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Let Y be a d-dimensional random vector with unknown mean p and covariance matrix X. This paper
is motivated by the problem of designing an estimator of X that admits exponential deviation bounds in
the operator norm under minimal assumptions on the underlying distribution, such as existence of only
4th moments of the coordinates of Y. To address this problem, we propose robust modifications of the
operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the
implications of these results to the covariance estimation problem under various structural assumptions.
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1. Introduction

In mathematical statistics, it is common to assume that data satisfy an underlying model along
with a set of assumptions on this model — for example, that the sequence of vector-valued obser-
vations is i.i.d. and has multivariate normal distribution. Since real-world data typically do not fit
the model or satisfy the assumptions exactly (e.g., due to outliers and noise), reducing the number
and strictness of the assumptions helps to reduce the gap between the “mathematical” world and
the “real” world. The concept of robustness occupies one the central roles in understanding this
gap. One of the viable ways to model noisy data and outliers is to assume that the observations
are generated by a heavy-tailed distribution, and this is precisely the approach that we follow in
this work.

Robust M-estimators introduced by P. Huber [22] constitute a powerful method in the tool-
box for the analysis of heavy-tailed data. Huber noted that “it is an empirical fact that the best
[outlier] rejection procedures do not quite reach the performance of the best robust procedures.”
His conclusion remains valid in today’s age of high-dimensional data that pose new challenging
questions and demand novel methods.

The goal of this work is to introduce robust modifications for the class of operator-valued U-
statistics, which naturally appear in the problems related to the estimation of covariance matrices.
Statistical estimation in the presence of outliers and heavy-tailed data has recently attracted at-
tention of the research community, and the literature on the topic covers the wide range of topics.
A comprehensive review is beyond the scope of this section, so we mention only few notable
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contributions. Several popular approaches to robust covariance estimation and robust principal
component analysis are discussed in [7,24,37], including the Minimum Covariance Determinant
(MCD) estimator and the Minimum Volume Ellipsoid estimator (MVE). Maronna’s [32] and
Tyler’s [39,42] M-estimators are other well-known alternatives. Rigorous results for these es-
timators are available only for special families of distributions, such as elliptically symmetric
distributions. Robust estimators based on Kendall’s tau have been recently studied in [19,41],
again for the class of elliptically symmetric distributions and their generalizations.

The papers [10,11,18] discuss robust covariance estimation for heavy-tailed distributions and
are all based on the ideas originating in the work [9] that provided detailed non-asymptotic
analysis of robust M-estimators of the univariate mean. The present paper can be seen as a direct
extension of these ideas to the case of matrix-valued U-statistics, and continues the line of work
initiated in [16] and [34]; the main advantage of the techniques proposed here is that they result
in estimators that can be computed efficiently, and cover scenarios beyond covariance estimation
problem. Recent advances in this direction include the works [15] and [35] that present new
results on robust covariance estimation; see Remark 4.1 for more details.

Finally, let us mention the paper [25] that investigates robust analogues of U-statistics obtained
via the median-of-means technique [2,13,29,36]. We include a more detailed discussion and
comparison with the methods of this work in Section 3 below.

The rest of the paper is organizes as follows. Section 2 explains the main notation and back-
ground material. Section 3 introduces the main results. Implications for covariance estimation
problem and its versions are outlined in Section 4. Finally, the proofs of the main results are
contained in Section 5.

2. Preliminaries

In this section, we introduce the main notation and recall useful facts that we rely on in the
subsequent exposition.

2.1. Definitions and notation

Given A € C4 %% let A* € C%*41 pe the Hermitian adjoint of A. The set of all d x d self-
adjoint matrices will be denoted by H?. For a self-adjoint matrix A, we will write Amax(A) and
Amin(A) for the largest and smallest eigenvalues of A. Hadamard (entry-wise) product of matrices
A, B € C>% will be denoted by A} ® Aj;. Next, we will introduce the matrix norms used in
the paper.

Everywhere below, || - || stands for the operator norm || A := v/Amax(A*¥A). If d| =dy =d,
we denote by tr A the trace of A. Next, for A € C41*% the nuclear norm || - ||1 is defined as
|All; =tr(+/ A*A), where ~/ A*A is a nonnegative definite matrix such that (VA*A)? = A*A.
The Frobenius (or Hilbert—Schmidt) norm is ||A|lr = +/tr(A*A), and the associated inner prod-
uct is (A1, Az) = tr(A]A»). Finally, define || A||max := sup; j |Ai,j|. For a vector ¥ € R 1Y |2
stands for the usual Euclidean norm of Y.

Given two self-adjoint matrices A and B, we will write A > B (or A > B) iff A — B is
nonnegative (or positive) definite.
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For a random matrix ¥ € C4*% with E||Y| < oo, the expectation EY denotes a d| x d;
matrix such that (EY); ; =EY; ;.

For a,b e R, set a vV b := max(a, b) and a A b := min(a, b). Finally, recall the definition of
the function of a matrix-valued argument.

Definition 2.1. Given a real-valued function f defined on an interval T C R and a self-adjoint
A € H? with the eigenvalue decomposition A = U AU* such that Aj(A)eT, j=1,...,d, de-
fine f(A) as f(A) =Uf(A)U*, where

Al S )
f)=f = -
Ad fa)

Finally, we introduce the Hermitian dilation which allows to reduce the problems involving
general rectangular matrices to the case of Hermitian matrices.

Definition 2.2. Given the rectangular matrix A € C9>4d2 | the Hermitian dilation D : C41%%2

Clitd)x(d1+d2) ig defined as
0 A
D(A) = (A* 0) _ 2.1)

k
AA AE‘)A)’ it is easy to see that | D(A)| = ||A]l.

Since D(A)? = ( 0

2.2. U-statistics

Consider a sequence of i.i.d. random variables X1, ..., X, (n > 2) taking values in a measurable
space (S, B), and let P be the distribution of X;. Assume that H : " — He 2<m<n)isa
S™-measurable permutation-symmetric kernel, meaning that H (x1, ..., xy) = H (X7, ..., Xz,)
for any (xq,...,x,) € 8™ and any permutation 7. The U-statistic with kernel H is defined as
[20]

y, .= n=m > HMXi. ... Xi), 2.2)

where 1" :={(i1,...,im) : 1 <ij <n,,ij # iy if j # k}; clearly, it is an unbiased estimator
of EH(Xy,..., X;). Throughout this paper, we will impose a mild assumption stating that
E|H(X1,..., Xm)?*| < oco.

One of the key questions in statistical applications is to understand the concentration of a given
estimator around the unknown parameter of interest. Majority of existing results for U-statistics
assume that the kernel H is bounded [4], or that | H (X1, ..., X;;)| has sub-Gaussian tails [17].
However, in the case when only the moments of low orders of ||H(Xq, ..., X;,)| are finite,
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deviations of the random variable
|HX,....Xw) —EH(X1, ..., Xn)|

do not satisfy exponential concentration inequalities. At the same time, as we show in this paper,
it is possible to construct “robust modifications” of U,, for which sub-Gaussian type deviation
results hold.

In the remainder of this section, we recall several useful facts about U-statistics. The projection
operator 1y, x(k < m) is defined as

Tk H iy Xi) o= (B, — P) ... (B, — PP *H,
where
Q’"H:=/...fH(yl,...,ym>dQ(y1)...dQ(ym>,

for any probability measure Q in (S, BB), and § is a Dirac measure concentrated at x € S. For
example, m,, 1H(x) =E[H (X1, ..., X)) X1 =x] -EH (X1, ..., Xn).

Definition 2.3. An S"-measurable function F : S” — H is P-degenerate of order r (1 <r <

m), if

EF (X1, Xp, Xp41,---, Xm) =0, VXq,...,X, €8,
and EF(xy,..., X, Xp4+1, X742,..., X;y) is not a constant function. Otherwise, F is non-
degenerate.

The following result is commonly referred to as Hoeffding’s decomposition; see [14] for the
details.

Proposition 2.1. The following equality holds almost surely:

m
m
Ui=) (k) Vo (7 1 H),
k=0

where

(n—k)!
Vo (Tm i H) = > mwkHXy . X

n!
(i1sesir)ELF

For instance, the first order term (k = 1) in the decomposition is

n
m
mVn(ﬂm,lH) = ; E nm,lH(Xj)-
Jj=1
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It is well known that

—1 m
E(U, —EH (X1, ..., Xn)" = (Z) 3 (’Z) (’:n__”]:> 2,
k=1

where E,% = E@mmH (X1, Xz,...,Xk))z, k=1,...,m. As n gets large, the first term in the
sum above dominates the rest that are of smaller order, so that

Jet(w, Pyl = () m (4 0) 50

as n — oo. In this paper, we consider non-degenerate U-statistics which commonly appear in
applications such as estimation of covariance matrices and that serve as a main motivation for
this work.

m2
+o(n) = H 72% +o(n")

3. Robust modifications of U-statistics

The goal of this section is to introduce the robust versions of U-statistics, and state the main
results about their performance. Define

1/2, x>1,
Y(x) =4 x — sign(x) -x2/2, x| <1, (3.1
—1/2, x<—1
and its antiderivative
2 3
I NS
U(x) = 12 X 6 (3.2)
§+§(|x|—l), |x| > 1,

both of which are depicted in Figure 1. The function W (x) is closely related to Huber’s loss [23];
concrete choice of W(x) is motivated by its properties, namely convexity and the fact that its

0.8
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(a) ¥(x) (b) ¥(=)

Figure 1. Graphs of the functions ¥ (x) and W (x).
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derivative ¥ (x) is operator Lipschitz and bounded (see Lemma 3.1 below). Let U, be H<-valued
U-statistic,

(n —m)!
U= —— > HXi. ... Xi,).
[CAS i,,l)GI,'l”
Since U, is the average of matrices of the form H(X;,,..., X;,), (i1,...,in) € I}, it can be

equivalently written as

Up=argmin Y |HX.....X;,)~ U}

d . .
UeH (T lm)El;,ln

=argmintr|: Z (H(Xil,...,Xl-m)—U)Zi|.

UeH? LGy, el

Im

A robust version of U, is then defined by replacing the quadratic loss by the (rescaled) loss W (x).
Namely, let 6 > 0 be a scaling parameter, and define

Uy = argmintr|: > WO(HXi.....X,) - U))]. (3.3)
Uemd (ilwusim)E[;T

For brevity, we will set

Hi i, =HX;,....X;,) and EH:=EH; ,,
in what follows. Define
1 (n—m)!
Fp(U) := Q_ZTH[(_ Z)Elm W(0(Hi, ., — U))]. (3.4)
[T im)€El]]

Clearly, ﬁ;{ can be equivalently written as

fj,;‘ = argmintr[Fg (U)].
UeHd

The following result describes the basic properties of this optimization problem.

Lemma 3.1. The following statements hold:

1. Problem (3.3) is a convex optimization problem.
2. The gradient V Fy(U) can be represented as

1 (n—m)!

VEW)=—2—— > ¥(0H;.i, — V).

(il sssss im)GI,’;"

Moreover, VFy(-) : H? > HY is Lipschitz continuous in Frobenius and operator norms
with Lipschitz constant equal to 1.
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3. Problem (3.3) is equivalent to

Y V(0(Hi i —Uy)) =Odxa- (3.5)

(il,...,im)GI,'f

Proofs of these facts are given in Section 5.2. Next, we present our main result regarding
performance of the estimator U}}. Define the effective rank [40] of a nonnegative definite matrix
A eH as

A) trA
r = —
1Al

It is easy to see that for any matrix A € HY, r(A) < d. We will be interested in the effective rank
of the matrix E(H;_,, — EH)?2, and will denote

Iy = r(]E(Hlu_m — IEH)z).

Theorem 3.1. Let k = |n/m], and assume that t > 1 is such that

= < —.

k— 104

Then for any o > |E(H|. n — IEH)ZIII/2 and 6 :=0, = é\/%,

|Ur —EH| < 230\/§

with probability at least 1 — min(4d + 1, 18rg)e™".

The proof is presented in Section 5.3.

Remark 3.1. Condition I’H% < 11@ in Theorem 3.1 can be weakened to

tr(E(Hy._m —EH)?) ¢ U
o2 Kk~ 104’

where o2 > |E(H;..,, — EH)?|. This fact follows from the straightforward modification of the
proof of Theorem 3.1 and can be useful in applications.

Remark 3.2. Paper [25] investigates robust analogues of univariate U-statistics based on the
median-of-means (MOM) technique. This approach can be extended to higher dimensions via
replacing the univariate median by an appropriate multivariate generalization (e.g., the spatial
median). When applied to covariance estimation problem, it yields estimates for the error mea-
sured in Frobenius norm; however, is not clear whether it can be used to obtain the error bounds
in the operator norm. More specifically, to obtain such a bound via the MOM method, one would
need to estimate [E|| % Z’}zl(Yj —EY)(Y; — EY)! — 3|2, where Y1, ... ., Y; arei.i.d. copies of a
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random vector ¥ € R? such that E(Y —EY)(Y —EY)” = ¥ and E||Y||‘2‘ < 00. We are not aware
of any existing (non-trivial) upper bounds for the aforementioned expectation that require only 4
finite moments of || Y||2. On the other hand, it is straightforward to obtain an upper bound in the
Frobenius norm since E|| 1 Y (Y —EY)(Y; —EY)T - S| = LE|ly —EY 3 -1=Z13).

Remark 3.3. We note that, due to the condition rH% < ﬁ that can be viewed as an upper
bound on ¢, the inequality of Theorem 3.1 can not be integrated to obtain a bound in expectation.
To establish such a bound, new techniques, beyond the ones developed in this paper, might be
required.

3.1. Construction of the adaptive estimator

The downside of the estimator ﬁ; defined in (3.3) is the fact that it is not completely data-
dependent as the choice of 6 requires the knowledge of an upper bound on

af = HE(HL..m — IEH)2||.

To alleviate this difficulty, we propose an adaptive construction based on a variant of Lepski’s
method [28].

Assume that oy, is a known (possible crude) lower bound on o. Choose y > 1, let 0} :=
ominy’, and for each integer j > 0, set t; :==t +log[j(j + 1)] and

2lj 1

6; =000 =/ =L —.
J

where k = |n/m] as before. Let

ﬁn,j = argmin Fy, (U),
Ueld

Where 1 0 was deﬁlled m (3.4). I lllally, set

and

—~ ~ 1
= min{j eL:VIeL]> j U —U,jl< 4601\/;} (3.6)

o~

and U} := U, j,.; if condition (3.6) is not satisfied by any j € £, we set j, = +00 and U} = 04xg.

Let
- log(0%/omin) log(o%/0min)
“_log[q log y JH)Q log y JH)}' G-
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Theorem 3.2. Assume that t > 1 is such that

(t+u) 1
kK~ 104'

TH

Then with probability at least 1 — min(4d + 1, 18ry)e™",

09

|0 —EH| <69y - o, ”]; ,

In other words, adaptive estimator can be obtained at the cost of an additional multiplicative
factor 3y in the error bound.

Proof. Let j =min{j > 1 : 0j > 04}, and note that j< L%J + 1 and 0j < V0. Ob-
serve that condition of Theorem 3.2 guarantees that j € £. We will show that j, < j with high
probability. Indeed,

~ ~ 1
Pr(j. >])<Pr< {||U,,,,—Un’j—.|| >4601,/ZJ})

leL:l>j
t= ~ 4
( —EH| > 230;,/;’) + Y Pr<||Un,, —EH| > 230,\/;>
leLil>]
- - 1 ~
<de'—— +de! <de ™!,
J(J+1) gl(l+1)

where we used Theorem 3.1 to bound each of the probabilities in the sum, and d = min(4d +
1, 18rg). The display above implies that the event

~ 15
B= () {nUn,l ~EH| < 2301\/%}

leli>]

of probability at least 1 — min(4d + 1, 18ry)e™" is contained in £ = {j, < j}. Hence, on B we

have
|Ux —EH| <|Tr - T, ;| +10,; ]EH||<46G\/7+230\/%
Sy-69a*,/t:E,

where E = log[(Llog(f;*g/;m‘")J + 1)(Llog($g/;m'")J +2)]. U
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3.2. Extension to rectangular matrices

In this section, we assume a more general setting where H : S” > C4*% is a C4*% valued
permutation-symmetric function. As before, our goal is to construct an estimator of EH. We
reduce this general problem to the case of H% % valued functions via the self-adjoint dilation
defined in (2.1). Let

| | B 0 H(Xil,...,Xim)
D(H;, i) = ([H(Xm ) ..,Xim)]* 0 ) ,

and

U = argmin tr|: Z V(0(D(Hi,...iy,) — U))i|
veRNt 2 L iern

Let U ¥ € Cdixdi, 052 € Chxd [ ¥, € C91>2 pe such that Uy can be written in the block form

- Uy U
as U;:( 1 Y2

N A ) Moreover, define
Ui* Up,

o2 = max(|E(Hy_m — EH)(Hi._n — EH)*

|E(H\..m —EH)*(H..n —EH)|)

3

and
’ tr[E(Hy. . — EH)(H). . —EH)*]
. > .
G*

Iy ‘=

Corollary 3.1. Let k = |n/m], and assume that t > 1 is such that

1
< —

= T0a

1~

Then for any 0 > o, and 6 := 0, = é 2,

|7~ EH] <230,

with probability at least 1 — min(4(d, + do) + 1, 18ty )e™".

The proof is outlined in Section 5.7.

3.3. Computational considerations

Since the estimator U - is defined as the solution of the convex optimization problem (3.3), it can
be approximated via the gradient descent. We consider the simplest gradient descent scheme with
constant step size equal 1. Note that the Lipschitz constant of Fyp(U) is Ly = 1 by Lemma 3.1,
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hence this step choice is exactly equal to ﬁ Given a starting point Uy € H¢, the gradient descent
iteration for minimization of tr Fg(U) is
U =,
' i—1 j—1
U =0y = V(R (UY )
1 (n—m)!

N T Yo vO(Hi, —UY), izt

(it seemsim) €I

j—1
= Urgj )

Lemma 3.2. The following inequalities hold for all j > 1:

a2
_ o= T3

(a) tr[Fe(Urgj)) - FG(A;)] 2j

Moreover, under the assumptions of Theorem 3.1,

. J
(b) ” Urg‘l) —EH || < (%) Up—EH| + 230\/2

with probability at least 1 — min(4d + 1, 18rgy)e™".

The proof is given is Section 5.6. Note that part (b) implies that a small number of iterations
suffice to get an estimator of EH that achieves performance bound similar to U}).

4. Estimation of covariance matrices

In this section, we consider applications of the previously discussed results to covariance es-
timation problems. Let Y € R“ be a random vector with mean EY = W, covariance matrix
T =E[(Y — w)(¥ — )71, and such that E|Y — u|| < co. Assume that Yy, ..., ¥, be iid.
copies of Y. Our goal is to estimate X; note that when the observations are the heavy-tailed,
mean estimation problem becomes non-trivial, so the assumption u = 0 is not plausible.

U -statistics offer a convenient way to avoid explicit mean estimation. Indeed, observe that
Y= %E[(Yl — Y»)(Y1 — Y»)T], hence the natural estimator of ¥ is the U-statistic

- 1 Z(Yi — Y =yt

n
nn — 1 2

“.1)

It is easy to check that ¥ coincides with the usual sample covariance estimator

S, =

| _ _
DR OIS L
j=1
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The robust version is defined according to (3.3) as

LY. . _yv\T
S.= argmin [trqu(G((Yl Ypi = ¥)) —S))], (4.2)

ixd ¢_—QT .. 2
SeRdxd, s=sTL =~

which, by Lemma 3.1, is equivalent to

V. . _vAT
£ (I ),

i#]j

Remark 4.1. Assume that E,(,O) = 04x4, then the first iteration of the gradient descent for the
problem (4.2) is

11 Y — Y)Y —Y)T
m_+ j j
o _en(n—l);;‘”(Q 2 )

2,&1) can itself be viewed as an estimator of the covariance matrix. It has been proposed in
[34] (see Remark 7 in that paper), and its performance has been later analyzed in [15] (see
Theorem 3.2). These results support the claim that a small number of gradient descent steps for
problem (3.3) suffice in applications.

To assess performance of s., we will apply Theorem 3.1. First, let us discuss the “ma-
trix variance” parameter o> appearing in the statement. Direct computation shows that for

H(Y,Y2) = w
1
E(H¥, o) —BH) = S (B(0 = =) +0(2)%).

The following result (which is an extension of Lemma 2.3 in [35]) connects |[E(H — EH)?|| with
r(X), the effective rank of the covariance matrix X.

Lemma 4.1.

(a) Assume that kurtoses of the linear forms (Y, v) are uniformly bounded by K , meaning that

E(Y—EY,v)*
SUPy:[[vla=1 [R(Y—EY,0) ]2 < K. Then

|E( =@ = w7)?| < K ()|

(b) Assume that the kurtoses of coordinates YV := (Y, e i) of Y are uniformly bounded by

) _gyU)y4
]E(Y EY ) S K/. Then

/ . . _EB(rY—RrT)
K' < 00, meaning that max 1, 4 B0 _Er0)

a[EB((Y — (¥ —w7)*] < K' (D))’
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(c) The following inequality holds:
|E((Y = w)(¥ — M)T)2|| > tr(X) 1=
Lemma 4.1 immediately implies that under the bounded kurtosis assumption,
|E(H —EH)| < Kr(D) 2.
The following corollary of Theorem 3.1 (together with Remark 3.1) is immediate.

Corollary 4.1. Assume that the kurtosis of linear forms (Y,v), v € R, is uniformly bounded
by K. Moreover, let t > 0 be such that

1
<

ln/2] = 104"

Then for any o > Kr(X) || 2| and 6 := 0, = al\/ﬁ’

IS, — ) <230 [——
/2]

with probability at least 1 — min(4d + 1, 18K'r(X))e".

r(%)

An adaptive version of the estimator i* can be constructed as in (3.6), and its performance
follows similarly from Theorem 3.2.

Remark 4.2. It is known [27] that the quantity +/r(Z)| 2| controls the expected error of the
sample covariance estimator in the Gaussian setting. On the other hand, fluctuations of the er-
ror around its expected value in the Gaussian case [27] are controlled by the “weak variance”
SUPyeRd: ||, =1 E!'/2(Z,v)* < VK| 2|, while in our bounds fluctuations are controlled by the
larger quantity o 2; this fact leaves room for improvement in our results.

4.0.1. Numerical simulation

We provide a short numerical illustration of the performance of the proposed covariance esti-
mator. Data was generated as follows: let U = (U(l), R U“OO))T € R'9 be a vector with i.i.d.
coordinates such that U j=1,...,100 are independent random variables with Student’s t-
distribution with 4.01 degrees of freedom scaled so that Var(U Dy =1.

Next, let Y = /S U, where T is a diagonal matrix with X717 =10, X2 =5, ¥33 =1, and
Y= %, j = 4. In particular, EY = 0 and EYYT = 3. The goal of numerical experiment
was to evaluate performance of the adaptive estimator f]* of the covariance matrix X, con-
structed using a version of Lepski’s method as described in Section 3.1. The (relative) error

was measured in the operator norm, defined via the ratio ”Z”*E_ HEH' We compared T, with a

standard sample covariance estimator $,, introduced in (4.1). We performed 400 repetitions
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0.5 T T
I (dark) robust covariance estimator 3,
04 ] [ J(light) sample covariance estimator %,
)
So3
5}
S
g
o 0.2

4 5 6 7 8 9
Relative error

Figure 2. Histogram over 400 repetitions of the experiment; sample size n = 100, dimension d = 100.

of the experiment with the sample size set to n = 100, and recorded the estimation error of
$, and %, for each run. For each value of o, estimator %, has been approximated by per-
forming 2 gradient descent iterations for the problem (4.2) (additional iterations, while be-
ing computationally intensive, did not provide noticeable improvement in our experiments).
The average and maximum relative errors (over 400 repetitions) for the robust estimator =,
were 0.34 and 0.65 respectively, with the standard deviation of 0.13. The corresponding val-
ues for the sample covariance estimator were 0.44, 8.62 and 0.66. Histograms illustrating
performance of both estimators are presented in Figure 2. It is clear from the graphs that
in the considered scenario, estimator s, performed noticeably better than the sample covari-
ance %,.

4.1. Estimation in the Frobenius norm

Next, we show that thresholding of the singular values of the adaptive estimator . (defined as
in (3.6) for some y > 1) yields the estimator that achieves optimal performance in the Frobenius
norm. Given 7 > 0, define

d
£ = Zmax(xj(i*) —7/2,0)v;(Z0)v;(E)7T, 4.3)
j=l

where A ; (£,) and v I (S,) are the eigenvalues and the corresponding eigenvectors of ..

Corollary 4.2. Assume that kurtoses of linear forms (Y, v), v € R?, are uniformly bounded by K .
Moreover, let t > 0 be such that
t+ 2
< )
ln/2] — 104

1(2)
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where E was defined in (3.7) with o := / Kt(X) || Z||. Then for any

rzy-msﬁnzn‘/%,
(4.4)

~ 1 22
|Sr-=|i< i [||S—EII%+%

2 rank(S) |.
SeRdxd §=§T

with probability at least 1 — min(4d + 1, 18K'r(X))e ™.

The proof of this corollary is given in Section 5.9.

4.2. Masked covariance estimation

Masked covariance estimation framework is based on the assumption that some entries of the
covariance matrix ¥ are “more important.” This is quantified by a symmetric mask matrix M €
R*4 whence the goal is to estimate the matrix M © ¥ that “downweights” the entries of X that
are deemed less important, or incorporates the prior information on X. This problem formulation
has been introduced in [30], and later studied in a number of papers including [12] and [26].

We will be interested in finding an estimator /Z\Df’l such that ||/E\£’I — M © X is small with
high probability, and specifically in dependence of the estimation error on the mask matrix M.
Consider the following estimator:

Y. . _yvAT
fy: argmin [trZW(O(MG(Yl Ypti — 1)) —S))], 4.5)

dxd ¢_¢qT .. 2
serdxd s=sTL ;==

which is a “robust” version of the estimator M © f?n, where f,, is the sample covariance ma-
trix defined in (4.1). Next, following [12] we introduce additional parameters that appear in the
performance bound for =¥ . Let

IMll152 =
j=1

be the maximum || - || norm of the columns of M. We also define

vy(Y):= sup EV*(v, Y —EY)*

[vil2=<1

and

wa(Y) = .mladeEl/“(Y(j) —EyU)*,
j=1...

The following result describes the finite-sample performance guarantees for fﬁ” .
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Corollary 4.3. Assume that kurtoses of the coordinates YU = (Y, e i) of Y are uniformly
bounded by K’'. Moreover, let t > 0 be such that

() ¢ 1
K'— <—.
V2(Y) [n/2] ~ 104

Then for any A > /2| M ||12v4(Y)pua(Y) and 6 \/ Ln/ZJ’

M _Mmozx|<23A
[ -mos| <238 /o

with probability at least 1 — min(4d + 1, 18K't(X))e™".

Proof. Let X and X’ be independent and identically distributed random variables. Then it is easy
to check that

E(X — X')* <8E(X —EX)*. (4.6)

It implies that v2 (Y] — ¥2) < 2+/2v3(Y) and p3(Y) — Y2) < 24/2u%(Y).
Next, Lemma 4.1 in [12] yields that

HE<(Y1 —~ Yz)(zYl —1)7 ®M>2

<2M|I}_ 13 (V)vI(Y). (4.7)

Now we will find an upper bound for the trace of E(w © M)?. It is easy to see that
(e.g., see equation (4.1) in [12])

E((Yl - Y2)<2Y1 -7 o M>2

d ) )\ 2
Z MO M(/) @E(Ylj - Y’ ) Y1 = Y)Y —Yz)T’
V2 2

where M) denotes the j-th column of the matrix M. It follows from (4.6), Holder’s inequality
and the bounded kurtosis assumption that

(Y1 — Ya) (Y1 — Yo)T S T N A N2 A A
o[ 2(PE o) = o (P 5) (P ) |

i,j=1

d
<23 MZE2(r® — By O)'EV2(yD) —EY D)
i,j=1

<2VK' W IMI3_, tr(Z).
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Next, we deduce that for A% > 2||M |3 ,u2(Y)v2(Y),

w[E(OEDINE o M2 ()

<+K’ .
A? Vi (Y)
Result now follows from Theorem 3.1 and Remark 3.1. O
Remark 4.3. Let
E(Y —EY, v)*
K:= sup

vilvlh=1 [E(Y —EY, v)2]?’

Since U4(Y) < VK| Z| and ,u4 < VK| Z|Imax, We can state a slightly modified version of
Corollary 4.3. Namely, let # > 0 be such that

K 1

Ln/ZJ =04

£ 1)

Then for any A > V2K || M||1-2+/1| X |Imax || 21| and 0 = %,/ an,

SM_Mox|<23a /!

with probability at least 1 —min(4d + 1, 18 K't(X))e™". In particular, if || M|| TORS r(E) HEH
then our bounds show that M ® X can be estimated at a faster rate than X itself. This conclusmn is
consistent with results in [12] for Gaussian random vectors (e.g., see Theorem 1.1 in that paper);
however, we should note that our bounds were obtained under much weaker assumptions.

5. Proofs of the mains results

In this section, we present the proofs that were omitted from the main exposition.

5.1. Technical tools

We recall several useful facts from probability theory and matrix analysis that our arguments rely
on.

Fact 1. Ler f : R+~ R be a convex function. Then A — tr f(A) is convex on the set of self-
adjoint matrices. In particular, for any self-adjoint matrices A, B,

A+B\ 1 1
trf(T> < JUS(A) + 5 f(B).



Robust U-statistics 711

Proof. This is a consequence of Peierls inequality, see Theorem 2.9 in [8] and the comments
following it. 0

Fact 2. Let F : R+ R be a continuously differentiable function, and S € C**¢ be a self-adjoint
matrix. Then the gradient of G(S) :=tr F(S) is

VG(S) =F'(S),

where F' is the derivative of F and F'(S) : C¢*4 > C?*4 js the matrix function in the sense of
the definition 2.1.

Proof. See Lemma A.1 in [34]. O

Fact 3. Function ¥ (x) defined in (3.1) satisfies
—log(1 —x +x%) <y (x) <log(l +x +x?) (5.1

for all x € R. Moreover, as a function of H-valued argument (see definition 2.1), Y (-) is Lip-
schitz continuous in the Frobenius and operator norms with Lipschitz constant 1, meaning that
forall Ay, Ay e HY,

lw(AD) — ¥ (A | < I|A1 — Az,
lw(AD — ¥ (A < I1A1 — Asll.

Proof. To show (5.1), it is enough to check that x — x%/2 > —log(1 — x + x?) for x € [0, 1]
and that x — x2/2 <log(l + x + x?), x € [0, 1]. Other inequalities follow after the change of
variable y = —x. To check that f(x) :=x — x2/2 > —log(l —x + x2) = g(x) for x € [0, 1],
note that f(0) = g(0) =0 and that f'(x)=1—x>1— % = g/(x) for x € [0, 1]. Inequality
X — x2/2 <log(l+x + xz), x € [0, 1] can be established similarly.

Note that the function ¥ : R — R is Lipshitz continuous with Lipschitz constant 1 as a func-
tion of real variable. Lemma 5.5 (Chapter 7) in [6] immediately implies that it is also Lipshitz
continuous in the Frobenius norm, still with Lipschitz constant 1.

Lipshitz property of ¥ in the operator norm follows from Corollary 1.1.2 in [1] which states
that if g € C!(R) and g’ is positive definite, then the Lipschitz constant of g (as a function on
H9) is equal to g’(0). It is easy to check that

1-— <1
7 Lt

0, otherwise,

which is the Fourier transform of the positive integrable function sinc(y) = (Sm;—’;y))z, hence v’
is positive definite and the (operator) Lipschitz constant of ¥ is equal to 1. (]
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Fact 4. Let Ty,..., T be arbitrary HY -valued random variables, and P1,-.., pL be non-
negative weights such that Zf: 1 pj = 1. Moreover, let T = Zf: 1 PjTj be convex combination
of T1,...,Ty. Then

Pr()‘max(T) = t) < max [mf e_elEtreGTf].
j=1,..,LL6>0

Proof. This fact is a corollary of the well-known Hoeffding’s inequality (see Section 5 in [21]).
Indeed, for any 6 > 0,

L L
Pr()\m,le (Z pj Tj> > t> < Pr<exp<9kmax (Z pjTj>> > e9t>
j=1 j=1

L L
< ee’Etrexp(Q > b Tj> <e ") piEtrexp(87T)).
j=1 j=1

where the last inequality follows from Fact 1. (]

Fact 5 (Chernoff bound). Let &y, ..., &, be a sequence ofi.i.d. copies of & such that Pr(§ = 1) =
1—Pr(¢ =0)=p € (0, 1), and define S, := Z;l:l &j. Then

Pr(S,,/n > (1 + T)p) < eing[e—gnp(l-FT)Ee@Sn] <

e 3, O<t<l.
Proof. See Proposition 2.4 in [3]. O
Let 7, be the collection of all permutations i : {1,...,n} + {1,...,n}. For integers m <
ln/2], let k = |n/m]. Given a permutation (i1,...,i,) € m, and a U-statistic U, defined in
(2.2), let
1
Wit oin = E(H(Xip e X))+ HXG, e X))
+ H(Xi(k—l)m+l’ R Xikm))’ (5.2)
Fact 6. The following equality holds:
Un —_ ; Z Wl| ..... In
(i1semsin) €Ty
Proof. See Section 5 in [21]. O

Let Zy, ..., Z, be a sequence of independent copies of Z € H? such that |[EZ?|| < oo.
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Fact 7 (Matrix Bernstein Inequality). Assume that |Z — EZ| < M almost surely. Then for
any o > |E(Z —EZ)?|| and any t > 0,
[t 4Mt
<20,/—-V —
n 3n

Z?:l Zj
n
with probability at least 1 — 2de™". Moreover, for all t > 1,

" Zj t  AMt
H@ oo L 41
n n 3n

with probability at least 1 — 14r(E(Z — EZ)%)e™, where r(A) stands for the effective rank of A.

—-EZ

—-EZ

Proof. See Theorem 1.4 in [38] for the first statement and Theorem 3.1 in [33] for the second
bound. [l

Assume that || H (X;,, ..., X;,)|| < M almost surely. Together with Facts 6 and 4, Bernstein’s
inequality can be used to show that

\U, — EH| < 2|EH —EHY| " [ Ly 2!

TS (5.3)

with probability > 1 — 2de ™", where as before k = [n/m]. This corollary will be useful in the
sequel.

Fact 8. Let 1 (-) be defined by (3.1). Then the following inequalities hold for all 6 > 0:

Etrexp (Z(w(ez - 01EZ)> <trexp(n9*EZ?),

J=1

Etrexp (Z(Q]EZ -~ l/f(ezj))> <trexp(nf’EZ?).

j=1

Proof. These inequalities follow from (5.1) and Lemma 3.1 in [34]. Note that we did not assume
boundedness of |Z —EZ]|. O

Finally, we will need the following statement related to the self-adjoint dilation (2.1).

Fact9. Ler S € Ch>xdi | T ¢ Chxd2 pe self-adjoint matrices, and A € Ch>d2 Then

(G D)=l o)l

Proof. See Lemma 2.1 in [34]. O
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5.2. Proof of Lemma 3.1

(1) Convexity follows from Fact 1 since the sum of convex functions is a convex function.
(2) The expression for the gradient follows from Fact 2. To show that V Fy(U) is Lipschitz
continuous, note that

,,,,,

F

= Ui — Uzllr
F

by Fact 3. Since the convex combination of Lipschitz continuous functions is still Lipschitz
continuous, the claim follows.
(3) Since U}, is the solution of the problem (3.3), the directional derivative

aFy(T;: B) = tim OB ZI0OD _ (v, (07 8)

t—0 t

is equal to O for any B € H¥. Result follows by taking consecutively B ;= eiejT + ejeT i#£]j

i

and B;; = e,-eiT, i=1,...,d,where {ey,...,e;} is the standard Euclidean basis.

5.3. Proof of Theorem 3.1

The proof is based on the analysis of the gradient descent iteration for the problem (3.3). Let
1 (n—m)!
GU):=trFp(U) = tr|:0—2T | Z V(O(H Xy, ..., Xip) — U))},
and define
U =EH =EH(X1,..., Xn),

v =uY " —ve(uyY)

i 1 (n—m)! i .
=uy "+ T Z v (0 (Hi..ip, — Uy 1))), J=1,

which is the gradient descent for (3.3) with the step size equal to 1. We will show that with high

probability (and for an appropriate choice of 6), U,gj ) does not escapes a small neighborhood of
EH(X1,..., X;u). The claim of the theorem then easily follows from this fact.
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Give a permutation (i1, ...,i,) €w, and U € H9, let k = [n/m| and
Yiri (U3 0) = ¥ (0(Hiy iy = U)),
Wi ..i,(U;0) = %(Yil...im U30) + Y1 iy U3 0) 4+ Yig i (U3 6)).

Fact 6 implies that

—m)! 1 1 1
VG<U>=(”H—,’") Yo GVOH i, —D)=— D oW, U;0),  (54)

n!

(i1.im)El " (i1...ip)EMy
where 1, ranges over all permutations of (1, ..., n). Next, for j > 1 we have
; 1 (n—m)! - -
o9 ~Br| = | (0, - U ) - - 09|
- (i1yeeerim) EL]
1 i i
S - |
(i1...Ip)EMTY
1 i i
<lom 2 (Wi (U7 700) = Wiy i, (BH:00)) — (BH — U,/ "") '
(i1...Ip)ETTY

The following two lemmas provide the bounds that allows to control the size of || U,Ej ) _EH Il
For a given o> IE(H — EH )2|| and 0, = —ﬁ , consider the random variable

Ly (5) = sup
IU-EH| <8

1
o D (Wi iy (U3 0) = Wiy, (BH: 65)) — (EH — U)H.

Lemma 5.1. With probability at least 1 — (2d + 1)e™", for all § <3 el simultaneously,

Ln((s)f(HE‘i‘;) 3(1+f) !

Moreover, the same bound holds with probability at least 1 — 14r(E(H — EH)?)e™" given that
t>1.

The proof of this lemma is given in Section 5.4.
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Lemma 5.2. With probability at least 1 —2d - e,

: el

Moreover, the same bounds holds with probability at least 1 — %r(]E(H —EH)?)e™! given that
t>1.

. n.ZWu i BH 65)

The proof is given in Section 5.5. Next, define the sequence

80 =0,
26t 1 !
8= <rH7 + 5)5]'1 +5.750\/;.
IfI'H% = %,thent< 104,hence5750\/%§ %% and

1
§j<-6j1+-—=
Oy

1
0o

NI
0| —
R =

for all j > 0. Let & be the event of probability at least 1 — (4d + 1)e™" on which the inequalities
of Lemmas 5.1 and 5.2 hold. It follows from (5.5), Lemma 5.1 and Lemma 5.2 that on the event
&, forall j >1

.....

26t 1 3(1+2v2 t
= <THT+E>51'—1+(#)U\/;§81

Jos? el = U™ B + [ S W

given that g2 26t < 411’ we have also used the numerical bound 3(1+2‘/§) <5.75.
Finally, it is easy to see that for all j > 1 and y =rgy - 260 4 2 < i,

j—1
8]-=60yj+2y1-5.750f<2(3/4)l 5750f<230f. (5.6)

1=0 >0

Since U,Ej ) (7,’: pointwise as j — oo, the result follows. Alternatively, if the bounds of Lem-
mas 5.1 and 5.2 that depend on the effective rank r(E(H — EH )2) are used instead, the second
claim can be deduced in exactly similar way.
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5.4. Proof of Lemma 5.1

,,,,,

02x2
: o
Oy x — sign(x) 7 x €[—1/65,1/05],

Y (O5x) =
Esign(x), x| > 1/6,.

The idea of the proof is to exploit the fact that ¥ (6,x) is “almost linear” whenever x €

[-1/65,1/65], and its nonlinear part is active only for a small number of multi-indices
@i1,...,im)e 1. Let

1
Xit,o.., imzl{”Hil ..... in — EH| SE}

H;, .., —EH| <|H;,...i, —EH|F,

2 2
Pr(xi,....i,, =0) <46;E|H;, i, —EH|lg 5.7
8t tr(E(H;,....;, —EH)?) 8t
S e 2 =TIH—.
k NE(H;,,...i, —EH)?| k
Define the event
8 n! | 3
&= 1= xiyiy) <tg——— -1 — )t
{ . Z ( Xit, ..., lm)_er 1 —m)! ( + 81‘1—1)}
(i1yeees im)elm
We will apply a version of Chernoff bound to the R-valued U-statistic
(n —m)!
—— 2 (=i
(i1, eesim)EL
A combination of Fact 6, Fact 4 applied in the scalar case d = 1, and Fact 5 implies that
(n —m)! 8t 2
Pr(T Y U= Xiyein) zrﬂz-(ur)) < T b3 (5.8)

(i1 seensim)EL]"
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----- im +=—

gggggg

—m)! 8
Pr(% > U=, im>zm{-<1+r>)

(it seensim)EL

~ 8t
< max [infEexp(@Wil,Min — QrH? -(1+ t)>:|.

(i1, eensin) €T | 6>0
Followed by application of Fact 5, this implies (5.8). The choice of T =/ % yields that Pr(&) >
1—e.

By triangle inequality, whenever yx;,

=1and § < -, it holds that || H;, —-Ul <4

----- im ,...,im
for any U such that ||[U — EH || < §, and consequently
1 90 . 2
Q—w(eg(Hi. ,,,,, in—U))=Hi,..i,, —U) — > sign(Hiy,...i,, = U (Hiy..ipy = U)
g
Denoting
Sit....in (U) :=sign(Hi, i, — U)(Hi, i, —U)*
for brevity, we deduce that
11
—— % (Wi,,..ix(U;05) — Wi,.i,(BEH; 65)) — (EH — U)
6y n! =
(n —m)! 6 6
=—— 2 |3 Shin ®H) = S i (U) ) Xir, i
’ (il ~~~~~ im)EI,'ln
1 (n—m)!
" Y = Aipin) Vi U3 00) = Yoy i, (BH: 65))

(1,emsim)EL?
n—m)!
_n=—m: Z (I = Xiy..oin ) (EH = U).
(i] ----- im)elr}tn

We will separately control the terms on the right hand side of the equality above. First, note that
on the event &,

@S (= ) BH - D)

8t 3 13¢

since |[EH — U|| < §. Next, recalling that 1 (-) is operator Lipschitz (by Fact 3), wee see that for
any (i1,...,im) €1}

in@EH;0,)| <|EH —U| <3,

..........
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hence on event &£,

1 (n—m)!
9——,' > A= im)(Yil,..,,imw;ea)—Y,~1,..,,,~m<EH;eg))H
o (i1 seemrim)ELT
8t 3 13t
< — 11 — < —90. 1
<tH ( + 8rH>3_rH Pt (5.10)

Finally, it remains to control the term

(n —m)! 6 0,
—_— Z (7051'1 ..... i (EH) — %Sil,...,in, (U))Xil,...,im

Q@) := sup .

IU-EH| <8

Lemma 5.3. With probability at least 1 — 2de™",
3(1++/2) \f )
s <oV L2
Q) < 5 o k+2

Moreover, the same bound holds with probability at least 1 — 14r(E(H — EH)?)e™ fort > 1.

Proof. Observe that for all U € HY and (i1, ...,iy) € L,

= (Hi..ipy = U)* Zsign(Hyy iy, = U)(Hiy iy, = U)* < (Hiy iy, = U)?,
hence
(n—m)! 0, 0
n! Z GSll ,,,,, im(EH)_76S11 ..... in(U) ) Xiy,..orim
(15eeim) ELN
(n —m)! 0,
=" > Wi = Ui i
' (i1,esim)ELM
(n—m)! 0
n! Z 2 (Hil sssss Im ]EH) Xityeonsim
’ (i1 yererim)EL
Moreover,
(Hj,...i —U)? <2(H;,. i, —EH)?+2(U —EH)?,
implying that
(n —m)! 0,
n! Z ;(Hil 77777 im U)2X11 ,,,,, im
' (@i15mees im)EI,'ln
(n—m)!

+6,|U —EH|>
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720
Hence, we have shown that
(n —m)! 6,
QO =3=———| Y. S Hi iy —EH iy iy | +058% (5.11)
’ (i1yemsim) ELM
. 1
Since § < T
5 6
058“ < =. (5.12)
2
Next, we will estimate the first term in (5.11) as follows:
(n —m)! 6,
3T Z EG(H,-I ..... in —EH) iy im
: (i1yeees im)elm
(n—m)! 0,
— Z Z[(Hi,....irn ~EH)Xi,. i —E[(H;,.....i, —EH)ZXI'.,...,[,H]]
: (i1seensim) ELM
36,
+ TUH]E[(Hil,...,im —EH) Xy |-
Clearly, [|E[(Hi,.....i,, — EH)?Xi,....i,, ]Il <o, hence
36, 30 |2t
S NELH i = BED iy i ] = Sy (5.13)
The remaining part will be estimated using the Matrix Bernstein’s inequality (Fact 7).
To this end, note that by the definition of x;, ;..
1 \2
I(Hiy..i —EH)* iy — E[(Hiy, iy —EHD i i ]| < (ﬁ)
o

_E[(Hll ~~~~~ im _IEH)2Xil yyyy lm])ZH

)
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Applying the Matrix Bernstein inequality (Fact 7), we get that with probability at least 1 —2de™’

7

30, 2 r\ 41 1 3 1
<22 2 ||E(H;,. L, —IEH)2||”2\/i <o/ (5.14)
2 |26, kV3k20,02]=2°Vk

Alternatively, the second claim of Fact 7 implies that the same upper bound holds with probability
atleast 1 — 14r(E(H —EH)?)e ™" fort > 1.

The bound of Lemma 5.3 now follows from the combination of bounds (5.12), (5.13), (5.14)
and (5.11).

Combining the bound of Lemma 5.3 with (5.9) and (5.10), we get the desired result of
Lemma 5.1. ([l

(n —m)! 0,
3T . Z 70[(1‘11'1 ,,,,, iw = EH Xiy iy — E(Hiy iy — EH) Xy i ]

5.5. Proof of Lemma 5.2

Fact 4 implies that for all s > 0,

11
Pr(kmax(e—; Z Wilw-,in (EH, 90-)) = S) < inf[efes]Etre(e/Qq)Wl ..... n(]EH,ea)]
o

0>0
S e—@,,skEtrekWI _____ ,,(]EH,@U). (515)
Since
1
Wl,..,,n(EH, 0s) = E(w(ea(H] ,,,,, m _EH))+"'+W(9‘7(H(k7])m+1 """ fem _]EH)))

is a sum of k independent random matrices, we can apply the first inequality of Fact 8 to deduce
that

where we used the fact that tr(A) < d||A| for H**¢ 5 A > 0. Finally, setting s = %0 % we
obtain from (5.15) that

11
Pr()\max(aa ; Wi],...,in (EH; 90)) > 5> < de .
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Similarly, since —Amin(A) = Amax(—A) for A € H4*4 it follows from the second inequality of
Fact 8 that

11
= Pr| Amax ———E Wi,.in(EH;05) ) =5
65 n!

T

<e % Etrexp(kW,.. . (EH,0,))

yeeey

< de Posk exp(k@ﬁaz) <de™!

for s = i0\/2 .
27V k
To establish the second bound that depends only on the effective rank of E(H — EH)?, we
modify the argument as follows: let ¢ (x) = max(e* — 1, 0), and note that ¢ (x) is convex and

nonnegative. Fix t > 0, and note that for all s > 0,

1 T 1
T (1) rd)(% n! nZ Hoeees ‘n( o))

=

tr¢<iwl,...,n<EH; %))

! E
o) \6,

As before, Fact 8 implies that Etrexp(kW;, ,(EH;65)) < trexp(kO(%]E(H —EH)?). Itis easy
to show that (see the proof of Theorem 3.2 in [34]) that

trexp(k02E(H — EH)?) — I <r(E(H — EH)?)(exp(k62 | E(H — EH)?||) — 1).
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Note that the factor in front of the exponent is the effective rank of E(H — EH )2 instead of
dimension d. Hence,

11
Pr()\max<ga ﬂz Wil,‘..,i,, (EH; 90)) > S)

_ T(EH — EH)?)

T exp(kégcﬂ)

<r(E(H — EH)?)exp(k620* — 0, 5k) (1 +2 lsk),
o

where we used the inequality ef—il <1+ % that holds for positive x in the last step. For s =

%a %, the right-hand side of the previous bound is equal to r(E(H — EH)})(1 + %)e_’,
where we used the fact that 6, = %\/% .If t > 1, the latter is bounded from above by %r(IE(H —
EH)?)e~". Similar argument yields that

11 3 t 5 1y _
Pr@»min(aa Z Wiy, ...i,(EH; 90)) = —%U %> = r(]E(H —EH) )(1 + §>e h
TTn
concluding the proof.

5.6. Proof of Lemma 3.2

Part (a) follows from a well-known result (e.g., [5]) which states that, given a convex, dif-
ferentiable function G : RP? — R‘such that its gradient satisfies |[VG(U;) — VG(Ur)]2 <
L||Uy — Uz ||2, the j-th iteration U of the gradient descent algorithm run with step size o < %

satisfies
: uv9 —u.3
G(U(J)) —G(U,) < M’
20 f

where U, = argmin G(U).
The proof of part (b) follows the lines of the proof of Theorem 3.1: more specifically, the claim
follows from equation (5.6).

5.7. Proof of Corollary 3.1

Note that

H} EH; ;. Hi i, 1)

11...im’

|ED(H;,..i,)*| = max(| EH;

1--im 1oim P

We apply Theorem 3.1 applied to self-adjoint random matrices

D(Hj,..;,,) € COTRXNTE) iy i) € I,
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|02 - DEH)| < 150@

with probability > 1 — min(4(d; + d»), 18y )e™". It remains to apply Fact 9:

and obtain that

x _ Uu Ut, —EH
|0 = DED] = H( " —EH* U3, )H
0 0f2_EH _ LN
= ((%)*—EH* o)) =12

and the claim follows.

5.8. Proof of Lemma 4.1

Recall that u =EY.
(a) Observe that

E((Y =) (¥ = )T )?| = sup E(v, ¥ — w2 — pl}}

lvll2=1

d
= sup [Z U Y — M) (Y(]) (])) :|

lvll2=1
Next, for j =1,...,d,
E(v, ¥ —u)? (v — u(j))2 <EYV2(u, Y — w)*E2 (yV) — u(j’)4
< KE(v.Y — u)?B(yD — D),

hence

d
||E((Y—/,L)(Y—/,L) ) ||<K sup E(v,Y — u) Z Y(/)—;L(J)

vll2=1

and the result follows.
(b) Note that

w[B((Y — (¥ —0)7)°]

d
Z E(rY —uD) 1Y — i3
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0 _ M(j))4 + ZE[(Y(U (z)) (YW — M(’)) ]

d

Z (Y

=1 i#]

d

SZ E(yY) —M(j))4+ZE1/2(Y(i) (z)) EV2(yW) — <z))4

j=1 i#]
d 2 d 2

(Z EV2(yV) — (1))4> < K/(ZE(Y(/') _M(j))Z) — K/(tr(E))2.
=1 j=1

(c) The inequality follows from Corollary 5.1 in [35].

5.9. Proof of Corollary 4.2

It is easy to see ((e.g., see the proof of Theorem 1 in [31]) that if can be equivalently represented
as

= argmin [ — S,E+olS]- (5.16)
SeRdxd §=§T

The remaining proof is based on the following lemma.
Lemma 5.4. Inequality (4.4) holds on the event £ = {t > 2|| if - X}

To verify this statement, it is enough to repeat the steps of the proof of Theorem 1 in [31],
replacing each occurrence of the sample covariance Son by its robust counterpart Z’ Result of
Corollary 4.2 then follows from the combination of Theorem 3.2 and Lemma 4.1 which imply
that

Pr(&) > 1 —min(4d + 1, 18K't(%))e ™
whenever T > y - 138\/f||2”\/%‘
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