ) = 1 + (ξ − 1)RH (ξ) but also the
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identity QH (P + H − 1)QH = (P + H − 1)QH . Then, one can write

λ(H) − 1 = Tr

(
1

2πi

∫


(1 − ξ)QH RH (ξ) dξ

)
.

Set R := R0 and Q := Q0. Using (3.4) with H0 = 0 and since one can exchange the integral and
the series, the problem reduces to the trace of the normally convergent series∑

p≥0

1

2πi

∫


(1 − ξ)QH R(ξ)
(−HR(ξ)

)p
dξ. (3.6)

Following [30], Chap. I.5.3, the Laurent series expansion of the resolvent is given by

R(ξ) = − Q

ξ − 1
+
∑
n≥0

(ξ − 1)nT n+1, (3.7)

where T :=∑∞
n=0 P n(I − Q). Therefore, to evaluate each integrals in (3.6) it only remains to

identify the Cauchy principal singularity (the residue) of the integrand. For p = 0, the integral in
(3.6) vanishes whereas for p = 1 it is equal to QH QHQ, its trace is given by πQH H1. For the
following terms, the pth principal singularity is a finite sum of multiplicative terms involving Q,
T , HQ, HT and most importantly QH as common left-factor. A thorough study would leads to
their explicit expression. However, for our purpose, it is only needed to note the pth principal
singularity is a rank-one operator whose range do not depend on p. As a consequence, we can
apply the upper-bound in Lemma 3.1 to the sum over p ≥ 2 and we obtain

Tr

(∑
p≥2

1

2πi

∫


(1 − ξ)QH R(ξ)
(−HR(ξ)

)p
dξ

)
=O

(‖H‖2).
Since πQ = π , we deduce λ(H)−1 = πH1+π(QH −Q)H1+O(‖H‖2) = πH1+O(‖H‖2).
To conclude, the asymptotic expansion (2.7) is proved by setting H := Pt − P . �

Proof of Theorem 2.1. First, the Markov additive property implies for every n ≥ 1 and every
π -integrable or non-negative function f on S the identity

P n
t f (c) = Ec

[
eit.Znf (Cn)

]
. (3.8)

We show that∑
n≥0

Pν(Zn = 0) = lim
r↑1

∑
n≥0

rnPν(Zn = 0) = lim
r↑1

∫
Td

�(ν(1 − rPt )
−11
)
dt. (3.9)

To this end, write the resolvent (1− rPt )
−1 on B as the classical series expansion of the bounded

operators rnP n
t when 0 < r < 1. Remark that t �−→ ν(rnP n

t )1 is continuous by assumptions and
bounded by rn from (3.8). Then, the equalities of (3.9) follow from the monotone convergence
theorem for the first one and the dominated convergence theorem for the second one. To go
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further, let 0 < ε < 1 be given, so that in (3.2) one has ρ(Pt ) ≤ 1 − ε for every t /∈ V . Again, the
series expansion of the resolvent yield the existence of C > 0 such that ‖(1 − rPt )

−1‖B ≤ Cε−1

for every 0 < r < 1 and t /∈ V . Since ν is assumed to be a continuous linear form on L1(π), it is
also continuous on B from (O1). Denoting by N1,N2 the B-norm of the continuous linear forms
ν and 1, it follows ∣∣∣∣lim

r↑1

∫
Td\V

�(ν(1 − rPt )
−11
)
dt

∣∣∣∣≤ Cε−1N1N2 < ∞. (3.10)

Therefore, the r-limit on the right-hand side of (3.9) is finite or infinite accordingly as the same
r-limit, but integrating on any (or some) neighbourhood of the origin, is finite or infinite. Let us
write Pt = λ(t)Qt + Et where Qt := QPt−P is the one-dimensional projector on the eigenspace
associated with λ(t) defined by (3.3). Note that Et can be seen as the restriction of Pt to the stable
subspace ker(Qt ) = �(1−Qt) and Qt the restriction of Pt to the one-dimensional supplementary
subspace ker(1 − Qt) = �(Qt ). Besides, another use of [30], Theorem 6.17, p. 178, with the
spectral gap condition (O2(b)) gives 0 < ε < 1 such that ρ(Et ) ≤ 1 − ε for every t ∈ V . In
addition, the operators Qt and Et commute so that P n

t = λ(t)nQt + En
t for every n ≥ 1. Thus, it

follows

�(ν(1 − rPt )
−11
)= �

(
νQt1

1 − rλ(t)

)
+ �(ν(1 − rEt )

−11
)
.

As for (3.10), similar arguments imply that the second term in the right-hand side of the latter
equality is bounded by some positive constant, uniformly with respect to 0 < r < 1 and t ∈ V ,
in such way that the finiteness or not of the r-limit depend only on the first term. Moreover, this
latter integrand can be rewritten up to the multiplicative term |1 − rλ(t)|−2 as

�(νQt1)�(1 − rλ(t)
)− �(νQt1)�(rλ(t)

)
.

Note that |�(rλ(t))| ≤ K�(1 − rλ(t)) for every 0 < r < 1 and t ∈ V by the sector Assump-
tion 2.3. Also, remark that νQt1 converges toward 1 as t goes to 0. Then, we deduce easily
that ∑

n≥0

Pν(Zn = 0) = ∞ ⇐⇒ lim
r↑1

∫
V

�
(

1

1 − rλ(t)

)
dt = ∞,

for some (or any) neighbourhood of the origin for which λ(t) is well-defined. It is worth noting
that ν disappears of the integral condition. Therefore, the necessary and sufficient recurrence
criterion follows from Proposition 2.2. This ends the proof of the theorem. �

4. Proofs of Section 2.3

We begin with the proof of Lemma 2.1. Thereafter, we will be able to prove Theorem 2.2 applying
a generalized Borel–Cantelli argument and then obtain Corollary 2.1. The proof of Theorem 2.3
requires these three results and is given at the end of this section.
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Proof of Lemma 2.1. We follow and make more precise the results of [15,16] connecting the
behaviour of the Lévy concentration function with the integral near the origin of the characteristic
function. Let ϕ(t) be the characteristic function of the jumps associated with {Mn}n≥0. Since the
latter is symmetric, one can find p > 0 such that ϕ(t) ≥ 0 on [−p,p]. Let us introduce now

h(t) := (1 − |t |)+ and H(x) :=
∫

eixth(t) dt =
(

sin(x/2)

x/2

)2

.

A direct consequence of the Fourier-duality implies, for any λ > 0 and n ∈ {1,2, . . . , }, the fol-
lowing crucial identity

λ

2π

∫ 2π/λ

−2π/λ

ϕ(t)nh(λt/2π)e−itξ dt =
∫

H
(
2π(x − ξ)/λ

)
PMn(dx). (4.1)

Setting ξ = 0 in the equality above, it follows, for any λ > 2π/p and n,N ∈ {1,2, . . .}, that

λ

4π

∫ π/λ

−π/λ

ϕ(t)n dt ≤ 2P(0 ≤ Mn ≤ Nλ) +
(

2
∑
k≥N

1

π2k2

)
Q(Mn,λ). (4.2)

To conclude, we need the following well known result. Because its proof does not appear clearly
in the literature, a brief proof of this fact is given below.

Lemma 4.1. There exist universal constants 0 < m ≤ M such that for any λ > 2π/p and n ≥ 1,

mλ

∫ π/λ

−π/λ

ϕ(t)n dt ≤ Q(Mn,λ) ≤ Mλ

∫ π/λ

−π/λ

ϕ(t)n dt. (4.3)

Proof of Lemma 4.1. First, the upper bound is nothing but the classical concentration inequality
stated in [16], p. 292. Indeed – since ϕ(t)n is positive on [−p,p] – we can remove the absolute
value around it in [16]. To get the lower bound, one can adapt the proof of that in [16], p. 292.

Indeed, the latter allows us to write

mλ

∫ π/λ

−π/λ

∣∣ϕ(t)
∣∣2n

dt ≤ Q(Mn,λ). (4.4)

Again, the absolute value can be removed but the characteristic function is replaced by its square.
As a matter of facts, the proof of (4.4) in [16], pp. 292–293, is based on the fundamental relation
(4.1). It is applied to the symmetric random variable Ms

n with characteristic function |ϕ(t)|2n and
some standard concentrations inequality for V := Ms

n + U are used, where U is an independent
random variable having h(λt/2π) for characteristic function (a difference of two i.i.d. uniform
random variable). More precisely, it is mainly used that Q(Mn,λ) ≥ Q(V,λ) and |ϕ(t)|2n ≥ 0 on
[−2π/λ,2π/λ]. Since all the latter properties remains valid without symmetrization, we deduce
the lower bound in (4.3) and this ends the proof of the theorem. �

Thus let us choose N such that the series in (4.2) is lower than 1/(8πM). Then the right-hand
side of (4.3), the inequality (4.2) and classical results, stated for instance at the beginning of
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[16], imply the inequality of Lemma 2.1 with λ0 := 2πN/p and C := 16πM(N + 1), where M

is given by Lemma 4.1. �

Proof of Theorem 2.2. First, it comes from the symmetry of {Vn}n≥0 and its increments, denoted
by {Zn}n≥0, that it is only needed to focus on the events En := {Hn+1 = 0,0 ≤ Vn ≤ −Zn+1}.
Besides, denoting by FV the cumulative distribution function of the jumps of V , conditioning
successively with respect to the filtrations generated by {Hk : 1 ≤ k ≤ n + 1} and {(Vk,Zk) : 1 ≤
k ≤ n}, and finally applying the usual conditional Borel–Cantelli lemma, we get that

{En, for infinitely many n} =
{∑

n≥0

1{Hn+1=0}FV (−Vn)1{Vn≥0} = ∞
}

a.s.

Consequently, one can replace the −Zn in the definition of the En by an identically distributed
sequence {Z⊥

n }n≥1 independent of {Vn}n≥1 since the resulting events – say E⊥
n – lead exactly

to the same criterion. Furthermore, the limit superior of these events belong to the exchangeable
σ -algebra associated with an i.i.d. sequence of random variables in such way that the Hewitt–
Savage zero-one law applies and we only need to prove that E⊥

n occur for infinitely many n with
positive probability. To this end, using conditional arguments and Lemma 2.1, for any n > k ≥ 1,

P
(
E⊥

n ∩ E⊥
k

)≤ P
(
E⊥

k

)
E
[
1{Hn−k=0}PVk

(
0 ≤ Vn−k ≤ Z⊥

n+1

)]≤ CP
(
E⊥

k

)
P
(
E⊥

n−k−1

)
.

Thereafter, we can conclude with a classical step – see [44], p. 726, for instance. In fact, the
inequality above implies the sequence

∑n
k=1 1E⊥

k
/
∑n

k=1 P(E⊥
k ) is bounded in L2 and thus equi-

integrable. Then we can apply the generalized Fatou-lemma so that

E

[
lim sup
n→∞

∑n
k=1 1E⊥

k∑n
k=1 P(E⊥

k )

]
≥ 1.

Therefore, if the sequence of partial sums at the denominator is unbounded, then the series at
the numerator is divergent with positive probability. This ends the proof of the series criterion
since the reciprocal implication is a straightforward consequence of the standard Borel–Cantelli
lemma. Regarding the Fourier-like criterion (2.17), remark that

P(Hn+1 = 0) =
∫
Td

�(ϕn+1
H (t)

)
dt and

P(0 ≤ Vn ≤ Zn+1) =
∞∑

k=0

TV (k)

∫
Td

cos(ks)ϕn
V (s) ds.

Then, multiplying by the geometric terms un and rk respectively and using standard inversion
theorems, it follows the series in the criterion is infinite if and only if

lim
r,u↑1

∫
Td

∫
Td

�
(

ϕH (t)

1 − uϕH (t)ϕV (s)

)
�V (r, s) ds dt = ∞.
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When (H,V ) is transient, it follows from the Ornstein–Chung–Fuchs criterion that the u-limit
can be removed since 1/(1 −uϕH (t)ϕV (s)) is uniformly integrable on Td ×Td for 0 < u < 1. It
is then not difficult to drop ϕH (t) and integrate around the origin to get the integral criterion. �

Proof of Corollary 2.1. First remark that the original generalized DRRW pass through the ori-
gin during either a horizontal or vertical move. Besides, it turns out that {(Hn,Vn)}n≥0 and
{(Hn+1,Vn)}n≥0 are respectively the skeleton random walks associated with the horizontal-to-
vertical and the vertical-to-horizontal changes of direction. Due to Theorem 2.2, the recurrence
of the origin follows from the divergence of one of the series in (2.23), each of them correspond-
ing to a walker passing through the origin infinitely often during vertical or horizontal moves,
respectively. Thus, it remains to prove that the convergence of both series in (2.23) leads to
the transience of the origin. We only consider the first series since the other one can be treated
analogously. With the settings in (2.22), we observe that it suffices to show

∞∑
n=0

P(Hn+1 = 0)P
(

0 ≤ Vn ≤ max
1≤l≤Gv

εAl

)
< ∞, where Al :=

l∑
k=1

(−1)k−1τvk . (4.5)

Here, all the involved random variables are independent. In particular, applying the standard
Borel–Cantelli lemma, we deduce from (4.5) that the origin is not recurrent – for a walker passing
through the origin during vertical moves. Since a similar argument holds for horizontal move-
ments, it suffices to check that the divergence of the first series in (2.23) implies (4.5). Finally,
this is obvious when pv = 0, otherwise it is a consequence of the following lemma.

Lemma 4.2. The following estimate holds for all n ≥ 0

P
(

0 ≤ Vn ≤ max
1≤l≤Gv

εAl

)
≤ 2(1 + pv)P(0 ≤ Vn ≤ Vn+1 − Vn).

Proof. First, note that for fixed j and any x ≥ 0,

P
(

max
1≤l≤j

−Al ≥ x
)

≤ P
(

max
1≤l≤j

Al ≥ x
)
.

Thus, by conditioning with respect to ε,

P
(

max
1≤l≤j

εAl ≥ x
)

≤ P
(

max
1≤l≤j

Al ≥ x
)
.

Besides, we remark that A2i+1 ≥ A2i+2 for every i ≥ 0. Hence, the local maxima of Al are
reached for odd indices. Since A2i+1 can be rewritten as A2i+1 = τv1 +∑i

k=1(τ
v
2k+1 − τv2k),

a direct application of [42], Chapter 3, Theorem 10, p. 50, for the symmetric increments τv2k+1 −
τv2k yields

P
(

max
1≤l≤2i+2

Al ≥ x
)

= P
(

max
1≤l≤2i+1

Al ≥ x
)

≤ 2P(A2i+1 ≥ x),
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for every x ∈ R. The result then follows by collecting bounds and conditioning with respect to
the random variables Vn and Gv. �

This ends the proof of Corollary 2.1. �

Proof of Theorem 2.3. We shall construct inductively appropriate jump distributions as in the
concise and elegant paper [17] in which a probabilistic proof of a result of [47] is given. This
result states that a recurrent symmetric random walk on the line may have jump with arbitrary
large tails. We also follow the clever path borrowed by the authors in [48]. We stress that we do
not require unimodality assumptions making the construction more general but also handier and
easier to state.

Step 1. We define inductively {(lk, yk,pk+1)}k≥1 where lk and yk are non-negative integers
satisfying yk+1 ≥ yk + lk . The couple lk and yk , k ≥ 1, represent some spatial parameters of the
distribution explained below in Step 2. whereas the pk’s are non-negative numbers whose sum is
less than 1. Each pk can be thought as conditional probabilities. The following quantities will be
fixed throughout all the procedure: (vk)k≥2 and (uk)k≥2 are two sequences of positive numbers
such that for some fixed δ > 0 and c > 0 one has for every k ≥ 2,

vk =
k→∞ o(uk) and

1

vk

<
c

k2+δ
. (4.6)

Thereafter, we proceed as follows: choose y1, l1 ≥ 1 and, given some fixed r ∈ (0,1), choose
0 < p2 < 1−r . Knowing the first k−1 terms of the sequence {(lk, yk,pk+1)}k≥1, we may choose
(lk, yk,pk+1) respecting the following constraints for some positive constants α and β:

1. first choose (lk, yk) such that yk ≥ yk−1 + lk−1 and lk ≥ 2 for all k sufficiently large with

–
1

l2
kp2

k

ln

(
1

rpk

)
≤ 1

vk

; (4.7)

–
k−1∑
i=1

pi(yi + li )
2 ≤ αpk(yk + lk)

2; (4.8)

–
p2

k l
2
kyk

(yk + lk)2
≥ uk; (4.9)

–
y2
k

pk(yk + lk)2
≤ β; (4.10)

2. in second step, choose pk+1 such that

–
1

vk

≤ 1

l2
kp2

k

ln

(
1

pk+1

)
≤ c

k(2+δ)
. (4.11)

Actually, it is even possible to choose yk = l1 + · · · + lk−1. Note that, together with (4.7),
condition (4.11) implies pk+1 ≤ rpk . It follows that p2 + p3 + · · · is lower than p2/(1 − r) < 1



Recurrence of multdimensional PRWs 883

so that one can choose 0 ≤ p0 ≤ 1 − p2/(1 − r) arbitrary and find 0 ≤ p1 ≤ 1 such that

qk := 1 − (p0 + · · · + pk) −−−→
k→∞ 0. (4.12)

Step 2. We shall associate with {(lk, yk,pk+1)}k≥1 a sequence of defective laws {μk}k≥1. Those
will have {1−qk}k≥1 – all less than 1 – defined above for respective total masses on Z, that is why
they are called defective. Then we shall construct coupled and defective random walks {Wk

n }n≥0,
k ≥ 1, with respective jumps {μk}k≥1, such that the limiting random walk {Hn}n≥0 – see below
for the precise meaning – obtained by these approximations satisfies

∞∑
n=1

P(Hn = 0)2 < ∞ and
∞∑

n=1

P(Hn = 0)P(0 ≤ Hn ≤ Hn+1 − Hn) = ∞. (4.13)

To this end, adjoin a cemetery � /∈ Z. We set y0 = 0, l0 = 1 and I0 = {0} and for every k ≥ 1,

Ik := I+k � I−k with I+k := [yk, yk + lk) ∩Z and I−k := −I+k . (4.14)

Then consider for every k ≥ 0 the distribution μk on I0 � · · · � Ik � {�}, symmetric on Z and
uniform on each I0, . . . , Ik with respective masses p0, . . . , pk and μk(�) = qk as in Figure 3.
Note that such sequences converge in distribution to some symmetric probability measure μ

on Z. In addition, one can choose p0 = 0 avoiding possibly trivial jumps. For every k ≥ 0,
introduce an i.i.d. sequence of random variables (Xk

j )j≥1 distributed as μk with the following
coupling properties along k ≥ 1:

Xk
j = Xk−1

j on
{
Xk−1

j �= �
}

and P
(
Xk

j ∈ dx|Xk−1
j = �

)= P
(
ξkUk + (1 − ξk

)
� ∈ dx

)
,

where ξk is distributed as B(pk/qk−1), Uk is uniform on Ik and ξk and Uk are independent. With
these sequences of jumps, associate the so called defective random walks {Wk

n }n≥0 – they fall
into the cemetery as soon as one of their jumps does – starting from the origin. It follows from
the coupling properties that Wr

n = Wk
n for every r ≥ k as soon as Wk

n �= � in such way that we

Figure 3. The kth symmetric distribution.
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can consider the non-defective almost-sure limit random walk given for every n ≥ 0 by

Hn := lim
k→∞Wk

n .

Note that the latter has for jump distribution the limit μ of the μk and we denote in an obvious
meaning by {Xn}n≥1 the corresponding i.i.d. jumps. In the sequel, we say for two non-negative
sequences u and v that uk � vk if there exists c > 0 such that uk ≤ cvk for all k sufficiently large
and uk � vk whenever uk � vk and vk � uk .

Lemma 4.3. The following estimates hold√√√√ ∞∑
n=1

P
(
Wk

n = 0
)2 �

k∑
i=1

1

lipi

√
ln

(
1

pi+1

)
(4.15)

and
∞∑

n=1

P
(
Wk

n = 0
)
P
(
0 ≤ Wk

n ≤ Xk
n+1

)� yk

(yk + lk)2
ln

(
1

pk+1

)
. (4.16)

Proof. We begin with the inequality (4.15). First, we shall prove that

P
(
Wk

n = 0
)≤ P

(
Wk−1

n = 0
)+ 1

lk

ω(pk/(1 − qk))√
n(pk/(1 − qk))

(1 − qk)
n, (4.17)

where ω : (0,1) −→ (0,∞) is defined by

ω(p) := min
u∈(0,1)

(√
2

u
+
√

1

2ep

1

1 − u

)
. (4.18)

To this end, first note that P(Wk
n = 0) = P(Wk−1

n = 0) + P(Wk
n = 0,Wk−1

n = �). Let Qk
n be the

conditional probability given {Xk
1, . . . ,X

k
n �= �} – an event of P-measure equal to (1 − qk)

n. In
order to lighten the notations, we set Q := Qk

n in the following. We can write

P
(
Wk

n = 0,Wk−1
n = �

)= (1 − qk)
n

n∑
m=1

Q
(
Wk

n = 0|Zk
n = m

)
Q
(
Zk

n = m
)
, (4.19)

where Zk
n = card{1 ≤ i ≤ n : Xk

i ∈ Ik}. Given one of the
(
n
m

)
partitions J � I of [1, n] ∩ Z with

card(J ) = m, we can define

FJ :=
(⋂

j∈J

{
Xk

j ∈ Ik
})∩

(⋂
i∈I

{
Xk

i /∈ Ik
})⊂ {Zk

n = m
}
.

Besides, all these events form a partition of {Zk
n = m} itself. Under Q(�|FJ ) the random variables

Xk
j are independent and, in addition, for every j ∈ J , Xk

j can be written as θjYj where {Yj }j∈J



Recurrence of multdimensional PRWs 885

and {θj }j∈J are two independent families of i.i.d. random variables uniformly distributed on
I+k and {±1}, respectively. Also, observe that under Q the random variable Zk

n is a binomial of
parameters n and pk/(1 − qk). Finally, lemma 4.3 follows from the two technical lemmas below.

Lemma 4.4. Let {Yj }j≥1 be a sequence of independent random variables distributed uniformly
on integers intervals of length l ≥ 2. Then for every m ≥ 1 one has

sup
x∈Z

P(Y1 + · · · + Ym = x) ≤ 1

l

√
2

m
. (4.20)

Lemma 4.5. Let Z have a binomial distribution with parameters n and p. Then

E

[
1{Z≥1}√

Z

]
≤ ω(p)√

2np
, (4.21)

where ω : (0,1) −→ (0,∞) is defined in (4.18).

Proof of Lemmas 4.4 and 4.5. The proof of Lemma 4.4 in [48], pp. 697–698, contains some
misunderstandings. To overcome these difficulties, we refer to [37]. This probabilistic estimate
relies on combinatorics considerations, the so called polynomial coefficients. To go further, we
allude for instance to [13], Section 1.16, pp. 77–78.

For Lemma 4.5, the inequality follows from

E

[
1{Z≥1}√

Z

]
≤ 1√

npu

[
1 + √

npue−2n(1−u)2p2]
,

obtained with a truncation argument along {Z ≥ npu} for any u ∈ (0,1) and the Hoeffding’s
inequality. Since x exp(−x2) ≤ 1/

√
2e and u ∈ (0,1) is arbitrary the result follows. �

Thereafter, after conditioning with respect to the θj , applying Lemma 4.4 it comes for any J ,

Q
(
Wk

n = 0|FJ

)≤ 1

lk

√
2

m
, and thus Q

(
Wk

n = 0|Zk
n = m

)≤ 1

lk

√
2

m
.

Lemma 4.5 and (4.19) then imply (4.17). Since the pk and the qk go to zero (recall pk+1 ≤ rpk)
and simple estimations lead to ω(p) ∼ (2ep)−1/2 as p goes to 0, we get for all k large enough,

P
(
Wk

n = 0
)≤ P

(
Wk−1

n = 0
)+ 1

lkpk

(1 − qk)
n

√
n

. (4.22)

Therefore, the upper bound (4.15) follows by induction from the Minkowski inequality, the series
expansion of ln(1 + x) near the origin and the inequality qk ≥ pk+1.

It remains to prove the lower bound (4.16). In the sequel, we denote by (Hk
n )n≥1 the random

walk on Z whose common distribution of the i.i.d. jumps, denoted by {Y k
n }n≥0, is given by the

conditional law μk(�|Z). The corresponding characteristic function is denoted by ϕk . It is worth
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noting that, under the probability measure Q, Wk
n is distributed as Hk

n and Xk
1 is distributed as Y k

1 .
If ϕ stands for the characteristic function of μ, then

‖ϕ − ϕk‖∞ ≤ 2qk −−−→
k→∞ 0. (4.23)

Since ϕ and the ϕk are continuous and non-negative with ϕ(0) = 1, there exists p > 0 such
that ϕk(t) ≥ 0 for k large enough and every t ∈ [−p,p]. Hence, Lemma 2.1 provides positive
universal constants C,L such that for all k sufficiently large and every λ ≥ L/p and n ≥ 1,

P
(
0 ≤ Hk

n ≤ λ
)≥ Q(Hk

n ,λ)

C
.

We will apply [8], Theorem 1.1, but before we shall give a lower and an upper estimate of the
variance of Xk

1 given Xk
1 ∈ Z, denoted below by σ 2

k . Using (4.8) and the fact that 1/2 ≤ 1−qk ≤ 1
for all k sufficiently large, it is not difficult to see that for such k,

1

3
pk(yk + lk − 1)2 ≤ σ 2

k ≤ 2(α + 1)pk(yk + lk)
2, (4.24)

where α is given by (4.8). Therefore, looking at the event {Xk
n ≥ yk}, [8], Theorem 1.1, and (4.10)

imply there exists a positive constant γ such that for every n ≥ 1 and k sufficiently large

P
(
0 ≤ Hk

n ≤ Y k
n+1

)≥ γpkyk√
npk(yk + lk)2

. (4.25)

Since ϕ is the characteristic function of an aperiodic symmetric distribution, we deduce from
(4.23) that there exist δ ∈ (0,1) and a neighbourhood V of the origin for which |ϕk(t)| ≤ δ for
every t ∈ T1 \V and k large enough. Once again Lemma 4.1 and the lower bound in [8] together
with (4.10) guarantees the existence of a positive constant θ such that for all k large enough,

∀n ≥ 1, P
(
Hk

n = 0
)≥ θ√

npk(yk + lk)2
− θδn. (4.26)

We remark that the two latter lower bounds hold for the defective random walks Wk
n by adding

the multiplicative term (1 − qk)
n+1. Finally, one deduce (4.16) noting that qk ≤ pk+1/(1 − r)

from remarks above (4.12). �

Therefore, letting k −→ ∞ in (4.15) and (4.16) and using conditions (4.6) and (4.11), we
obtain (4.13) by the monotone convergence theorem.

From now, one choose such a distribution μ with p0 = 0 and consider its positive part ν

normalized to be a probability. It is nothing but the distribution of |X| when X is distributed as μ.
Then one can see with the help of Corollary 2.1 that the latter is the waiting times distribution
announced in Theorem 2.3 but only for some non-backtracking DRRW. Indeed, let {Vn}n≥0 be
an independent copy of H chosen above and set for every n ≥ 0,

Z2n := (Hn,Vn) and Z2n+1 := (Hn+1,Vn). (4.27)
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It turns out that Z is the skeleton of a non-backtracking DRRW, having ν for waiting time distri-
bution, starting from the origin, and moving initially toward the east or the west with probability
1/2 respectively. The transience of the MRW skeleton follows from the convergence of the first
series in (4.13) whereas the recurrence of the non-backtracking DRRW is due to the divergence
of the second one. For original DRRW, we still have to work.

Step 3. Indeed, consider now a DRRW. The skeleton – say Ẑ – in the conjecture of [38] refer
to the times when the walker come back its original direction. This skeleton can not be described
from a couple of independent symmetric random walks as previously. However, looking at the
times when the walker moves orthogonally gives an another skeleton – say Z̃ – naturally asso-
ciated with DRRW and always embedded into our “true” skeleton Z. As for (4.27) this skeleton
can be viewed as the “true” skeleton of a non-backtracking DRRW. Here, the waiting times are
distributed as

ε

G∑
k=1

(−1)k−1τk, (4.28)

where G is a geometric random variable with parameter 2/3, ε is a symmetric Rademacher
random variable and {τk}k≥1 is a sequence of i.i.d. random variables distributed as ν defined at
the end of the latter step – all of them being independent of each other. Introducing the random
walk {H̃n}n≥0 whose jumps are distributed as (4.28) and an independent copy Ṽ one can write

Z̃2n := (H̃n, Ṽn) and Z̃2n+1 := (H̃n+1, Ṽn).

We refer to see Figure 4 where it is represented the skeletons Z, Z̃ and Ẑ of some DRRW. We
need the following result whose proof is postponed to the end.

Lemma 4.6. The random walk {H̃n}n≥0 satisfies the same estimates as {Hn}n≥0 in (4.13). In
particular, the associated MRW Z̃ given in (4) is transient whereas the corresponding non-
backtracking DRRW is recurrent.

Figure 4. The three distinct skeleton of a DRRW.
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Assume now Lemma 4.6. It is clear that the recurrence of the original DRRW is a consequence
of the recurrence of the non-backtracking one. Furthermore, we can show that the transience of
Z̃ implies also the transience of Z and thus that of Ẑ. To this end, by contraposition, if Ẑ is
recurrent introduce {σn}n≥0 the successive return times of Z to 0 and consider

An+1 := {Zσn+1 ⊥ Zσn−1}, n ≥ 0, (4.29)

that is the event “Z breaks orthogonally at time σn”. Since An ∈ Fσn and P(An+1|Fσn) = 2/3,
with Fσn the natural σ -field up to the time σn, applying the conditional Borel–Cantelli lemma
gives that An holds for infinitely many n and we deduce easily that Z̃ is recurrent. This completes
the proof of Theorem 2.3 for the original DRRW excepted Lemma 4.6. �

Proof of Lemma 4.6. To begin with, the claims of the lemma concerning recurrence or tran-
sience are direct consequences of Corollary 2.1 and (4.13). To show the latter estimates, look
carefully at the proof of Lemma 4.3 above, especially when the defective jumps {Xk

n}n≥1 are
replaced by i.i.d. random variables distributed as

X̃k
n = εn

Gn∑
i=1

(−1)i−1τ k
n,i , (4.30)

where {τ k
n,i}n,i≥1 is an i.i.d. array of random variables having νk(dt) := μk(dt |N ∪ {�}) for

distribution, {Gn}n≥1 is a sequence of i.i.d. geometric random variables with parameter 2/3
and {εn}n≥1 is a sequence of i.i.d. symmetric Rademacher random variables – all of them being
independent of each other. We denote by {W̃ k

n }n≥0 the coupled defective random walks associated
with the jumps {X̃k

j }j≥0, k ≥ 0. Conditioning with respect to G1, . . . ,Gn, the upper-bound (4.22)
still holds since

(1 − qk)
G1+···+Gn

√
G1 + · · · + Gn

≤ (1 − qk)
n

√
n

a.s.

It turns out that the limit random walk {H̃n}n≥0 satisfies the left-hand side of (4.13). It remains
to show the lower bound. Let us remark that the variance of the jump distribution in (4.30) still
satisfies the former lower and upper bounds in (4.24) with possibly different universal constants.
The lower bound is straightforward since Gn ≥ 1 for all n ≥ 1 whereas for the upper bound we
distinguish between even Gn and odd Gn and use basic conditional arguments. Furthermore,
similar arguments apply to the characteristic functions since

�k(t) =
∞∑
i=0

1

3

(
2

3

)2i∣∣φk(t)
∣∣2i

ϕk(t) +
∞∑
i=1

1

3

(
2

3

)2i−1∣∣φk(t)
∣∣2i

,

where ϕk , φk and �k are respectively the characteristic functions of μk(dx|Z), νk(dt |N) and the
random variable (4.30), given it does not fall into the cemetery point. It follows that the lower
bound (4.25) is true for this new distribution (we suppose Gn+1 = 1 into the jump n+1) but also
the lower bound (4.26). Obviously, the constant are possibly different. To conclude, it suffices
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to take the conditional expectation with respect to G1, . . . ,Gn+1 in the multiplicative additional
terms and observe by independence and the Jensen inequality that

E
[
(1 − qk)

G1+···+Gn+1
]≥ (1 − qk)

3(n+1)/2.

Since the additional factor 3/2 does not change the nature of the series, we deduce that the second
series of (4.13) is also infinite for {H̃n}n≥0, ending the proof of the lemma. �
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