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In finite mixture models, apart from underlying mixing measure, true kernel density function of each sub-
population in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose
some kernel functions that we empirically believe our data are generated from and use these kernels to fit
our models. Nevertheless, as long as the chosen kernel and the true kernel are different, statistical infer-
ence of mixing measure under this setting will be highly unstable. To overcome this challenge, we propose
flexible and efficient robust estimators of the mixing measure in these models, which are inspired by the
idea of minimum Hellinger distance estimator, model selection criteria, and superefficiency phenomenon.
We demonstrate that our estimators consistently recover the true number of components and achieve the
optimal convergence rates of parameter estimation under both the well- and misspecified kernel settings
for any fixed bandwidth. These desirable asymptotic properties are illustrated via careful simulation studies
with both synthetic and real data.

Keywords: convergence rates; Fisher singularities; minimum distance estimator; mixture models; model
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1. Introduction

Finite mixture models have long been a popular modeling tool for making inference about the
heterogeneity in data, starting, at least, with the classical work of Pearson [32] on biometrical
ratios on crabs. They have been used in numerous domains arising from biological, physical, and
social sciences. For a comprehensive introduction of statistical inference in mixture models, we
refer the readers to the books of McLachlan and Basford [29], Lindsay [26], McLachlan and Peel
[28].

In finite mixture models, we have our data X1,X2, . . . ,Xn ∈ X ⊂ R
d (d ≥ 1) to be i.i.d.

observations from a finite mixture with density function

f0(x|G0) :=
∫

f0(x|θ)dG0(θ) =
k0∑

i=1

p0
i f0

(
x|θ0

i

)
,

where G0 = ∑k0
i=1 p0

i δθ0
i

is a true but unknown mixing measure with exactly k0 < ∞ non-zero

components and {f0(x|θ), θ ∈ � ⊂ R
d1} is a true family of density functions, possibly partially

unknown where d1 ≥ 1. There are essentially three principal challenges to the models that have
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attracted a great deal of attention from various researchers. They include estimating the true num-
ber of components k0, understanding the behaviors of parameter estimation, that is, the atoms and
weights of true mixing measure G0, and determining the underlying kernel density function f0 of
each subpopulation in the data. The first topic has been an intense area of research recently, see,
for example, Roeder [34], Escobar and West [12], Dacunha-Castelle and Gassiat [8,9], Richard-
son and Green [33], Keribin [24], James, Priebe and Marchette [20], Chen, Li and Fu [5], Chen
and Khalili [4], Kasahara and Shimotsu [23]. However, the second and third topic have received
much less attention due to their mathematical difficulty.

When the kernel density function f0 is assumed to be known and k0 is bounded by some
fixed positive integer number, there have been considerable recent advances in the understanding
of parameter estimation. In particular, when k0 is known, that is, the exact-fitted setting of finite
mixtures, Ho and Nguyen [16] introduced a stronger version of classical parameter identifiability
condition, which is first order identifiability notion, see Definition 2.2 below, to guarantee the
standard convergence rate n−1/2 of parameter estimation. When k0 is unknown and bounded
by a given number, that is, the over-fitted setting of finite mixtures, Chen [6], Nguyen [31], Ho
and Nguyen [16] utilized a notion of second order identifiability to establish convergence rate
n−1/4 of parameter estimation, which is achieved under some minimum distance based estimator
and the maximum likelihood estimator. Sharp minimax rates of parameter estimation for finite
mixtures under strong identifiability conditions in sufficiently high orders have been obtained
by Heinrich and Kahn [13]. On the other hand, Ho and Nguyen [14,15] studied the singularity
structure of finite mixture’s parameter space and its impact on rates of parameter estimation when
either the first or the second order identifiability condition fails to hold. When the kernel density
function f0 is unknown, there have been some work utilizing the semiparametric approaches
(Bordes, Mottelet and Vandekerkhove [3], Hunter, Wang and Hettmansperger [18]). The salient
feature of these work is to estimate f0 from certain classes of functions with infinite dimension
and achieve parameter estimation accordingly. However, it is usually very difficult to establish a
strong guarantee for the identifiability of the parameters, even when the parameter space is simple
(Hunter, Wang and Hettmansperger [18]). Therefore, semiparametric approaches for estimating
true mixing measure G0 are usually not reliable.

Perhaps, the most common approach to avoid the identifiability issue of f0 is to choose some
kernel function f that we tactically believe the data are generated from, and utilize that kernel
function to fit the model to obtain an estimate of the true mixing measure G0. In view of its sim-
plicity and prevalence, this is also the approach that we consider in this paper. However, there is a
fundamental challenge with that approach. It is likely that we are subject to a misspecified kernel
setting, that is, the chosen kernel f and the true kernel f0 are different. Hence, parameter esti-
mation under this approach will be potentially unstable. The robustness question is unavoidable.
Our principal goal in the paper therefore, is the construction of robust estimators of G0 where
the estimation of both its number of components and its parameters is of interest. Moreover,
these estimators should achieve the best possible convergence rates under various assumptions
of both the chosen kernel f and the true kernel f0. When the true number of components k0
is known, various robust methods had been proposed in the literature, see, for example, Wood-
ward et al. [39], Donoho and Liu [10], Cutler and Cordero-Braña [7]. However, there are scarce
work for robust estimators when the true number of components k0 is unknown. Recently, Woo
and Sriram [38] proposed a robust estimator of the number of components based on the idea
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of minimum Hellinger distance estimator (Beran [2], Lindsay [27], Lin and He [25], Karuna-
muni and Wu [22]). However, their work faced certain limitations. First, their estimator greatly
relied upon the choice of kernel bandwidth. In particular, in order to achieve the consistency of
the number of components under the well-specified kernel setting, that is, when {f } = {f0}, the
bandwidth should vanish to 0 sufficiently slowly (cf. Theorem 3.1 in Woo and Sriram [38]). Sec-
ondly, the behaviors of parameter estimation from their estimator are difficult to interpret due to
the subtle choice of bandwidth. Last but not least, they also argued that their method achieved the
robust estimation of the number of components under the misspecified kernel setting, i.e., when
{f } �= {f0}. Not only did their statement lack theoretical guarantee, their argument turned out
to be also erroneous (see Section 5.3 in Woo and Sriram [38]). More specifically, they consid-
ered the chosen kernel f to be Gaussian kernel while the true kernel f0 to be Student’s t -kernel
with a given fixed degree of freedom. The parameter space � only consists of mean and scale
parameter while the true number of components k0 is 2. They demonstrated that their estimator
still maintained the correct number of components of G0, that is, k0 = 2, under that setting of f

and f0. Unfortunately, their argument is not clear as their estimator should maintain the number
of components of a mixing measure G∗ which minimizes the appropriate Hellinger distance to
the true model. Of course, establishing the consistency of their parameter estimation under the
misspecified kernel setting is also a non-trivial problem.

Inspired by the idea of minimum Hellinger distance estimator, we propose flexible and efficient
robust estimators of mixing measure G0 that address all the limitations from the estimator in Woo
and Sriram [38]. Not only our estimators are computationally feasible and robust but they also
possess various desirable properties, such as the flexible choice of bandwidth, the consistency of
the number of components, and the best possible convergence rates of parameter estimation. In
particular, the main contributions in this paper can be summarized as follows

(i) We treat the well-specified kernel setting, that is, {f } = {f0}, and the misspecified kernel
setting, that is, {f } �= {f0}, separately. Under both settings, we achieve the consistency
of our estimators regarding the true number of components for any fixed bandwidth.
Furthermore, when the bandwidth vanishes to 0 at an appropriate rate, the consistency of
estimating the true number of components is also guaranteed.

(ii) For any fixed bandwidth, when f0 is identifiable in the first order, the optimal convergence
rate n−1/2 of parameter estimation is established under the well-specified kernel setting.
Additionally, when f0 is not identifiable in the first order, we also demonstrate that our
estimators still achieve the best possible convergence rates of parameter estimation.

(iii) Under the misspecified kernel setting, we prove that our estimators converge to a mixing
measure G∗ that is closest to the true model under the Hellinger metric for any fixed
bandwidth. When f is first order identifiable and G∗ has finite number of components, the
optimal convergence rate n−1/2 is also established under mild conditions of both kernels
f and f0. Furthermore, when G∗ has infinite number of components, some analyses
about the consistency of our estimators are also discussed.

Finally, our argument, so far, has mostly focused on the setting when the true mixing measure G0
is fixed with the sample size n. However, we note in passing that in a proper asymptotic model,
G0 may also vary with n and converge to some probability distribution in the limit. Under the
well-specified kernel setting, we verify that our estimators also achieve the minimax convergence
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rate of estimating G0 under sufficiently strong condition on the identifiability of kernel density
function f0.

Paper organization. The rest of the paper is organized as follows. Section 2 provides prelim-
inary backgrounds and facts. Section 3 presents an algorithm to construct a robust estimator of
mixing measure based on minimum Hellinger distance estimator idea and model selection per-
spective. Theoretical results regarding that estimator are treated separately under both the well-
and mis-specified kernel setting. Section 4 introduces another algorithm to construct a robust
estimator of mixing measure based on superefficiency idea. Section 5 addresses the performance
of our estimators developed in previous sections under non-standard setting of our models. The
theoretical results are illustrated via careful simulation studies with both synthetic and real data
in Section 6. Discussions regarding possible future work are presented in Section 7 while self-
contained proofs of key results in the paper are given in Ho, Nguyen and Ritov [17].

Notation. Given two densities p, q (with respect to the Lebesgue measure μ), the total varia-
tion distance is given by V (p,q) = 1

2

∫ |p(x) − q(x)|dμ(x). Additionally, the square Hellinger

distance is given by h2(p, q) = 1
2

∫
(
√

p(x) − √
q(x))2 dμ(x).

For any κ = (κ1, . . . , κd1) ∈ N
d1 , we denote ∂ |κ|f

∂θκ (x|θ) = ∂ |κ|f
∂θ

κ1
1 ···∂θ

κd1
d1

(x|θ) where θ =
(θ1, . . . , θd1). Additionally, the expression an � bn will be used to denote the inequality up to
a constant multiple where the value of the constant is independent of n. We also denote an 	 bn

if both an � bn and an � bn hold. Finally, for any a, b ∈ R, we denote a ∨ b = max{a, b} and
a ∧ b = min{a, b}.

2. Background

Throughout the paper, we assume that the parameter space � is a compact subset of Rd1 . For any
kernel density function f and mixing measure G, we define

f (x|G) :=
∫

f (x|θ)dG(θ).

Additionally, we denote Ek0 := Ek0(�) the space of discrete mixing measures with exactly k0
distinct support points on � and Ok := Ok(�) the space of discrete mixing measures with at
most k distinct support points on �. Additionally, denote G := G(�) = ⋃

k∈N+ Ek the set of all
discrete measures with finite supports on �. Finally, G denotes the space of all discrete measures
(including those with countably infinite supports) on �.

As described in the introduction, a principal goal of our paper is to construct robust estimators
that maintain the consistency of the number of components and the best possible convergence
rates of parameter estimation. As in Nguyen [31], our tool-kit for analyzing the identifiability
and convergence of parameter estimation in mixture models is based on Wasserstein distance,
which can be defined as the optimal cost of moving masses transforming one probability mea-
sure to another (Villani [36]). In particular, consider a mixing measure G = ∑k

i=1 piδθi
, where

p = (p1,p2, . . . , pk) denotes the proportion vector. Likewise, let G′ = ∑k′
i=1 p′

iδθ ′
i
. A coupling

between p and p′ is a joint distribution q on [1, . . . , k] × [1, . . . , k′], which is expressed as a
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matrix q = (qij )1≤i≤k,1≤j≤k′ ∈ [0,1]k×k′
with margins

∑k
m=1 qmj = p′

j and
∑k′

m=1 qim = pi for
any i = 1,2, . . . , k and j = 1,2, . . . , k′. We use Q(p,p′) to denote the space of all such cou-
plings. For any r ≥ 1, the r-th order Wasserstein distance between G and G′ is given by

Wr

(
G,G′) = inf

q∈Q(p,p′)

(∑
i,j

qij

(∥∥θi − θ ′
j

∥∥)r
)1/r

,

where ‖ · ‖ denotes the l2 norm for elements in R
d1 . It is simple to argue that if a sequence of

probability measures Gn ∈ Ok0 converges to G0 ∈ Ek0 under the Wr metric at a rate ωn = o(1)

then there exists a subsequence of Gn such that the set of atoms of Gn converges to the k0 atoms
of G0, up to a permutation of the atoms, at the same rate ωn.

We recall now the following key definitions that are used to analyze the behavior of mixing
measures in finite mixture models (cf. Ho and Nguyen [15]). We start with the following.

Definition 2.1. We say the family of densities {f (x|θ), θ ∈ �} is uniformly Hölder up to the
order r , for some r ≥ 1, if f as a function of θ is differentiable up to the order r and its partial
derivatives with respect to θ satisfy the following inequality

∑
|κ|=r

∣∣∣∣(∂ |κ|f
∂θκ

(x|θ1) − ∂ |κ|f
∂θκ

(x|θ2)

)
γ κ

∣∣∣∣ ≤ C‖θ1 − θ2‖δ
r‖γ ‖r

r ,

for any γ ∈ R
d1 and for some positive constants δ and C independent of x and θ1, θ2 ∈ �. Here,

γ κ = ∏d1
i=1 γ

κi

i where κ = (κ1, . . . , κd1).

We can verify that many popular classes of density functions, including Gaussian, Student’s t ,
and skewnormal family, satisfy the uniform Hölder condition up to any order r ≥ 1.

The classical identifiability condition entails that the family of density function {f (x|θ), θ ∈
�} is identifiable if for any G1,G2 ∈ G, f (x|G1) = f (x|G2) almost surely implies that G1 ≡ G2

(Teicher [35]). To be able to establish convergence rates of parameters, we have to utilize the
following stronger notion of identifiability.

Definition 2.2. For any r ≥ 1, we say that the family {f (x|θ), θ ∈ �} (or in short, {f }) is iden-
tifiable in the r-th order if f (x|θ) is differentiable up to the r-th order in θ and the following
holds

A1. For any k ≥ 1, given k different elements θ1, . . . , θk ∈ �. If we have α
(i)
η such that for

almost all x

r∑
l=0

∑
|η|=l

k∑
i=1

α(i)
η

∂ |η|f
∂θη

(x|θi) = 0

then α
(i)
η = 0 for all 1 ≤ i ≤ k and |η| ≤ r .
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Rationale of the first order identifiability: Throughout the paper, we denote I (G,f ) :=
E(lGlTG) the Fisher information matrix of the kernel density f at a given mixing measure G.
Here, lG := ∂

∂G
logf (x|G) is the score function, where ∂

∂G
denotes the vector of derivatives with

respect to all the components and masses of G. The first order identifiability of f is an equivalent
way to say that the Fisher information matrix I (G,f ) is non-singular for any G. Now, under the
first order identifiability and the first order uniform Hölder condition on f , we have the following
result.

Proposition 2.1. Suppose that the density family {f (x|θ), θ ∈ �} is identifiable in the first order
and uniformly Hölder up to the first order. Then, there is a positive constant C0 depending on
G0, �, and f such that as long as G ∈Ok0 we have

h
(
f (·|G),f (·|G0)

) ≥ C0W1(G,G0).

The proof of the above result can be found in Appendix C. Note that, the result of Proposi-
tion 2.1 is slightly stronger than that of Theorem 3.1 and Corollary 3.1 in Ho and Nguyen [16] as
it holds for any G ∈ Ok0 instead of only for any G ∈ Ek0 as in these later results. The first order
identifiability property of kernel density function f implies that for any estimation method that
yields the convergence rate n−1/2 for f (·|G0) under the Hellinger distance, the induced rate of
convergence for the mixing measure G0 is n−1/2 under W1 distance.

3. Minimum Hellinger distance estimator with non-singular
Fisher information matrix

Throughout this section, we assume that two families of density functions {f0(x|θ), θ ∈ �} and
{f (x|θ), θ ∈ �} are identifiable in the first order and admit the uniform Hölder condition up to
the first order. Now, let K be any fixed multivariate density function and Kσ (x) = 1

σd K( x
σ
) for

any σ > 0. We define

f σ (x|θ) := f ∗ Kσ (x|θ) :=
∫

f (x − y|θ)Kσ (y)dy

for any θ ∈ �. The notation f ∗ Kσ can be thought as the convolution of the density family
{f (x|θ), θ ∈ �} with the kernel function Kσ . From that definition, we further define

f σ (x|G) := f ∗ Kσ (x|G) :=
k∑

i=1

pif ∗ Kσ (x|θi) =
k∑

i=1

pi

∫
f (x − y|θi)Kσ (y)dy,

for any discrete mixing measure G = ∑k
i=1 piδθi

in G. For the convenience of our argument
later, we denote that f σ (·|G) := f (·|G) as long as σ = 0. Furthermore, we also define that

P σ
n (x) := Pn ∗ Kσ (x) := 1

n

n∑
i=1

Kσ (x − Xi),
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where Pn := 1
n

∑n
i=1 δXi

is the empirical measure associated with the sample X1, . . . ,Xn. Now,
our approach to define a robust estimator of G0 is inspired by the minimum Hellinger distance
estimator (Beran [2]) and the model selection criteria. Indeed, we have the following algorithm.

Algorithm 1. Let Cnn
−1/2 → 0 as n → ∞.

• Step 1: Determine Ĝn,m = arg minG∈Om
h(f σ1(·|G),P

σ0
n (·)) for any m ≥ 1.

• Step 2: Choose

m̂n = inf
{
m ≥ 1 : h(

f σ1(·|Ĝn,m),P σ0
n (·)) ≤ h

(
f σ1(·|Ĝn,m+1),P

σ0
n (·))

+ Cnn
−1/2},

• Step 3: Let Ĝn = Ĝn,m̂n for each n.

Note that, σ1 ≥ 0 and σ0 > 0 are two chosen bandwidths that control the amount of smoothness
that we would like to add to f and f0, respectively. As the parameter space � is a compact subset
of Rd1 and the Hellinger metric is continuous with respect to the mixing measure, the existence of
optimal solution Ĝn,m is guaranteed for all n, m. Additionally, the choice of Cn in Algorithm 1 is
to guarantee that m̂n is finite as n is sufficiently large under the well-specified kernel setting and
σ1 = σ0. It is due to the result that A = h(f σ1(·|Ĝn,m),P

σ0
n (·)) − h(f σ1(·|Ĝn,m+1),P

σ0
n (·)) → 0

almost surely as n → ∞ when m ≥ k0 under these settings (cf. the proof of Theorem 3.1 in
Appendix A). Under the misspecified kernel setting, with an appropriate choice of σ1 and σ0 (cf.
conditions in Theorem 3.2), the current choice of Cn is also sufficient to ensure that m̂n is finite
as n is sufficiently large, which is also because A → 0 as m is sufficiently large. Furthermore,
Cn can be chosen based on certain model selection criteria. For instance, if we use BIC, then
Cn = √

(d1 + 1) logn/2 where d1 is the dimension of parameter space. Algorithm 1 is in fact
the generalization of the algorithm considered in Woo and Sriram [38] when σ1 = 0 and σ0 > 0.
In particular, with the adaptation of notations as those in our paper, the algorithm in Woo and
Sriram [38] can be stated as follows.

Woo–Sriram (WS) Algorithm.

• Step 1: Determine Gn,m = arg minG∈Om
h(f (·|G),P

σ0
n (·)) for any n,m ≥ 1.

• Step 2: Choose

mn = inf
{
m ≥ 1 : h(

f (·|Gn,m),P σ0
n (·)) ≤ h

(
f (·|Gn,m+1),P

σ0
n (·)) + C′

nn
−1/2},

where C′
nn

−1/2 → 0.
• Step 3: Let Gn = Gn,mn for each n.

The main distinction between our estimator and Woo–Sriram’s (WS) estimator is that we also
allow the convolution of mixture density f (·|G) with Kσ1 . This double convolution trick in
Algorithm 1 was also considered in James, Priebe and Marchette [20] to construct the consistent
estimation of mixture complexity. However, their work was based on the Kullback–Leibler (KL)
divergence rather than the Hellinger distance and was restricted to only the choice that σ1 = σ0.
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Under the misspecified kernel setting, that is, {f } �= {f0}, the estimation of mixing measure G0

from KL divergence can be highly unstable. Additionally, James, Priebe and Marchette [20] only
worked with the Gaussian case of true kernel function f0, while in many applications, it is not
realistic to expect that f0 is Gaussian. To demonstrate the advantages of our proposed estimator
Ĝn over WS estimator Gn, we will provide careful theoretical studies of these estimators in
the paper. For readers’ convenience, we provide now a brief summary of our analyses of the
convergence behaviors of Ĝn and Gn as well as our measure of robustness.

Summary of results for well-specified setting. Under the well-specified setting, that is, {f } =
{f0}, the optimal choice of σ1 and σ0 in Algorithm 1 is σ1 = σ0 > 0, which guarantees that G0

is the exact mixing measure that we seek for. Now, the double convolution trick in Algorithm 1
is sufficient to yield the optimal convergence rate n−1/2 of Ĝn to G0 for any fixed bandwidth
σ0 > 0 (cf. Theorem 3.1). The core idea of this result comes from the fact that P

σ0
n (x) is an unbi-

ased estimator of f
σ0
0 (x|G0) for all x ∈X . It guarantees that h(P

σ0
n (·), f σ0

0 (·|G0)) = Op(n−1/2)

under suitable conditions of f0 when the bandwidth σ0 is fixed. However, it is not the case for
WS Algorithm. Indeed, we demonstrate later in Section 3.3 that for any fixed bandwidth σ0 > 0,
Gn converges to G0 where G0 = arg min

G∈G h(f0(·|G),f
σ0
0 (·|G0)) under certain conditions of

f0, K , and G0. Unfortunately, G0 can be very different from G0 even if they may have the same
number of components. Therefore, even though we may still be able to recover the true number
of components with WS Algorithm, we hardly can obtain exact estimation of true parameters. It
shows that Algorithm 1 is more appealing than WS Algorithm under the well-specified kernel
setting with fixed bandwidth σ0 > 0.

When we allow the bandwidth σ0 to vanish to 0 as n → ∞ under the well-specified kernel
setting with σ1 = σ0, we are able to guarantee that m̂n → k0 almost surely when nσd

0 → 0
(cf. Proposition 3.1). This result is also consistent with the result mn → k0 almost surely from
Theorem 1 in Woo and Sriram [38] under the same assumptions of σ0. Moreover, under these
conditions of bandwidth σ0, both the estimators Ĝn and Gn converge to G0 as n → ∞. However,
instead of obtaining the exact convergence rate n−1/2 of Ĝn to G0, we are only able to achieve
its convergence rate to be n−1/2 up to some logarithmic factor when the bandwidth σ0 vanishes
to 0 sufficiently slowly. It is mainly due to the fact that our current technique is based on the
evaluation of the term h(P

σ0
n (·), f σ0

0 (·|G0)), which may not converge to 0 at the exact rate n−1/2

when σ0 → 0. The situation is even worse for the convergence rate of Gn to G0 as it relies not
only on the evaluation of h(P

σ0
n (·), f σ0

0 (·|G0)) but also on the convergence rate of G0 to G0,
which depends strictly on the vanishing rate of σ0 to 0. Therefore, the convergence rate of Gn in
WS Algorithm may be much slower than n−1/2. As a consequence, our estimator in Algorithm 1
may be also more efficient than that in WS Algorithm when the bandwidth σ0 is allowed to
vanish to 0.

Summary of results for misspecified setting (robustness to kernel misspecification). Under
the misspecified kernel setting, that is, {f } �= {f0}, the double convolution technique in Algo-
rithm 1 continues to be useful for studying the convergence rate of Ĝn to G∗ where we define
G∗ = arg min

G∈G h(f σ1(·|G),f
σ0
0 (·|G0)). Unlike the well-specified kernel setting, we allow σ1

and σ0 to be different under the misspecified kernel setting. It is particularly useful if we can
choose σ1 and σ0 such that two families {f σ1(·|θ)} and {f σ0

0 (·|θ)} are identical under Hellinger
distance. The consequence is that G∗ and G0 will be identical under Wasserstein distance, which
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means that our estimator is still able to recover true mixing measure even though we choose
the wrong kernel to fit our data. Granted, the misspecified setting means that we are usually not
in such a fortunate situation, but our theory entails a good performance for our estimate when
f σ1 ≈ f

σ0
0 . Now, for the general choice of σ1 and σ0, as long as G∗ has finite number of compo-

nents, we are able to establish the convergence rate n−1/2 of Ĝn to G∗ under sufficient conditions
on f , f0, and K (cf. Theorem 3.2). However, when the number of components of G∗ is infinite,
we are only able to achieve the consistency of the number of components of Ĝn (cf. Proposi-
tion 3.2). Even though we do not have specific result regarding the convergence rate of Ĝn to
G∗ under that setting of G∗, we also provide important insights regarding that convergence in
Section 3.2.2. Summarizing, Algorithm 1 is robust to kernel misspecification since it yields con-
sistent estimates of the number of components as well as the best possible convergence rates for
parameter estimation under various settings of f , f0, σ0, and σ1.

3.1. Well-specified kernel setting

In this section, we consider the setting that f0 is known, that is, {f } = {f0}. Under that setting,
the optimal choice of σ1 and σ0 is σ1 = σ0 > 0 to guarantee that G0 is the exact mixing measure
that we estimate. As we have seen from the discussion in Section 2, the first order identifiability
condition plays an important role to obtain the convergence rate n−1/2 of parameter estimation.
Since Algorithm 1 relies on investigating the variation around kernel function f

σ0
0 in the limit,

we would like to guarantee that f
σ0
0 is identifiable in the first order for any σ0 > 0. It appears that

we have a mild condition of K such that the first order identifiability of f
σ0
0 is maintained.

Lemma 3.1. Assume that K̂(t) �= 0 for almost all t ∈ R
d where K̂(t) is the Fourier transform

of kernel function K . Then, as long as f0 is identifiable in the first order, we obtain that f
σ0
0 is

identifiable in the first order for any σ0 > 0.

The assumption K̂(t) �= 0 is very mild. Indeed, popular choices of K to satisfy that assumption
include the Gaussian and Student’s t kernel. Inspired by the result of Lemma 3.1, we have the
following result establishing the convergence rate of Ĝn to G0 under W1 distance for any fixed
bandwidth σ0 > 0.

Theorem 3.1. Let σ0 > 0 be given.

(i) If f
σ0
0 is identifiable, then m̂n → k0 almost surely.

(ii) Assume further the following conditions
(P.1) The kernel function K is chosen such that f

σ0
0 is also identifiable in the first order

and admits a uniform Hölder property up to the first order.
(P.2) �(G0, σ0) := ∫ g(x|G0,σ0)

f
σ0
0 (x|G0)

dx < ∞ where we have that

g(x|G0, σ0) :=
∫

K2
σ0

(x − y)f0(y|G0)dy.
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Then, we obtain

W1(Ĝn,G0) = Op

(√
�(G0, σ0)

C2
1(σ0)

n−1/2
)

,

where C1(σ0) := infG∈Ok0

h(f
σ0
0 (·|G),f

σ0
0 (·|G0))

W1(G,G0)
.

Remarks.

(i) Condition (P.1) is satisfied by many kernel functions K according to Lemma 3.1. By
assumption (P.1) and Proposition 2.1, we obtain the following bound

h
(
f

σ0
0 (·|G),f

σ0
0 (·|G0)

)
� W1(G,G0)

for any G ∈ Ok0 , that is, C1(σ0) > 0.
(ii) Condition (P.2) is mild. One easy example for such setting is when f0 and K are both

Gaussian kernels. In fact, when {f0(x|η, τ), (η, τ ) ∈ �} is a family of univariate Gaussian
distributions where η and τ are location and scale parameter, respectively and K is a
standard univariate Gaussian kernel, we achieve

�(G0, σ0) =
k0∑

i=1

∫
p0

i

∫
K2

σ0
(x − y)f0(y|η0

i , τ
0
i )dy

f
σ0
0 (x|G0)

dx

<

k0∑
i=1

∫ ∫
K2

σ0
(x − y)f0(y|η0

i , τ
0
i )dy

f
σ0
0 (x|η0

i , τ
0
i )

dx

∝
k0∑

i=1

((
τ 0
i

)2 + σ 2
0

)
/σ 2

0 < ∞.

Another specific example is when f0 and K are both Cauchy kernels or generally Stu-
dent’s t kernels with odd degree of freedom. However, assumption (P.2) may fail when K

has much shorter tails than f0. For example, if f0 is Laplacian kernel and K is Gaussian
kernel, then �(G0, σ0) = ∞.

Comments on Ĝn as σ0 → 0: To avoid the ambiguity, we now denote {σ0,n} as the sequence of
varied bandwidths σ0. The following result shows the consistency of m̂n under specific conditions
on σ0,n → 0.

Proposition 3.1. Given a sequence of bandwidths {σ0,n} such that σ0,n → 0 and nσd
0,n → ∞ as

n → ∞. If f0 is identifiable, then m̂n → k0 almost surely.

Our previous result with Theorem 3.1 shows that the parametric n−1/2 rate of convergence of
Ĝn to G0 is achieved for any fixed σ0 > 0. It would be more elegant to argue that this rate is
achieved for some sequence σ0,n → 0. However, this cannot be done with the current technique



838 N. Ho, X. Nguyen and Y. Ritov

employed in the proof of Theorem 3.1. In particular, even though we still can guarantee that
limσ0,n→0 C1(σ0,n) > 0 (cf. Lemma A.2 in Appendix C in Ho, Nguyen and Ritov [17]), the tech-

nical difficulty is that �(G0, σ0,n) = O(σ
−β(d)

0,n ) for some β(d) > 0 depending on d as σ0,n → 0.
As a consequence, whatever the sequence of bandwidths σ0,n → 0 we choose, we will be only
able to obtain the convergence rate n−1/2 up to the logarithmic term of Ĝn to G0. It can be
thought as the limitation of the elegant technique employed in Theorem 3.1. We leave the exact
convergence rate n−1/2 of Ĝn to G0 under the setting σ0,n → 0 for the future work.

3.2. Misspecified kernel setting

In the previous section, we assume the well-specified kernel setting, that is, {f } = {f0}, and
achieve the convergence rate n−1/2 of Ĝn to G0 under mild conditions on f0 and K and the
choice that σ1 = σ0 for any fixed bandwidth σ0 > 0. However, the well-specified kernel assump-
tion is often violated in practice, that is, the chosen kernel f may be different from the true
kernel f0. Motivated by this challenge, in this section we consider the setting when {f } �= {f0}.
Additionally, we also take into account the case when the chosen bandwidths σ1 and σ0 may
be different. We will demonstrate that the convergence rate of Ĝn is still desirable under certain
assumptions on f , f0, and K . Furthermore, we also argue that the choice that σ1 and σ0 are dif-
ferent can be very useful under the case when two families of density functions {f σ1(x|θ), θ ∈ �}
and {f σ0

0 (x|θ), θ ∈ �} are identical. Due to the complex nature of misspecified kernel setting,
we will only study the behavior of Ĝn when the bandwidth σ1 ≥ 0 and σ0 > 0 are fixed in this
section. Now, for fixed bandwidths σ1, σ0 assume that there exists a discrete mixing measure G∗
that minimizes the Hellinger distance between f σ1(·|G) and f

σ0
0 (·|G0), i.e.,

G∗ := arg min
G∈G

h
(
f σ1(·|G),f

σ0
0 (·|G0)

)
.

As G∗ may not be unique, we denote

M := {
G∗ ∈ G : G∗ is a minimizer of h

(
f σ1(·|G),f

σ0
0 (·|G0)

)}
.

When f ∗ Kσ1 = f0 ∗ Kσ0 , it is clear that G0 is an element of M such that it has the minimum
number of components among all the elements in M. To further investigate M under general
setting of f , f0, σ1, σ0, and K , we start with the following key property of elements G∗ in M:

Lemma 3.2. For any G ∈ G and G∗ ∈M, there holds

∫
f σ1(x|G)

√
f

σ0
0 (x|G0)

f σ1(x|G∗)
dx ≤

∫ √
f σ1(x|G∗)

√
f

σ0
0 (x|G0)dx. (1)

Equipped with this bound, we have the following important property of M.

Lemma 3.3. For any two elements G1,∗,G2,∗ ∈ M, we obtain f σ1(x|G1,∗) = f σ1(x|G2,∗) for
almost surely x ∈ X .



Robust estimation of mixing measures 839

Now, we consider the partition of M into the union of Mk = {G∗ ∈ M : G∗ has k elements}
where k ∈ [1,∞]. Let k∗ := k∗(M) be the minimum number k ∈ [1,∞] such that Mk is non-
empty. We divide our argument into two distinct settings of k∗: k∗ is finite and k∗ is infinite.

3.2.1. Finite k∗

By Lemma 3.3, Mk∗ will have exactly one element G∗ provided that f σ1 is identifiable. Further-
more, Mk is empty for all k∗ < k < ∞. However, it is possible that M∞ still contains various
elements. Due to the parsimonious nature of Algorithm 1 and the result of Theorem 3.2, we will
be able to demonstrate that Ĝn still converges to the unique element G∗ ∈ Mk∗ at the optimal
rate n−1/2 regardless of the behavior of M∞.

For the simplicity of our later argument under that setting of k∗, we denote by G∗ the unique el-
ement in Mk∗ . As we mentioned earlier, one simple example for k∗ < ∞ is when {f σ1} = {f σ0

0 }.
Another example is when f is a location-scale family and f0 is a finite mixture of f while
σ1 = σ0 > 0. In particular, f (x|η, τ) = 1

τ
f ((x − η)/τ) where η and τ are location and scale pa-

rameters respectively. Additionally, f0(x) = ∑m
i=1 p∗

i f (x|η∗
i , τ

∗
i ) for some fixed positive integer

m and fixed pairwise distinct components (p∗
i , η

∗
i , τ

∗
i ) where 1 ≤ i ≤ m. Under that setting, if we

choose σ1 = σ0, then we can check that k∗ ≤ mk0 and f (x|G∗) = f0(x|G0) almost surely. The
explicit formulation of G∗, therefore, can be found from the combinations of G0 and (p∗

i , η
∗
i , τ

∗
i )

where 1 ≤ i ≤ m.
From inequality (1) in Lemma 3.2, we have the following well-defined weighted version of

Hellinger distance.

Definition 3.1. Given σ1 > 0. For any two mixing measures G1,G2 ∈ G, we define the weighted
Hellinger distance h∗(f σ1(·|G1), f

σ1(·|G2)) by(
h∗(f σ1(·|G1), f

σ1(·|G2)
))2

= 1

2

∫ (√
f σ1(x|G1) − √

f σ1(x|G2)
)2 ×

√
f

σ0
0 (x|G0)

f σ1(x|G∗)
dx.

The notable feature of h∗ is the presence of term
√

f
σ0
0 (x|G0)/f σ1(x|G∗) in its formulation,

which makes it different from the traditional Hellinger distance. As long as {f } = {f0} and
σ1 = σ0, we obtain h∗(f σ1(·|G1), f

σ1(·|G2)) ≡ h(f σ1(·|G1), f
σ1(·|G2)) for any G1,G2 ∈ G,

that is, the traditional Hellinger distance is a special case of h∗ under the well-specified kernel
setting and the choice that σ1 = σ0. The weighted Hellinger distance h∗ is particularly useful for
studying the convergence rate of Ĝn to G∗ for any fixed σ1 ≥ 0 and σ0 > 0.

Note that, in the context of the well-specified kernel setting in Section 3.1, the key step that
we utilized to obtain the convergence rate n−1/2 of Ĝn to G0 is based on the lower bound of the
Hellinger distance and the first order Wasserstein distance in inequality (3.1). With the modified
Hellinger distance h∗, it turns out that we still have the similar kind of lower bound as long as
k∗ < ∞.
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Lemma 3.4. Assume that f σ1 is identifiable in the first order and admits uniform Hölder prop-
erty up to the first order. If k∗ < ∞, then for any G ∈Ok∗ there holds

h∗(f σ1(·|G),f σ1(·|G∗)
)
� W1(G,G∗).

Equipped with the above inequality, we have the following result regarding the convergence
rate of Ĝn to G∗.

Theorem 3.2. Assume k∗ < ∞ for some σ1 ≥ 0 and σ0 > 0.

(i) If f σ1 is identifiable, then m̂n → k∗ almost surely.
(ii) Assume further that condition (P.2) in Theorem 3.1 holds, that is, �(G0, σ0) < ∞ and the

following conditions hold:
(M.1) The kernel K is chosen such that f σ1 is identifiable in the first order and admits

the uniform Hölder property up to the first order.
(M.2) supθ∈�

∫ √
f σ1(x|θ)dx ≤ M1(σ1) for some positive constant M1(σ1).

(M.3) supθ∈� ‖ ∂f σ1

∂θ
(x|θ)/(f σ1(x|θ))3/4‖∞ ≤ M2(σ1) for some positive constant

M2(σ1).
Then, we have

W1(Ĝn,G∗) = Op

(√
M2(σ1)�(G0, σ0)

C4∗,1(σ1)
n−1/2

)
,

where C∗,1(σ1) := infG∈Ok∗
h∗(f σ1 (·|G),f σ1 (·|G∗))

W1(G,G∗) and M(σ1) is some positive constant.

Remarks.

(i) As being mentioned in Lemma 3.4, condition (M.1) is sufficient to guarantee that
C∗,1(σ1) > 0.

(ii) Conditions (M.2) and (M.3) are mild. An easy example is when f is Gaussian kernel and
K is standard Gaussian kernel.

(iii) When f0 is indeed a finite mixture of f , a close investigation of the proof of Theorem 3.2
reveals that we can relax condition (M.2) and (M.3) for the conclusion of this theorem to
hold.

(iv) Under the setting that {f σ1} = {f σ0
0 }, that is, G∗ ≡ G0, the result of Theorem 3.2 implies

that Ĝn converges to the true mixing measure G0 at optimal rate n−1/2 even though we
are under the misspecified kernel setting.

3.2.2. Infinite k∗
So far, we have assumed that k∗ has finite number of support points and achieve the cherished
convergence rate n−1/2 of Ĝn to unique element G∗ ∈ Mk∗ under certain conditions on f , f0,
and K . It is due to the fact that m̂n → k∗ < ∞ almost surely, which is eventually a consequence
of the identifibility of kernel density function f σ1 . However, for the setting k∗ = ∞, to establish
the consistency of m̂n, we need to resort to a slightly stronger version of identifiability, which is
finitely identifiable condition. We adapt Definition 3 in Nguyen [31] as follows.
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Definition 3.2. The family {f (x|θ), θ ∈ �} is finitely identifiable if for any G1 ∈ G and G2 ∈ G,
|f (x|G1) − f (x|G2)| = 0 for almost all x ∈X implies that G1 ≡ G2.

An example of finite identifiability is when f is Gaussian kernel with both location and vari-
ance parameter. Now, a close investigation of the proof of Theorem 3.2 quickly yields the fol-
lowing result.

Proposition 3.2. Given σ1 > 0 such that f σ1 is finitely identifiable. If k∗ = ∞, we achieve m̂n →
∞ almost surely.

Even though we achieve the consistency result of m̂n when k∗ = ∞, the convergence rate of
Ĝn to G∗ still remains an elusive problem. However, an important insight from Proposition 3.2
indicates that the convergence rate of Ĝn to some element G∗ ∈ M∞ may be much slower than
n−1/2 when k∗ = ∞. It is due to the fact that both Ĝn and G∗ ∈M∞ have unbounded numbers of
components in which the kind of bound in Lemma 3.4 is no longer sufficient. Instead, something
akin to the bounds given in Theorem 2 of Nguyen [31] in the misspecified setting is required. We
leave the detailed analyses of Ĝn under that setting of k∗ for the future work.

3.3. Comparison to WS Algorithm

In the previous sections, we have established a careful study regarding the behaviors of Ĝn in
Algorithm 1, that is, we achieved the consistency of the number of components as well as the
convergence rates of parameter estimation under various settings of f and f0 when the band-
widths σ1 and σ0 are fixed. As we mentioned at the beginning of Section 3, Algorithm 1 is the
generalization of WS Algorithm when σ1 = 0 and σ0 > 0. Therefore, the general results with
estimator Ĝn in Theorem 3.2 are still applicable to Gn under that special case of σ1 and σ0. To
rigorously demonstrate the flexibilities and advantages of our estimator Ĝn over WS estimator
Gn, we firstly discuss the behaviors of estimator Gn from WS Algorithm under the well-specified
kernel setting, that is, {f } = {f0}, and the fixed bandwidth setting of σ0. Remember that f0 is
assumed to be identifiable in the first order and to have uniform Hölder property up to the first
order. Assume now we can find

G0 := arg min
G∈G

h
(
f0(·|G),f

σ0
0 (·|G0)

)
,

that is, G0 is the discrete mixing measure that minimizes the Hellinger distance between f0(·|G)

and f
σ0
0 (·|G0). Note that, G0 is a special case of G∗ when {f } = {f0} and σ1 = 0. The form of

G0 can be determined explicitly under various settings of f0 and K . For instance, assume that f0

are either univariate Gaussian kernel or Cauchy kernel with parameters θ = (η, τ ) where η and
τ are location and variance parameter and K are either standard univariate Gaussian kernel or
Cauchy kernel, respectively. Then, a simple calculation shows that G0 = ∑k0

i=1 p0
i δ(θ0

i ,τ 0
i )

where

τ 0
i =

√
(τ 0

i )2 + σ 2
0 for any 1 ≤ i ≤ k0 and σ0 > 0.
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As being argued in Section 3.2, G0 may have infinite number of components in general; how-
ever, for the sake of simplicity, we assume that there exists G0 having finite number of compo-
nents, which is also unique according to the argument in Section 3.2. Under the assumptions of
Theorem 3.2 when σ1 = 0, we eventually achieve that

W1(Gn,G0) = Op

(√
M

2
�(G0, σ0)

[C]4
n−1/2

)
,

where C := infG∈Ok0

h∗(f0(·|G),f0(·|G0))

W1(G,G0)
and M is some positive constant. The above result im-

plies that the estimator Gn from WS Algorithm will not converge to the true mixing measure
G0 for any fixed bandwith σ0. It demonstrates that Algorithm 1 is more appealing than WS
Algorithm under the well-specified kernel setting with fixed bandwidth σ0 > 0. For the setting
when the bandwidth σ0 is allowed to vanish to 0, our result indicates that the convergence rate
of Gn to G0 will depend not only on the vanishing rate of the term �(G0, σ0) to 0 but also on
the convergence rate of G0 to G0. Intuitively, to ensure that the convergence of Gn to G0 is
n−1/2, we also need to achieve that of G0 to G0 to be n−1/2. Under the specific case that f0
and K are univariate Gaussian kernels, the convergence rate of G0 to G0 is n−1/2 only when
σ0 goes to 0 at the same rate n−1/2. However, it will lead to a strong convergence of �(G0, σ0)

to ∞, which makes the convergence rate of Gn → G0 become much slower than n−1/2. There-
fore, it is possible that the convergence rate of WS estimator Gn to G0 may be much slower
than n−1/2 regardless of the choice of bandwidth σ0. As a consequence, our estimator in Algo-
rithm 1 may also be more efficient than WS estimator under that regime of vanishing bandwidth
σ0.

Under the misspecified kernel setting, we would like to emphasize that our estimator Ĝn is also
more flexible than WS estimator Gn as we provide more freedom with the choice of bandwidth
σ1 in Algorithm 1, instead of specifically fixing σ1 = 0 as that in WS Algorithm. If there exists
σ1 > 0 such that {f σ1} = {f σ0

0 }, then our estimator Ĝn will converge to G0 while WS estimator
Gn will converge to G0 that can be very different from G0. Therefore, the performance of our
estimator is also better than that of WS estimator under that specific misspecified kernel setting.

3.4. Remarks with deconvolution problems

In this section, we would like to take an opportunity for explaining the differences between our
setting in the paper and some deconvolution problems in the literature. In particular, we consider
the following two setups of deconvolution problems:

(1) (Partial information with noise) In Johannes [21], the author considered the setting that we
have i.i.d. samples Y1, . . . , Yn from density function of the form fY = fX ∗ fε where fε is
unknown and i.i.d. samples ε1, . . . , εm from fε are observed. The goal of such setting is
to estimate fX given partial information about the distribution of ε.

(2) (Repeated structure) The next setting is an extension of the above deconvolution problem
to the setting with repeated structure of Y . More specifically, the outcomes Y of each
individual i satisfy Yij = ai + εij for j = 1, . . . ,M where M stands for the number of
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repeated measures, ai are i.i.d. draws from some unknown distribution G, and εij are also
i.i.d. draws from some distribution F with zero mean and unit variance. Additionally, ai

and εij are independent.

Even though the above deconvolution settings may share certain similarity with the setup we
consider in the paper, there are certain challenges for extending the results of our paper to these
settings. For the clarity of our argument, we would like to summarize the setup considered in our
paper. In particular, the current results with well- and misspecified settings in the paper rely on
the assumption that data are i.i.d. samples from mixture density of the following form

f0(x|G0) =
∫

f0(x|θ)dG0(θ) =
k0∑

i=1

p0
i f0

(
y|θ0

i

)
,

where G0 = ∑k0
i=1 p0

i δθ0
i

is a true but unknown discrete mixing measure with exactly k0 < ∞
non-zero components and {f0(y|θ), θ ∈ � ⊂R

d1} is a true family of density functions (not need
to be location family), possibly unknown where d1 ≥ 1. Since the density family f0 is generally
unknown in practice, we choose some density family f based on prior knowledge with the data
and use this family f to fit the model. Governed by the applications such as clustering, our
principal goal in the paper is the robustness of the minimum Hellinger distance estimator of G0,
that is, the number of components of G0 and its parameters.

As being indicated in our setup, the discrete mixing measure G0 and density family f0 are
both unknown and we do not observe any i.i.d. draws from them. On the other hand, the repeated
measure deconvolution setup has data generation via F as well as i.i.d. draws from mixture
components via mixing measure G. The additional repeated measures per individual should help
in terms of statistical efficiency, but how to quantify this is not clear to us. In particular, there seem
to be some technical hurdles as to how to adapt the results in our paper to the repeated measures
deconvolution problem. The same technical challenges also hold for partial information with
noise setup of deconvolution problem in Johannes [21]. We leave an extension of our results to
the aforementioned deconvolution problems for future exploration.

4. Different approach with minimum Hellinger distance
estimator

Thus far, we have developed a robust estimator of mixing measure G0 based on the idea of
minimum Hellinger distance estimator and model selection criteria. That estimator is shown
to attain various desirable properties, including the consistency of number of components m̂n

and the optimal convergence rates of Ĝn. In this section, we take a rather different approach of
constructing such robust estimator. In fact, we have the following algorithm:

Algorithm 2.

• Step 1: Determine Ĝn,m = arg minG∈Om
h(f σ1(·|G),P

σ0
n (·)) for any n,m ≥ 1.
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• Step 2: Choose

m̃n = inf
{
m ≥ 1 : h(

f σ1(·|Ĝn,m),P σ0
n (·)) < ε

}
,

where ε > 0 is any given positive constant and σ1, σ0 are two chosen bandwidths.
• Step 3: Let G̃n = Ĝn,m̃n for each n.

Unlike Step 2 in Algorithm 1 where we consider the difference between h(f σ1(·|Ĝn,m),

P
σ0
n (·)) and h(f σ1(·|Ĝn,m+1),P

σ0
n (·)), here we consider the evaluation of h(f σ1(·|Ĝn,m),P

σ0
n (·))

in Algorithm 2. The above robust estimator of mixing measure is based on the idea of minimum
Hellinger distance estimator and superefficiency phenomenon. A related approach considered in
the well-specified setting was taken by Heinrich and Kahn [13]. Their construction was based
on minimizing supremum norm based distance, without using the convolution kernels Kσ1 and
Kσ0 ; moreover, the threshold ε was set to vanish as n → ∞. However, the supremum norm based
estimator may be numerically unstable under the misspecified setting.

Our focus with Algorithm 2 in this section will be mainly about its attractive theoretical per-
formance. As we observe from Algorithm 2, the values of f , f0, K , and G0 along with the
bandwidths σ1, σ0 play crucial roles in determining the convergence rate of G̃n to G0 for any
given ε > 0. Similar to the argument of Theorem 3.1 and Theorem 3.2, one of the key ingredients
to fulfill that goal is to find the conditions of these factors such that we obtain the consistency of
m̃n. The following theorem yields the sufficient and necessary conditions to address the consis-
tency question.

Theorem 4.1. Given σ1 ≥ 0 and σ0 > 0. Then, we have

(i) Under the well-specified kernel setting and the case that σ1 = σ0, m̃n → k0 almost surely
if and only if

ε < h
(
f

σ0
0 (·|G0,k0−1), f

σ0
0 (·|G0)

)
, (2)

where G0,k0−1 = arg minG∈Ek0−1 h(f
σ0
0 (·|G),f

σ0
0 (·|G0)).

(ii) Under the misspecified kernel setting, if k∗ < ∞, then m̃n → k∗ almost surely if and only
if

h
(
f σ1(·|G∗), f σ0

0 (·|G0)
) ≤ ε < h

(
f σ1(·|G∗,k∗−1), f

σ0
0 (·|G0)

)
, (3)

where G∗,k∗−1 = arg minG∈Ek∗−1 h(f σ1(·|G),f
σ0
0 (·|G0)) and G∗ ∈ M with exactly k∗

components.

If we allow ε → 0 in Algorithm 2, we achieve the inconsistency of m̃n under the misspecified
kernel setting when k∗ < ∞. Hence, the choice of threshold ε from Heinrich and Kahn [13] is
not optimal regarding the misspecified kernel setting. Unfortunately, conditions (2) and (3) are
rather cryptic as in general, it is hard to determine the exact formulation of G0,k0−1, G∗,k∗−1,
and G∗. It would be of interest to find relatively simple sufficient conditions on f , f0, K , G0,
σ1, and σ0 according to which either (2) or (3) holds. Unfortunately, this seems to be a difficult
task in the misspecified setting. Under the well-specified kernel setting, a sufficient condition for
(2) can be reformulated as a condition regarding the lower bound on the smallest mass of G0, the
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minimal distance between its point masses, and the lower bound between the Hellinger distance
and Wasserstein distance:

Proposition 4.1 (Well-specified kernel setting). For any given σ0 > 0, assume that f
σ0
0 admits

uniform Hölder property up to the first oder and is identifiable. If we have

inf
G∈Ek0−1

h(f
σ0
0 (·|G),f

σ0
0 (·|G0))

W1(G,G0)
min

1≤i≤k0
p0

i min
1≤i �=j≤k0

∥∥θ0
i − θ0

j

∥∥ ≥ ε,

then we obtain the inequality in (2).

5. Non-standard settings

In this section, we briefly demonstrate that our robust estimator in Algorithm 1 (similarly Al-
gorithm 2) also achieves desirable convergence rates under non-standard settings. In particular,
in the first setting, either f0 or f may not be identifiable in the first order. In the second set-
ting, the true mixing measure G0 changes with the sample size n and converges to some discrete
distribution G̃0 under W1 distance.

5.1. Singular Fisher information matrix

The results in the previous sections are under the assumption that both the true kernel f0 and
the chosen kernel f are identifiable in the first order. This is equivalent to the non-singularity of
the Fisher information matrix of f0(x|G0) and f (x|G∗) when G∗ ∈ M, that is, both I (G0, f0)

and I (G∗, f ) are non-singular. Therefore, we achieve the cherished convergence rate n−1/2 of
Ĝn. Unfortunately, these assumptions do not always hold. For instance, both the Gamma and
skewnormal kernel are not identifiable in the first order (Ho and Nguyen [14], Ho and Nguyen
[15]). According to Azzalini and Dalla Valle [1], Wiper, Rios Insua and Ruggeri [37], these
kernels are particularly useful for modelling various kinds of data: the Gamma kernel is used for
modeling non-negative valued data and the skewnormal kernel is used for modeling asymmetric
data. Therefore, it is worth considering the performance of our estimator in Algorithm 1 under
the nonidentifiability in the first order of both kernels f0 and f . Throughout this section, for
the simplicity of the argument we consider only the well-specified kernel setting and the setting
that f0 may not be identifiable in the first order. Additionally, we also choose σ1 = σ0 > 0. The
argument for the misspecified kernel setting, the non-identifiability in the first order setting of
either f or f0, and the general choices of σ1, σ0 can be argued in the similar fashion.

The non-identifiability in the first order of f0 implies that the Fisher information matrix
I (G0, f0) of f0(x|G0) is singular at particular values of G0. Therefore, the convergence rate
of Ĝn to G0 will be much slower than the standard convergence rate n−1/2. In order to precisely
determine the convergence rates of parameter estimation under the singular Fisher information
matrix setting, Ho and Nguyen [15] introduced a notion of singularity level of the mixing mea-
sure G0 relative to the mixture model class; alternatively we say the singularity level of Fisher
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information matrix I (G0, f0) (cf. Definition 3.1 and Definition 3.3 in [15]). Here, we briefly
summarize the high level idea of singularity level according to the notations in our paper for
the convenience of readers. In particular, we say that I (G0, f0) admits r-th level of singularity
relative to the ambient space Ok0 for 0 ≤ r < ∞ if we have:

inf
G∈Ok0

V
(
f0(·|G),f0(·|G0)

)
/Ws

s (G,G0) = 0, s = 1, . . . , r,

V
(
f0(·|G),f0(·|G0)

)
� Wr+1

r+1 (G,G0), for all G ∈ Ok0 .

(4)

The infinite singularity level of the Fisher information matrix I (G0, f0) implies that inequality
(4) will not hold for any r ≥ 0. (Actually, these are consequences, not the original definition of
singularity level in Ho and Nguyen [15], but this is sufficient for our purpose.)

When f0 is identifiable in the first order, I (G0, f0) will only have singularity level zero for
all G0 ∈ Ek0 , i.e., r = 0 in (4). However, the singularity levels of the Fisher information matrix
I (G0, f0) are generally not uniform over G0 when I (G0, f0) is singular. For example, when
f0 is skewnormal kernel, I (G0, f0) will admit any level of singularity, ranging from 0 to ∞
depending on the interaction of atoms and masses of G0 (Ho and Nguyen [15]). The notion of
singularity level allows us to establish precisely the convergence rate of any estimator of G0.
In fact, if r < ∞ is the singularity level of I (G0, f0), for any estimation method that yields
the convergence rate n−1/2 for f0(x|G0) under the Hellinger distance, the induced best possible
rate of convergence for the mixing measure G0 is n−1/2(r+1) under Wr+1 distance. If r = ∞
is the singularity level of I (G0, f0), all the estimation methods will yield a non-polynomial
convergence rate of G0, one that is slower than n−1/2s for any s ≥ 1.

Now, by using the same line of argument as that of Theorem 3.1 we have the following result
regarding the convergence rate of Ĝn to G0 when the Fisher information matrix I (G0, f0) has
r-th singularity level for some r < ∞.

Proposition 5.1. Given the well-specified kernel setting, that is, {f } = {f0}, and the choice that
σ1 = σ0 > 0. Assume that the Fisher information I (G0, f0) has r-th singularity level where
r < ∞ and condition (P.2) in Theorem 3.1 holds, that is, �(G0, σ0) < ∞. Furthermore, the
kernel K is chosen such that the Fisher information matrix I (G0, f

σ0
0 ) has r-th singularity level

and f
σ0
0 admits a uniform Hölder property up to the r-th order. Then, we have

Wr+1(Ĝn,G0) = Op

(√
�(G0, σ0)

C2
r (σ0)

n−1/2(r+1)

)
,

where Cr(σ0) = infG∈Ok0

h(f
σ0
0 (·|G),f

σ0
0 (·|G0))

Wr+1
r+1 (G,G0)

.

Remarks.

(i) A mild condition such that I (G0, f0) and I (G0, f
σ
0 ) have the same singularity level

is K̂(t) �= 0 for all t ∈ R
d where K̂(t) denotes the Fourier transformation of K (cf.

Lemma A.3 in Appendix C in Ho, Nguyen and Ritov [17]).
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(ii) Examples of f0 that are not identifiable in the first order and satisfy �(G0, σ ) < ∞ are
skewnormal and exponential kernel while K is chosen to be Gaussian or exponential
kernel, respectively.

(iii) The result of Proposition 5.1 implies that under suitable choices of kernel K , our esti-
mator in Algorithm 1 still achieves the best possible convergence rate for estimating G0
even when the Fisher information matrix I (G0, f0) is singular.

5.2. Varying true parameters

So far, our analysis has relied upon the assumption that G0 is fixed as n → ∞. However, there are
situations such as in an asymptotic minimax analysis the true mixing measure G0 is allowed to
vary with n and converge to some distribution G̃0 under W1 distance as n → ∞. In this section,
we will demonstrate that our estimator in Algorithm 1 still achieves the optimal convergence rate
under that setting of G0.

Denote the number of components of G̃0 by k̃0. For the clarity of our argument, we only work
with the well-specified kernel setting and with the setting that f0 is identifiable in the first order.
As we have seen from the analysis of Section 3.1, when G0 does not change with n, the key steps
used to establish the standard convergence rate n−1/2 of Ĝn to G0 are through the combination
of the convergence of m̂n to k0 almost surely and, under the first order identifiability of f

σ0
0 , the

lower bound

h
(
f

σ0
0 (·|G),f

σ0
0 (·|G0)

)
� W1(G,G0) (5)

holds for any G ∈ Ok0 . Unfortunately, these two results no longer hold as G0 varies with n. The
varying G0 is now denoted by Gn

0, the true mixing distribution when the sample size is n. Let kn
0

be the number of components of Gn
0. Assume moreover that lim supn→∞ kn

0 = k < ∞. We start
with the following result regarding the convergence rate of m̂n under that setting of Gn

0 .

Proposition 5.2. Given σ0 > 0, m̂n obtained by Algorithm 1. If f
σ0
0 is identifiable, then |m̂n −

kn
0 | → 0 almost surely as n → ∞.

According to the above proposition, m̂n will not converge to k̃0 almost surely when k > k̃0.
Additionally, from that proposition, inequality (5) no longer holds since both the number of
components of Ĝn and Gn

0 vary. To account for that problem, we need to impose a much stronger
condition on the identifiability of f0 ∗ Kσ0 .

Throughout the rest of this section, we assume that d = d1 = 1, i.e., we specifically work with
the univariate setting of f0, and k > k̃0. Using a bound of Heinrich and Kahn [13], we obtain the
following.

Proposition 5.3. Given σ0 > 0. Let K be chosen such that f
σ0
0 is identifiable up to the (2k −

2̃k0)-order and admits a uniform Hölder condition up to (2k − 2̃k0)-order. Then, there exist
ε0 > 0 and N(ε0) ∈N such that

h
(
f

σ0
0 (·|G),f

σ0
0

(·|Gn
0

)) ≥ Cv(σ )W
2k−2̃k0+1
1

(
G,Gn

0

)
, (6)
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for any n ≥ N(ε0) and for any G ∈ Okn
0

such that W1(G, G̃0) ≤ ε0. Here, Cv(σ ) is some positive

constant depending only on G̃0 and σ .

Similar to the argument of Lemma 3.1, a simple example of K and f0 for the assumptions of
Proposition 5.3 to hold is K̂(t) �= 0 for all t ∈ R

d and f0 is identifiable up to the (2k− 2̃k0)-order.
Now, a combination of Proposition 5.2 and Proposition 5.3 yields the following result regarding
the convergence rate of Ĝn to Gn

0 .

Corollary 5.1. Given the assumptions in Proposition 5.3. Assume that �(Gn
0, σ0) < ∞ for all

n ≥ 1. Then, we have

W1
(
Ĝn,G

n
0

) = Op

(√
�(Gn

0, σ0)

C2
v (σ0)

n−1/(4k−4̃k0+2)

)
,

where Cv(σ0) is the constant in inequality (6).

Remark.

(i) If f0 and K are univariate Gaussian kernels or Cauchy kernel respectively, then
�(Gn

0, σ0) → �(G̃0, σ0) as n → ∞.

(ii) If W1(G
n
0, G̃0) = O(n−1/(4k−4k0+2)+κ ) for some κ > 0, then the convergence rate

n−1/(4k−4k0+2) of Ĝn to Gn
0 is sharp in the sense of minimax (cf. Theorem 3.2 in Hein-

rich and Kahn [13]). Therefore, our estimator in Algorithm 1 also achieves the minimax
rate of convergence for estimating Gn

0 . However, our estimator from Algorithm 1 may be
more appealing than that from Heinrich and Kahn [13] for computational reasons. We will
illustrate the result of Corollary 5.1 via careful simulation studies in Section 6.

6. Empirical studies

We present in this section numerous numerical studies to validate our theoretical results in the
previous sections. To find the mixing measure Ĝn,m = arg minG∈Om

h(f σ1(·|G),P
σ0
n (·)), we

utilize the HMIX algorithm developed in Section 4.1 of Cutler and Cordero-Braña [7]. This
algorithm is essentially similar to the EM algorithm and ultimately gives us local solutions to the
previous minimization problem.

6.1. Synthetic data

We start with evaluating Algorithm 1 using synthetic data. To avoid local minima from finding
Ĝn,m with synthetic data from HMIX algorithm, we initialize the parameters in a relatively small
neighborhood around the true parameters to guarantee that the updates from HMIX algorithm
converge to local optimal solutions that are close to true parameters after a certain number of
iterations. Now, our discussion is divided into separate enquiries of the well- and misspecified
kernel setups.
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Well-specified kernel setting

Under this setting, we assess the performance of our estimator in Algorithm 1 under two cases
of G0:

Case 1. G0 is fixed with the sample size. Under this case, we consider three choices of f0:
Gaussian and Cauchy kernel for satisfying first order identifiability condition, and skewnormal
kernel for failing the first order identifiability condition.

• Case 1.1 – Gaussian family:

f0(x|η, τ) = 1√
2πτ

exp

(
− (x − η)2

2τ 2

)
,

G0 = 1

2
δ
(0,

√
10)

+ 1

4
δ
(−0.3,

√
0.05)

+ 1

4
δ
(0.3,

√
0.05)

.

• Case 1.2 – Cauchy family:

f0(x|η, τ) = 1

πτ(1 + (x − η)2/τ 2)
,

G0 = 1

2
δ
(0,

√
10)

+ 1

4
δ
(−0.3,

√
0.05)

+ 1

4
δ
(0.3,

√
0.05)

.

• Case 1.3 – Skewnormal family:

f0(x|η, τ,m) = 2√
2πτ

exp

(
− (x − η)2

2τ 2

)
�

(
m(x − η)/τ

)
,

G0 = 1

2
δ
(0,

√
10,0)

+ 1

4
δ
(−0.3,

√
0.05,0)

+ 1

4
δ
(0.3,

√
0.05,0)

,

where � is the cumulative function of standard normal distribution.

For the Gaussian case and skewnormal case of f0, we choose K to be the standard Gaussian
kernel while K is chosen to be the standard Cauchy kernel for the Cauchy case of f0. Note that,
regarding skewnormal case it was shown that the Fisher information matrix I (G0, f0) has second
level singularity (cf. Theorem 5.3 in Ho and Nguyen [15]); therefore, from the result of Propo-
sition 5.1, the convergence rate of Ĝn to G0 will be at most n−1/6. Now for the bandwidths, we
choose σ1 = σ0 = 1. The sample sizes will be n = 200∗i where 1 ≤ i ≤ 20. The tuning parameter
Cn is chosen according to BIC criterion. More specifically, Cn = √

3 logn/
√

2 for Gaussian and
Cauchy family while Cn = √

2 logn for skewnormal family. For each sample size n, we perform
Algorithm 1 exactly 100 times and then choose m̂n to be the estimated number of components
with the highest probability of appearing. Afterwards, we take the average among all the replica-
tions with the estimated number of components m̂n to obtain W1(Ĝn,G0). See Figure 1 where
the Wasserstein distances W1(Ĝn,G0) and the percentage of time m̂n = 3 are plotted against in-
creasing sample size n along with the error bars. The simulation results regarding Gaussian and



850 N. Ho, X. Nguyen and Y. Ritov

Figure 1. Performance of Ĝn in Algorithm 1 under the well-specified kernel setting and fixed G0. Left to
right: (1) W1(Ĝn,G0) under Gaussian case. (2) W1(Ĝn,G0) under Cauchy case. (3) W3(Ĝn,G0) under
Skewnormal case. (4) Percentage of time m̂n = 3 obtained from 100 runs.

Cauchy family match well with the standard n−1/2 convergence rate from Theorem 3.1 while the
simulation results regarding skewnormal family also fit with the best possible convergence rate
n−1/6 as we argued earlier.

Case 2. G0 is varied with the sample size. Under this case, we consider two choices of f0:
Gaussian and Cauchy kernel with only location parameter.

• Case 2.1 – Gaussian family:

f0(x|η) = 1√
2π

exp

(
− (x − η)2

2

)
,

G0 = 1

4
δ1−1/n + 1

4
δ1+1/n + 1

2
δ2,

where n is the sample size.
• Case 2.2 – Cauchy family:

f0(x|η) = 1

π(1 + (x − η)2)
,

G0 = 1

4
δ1−1/

√
n + 1

4
δ1+1/

√
n + 1

2
δ1+2/

√
n.

With these settings, we can verify that G̃0 = 1
2δ1 + 1

2δ2 for the Gaussian case and G̃0 = δ1

for the Cauchy case. Additionally, W1(G0, G̃0) 	 1/n for the Gaussian case and W1(G0, G̃0) 	
1/

√
n for the Cauchy case. According to the result of Corollary 5.1, the convergence rate of

W1(Ĝn,G0) is n−1/6 for the Gaussian case and is n−1/10 for the Cauchy case, which are also
minimax according to the values of W1(G0, G̃0). The procedure for choosing K , σ1, σ0, n, and
m̂n is similar to that of Case 1. See Figure 2 where the Wasserstein distances W1(Ĝn,G0) and
the percentage of time m̂n = 3 are plotted against increasing sample size n along with the error
bars. The simulation results for both Gaussian and Cauchy family agree with the convergence
rates n−1/6 and n−1/10, respectively.
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Figure 2. Performance of Ĝn in Algorithm 1 under the well-specified kernel setting and varied G0. Left
to right: (1) W1(Ĝn,G0) under Gaussian case. (2) W1(Ĝn,G0) under Cauchy case. (3) Percentage of time
m̂n = 3 obtained from 100 runs.

Misspecified kernel setting

Under that setting, we assess the performance of Algorithm 1 under two cases of f , f0, K , σ1,
σ0, and G0.

Case 3. f0 is a finite mixture of f and σ1 = σ0 > 0. Under this case, we consider two choices
of f : Gaussian and Cauchy kernel with both location and scale parameter.

• Case 3.1 – Gaussian distribution: f is normal kernel,

f0(x|η, τ) = 1

2
f (x − 2|η, τ) + 1

2
f (x + 2|η, τ),

G0 = 1

3
δ(0,2) + 2

3
δ(1,3).

• Case 3.2 – Cauchy distribution: f is Cauchy kernel,

f0(x|η, τ) = 1

2
f (x − 2|η, τ) + 1

2
f (x + 2|η, τ),

G0 = 1

3
δ(0,2) + 2

3
δ(1,3).

With these settings of f , f0, G0, we can verify that G∗ = 1
6δ(−2,2)+ 1

3δ(−1,3)+ 1
6δ(2,2)+ 1

3δ(3,3)

for any σ1 = σ0 > 0. The procedure for choosing K , σ0, n, and m̂n is similar to that of Case 1 in
the well-specified kernel setting. Figure 3 illustrates the Wasserstein distances W1(Ĝn,G∗) and
the percentage of time m̂n = 4 along with the increasing sample size n and the error bars. The
simulation results under that simple misspecified setting of both families suit with the standard
n−1/2 rate from Theorem 3.2.

Remarks with the results from Case 3

The results from various settings of Case 3 raise an interesting question regarding the practi-
cality of the established consistency results in Section 3.2 for the misspecified kernel cases. In
particular, even though the true mixing measure G0 has only two components, we actually obtain
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Figure 3. Performance of Ĝn in Algorithm 1 under misspecified kernel setting and f0 is a finite mixture
of f . Left to right: (1) W1(Ĝn,G∗) under Gaussian case. (2) W1(Ĝn,G∗) under Cauchy case. (3) Percent-
age of time m̂n = 4 obtained from 100 runs.

mixing measure G∗ with four components under the choice of K and σ0, σ1. Since we do not
know the true kernel density function, the natural question is how does finding 4 components of
mixing measure reflect the true heterogeneity structure of the population?

The issue that being raised under these specific settings is valid and broadly applied to in-
ference under misspecification: how does the statistician interpret what he has found given that
his model is not correct? A satisfactory answer may not be available unless some assumption
is accepted about “how misspecified” is our misspecification. We believe that a good approach
to address this is by appealing to approximation theory: even though our choice of kernel K is
misspecified, we may have some knowledge and reasonable assumption about how well this ker-
nel choice approximates the class of densities that contain the true data-generating density. The
question turns to how to relate the estimates obtained under kernel misspecification to the true
parameters. We believe that this constitutes a fascinating research direction.

As for the specific settings that we mentioned above, it is not possible to recover G0 from
G∗, given that the statistician does not know anything about the true f0, because f (x|G∗) =
f0(x|G0). From a theoretical standpoint, there is not much we can do in this situation due to
the indistinguishability between the pair (f,G) and the pair (f0,G0), unless some additional
knowledge is know about either f0 or G0.

From a practical standpoint, we advocate for an extra post-processing step for mixture model
based inference: once the algorithm stops, the statistician should perform a testing procedure to
verify if some of the obtained clusters should be merged into one or not: clusters that are similar
to each other should be merged, small clusters should be discarded and/or merged to a similar
one. This also helps with the quality of the parameter estimates for the merged clusters, since we
know that fitting with overfitted mixture models can result in highly inefficient estimates. Then,
the fact that we find 4 mass points for mixing measure G, along with the parameters associated
with these 4 points, should still be useful for understanding about the structure of heterogeneity
for the underlying population, even as G0 is not recovered. We leave a rigorous development of
this post-processing methodology for future exploration.

Case 4. σ1, σ0 are chosen such that {f σ1} = {f σ0
0 }. Under this case, we consider two choices of

f and f0: Gaussian and Cauchy kernel with only location parameter.
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Figure 4. Performance of Ĝn in Algorithm 1 under misspecified kernel setting and {f ∗Kσ1} = {f0 ∗Kσ0}.
Left to right: (1) W1(Ĝn,G∗) under Gaussian case. (2) W1(Ĝn,G∗) under Cauchy case. (3) Percentage of
time m̂n = 2 obtained from 100 runs.

• Case 4.1 – Gaussian distribution:

f (x|η) = 1√
2π

exp

(
− (x − η)2

2

)
, f0(x|η) = 1

2
√

2π
exp

(
− (x − η)2

8

)
,

G0 = 1

3
δ−1 + 2

3
δ2.

• Case 4.2 – Cauchy distribution: f is Cauchy kernel,

f (x|η) = 1

π(1 + (x − η)2)
, f0(x|η) = 4

2π(4 + (x − η)2)
,

G0 = 1

3
δ−1 + 2

3
δ2.

To ensure that {f σ1} = {f σ0
0 }, we need to choose σ 2

1 + 1 = σ 2
0 + 4 for both the cases of

Gaussian and Cauchy distribution when K is chosen to be the standard Gaussian and Cauchy
kernel respectively. Therefore, with our simulation studies of Algorithm 1 in this case, we choose
σ1 = 2 while σ0 = 1. Under these choices of bandwidths, we quickly have G∗ = G0. Note that,
since there exists no value of σ0 > 0 such that σ 2

0 + 4 = 1, it implies that the estimator from WS
algorithm may not be able to estimate the true mixing measure G0 regardless the value of σ0.
Now, the procedure for choosing K , n, and m̂n is similar to that of Case 1 in the well-specified
kernel setting. Figure 4 illustrates the Wasserstein distances W1(Ĝn,G0) and the percentage of
time m̂n = 2 along with the increasing sample size n and the error bars. The simulation results
under that misspecified setting of both families fit with the standard n−1/2 rate from Theorem 3.2.

6.2. Real data

We begin investigating the performance of Algorithm 1 on the well-known data set of the
Sodium-lithium countertransport (SLC) data (Dudley et al. [11], Roeder [34], Ishwaran, James
and Sun [19]). This simple dataset includes red blood cell sodium-lithium countertransport (SLC)
activity data collected from 190 individuals. As being argued by Roeder [34], the SLC activity
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Table 1. Summary of parameter estimates in SLC activity data from mixture of two normal distributions
with Algorithm 1, WS Algorithm, MKE Algorithm, and EM Algorithm. Here, pi , ηi , τi represents the
weights, means, and variance respectively

p1 p2 η1 η2 τ1 τ2

Algorithm 1 0.264 0.736 0.368 0.231 0.118 0.065
WS Algorithm 0.305 0.695 0.352 0.222 0.106 0.060
MKE Algorithm 0.246 0.754 0.378 0.225 0.102 0.060
EM Algorithm 0.328 0.672 0.363 0.227 0.115 0.058

data were believed to be derived from either mixture of two normal distributions or mixture of
three normal distributions. Therefore, we will fit this data by using mixture of normal distri-
butions with unknown mean and variance. We choose the bandwidths σ1 = σ0 = 0.05 and the
tuning parameter Cn = √

3 logn/
√

2 where n is the sample size. This follows BIC, which is the
criterion appropriate for modelling parameter estimation. The simulation result yields m̂n = 2
while the values of Ĝn are reported in Table 1.

The SLC activity data was also considered in Woo and Sriram [38] when the authors achieved
mn = 2. In particular, they allowed the bandwidth σ0 in WS Algorithm to go to 0 and chose
the tuning parameter Cn = 3/n, which is inspired by AIC criterion. They also obtained similar
result of estimating the true number of components when utilizing the minimum Kulback–Leibler
divergence estimator (MKE) from James, Priebe and Marchette [20]. The values of parameter
estimation from these two algorithms were presented in Table 7 in Woo and Sriram [38] where
we will use them for the comparison purpose with the results from Algorithm 1. Moreover, we
also run the EM Algorithm to determine the parameter estimation when we assume the data come
from mixture of two normal distributions. All the values of parameter estimation from these three
algorithms are included in Table 1. Finally, Figure 5 represents the fits from parameter estimation
of all the aforementioned algorithms to SLC data. Even though the weights from Algorithm 1
are not very close to those from WS Algorithm and EM Algorithm, the fit from Algorithm 1 is
comparable to those from these algorithms, that is, their fits look fairly similar. As a consequence,

Figure 5. From left to right: (1) Histogram of SLC activity data. (2) Density plot from mixture of two
normals based on Algorithm 1, WS Algorithm, MKE Algorithm, and MLE.
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the results from Algorithm 1 with SLC data are in agreement with those from several state-of-
the-art algorithms in the literature.

7. Summaries and discussions

In this paper, we propose flexible robust estimators of mixing measure in finite mixture models
based on the idea of minimum Hellinger distance estimator, model selection criteria, and super-
efficiency phenomenon. Our estimators are shown to exhibit the consistency of the number of
components under both the well- and misspecified kernel setting. Additionally, the best possible
convergence rates of parameter estimation are derived under various settings of both kernel f

and f0. Another salient feature of our estimators is the flexible choice of bandwidths, which
circumvents the subtle choices of bandwidth from proposed estimators in the literature. However,
there are still many open questions relating to the performance or the extension of our robust
estimators in the paper. We give several examples:

• As being mentioned in the paper, our estimator in Algorithm 1 and WS estimator achieve the
consistency of the number of components when the bandwidth σ0 goes to 0 sufficiently slow.
Can we determine the setting of bandwidths such that the convergence rates of parameter
estimation from these estimators are optimal, at least under the well-specified kernel setting?

• Our analysis is based on the assumption that the parameters of G0 belong to the compact
parameter space �. When G0 is finitely supported, this is always the case, but the set is un-
known in advance and, in practice, we often do not know the range of the true parameters.
Therefore, it would be interesting to see whether our estimators in Algorithm 1 and Algo-
rithm 2 still achieve both the consistency of the number of components and best possible
convergence rates of parameter estimation when � =R

d1 .
• Bayesian robust inference of mixing measure in finite mixture models has been of interest

recently, see, for example, Miller and Dunson [30]. Whether the idea of minimum Hellinger
distance estimator can be adapted to that setting is also an interesting direction to consider
in the future.
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