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We present a general method to construct couplings of stochastic differential equations driven by Lévy noise
in terms of coupling operators. This approach covers both coupling by reflection and refined basic coupling
which are often discussed in the literature. As applications, we prove regularity results for the transition
semigroups and obtain successful couplings for the solutions to stochastic differential equations driven by
additive Lévy noise.
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1. Introduction

Coupling methods are well-known powerful probabilistic tools, see [24,38] for an extensive
overview. They can be efficiently used in order to prove ergodicity of Markov processes (see,
e.g., the book [10] or the article [1] for the convergence of Markov processes to stationary distri-
butions), and to show regularity properties of Markov semigroups – we refer, for instance, to [13,
31] for gradient estimates of diffusion semigroups. Coupling techniques have also been applied
in a broad variety of contexts, including Markov chain Monte Carlo (MCMC) algorithms (see
[16,34] and references therein), interacting particle systems (see [23]) or optimal transportation
(cf. [32,39]), to mention but a few examples.

We call X̃ = (X̃1
t , X̃

2
t )t≥0 a Markov(ian) coupling for the Markov process X := (Xt )t≥0, if

(i) each of the three processes X̃, X̃1 := (X̃1
t )t≥0 and X̃2 := (X̃2

t )t≥0 is a Markov process
with respect to the filtration generated by the pair X̃1 and X̃2;

(ii) the processes X̃1 and X̃2 have the same transition semigroup as X.

We call the coupling successful, if the paths of the processes X̃1 and X̃2 meet in finite time.
The main contribution of this paper is the study of Markovian couplings for stochastic differ-

ential equations driven by Lévy noise from the point of view of coupling operators. This is one
of the first attempts to study, in a systematic way, coupling of jump processes which are not Lévy
processes. This new approach allows us to unify the construction reflection coupling and refined
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basic coupling for Lévy processes; both are non-trivial. We will apply coupling techniques to
prove regularity results for the transition semigroups and construct successful couplings of the
solutions to stochastic differential equations driven by additive Lévy noise.

Let us briefly recall some definitions related to couplings; our main reference is [10], Chap-
ter 2.

Definition 1.1. Let μk , k = 1,2, be probability measures on (Rd ,B(Rd)). Any probability mea-
sure μ̃ on (R2d ,B(R2d)) is called a coupling of μ1 and μ2, if the measures μk are the marginal
probabilities of μ̃, i.e. if

μ̃
(
A ×R

d
) = μ1(A), μ̃

(
R

d × A
) = μ2(A), A ∈ B

(
R

d
)
.

In probabilistic terms, coupling amounts to construct a random variable X̃ = (X̃1, X̃2) such
that the components X̃k are distributed like Xk .

Clearly, the product measure μ̃ = μ1 × μ2, is a coupling of μ1 and μ2; for obvious rea-
sons this is often called independent coupling. This means, in particular, that there always exists
a coupling of μ1 and μ2. Similarly, we can define a coupling process of two stochastic pro-
cesses (Xi

t )t≥0 in terms of their distributions at each fixed time t and for fixed initial points. Of
course, for given marginal Markov processes, the resulting family of pairs (X̃1,t , X̃2,t )t≥0 may
not be a Markov process; for example, the maximal coupling introduced by Griffeath [18] for
time-discrete Markov processes is non-Markovian. In this paper, we will restrict ourselves to
Markovian couplings.

Definition 1.2. Let Xk , k = 1,2, be Markov processes with values in (Rd ,B(Rd)) and transition
semigroups (P k

t )t≥0. A Markov coupling of X1 and X2 is a Markov process X̃ on (R2d ,B(R2d))

whose transition semigroup (P̃t )t≥0 satisfies the following condition

P̃t (f ⊗ 1)(x, y) = P 1
t f (x), P̃t (1 ⊗ f )(x, y) = P 2

t f (y), t ≥ 0, f ∈ Bb

(
R

d
)
.

As usual, f ⊗ g(x, y) := f (x)g(y) denotes the tensor product of two functions f,g : Rd → R,
and Bb(R

d) is the set of all bounded Borel measurable functions on R
d .

Probabilistically, this definition means that X̃ and its coordinate processes X̃k are Markov
processes such that X̃k and Xk have the same finite-dimensional distributions.

The semigroup description of coupling immediately leads to a coupling version for the in-
finitesimal generators. In the following definition, D denotes a suitable domain (of an extension)
of the operator L. We do not insist that (L,D) is a closed operator.

Definition 1.3. Let Lk : Dk → B(R), Dk ⊂ B(Rd), k = 1,2, be the infinitesimal generators
of two Markov processes. A linear operator L̃ : D̃ → B(R), D̃ ⊂ B(R2d) is called a coupling
operator with marginals L1 and L2, if 1 ⊗ D2 ∪ D1 ⊗ 1 ⊂ D̃ and

L̃(f ⊗ 1)(x, y) = L1f (x), L̃(1 ⊗ f )(x, y) = L2f (y), x, y ∈R
d, f ∈ C2

b

(
R

d
)
.
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For example, if the Markov processes are Feller processes such that the test functions C∞
c (Rd)

are contained in the domain of Lk (in the sense of Feller operators and semigroup theory, that
is, such that (Lk,D(Lk)) is a closed operator), then we can take D1 = D2 = Cb(R

d) and D̃ =
Cb(R

2d), see, for example, [7].
In many applications, one has (P 1

t )t≥0 = (P 2
t )t≥0, hence L1 = L2, and we will make this

assumption from now on. In this case, we simply call the process X̃ in Definition 1.2 a Markov
coupling of the Markov process X1 (or X2).

While there are many publications on the coupling of diffusion processes, see for instance [4,
11,13,19,25,31] and the references mentioned in these tracts – in particular, the papers [11,31]
use the notion of coupling operators –, only few papers consider the coupling of Lévy processes
with jumps. The first systematic investigations on coupling of Lévy processes are [7,35,36] and
[6], Chapter 6.2, which use the structure of Lévy processes in an essential way. Only recently,
there have been some developments on the coupling of non-Lévy jump processes, which arise as
solutions to stochastic differential equations (SDEs) driven by Lévy noises, see [26–28,41]. Cou-
pling of jump processes is – compared to the diffusion case – still in its infancy. The starting point
of the present paper is [10], Open Problem 2.19, page 26]: “What should be the representation
of Markovian coupling operators for Lévy processes?”

We are going to investigate d-dimensional SDEs driven by an additive pure jump Lévy noise

dXt = b(Xt ) dt + dZt , X0 = x ∈R
d , (1)

where b : Rd → R
d is a measurable function and Z = (Zt )t≥0 is a pure jump Lévy process

on R
d . We assume that the SDE (1) has a unique strong solution X = (Xt )t≥0. This holds, for

example, if b satisfies the local Lipschitz and linear growth conditions, see [20], Chapter IV.9, or
if b is Hölder continuous and Z a Lévy process satisfying some moment condition for the Lévy
measure at zero and at infinity and such that its transition semigroups enjoy certain regularity
properties, see, for example, [12,21,30,42]. It is straightforward to see that the generator of X is
given by

Lf (x) = 〈∇f (x), b(x)
〉 + ∫

Rd

[
f (x + u) − f (x) − 〈∇f (x),u

〉
1(0,1)

(|u|)]ν(du), (2)

where ν is the Lévy measure of the pure jump Lévy process Z.
We are mainly interested in two questions: (i) we want to find a uniform formulation for cou-

pling of the SDE (1) – this serves as a model case for more general SDEs with multiplicative
noise, see Section 5.2; this can be done using the concept of coupling operators. Note that this
covers all currently known non-trivial couplings for Lévy processes: coupling by reflection, re-
fined basic coupling and coupling from the point view of optimal transport introduced in [28].
The new representation via coupling operators also presents a new understanding of [10], Open
Problem 2.19, page 26. (ii) we want to establish new regularity results for the transition semi-
groups and the coupling property (i.e., the fact that the coupling is successful) of the solution
to the SDE (1). These results are also new for Lévy processes and they illustrate the power of
the coupling and coupling operator method when applied to Lévy processes. Lastly, we discuss
the “optimality”of the three known couplings mentioned above. The notion of optimality can
sometimes be deceptive, since its use and meaning depends on various applications of coupling
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techniques. Our point of view partly coincides with Chen’s notion of optimality as in [9]. The
readers may want to consult [8,16] for further discussions on optimal couplings with regards to
coupling rate or coupling time. Let us finally point out that couplings for SDEs with Lévy noise
turned out to be extremely useful for constructing numerical schemes, see [14,15].

Our paper is structured in the following way: In the next section, we study properties of
Markov coupling operators for operators of the form (2), and then we provide a new construction
of a coupling operator, see (6). In Section 3, we derive three types of coupling processes for the
SDE (1) from the coupling operator (6). In particular, we establish the existence of the associated
coupling process as strong solution of a suitable SDE. Section 4 is devoted to applications of our
coupling techniques, including the regularity of the semigroups and the coupling property for the
SDE (1). In the last section, we consider the optimality of three coupling operators mentioned
in Section 3. A possible extension to SDEs with multiplicative Lévy noises are also discussed
there.

Notation. Most of our notation is standard or self-explanatory. Lévy measures ν(du) and Lévy
kernels ν(x, du) are, as usual, defined on R

d \ {0}; for simplicity we will not make this explicit
in our notation and keep writing

∫
Rd . . . ν(du) etc. By a ∧ b, we denote the minimum of a and

b, and agree that “∧”, when combined with “+” or “−”, takes precedence over these operations,
that is, a ± a ∧ b = a ± (a ∧ b).

2. Coupling operators for SDEs with additive Lévy noise

Recall that the infinitesimal generator L of the SDE (1) is given by (2). The purpose of this
section is to obtain a general formula for the coupling operator of the operator L.

Assume, for a moment, that A is the generator of a Feller process such that the test functions

C∞
c (Rd) are contained in the domain D(A). It is well known, cf. [6], that C∞

c (Rd)
‖·‖∞ ⊂ D(A)

and Af , f ∈ C∞
c (Rd), is necessarily of the form

Af (x) = 〈∇f (x), b(x)
〉 + 1

2
divQ(x)∇f (x)

+
∫
Rd

[
f (x + u) − f (x) − 〈∇f (x),u

〉
1(0,1)

(|u|)]ν(x, du);

here, (b(x),Q(x), ν(x, du)) is for every fixed x ∈ R
d a Lévy triplet, that is, b(x) ∈ R

d , Q(x) ∈
R

d×d is positive semidefinite,
∫
Rd [1∧|u|2]ν(x, du) < ∞ and all expressions are measurable and

locally bounded in x.
Therefore, the following Ansatz provides a natural candidate for a coupling operator related to

(2): for any f ∈ C2
b(R2d),

L̃f (x, y) = 〈∇xf (x, y), b(x)
〉 + 〈∇yf (x, y), b(y)

〉
+

∫
Rd×Rd

[
f (x + u,y + v) − f (x, y) − 〈∇xf (x, y), u

〉
1(0,1)

(|u|)
− 〈∇yf (x, y), v

〉
1(0,1)

(|v|)]̃ν(x, y, du, dv), (3)
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where ∇xf (x, y) and ∇yf (x, y) denote the gradient of f (x, y) with respect to x and y, and
ν̃(x, y, du, dv) is a Lévy-type kernel, that is, a measure on R

2d \ {0} satisfying∫
R2d

[
1 ∧ (|u|2 + |v|2)]̃ν(x, y, du, dv) < ∞, x, y ∈R

d . (4)

Lemma 2.1. The operator L̃ defined by (3) is a coupling operator with marginal operator L of
the form (2) if, and only if, ν̃(x, y, du, dv) satisfies for all A,B ∈ B(Rd \ {0}) and x, y ∈R

d the
following conditions

ν̃
(
x, y,A ×R

d
) = ν(A), ν̃

(
x, y,Rd × B

) = ν(B). (5)

Proof. By (3), we have for any f ∈ C2
b(Rd),

L̃(f ⊗ 1)(x, y) = 〈∇f (x), b(x)
〉

+
∫
Rd×Rd

[
f (x + u) − f (x) − 〈∇f (x),u

〉
1(0,1)

(|u|)]̃ν(x, y, du, dv).

Let f ∈ C2
c (Rd \ {0}). We have

L̃(f ⊗ 1)(0, y) =
∫
Rd×Rd

f (u)̃ν(x, y, du, dv) and Lf (0) =
∫
Rd

f (u)ν(du).

Since L̃(f ⊗ 1) = Lf , we get the first equality in (5) since the family C2
c (Rd \ {0}) is measure-

determining on R
d \ {0}. The second equality follows in a similar way.

Let us show that (5) is also sufficient. For any f ∈ C2
b(Rd) and x ∈ R

d , set Fx(u) := f (x +
u) − f (x) − 〈∇f (x),u〉1(0,1)(|u|). By definition, Fx(u) ∈ Cb(R

d) with Fx(0) = 0. Thus, (5)
along with a standard approximation argument yields∫

Rd×Rd

Fx(u)̃ν(x, y, du, dv) =
∫
Rd

Fx(u)ν(du).

Similarly, we get in the other coordinate direction∫
Rd×Rd

Fy(v)̃ν(x, y, du, dv) =
∫
Rd

Fy(v)ν(dv).

Hence, L̃ defined by (3) is a coupling operator with marginal operator L. �

The condition (5) for a coupling operator – it is equivalent to the fact that for any x, y ∈ R
d

the marginals of the kernel ν̃(x, y, du, dv) coincide with the Lévy measure ν – is stronger than
the requirement (4) for general Lévy-type operators. This means that the class of Lévy-type
coupling operators is smaller than the class of Lévy-type operators – but to-date we are not
aware of a structural characterization of general Lévy-type coupling operators, and we have to
restrict ourselves to concrete examples.
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To proceed, we need some further notation. For any bi-measurable function f :Rd → R
d and

A ∈ B(Rd), we define

(ν ◦ f )(A) = ν
(
f (A)

)
and μν,f = ν ∧ (ν ◦ f );

the minimum of two measures ν1 and ν2 on (Rd ,B(Rd)) is defined as ν1 ∧ ν2 = ν1 − (ν1 − ν2)
+

where (ν1 − ν2)
± are the positive resp. negative parts of the Hahn–Jordan decomposition of

the signed measure ν1 − ν2. For any 1 ≤ i < n + 1 ≤ ∞, let νi be a nonnegative measure on
(Rd,B(Rd)) such that

∑n
i=1 νi ≤ ν, and �i : Rd → R

d a bijective and continuous mapping,
that is, �i is invertible and continuous satisfying �i(R

d) =R
d . In particular, �i is bi-measurable

from R
d to R

d . For any f ∈ C2
b(Rd ×R

d) and x, y ∈R
d , we set

L̃f (x, y) = 〈∇xf (x, y), b(x)
〉 + 〈∇yf (x, y), b(y)

〉
+

n∑
i=1

∫
Rd

[
f

(
x + z, y + �i(z)

) − f (x, y) − 〈∇xf (x, y), z
〉
1(0,1)

(|z|)
− 〈∇yf (x, y),�i(z)

〉
1(0,1)

(∣∣�i(z)
∣∣)]μνi,�i

(dz)

+
∫
Rd

[
f (x + z, y + z) − f (x, y) − 〈∇xf (x, y), z

〉
1(0,1)

(|z|)
− 〈∇yf (x, y), z

〉
1(0,1)

(|z|)](ν −
n∑

i=1

μνi,�i

)
(dz). (6)

Proposition 2.2. If
n∑

i=1

μνi,�i
=

n∑
i=1

μ
νi,�

−1
i

, (7)

then, the operator L̃ defined by (6) is a coupling operator with marginal operator L given by (2).

Proof. Set

ν̃(x, y, du, dv) =
n∑

i=1

μνi,�i
(du)δ�i(u)(dv) +

(
ν −

n∑
i=1

μνi,�i

)
(du)δu(dv).

The operator L̃ defined by (6) is of the form (3) with the Lévy type kernel ν̃(x, y, du, dv) shown
above. It is clear that we have ν̃(x, y,A × R

d) = ν(A) for any x, y ∈ R
d and A ∈ B(Rd \ {0}).

On the other hand, we have(
μνi,�i

◦ �−1
i

)
(A) = μ

νi,�
−1
i

(A) for all A ∈ B
(
R

d \ {0}) and 1 ≤ i < n + 1.

Together with (7) this yields that for x, y ∈ R
d and B ∈ B(Rd \ {0}), ν̃(x, y,Rd × B) = ν(B).

The claim follows from Lemma 2.1. �
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The coupling operator L̃ defined by (6) can be uniquely described by the drift b(x) and the
following jump system

(x, y) �−→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
x + z, y + �i(z)

)
, μνi ,�i

(dz) for 1 ≤ i < n + 1;

(x + z, y + z),

(
ν −

n∑
i=1

μνi,�i

)
(dz).

(8)

We will adopt this description throughout the rest of the paper.

Remark 2.3. The coupling (8) has a very intuitive interpretation. Recall that the Lévy measure
ν(dz) appearing in the formula (2) for the generator L stands for the frequency of jumps of
height z; since ν does not depend on the last position x before a jump occurs, the measure ν(dz)

governs jumps from x �→ x + z.
In a coupling, both marginal processes have to jump, and in the literature there are a few

different possibilities of couplings for jump processes. For example,

synchronous coupling (or march coupling) means that (x, y) �→ (x + z, y + z) with frequency
ν(dz),

basic coupling means that (x, y) �→ (x + z, x + z) = (x + z, y + (z + x − y)), with frequency
ν(dz),

see [10], pages 22–23.
The coupling proposed in (8), assigns to the first component x the full jump height x �→ x + z

with frequency ν(dz), while at the same time the second component is treated differently:
with frequency μνi,�i

(dz) it is sent to y �→ y + �i(z) while with the remaining frequency
(ν − ∑n

i=1 μνi,�i
)(dz) we have a synchronous coupling y �→ y + z. If the jump of the first

margin from x �→ x + z happens with frequency νi , μνi,�i
= νi ∧ (νi ◦ �i) is the biggest pos-

sible frequency for the jump of the coupling from (x, y) �→ (x + z, y + �i(z)) to guarantee
the marginal condition of the coupling, that is, the fact that we still get a coupling. The maps
�i : Rd → R

d are bijective and continuous; if �i(z) = z, then we recover the synchronous cou-
pling, if �i(z) = z + x − y, then we are in the setting of the basic coupling.

It is clear from (8) that the total mass of the first component jumping from x to x + z is ν(dz),
and (7) is a natural condition to ensure that the total mass for the second component is also ν.
We stress that �i may depend on x, y ∈R

d .

Remark 2.4. In most applications, one needs a pathwise realization of the coupling in form of
a Markov process, that is a 2d-dimensional Markov process (Xt , Yt )t≥0 such that (Xt − X0)t≥0

and (Yt − Y0)t≥0 are Markov processes with infinitesimal generator L. Clearly, if (Xt , Yt )t≥0

exists, then the coupling operator L̃ (with the generator L as marginal operator) is indeed the in-
finitesimal generator of (Xt , Yt )t≥0. The converse is more of a problem: from the mere definition
of a coupling operator L̃ we cannot immediately deduce the existence of an associated Markov
process – we refer to [6] for an exhaustive discussion of the existence of processes generated by
Lévy-type operators.
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In general, one needs a further argument to deduce the existence of a coupling process
(Xt , Yt )t≥0. For diffusions, the well-posedness of the associated martingale problem is the
method of choice, see [11], Sections 2 and 3, and [31], Section 2, see also [40], Section 3.1,
and [41], Section 2.2, for the Lévy case.

In the present context, all processes are given by SDEs, so it is more natural to require the
existence of a strong solution to the SDE, see e.g. [22,27].

3. Explicit coupling processes for SDEs with additive Lévy noise
via coupling operators

In this section, we will establish three different kinds of coupling processes for the SDE (1) by
making full use of the coupling operator constructed in the previous section. In the literature,
these three – in general highly non-trivial – couplings are treated in different settings; it is, there-
fore, surprising that we can handle them in a single framework based on the coupling operator (6).

3.1. Coupling by reflection: Rotationally symmetric Lévy noise

Assume that Z = (Zt )t≥0 is a pure jump rotationally symmetric Lévy process with Lévy mea-
sure ν. For any x, y, z ∈ R

d , we write

Rx,y(z) :=
⎧⎨⎩z − 2〈x − y, z〉

|x − y|2 (x − y), if x �= y,

z, if x = y,

(9)

for the reflection at the hyperplane orthogonal to x −y. Obviously, Rx,y(z) = Ry,x(z), Rx,y(z) =
R−1

x,y(z), |Rx,y(z)| = |z| and Rx,y(z) − (x − y) = Rx,y(z) + Rx,y(x − y) = Rx,y(z + x − y).
If we set in (8) n = 1, �1(z) = Rx,y(z) and ν1(dz) = 1{|z|<η|x−y|}ν(dz) for some fixed η ∈

(0,∞], we get

(x, y) �−→
{(

x + z, y + Rx,y(z)
)
, 1{|z|≤η|x−y|}ν(dz);

(x + z, y + z), 1{|z|>η|x−y|}ν(dz).
(10)

Since ν is rotationally symmetric, ν1 is invariant under the transformation Rx,y(z) � z, as
Rx,y(z) = R−1

x,y(z) and |Rx,y(z)| = |z|. This shows ν1 ◦ �1 = ν1 ◦ �−1
1 = ν1 which means that

(7) is satisfied. Thus, according to Proposition 2.2, the jump system (10) determines a coupling
operator L̃.

Let us briefly verify the existence of a 2d-dimensional coupling process which is generated
by the coupling operator L̃ given by (10). By the Lévy-Itô decomposition, there exists a Poisson
random measure N(dt, dz) such that

dZt =
∫

{|z|≥1}
zN(dt, dz) +

∫
{|z|<1}

zÑ(dt, dz),
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where Ñ(dt, dz) = N(dt, dz) − dtν(dz) is the compensated Poisson random measure. To keep
notation simple, we set N̆(dt, dz) = 1(0,1)(|z|)Ñ(dt, dz) + 1[1,∞)(|z|)N(dt, dz), and so

dZt =
∫

zN̆(dt, dz).

Consider the following system of SDEs on R
2d :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dXt = b(Xt ) dt +
∫

zN̆(dt, dz), t > 0,

dYt = b(Yt ) dt +
∫

{|z|<η|Xt−Yt |}
RXt−,Yt−(z)N̆(dt, dz)

+
∫

{|z|≥η|Xt−Yt |}
zN̆(dt, dz), t > 0.

(11)

For any x, y, z ∈ R
d with x �= y, we have(

idd − 2

|x − y|2 (x − y)(x − y)�
)

z = Rx,y(z),

where idd denotes the d × d identity matrix. Thus, for any fixed z ∈ R
d , (x, y) �→ Rx,y(z) is

locally Lipschitz continuous on {(x, y) ∈ R
2d : x �= y}. If we assume, in addition, that the drift

term b is Lipschitz continuous, then the SDE (11) has a unique strong solution (Xt , Yt ) up to τ ,
where τ is the coupling time defined by

τ := inf{t > 0 : Xt = Yt }, (12)

see also the discussion in the proof of Proposition 3.1 below. Since, by assumption, the first SDE
in (11) has a unique strong solution (Xt )t≥0, it is natural to identify the solution of (11) with
(Xt ,Xt ) for all t ≥ τ . By Itô’s formula, we can easily verify that the generator of (Xt , Yt )t≥0 is
the coupling operator L̃ given by (10). Originally, the coupling operator L̃ having the jump sys-
tem (10) with η = 1

2 , appears in [41]; for the existence of the associated process, the martingale
problem for the operator L̃ was used. The present approach via SDEs (11) is new. We believe
that this approach will be useful in applications, and it is more natural from the viewpoint of the
coupling by reflection for diffusions which will be described below.

Recall that coupling by reflection for SDEs driven by an additive Brownian motion B =
(Bt )t≥0 can be realized through the following system of SDEs, cf. [11,25]:{

dXt = b(Xt ) dt + dBt ,

dYt = b(Yt ) dt + (
idd −2ete

�
t

)
dBt ,

where

et := |Xt − Yt |−1(Xt − Yt ),
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e�
t is the transpose of et , and τ is defined as (12). In particular, we have (Xt , Yt ) =

(Xt , Yt )1{t<τ } + (Xt ,Xt )1{t≥τ }. For any t > 0 the matrix At = idd −2ete
�
t is an orthogo-

nal matrix and, by the Lévy characterization of Brownian motion, the process B# defined by
B#

t := AtBt , t > 0, is also a Brownian motion. We can use a similar idea to construct the corre-
sponding coupling for the SDE (1): If Z = (Zt )t≥0 is a rotationally symmetric pure jump Lévy
process, then the process Z# defined by Z#

t := AtZt , t > 0, is again a rotationally symmetric pure
jump Lévy process which has the same distribution as (Zt )t≥0. Indeed, let L# be the generator
of the process Z#. For any f ∈ C2

b(Rd), we know

L#f (x) =
∫ (

f
(
x + Rx,y(z)

) − f (x) − 〈∇f (x),Rx,y(z)
〉
1(0,1)

(∣∣Rx,y(z)
∣∣))ν(dz)

=
∫ (

f (x + z) − f (x) − 〈∇f (x), z
〉
1(0,1)

(|z|))ν(dz) = Lf (x),

where we use the fact that ν is invariant under the change of variables Rx,y(z) � z due to the
rotational symmetry of the process Z. This shows that Z# is a pure-jump Lévy process with the
same Lévy measure as Z, hence Z and Z# coincide in law. In particular, the associated coupling
process can be constructed using the SDE (11) with η = ∞. This is the reason why we call (10)
coupling by reflection.

The construction with η = ∞ is not always the best choice. In contrast to the diffusion case,
this is due to the fact that the above construction allows for a situation that two jump processes –
even if they are already close – suddenly jump far apart. In order to apply coupling by reflection,
we have to choose the parameter η carefully. If η = 1

2 , the coupling time is almost surely finite,
that is, the coupling is successful, for a large class of rotationally symmetric Lévy processes,
including symmetric α-stable processes, see Theorem 4.5 below; this is similar to the reflection
coupling of Brownian motion. Note that the above argument still works if Z is of the form
Z = Z′ + Z′′ where Z′, Z′′ are independent Lévy processes and Z′′ is rotationally symmetric,
see, for example, [41].

3.2. Refined basic coupling: General Lévy noise

In this part, we will show that the refined basic coupling for a general Lévy noise in [27] can be
directly deduced from the coupling operator (6). Although the idea of the construction in [27]
is also based on the coupling operator, the starting point of [27] comes from the notion of basic
coupling introduced by M.-F. Chen [10], Example 2.10, when studying Markov q-processes. The
idea behind the basic coupling is to force the two marginal processes to jump to the same point
with the biggest possible rate. In the Lévy case, the biggest jump rate takes the form μy−x(dz) :=
[ν ∧ (δy−x ∗ν)](dz), where ν is the Lévy measure and x �= y are the positions of the two marginal
processes immediately before the jump.

Let ν be the Lévy measure of the Lévy process Z = (Zt )t≥0. Note that the construction of
coupling in this section does not require any further (e.g., geometric) assumptions on the Lévy
measure. For any κ > 0 and x, y ∈ R

d , we define

(x − y)κ :=
(

1 ∧ κ

|x − y|
)

(x − y),

(
1

∞ := 0

)
.
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The following refined basic coupling was introduced in [27], Section 2, for the first time:

(x, y) �−→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
x + z, y + z + (x − y)κ

)
,

1

2
μ(y−x)κ (dz);(

x + z, y + z + (y − x)κ
)
,

1

2
μ(x−y)κ (dz);

(x + z, y + z),

(
ν − 1

2
μ(y−x)κ − 1

2
μ(x−y)κ

)
(dz).

(13)

Obviously, (13) is the same as (8) if n = 2, �1(z) = z + (x − y)κ , �2(z) = z + (y − x)κ and
ν1 = ν2 = 1

2ν. Since �−1
1 (z) = �2(z), (7) holds true, and so (13) yields a coupling operator.

Let us briefly discuss some properties of the refined basic coupling (13).
If |x − y| ≤ κ , then the refined basic coupling becomes

(x, y) �−→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
x + z, y + z + (x − y)

)
,

1

2
μy−x(dz);(

x + z, y + z + (y − x)
)
,

1

2
μx−y(dz);

(x + z, y + z),

(
ν − 1

2
μy−x − 1

2
μx−y

)
(dz).

(14)

In the first row of (14), the distance of the two marginals decreases from |x −y| to |(x +z)− (y +
z+ (x −y))| = 0, and this reflects the idea of the basic coupling – but only with half of the maxi-
mum common jump intensity from x to x + z and y to y + z+ (x − y). In the second row of (14)
the distance is doubled after jumping, with the remaining half of the maximum common jump
intensity, while we couple the remaining mass synchronously as indicated in the third row of (14).

If |x − y| > κ , then the first row of (13) shows that the distance after the jump is |x − y| − κ .
Therefore, the parameter κ is the threshold to determine whether the marginal processes jump to
the same point, or become slightly closer to each other. This is a technical point, but is crucial
for our argument to make the coupling (13) efficient for Lévy jump processes with bounded
(finite-range) jumps.

Using the technique from [27], Section 2.3, we can construct the coupling process associ-
ated with the refined basic coupling. In a first step, we extend the Poisson random measure N

from R+ × R
d to R+ × R

d × [0,1] by adjoining an independent uniformly distributed random
component

N(ds, dz, du) =
∑

0<r≤s:	Zr �=0

δ(r,	Zr )(ds, dz)1[0,1](u) du,

Ñ(ds, dz, du) = N(ds, dz, du) − dsν(dz) du,

and we set

N̆(ds, dz, du) = 1[1,∞)×[0,1]
(|z|, u)

N(ds, dz, du) + 1(0,1)×[0,1]
(|z|, u)

Ñ(ds, dz, du),

Zt =
∫ t

0

∫
Rd×[0,1]

zN̆(ds, dz, du).
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We are going to use the adjoined random variable to define a random threshold which determines
whether the processes X and Y move towards each other or extend their distance. For this, we
need the following control function ρ:

ρ(x, z) = ν ∧ (δx ∗ ν)(dz)

ν(dz)
∈ [0,1], x, z ∈ R

d .

Recall that (x)κ = (1 ∧ (κ|x|−1))x for any x �= 0. Set Ut = Xt − Yt ,

Vt(z,u) = (Ut )κ
(
1[0, 1

2 ρ((−Ut )κ ,z)](u) − 1
( 1

2 ρ((−Ut )κ ,z), 1
2 [ρ((−Ut )κ ,z)+ρ((Ut )κ ,z)]](u)

)
and

dL#
t =

∫
Rd×[0,1]

Vt−(z,u)N(dt, dz, du).

Consider for any x, y ∈R
d with x �= y the following system of SDEs:{

dXt = b(Xt ) dt + dZt , X0 = x;
dYt = b(Yt ) dt + dZt + dL#

t , Y0 = y.
(15)

It is shown in [27], Propositions 2.2 and 2.3, that the system (15) has a unique strong solution
which is a non-explosive coupling process (Xt , Yt )t≥0 of the SDE (1). Moreover, the generator of
(Xt , Yt )t≥0 is the refined basic coupling operator constructed above, and Xt = Yt for any t ≥ τ ,
where τ = inf{t ≥ 0 : Xt = Yt } is the coupling time of the process (Xt , Yt )t≥0. Note that for
x �= 0,

μx

(
R

d
) ≤

∫
{|z|≤|x|/2}

δx ∗ ν(dz) +
∫

{|z|>|x|/2}
ν(dz) ≤ 2

∫
{|z|≥|x|/2}

ν(dz) < ∞, (16)

that is, μx is a finite measure on (Rd ,B(Rd)) for any x �= 0.

3.3. Coupling vs. optimal transport: Rotationally symmetric Lévy noise

In this section, we discuss the coupling of SDEs driven by rotationally symmetric Lévy noise
which was introduced in [28], Sections 2.1 and 2.2; the motivation of [28] was McCann’s solution
of the optimal transport problem for concave cost functions in R, cf. [29]. In contrast to [28], we
will use our coupling operator approach. This has the advantage that we can explicitly state the
SDE – see (18) – which admits a unique strong solution whose generator is the coupling operator;
[28], Section 2.4, only has the existence of a strong solution of some SDE associated with the
truncation of the coupling operator.

Let us return to the framework of Section 3.1. We will assume that the pure jump Lévy process
Z in the SDE (1) is rotationally symmetric and that its Lévy measure is of the form ν(dz) :=
q(|z|) dz for some nonnegative measurable function q(r). Let q0(r) ≤ q(r), that is, q0(|z|) dz is
also a rotationally symmetric Lévy measure.
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For any x, y, z ∈ R
d , let Rx,y(z) be the reflection defined in (9). We consider the following

jump system on R
2d :

(x, y) �−→

⎧⎪⎨⎪⎩
(
x + z, y + z + (x − y)

)
, q0

(|z|) ∧ q0
(|x − y + z|)dz;(

x + z, y + Rx,y(z)
)
,

[
q0

(|z|) − q0
(|z|) ∧ q0

(|x − y + z|)]dz;
(x + z, y + z),

[
q
(|z|) − q0

(|z|)]dz.

(17)

If we choose in (8) n = 2, �1(z) = z+ (x −y), �2(z) = Rx,y(z), ν1(dz) = q0(|z|)∧q0(|x −y +
z|) dz and ν2(dz) = [q0(|z|) − q0(|z|) ∧ q0(|x − y + z|)]dz, then (17) can be derived from (8).
Observing that Rx,y(x − y) = y − x (x �= y) and Rx,y(z1 + z2) = Rx,y(z1) + Rx,y(z2) for any
z1, z2 ∈ R

d we see

q0
(∣∣�−1

1 (z)
∣∣) ∧ q0

(∣∣x − y + �−1
1 (z)

∣∣) = q0
(|y − x + z|) ∧ q0

(|z|)
and

q0
(∣∣R−1

x,y(z)
∣∣) − q0

(∣∣R−1
x,y(z)

∣∣) ∧ q0
(∣∣x − y + R−1

x,y(z)
∣∣)

= q0
(|z|) − q0

(|z|) ∧ q0
(∣∣R−1

x,y(y − x + z)
∣∣)

= q0
(|z|) − q0

(|z|) ∧ q0
(|y − x + z|).

This shows that (7) is satisfied.
We are now going to construct the coupling process for the coupling (17). We continue to use

the notation introduced in Section 3.2. Denote by N̄(dt, dz, du) and N̆0(dt, dz, du) the extended
Poisson random measure on R+ ×R

d × [0,1] whose compensators are given by dtq(|z|) dz du

and dtq0(|z|) dz du, respectively. In order to keep notation simple, we set r(z,Xt− − Yt−) :=
(q0(|z|) ∧ q0(Xt− − Yt− + z))/q0(|z|). Consider the following SDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = b(Xt ) dt +
∫
Rd×[0,1]

zN̆(dt, dz, du),

dYt = b(Yt ) dt +
∫
Rd×[0,1]

z
(
N̆(dt, dz, du) − N̆0(dt, dz, du)

)
+

∫
Rd×[0,1]

RXt−,Yt−(z)1(r(z,Xt−−Yt−),1](u)N̆0(dt, dz, du)

+
∫
Rd×[0,1]

(Xt− − Yt− + z)1(r(z,Xt−−Yt−),1](u)N̆0(dt, dz, du)

−
∫
Rd×[0,1]

(Xt− − Yt− + z)
[
1(0,1)

(∣∣z + (Xt− − Yt−)
∣∣) − 1(0,1)

(|z|)]
× 1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu.

(18)

Proposition 3.1. If b is Lipschitz continuous on R
d , then the SDE (18) has a unique strong

solution up to the coupling time τ . The generator of this solution is determined by the coupling
(17).
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Proof. As in (16), we see that
∫

q0(|z|) ∧ q0(|z + x − y|) dz < ∞ for x �= y. We can rewrite the
SDE for Yt in the following way

dYt = b(Yt ) dt +
∫
Rd×[0,1]

z
(
N̆(dt, dz, du) − N̆0(dt, dz, du)

)
+

∫
Rd×[0,1]

RXt−,Yt−(z)N̆0(dt, dz, du)

−
∫
Rd×[0,1]

RXt−,Yt−(z)1(r(z,Xt−−Yt−),1](u)N̆0(dt, dz, du)

+
∫
Rd×[0,1]

(Xt− − Yt− + z)1(r(z,Xt−−Yt−),1](u)N̆0(dt, dz, du)

−
∫
Rd×[0,1]

(Xt− − Yt− + z)
[
1(0,1)

(∣∣z + (Xt− − Yt−)
∣∣) − 1(0,1)

(|z|)]
× 1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu

= b(Yt ) dt +
∫
Rd×[0,1]

z
(
N̆(dt, dz, du) − N̆0(dt, dz, du)

)
+

∫
Rd×[0,1]

RXt−,Yt−(z)N̆0(dt, dz, du)

−
∫
Rd×[0,1]

RXt−,Yt−(z)1(r(z,Xt−−Yt−),1](u)N0(dt, dz, du)

+
∫
Rd×[0,1]

(Xt− − Yt− + z)1(r(z,Xt−−Yt−),1](u)N0(dt, dz, du)

+
∫

{|z|≤1}×[0,1]
RXt−,Yt−(z)1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu

−
∫

{|z|≤1}×[0,1]
(Xt− − Yt− + z)1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu

−
∫
Rd×[0,1]

(Xt− − Yt− + z)
[
1(0,1)

(∣∣z + (Xt− − Yt−)
∣∣) − 1(0,1)

(|z|)]
× 1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu.

We will now rearrange the last three terms involving dtq0(|z|) dz du:∫
{|z|<1}×[0,1]

RXt−,Yt−(z)1(r(z,Xt−−Yt−),1](u) dtq0
(|z|)dzdu

=
∫

{|z|<1}×[0,1]
z1[0,r(z,Yt−−Xt−)](u) dtq0

(|z|)dzdu,
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which follows from Rx,y(x − y) = y − x (x �= y) and Rx,y(z1 + z2) = Rx,y(z1) + Rx,y(z2) for
z1, z2 ∈ R

d . On the other hand,

∫
Rd×[0,1]

(Xt− − Yt− + z)
[
1(0,1)

(∣∣z + (Xt− − Yt−)
∣∣) − 1(0,1)

(|z|)]
× 1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu

=
∫

{|z+(Xt−−Yt−)|<1}×[0,1]
(Xt− − Yt− + z)1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu

−
∫

{|z|<1}×[0,1]
(Xt− − Yt− + z)1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu

=
∫

{|z|<1}×[0,1]
z1[0,r(z,Yt−−Xt−)](u) dtq0

(|z|)dzdu

−
∫

{|z|<1}×[0,1]
(Xt− − Yt− + z)1(r(z,Xt−−Yt−),1](u) dtq0

(|z|)dzdu.

This means that the equation for Yt becomes simpler:

dYt = b(Yt ) dt +
∫
Rd×[0,1]

z
(
N̆(dt, dz, du) − N̆0(dt, dz, du)

)
+

∫
Rd×[0,1]

RXt−,Yt−(z)N̆0(dt, dz, du)

−
∫
Rd×[0,1]

RXt−,Yt−(z)1(r(z,Xt−−Yt−),1](u)N0(dt, dz, du)

+
∫
Rd×[0,1]

(Xt− − Yt− + z)1(r(z,Xt−−Yt−),1](u)N0(dt, dz, du).

For fixed z ∈ R
d , the function (x, y) �→ Rx,y(z) is locally Lipschitz continuous on {(x, y) ∈

R
2d : x �= y}. The remaining two terms driven by

1(r(z,Xt−−Yt−),1](u)N0(dt, dz, du)

may be regarded as stochastic integrals with respect to a finite Poisson measure; this is again due
to the fact that

∫
q0(|z|) ∧ q0(z + x − y)dz < ∞ for any x �= y. Using the standard interlacing

technique, we see that the SDE (18) has a unique strong solution up to the coupling time τ , see
[20], Chapter IV.9. �
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4. Regularity properties and successful coupling of SDEs with
additive Lévy noise revisited

4.1. Regularity properties of the semigroup

We will now apply our coupling technique, to study regularity properties of the semigroup asso-
ciated with the SDE (1). Let (Xt )t≥0 be the unique strong solution to (1) and denote by (Pt )t≥0
its transition semigroup. We define

B(r) := 1

r
sup

|x−y|=r

〈
b(x) − b(y), x − y

〉
, r > 0.

Theorem 4.1. Let Z be a pure jump Lévy process on R
d with Lévy measure ν.

(a) Let Z be rotationally symmetric and define for r > 0

ψ(r) =
∫

{|z|≤r}
|z|2ν(dz) and �(r) =

∫ r

0

∫ 1

u

1

ψ(s/4)
ds du.

If

(i)
∫ 1

0

s

ψ(s)
ds < ∞ and (ii) lim sup

r→0

(
B(r)

∫ 1

r

1

ψ(s/4)
ds

)
<

2

d
, (19)

then there exists a constant c > 0 such that for any f ∈ Bb(R
d), x ∈R

d and t > 0,

lim sup
y→x

|Ptf (x) − Ptf (y)|
�(|x − y|) ≤ c

(
1 ∨ 1

t

)
.

(b) For an arbitrary pure jump Lévy process Z and r > 0 define

ψ(r) = r2 inf|x|≤r

(
ν ∧ (δx ∗ ν)

)(
R

d
)

and �(r) =
∫ r

0

∫ 1

u

1

ψ(s/2)
ds du. (20)

If

(i)
∫ 1

0

s

ψ(s)
ds < ∞ and (ii) lim sup

r→0

(
B(r)

∫ 1

r

1

ψ(s/2)
ds

)
<

1

2
, (21)

then there exists a constant c > 0 such that for any f ∈ Bb(R
d), x ∈R

d and t > 0,

lim sup
y→x

|Ptf (x) − Ptf (y)|
�(|x − y|) ≤ c

(
1 ∨ 1

t

)
.

Remark 4.2.

(a) Recently, the authors of [3] introduced the local coupling property for Markov processes
and proved that it is equivalent to the following condition

lim
y→x

∥∥pt(x, ·) − pt(y, ·)∥∥Var = 0 for all x ∈R
d and t > 0, (22)
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where pt(x, ·) is the transition probability of the Markov process X := (Xt )t≥0. Let (Pt )t≥0 be
the transition semigroup associated of the process X. Since∥∥pt (x, ·) − pt (y, ·)∥∥Var = sup

‖f ‖∞≤1

∣∣Ptf (x) − Ptf (y)
∣∣,

(22) implies that (Pt )t≥0 is a strong Feller semigroup, that is, for any t > 0, Pt maps the set
of bounded measurable functions into the set of bounded continuous functions. On the other
hand, using [33], Chapter 1, Propositions 5.8 and 5.12, we can deduce (22) from the strong
Feller property. Therefore, the local coupling property and the strong Feller property coincide
for Markov semigroups.

(b) Since we have �(0) = 0, �′(r) > 0 and �′′(r) < 0 on (0,∞), (x, y) �→ �(|x − y|) is
a distance function in R

d . Therefore, Theorem 4.1 guarantees the regularity of the semigroup
associated with the SDE (1) which in turn implies the strong Feller property.

(c) If b ≡ 0, that is, if X = Z is a pure jump Lévy process, the conditions (19.ii) and (20.ii)
are trivially satisfied. Theorem 4.1(a) seems to be new even for Lévy processes. If X = Z is a
rotationally symmetric Lévy process, Theorem 4.1(a) also extends [2], Theorem 2.2, where only
the one-dimensional case is discussed.

(d) According to [27], Example 1.2, Theorem 4.1(b) holds for any Lévy measure ν satisfying

ν(dz) ≥ 1(0,1](z1)
c

|z|d+α
dz

for some α ∈ (0,2) and c > 0. If we take, for example, ν(dz) = 1(0,1](z1)
c

|z|d+α dz, then ν is a
Lévy measure with zero symmetric part, and such settings are not covered by [3], Theorem 7,
which treats only the one-dimensional case.

In the proof of Theorem 4.1(b), we will apply the coupling operator L̃ from Section 3.1 with
η = 1

2 . We begin with the following simple estimate.

Lemma 4.3. Let L̃ be the coupling operator given by the jump system (10) with η = 1
2 . Pick

f ∈ C[0,2] ∩ C2(0,2] such that f (0) = 0, f ′ ≥ 0, f ′′ ≤ 0 and f ′′ is increasing on (0,2]. For
any x, y ∈ R

d with 0 < |x − y| ≤ 1,

L̃f
(|x − y|) ≤ f ′(|x − y|) 〈b(x) − b(y), x − y〉

|x − y| + 2

d
f ′′(2|x − y|)∫

{|z|≤|x−y|/2}
|z|2ν(dz).

Proof. Let f ∈ C[0,2] ∩ C2(0,2] with f (0) = 0 and x, y ∈ R
d with 0 < |x − y| ≤ 1.

L̃f
(|x − y|) = f ′(|x − y|) 〈b(x) − b(y), x − y〉

|x − y|

+
∫

{|z|≤|x−y|/2}

[
f

(∣∣(x − y) + (
z − Rx,y(z)

)∣∣) − f
(|x − y|)
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− f ′(|x − y|) 〈x − y, z〉
|x − y| 1(0,1)

(|z|)
+ f ′(|x − y|) 〈x − y,Rx,y(z)〉

|x − y| 1(0,1)

(|z|)]ν(dz),

where we use |Rx,y(z)| = |z|. Observe that L̃f (|x − y|) = L̃f (|y − x|) and Rxy(z) = Ryx(z).
This allows us to symmetrize the above expression and we get

L̃f
(|x − y|) = f ′(|x − y|) 〈b(x) − b(y), x − y〉

|x − y|
+ 1

2

∫
{|z|≤|x−y|/2}

[
f

(∣∣(x − y) + (
Rx,y(z) − z

)∣∣)
+ f

(∣∣(x − y) + (
z − Rx,y(z)

)∣∣) − 2f
(|x − y|)]ν(dz)

= f ′(|x − y|) 〈b(x) − b(y), x − y〉
|x − y|

+ 1

2

∫
{|z|≤|x−y|/2}

[
f

(
|x − y|

(
1 + 2〈x − y, z〉

|x − y|2
))

+ f

(
|x − y|

(
1 − 2〈x − y, z〉

|x − y|2
))

− 2f
(|x − y|)]ν(dz);

to see the last equality, use that |z| ≤ |x − y|/2.
We assume now, in addition, that f ′ ≥ 0, f ′′ ≤ 0 and f ′′ is increasing. For any δ ∈ [0, r],

f (r + δ) + f (r − δ) − 2f (r) =
∫ r+δ

r

∫ s

s−δ

f ′′(u) duds ≤ f ′′(r + δ)δ2. (23)

Using again the fact that ν is rotationally symmetric, we get

L̃f
(|x − y|)
≤ f ′(|x − y|) 〈b(x) − b(y), x − y〉

|x − y| + 2f ′′(2|x − y|)∫
{|z|≤|x−y|/2}

〈x − y, z〉2

|x − y|2 ν(dz)

= f ′(|x − y|) 〈b(x) − b(y), x − y〉
|x − y| + 2f ′′(2|x − y|) ∫

{|z|≤|x−y|/2}
|z1|2ν(dz)

= f ′(|x − y|) 〈b(x) − b(y), x − y〉
|x − y| + 2

d
f ′′(2|x − y|)∫

{|z|≤|x−y|/2}
|z|2ν(dz). �

Proof of Theorem 4.1(a). Fubini’s theorem shows

�(r) =
∫ r

0

∫ 1

u

ds du

ψ(s/4)
=

∫ 1

0

s ∧ r

ψ(s/4)
ds, r > 0.
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Since r �→ ψ(r) is increasing, � is well defined under (19.i); moreover, �′(r) = ∫ 1
r

ds
ψ(s/4)

> 0,

�′′(r) = − 1
ψ(r/4)

< 0, and �′′ is increasing since r �→ ψ(r) is increasing. According to

Lemma 4.3 and (19.ii), there exist constants ε0 ∈ (0,1] and c0 > 0 such that for x, y ∈ R
d with

0 < |x − y| ≤ ε0,

L̃�
(|x − y|) ≤ −c0. (24)

Let (Xt , Yt )t≥0 be the coupling process constructed at the end of Section 3.1. Denote by P̃
(x,y)

and Ẽ
(x,y) the probability law and the expectation of (Xt , Yt )t≥0 such that (X0, Y0) = (x, y),

respectively. For ε0 ∈ (0,1] as above and any n ≥ 1 we set

σε0 := inf
{
t ≥ 0 : |Xt − Yt | > ε0

}
,

τn := inf
{
t ≥ 0 : |Xt − Yt | ≤ 1/n

}
.

It is clear that limn→∞ τn = τ , where τ is the coupling time.
Let x, y ∈ R

d with 0 < |x − y| < ε0 and choose n so large that |x − y| > 1/n. Because of the
monotonicity of �, Dynkin’s formula and (24), we get for all t > 0,

0 ≤ �(ε0)P
(x,y)(σε0 < τn ∧ t)

≤ Ẽ
(x,y)�

(|Xt∧τn∧σε0
− Yt∧τn∧σε0

|)
= �

(|x − y|) + Ẽ
(x,y)

(∫ t∧τn∧σε0

0
L̃�

(|Xs − Ys |
)
ds

)
≤ �

(|x − y|) − c0Ẽ
(x,y)(t ∧ τn ∧ σε0).

Rearranging this inequality and letting t → ∞ yields

c0Ẽ
(x,y)(τn ∧ σε0) + �(ε0)̃P

(x,y)(σε0 < τn) ≤ �
(|x − y|).

Therefore, we can use Markov’s inequality and get

P̃
(x,y)(τn > t) ≤ P̃

(x,y)(τn ∧ σε0 > t) + P̃
(x,y)(σε0 < τn)

≤ Ẽ
(x,y)(τn ∧ σε0)

t
+ �(|x − y|)

�(ε0)
≤ �

(|x − y|)[ 1

tc0
+ 1

�(ε0)

]
.

Letting n → ∞, we find that

P̃
(x,y)(τ > t) ≤ �

(|x − y|)[ 1

tc0
+ 1

�(ε0)

]
.

Finally, we have for any f ∈ Bb(R
d), x ∈ R

d and t > 0,

lim sup
y→x

|Ptf (x) − Ptf (y)|
�(|x − y|) = lim sup

y→x

|Ẽ(x,y)[f (Xt ) − f (Yt )]|
�(|x − y|)
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= lim sup
y→x

|Ẽ(x,y)[(f (Xt ) − f (Yt ))1{τ>t}]|
�(|x − y|)

≤ 2‖f ‖∞ lim sup
y→x

P̃
(x,y)(τ > t)

�(|x − y|)

≤ 2

[
1

tc0
+ 1

�(ε0)

]
≤ c1

(
1 ∨ 1

t

)
. �

In order to prove Theorem 4.1(b), we use the refined basic coupling from Section 3.2.

Lemma 4.4. Let κ > 0 be the constant from (13) and denote by L̃ the coupling operator given
by the jump system (13). Let f ∈ C[0,2κ] ∩ C2(0,2κ] such that f (0) = 0, f ′ ≥ 0, f ′′ ≤ 0 and
f ′′ is increasing on (0,2κ]. For all x, y ∈ R

d with 0 < |x − y| ≤ κ ,

L̃f
(|x − y|) ≤ f ′(|x − y|) 〈b(x) − b(y), x − y〉

|x − y| + 1

2
μ(x−y)

(
R

d
)|x − y|2f ′′(2|x − y|),

where μx(dz) = [ν ∧ (δx ∗ ν)](dz) for all x ∈R
d .

Proof. If x, y ∈ R
d satisfy 0 < |x − y| ≤ κ , then we have (x − y)κ = (x − y). Using the jump

system (13), we get for any x, y ∈R
d with 0 < |x − y| ≤ κ

L̃f
(|x − y|) = f ′(|x − y|) 〈b(x) − b(y), x − y〉

|x − y|

+
[

1

2
μ(y−x)

(
R

d
)(

f
(
2|x − y|) − f

(|x − y|)) − 1

2
μ(y−x)

(
R

d
)
f

(|x − y|)]
= f ′(|x − y|) 〈b(x) − b(y), x − y〉

|x − y|
+ 1

2
μ(x−y)

(
R

d
)[

f
(
2|x − y|) − 2f

(|x − y|)],
where we use the identity μ(x−y)(R

d) = μ(y−x)(R
d). This, together with the assumptions on f

and (23), yields the assertion. �

Theorem 4.1(b) can now be proved along the same lines as Theorem 4.1(a): all we have to do
is to use Lemma 4.4 instead of Lemma 4.3. Since the arguments are similar, we leave the details
to the reader.

4.2. Successful coupling

Let X := (Xt )t≥0 be the unique strong solution to (1). A coupling (Xt , Yt )t≥0 of the process X

is called successful, if the coupling time τ of (Xt , Yt )t≥0 defined by (12) is almost surely finite.
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If the process X has a successful coupling, then we say that the process X has the coupling
property.

Theorem 4.5. Let Z be a pure jump Lévy process on R
d with Lévy measure ν such that∫ 1

0

s

ψ(s)
ds < ∞, (25)

where ψ is defined in Theorem 4.1. If the drift b(x) satisfies〈
b(x) − b(y), x − y

〉 ≤ 0, x, y ∈ R
d, (26)

then the process X has the coupling property.

Proof. For simplicity, we only consider rotationally symmetric Z. Let L̃ be the coupling operator
given by the jump system (10) with η = 1

2 . Fix r0 > 0, and f ∈ C[0,2r0] ∩ C2(0,2r0] such that
f (0) = 0, f ′ ≥ 0, f ′′ ≤ 0 and f ′′ is increasing on (0,2r0]. Following the argument of Lemma 4.3
and using (26), we get for any x, y ∈R

d with 0 < |x − y| ≤ r0,

L̃f
(|x − y|) ≤ 2

d
f ′′(2|x − y|)∫

{|z|≤|x−y|/2}
|z|2ν(dz). (27)

As in the proof of Theorem 4.1(a), let (Xt , Yt )t≥0 be the coupling process constructed at
the end of Section 3.1. Denote by P̃

(x,y) and Ẽ
(x,y) the probability law and the expectation of

(Xt , Yt )t≥0 such that (X0, Y0) = (x, y). For n ≥ 1, we set

σn := inf
{
t ≥ 0 : |Xt − Yt | > n

}
, τn := inf

{
t ≥ 0 : |Xt − Yt | ≤ 1/n

}
.

It is clear that limn→∞ τn = τ where τ is the coupling time.
Fix x, y ∈ R

d and pick n and m so large that 1/n ≤ |x − y| ≤ m. Set

�m(r) =
∫ r

0

∫ 2m

u

ds du

ψ(s/4)
, r > 0.

Following the proof of Theorem 4.1(a) and applying (27) to the function f (r) = �m(r), we get

Ẽ
(x,y)(τn ∧ σm) ≤ �m(|x − y|)

c0
,

where c0 > 0 does not depend on x, y, n and m. On the other hand, applying (27) to the function
f (r) = r and following again the proof of Theorem 4.1(a), we obtain

P̃
(x,y)(σm < τn) ≤ |x − y|

m
.
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Therefore, for any x, y ∈R
d and t > 0,

P̃
(x,y)(τn > t) ≤ P̃

(x,y)(τn ∧ σm > t) + P̃
(x,y)(σm < τn)

≤ Ẽ
(x,y)(τn ∧ σm)

t
+ |x − y|

m

≤ �m(|x − y|)
tc0

+ |x − y|
m

.

Letting n → ∞, then t → ∞ and finally m → ∞, we see

P̃
(x,y)(τ = ∞) = 0.

This finishes the proof. �

Remark 4.6.

(a) Condition (26) is necessary for the coupling property for Ornstein–Uhlenbeck processes
driven by symmetric α-stable processes, see [37], Remark 1.3(2).

(b) For a pure jump Lévy process, the condition (26) is trivially satisfied. Note that Theo-
rem 4.5 is new even for Lévy processes. In particular, Theorem 4.5 and the coupling used in
its proof indicate that both coupling by reflection for rotationally symmetric Lévy noises with
the parameter η = 1

2 in Section 3.1 and the refined basic coupling for general Lévy noises in
Section 3.2 are successful, whenever (25) is satisfied. For symmetric α-stable processes we have
ψ(r) = cαr2−α , that is, (25) holds; this is also true for the process from Remark 4.2(d).

5. Comparison of coupling operators & coupling operators for
SDEs with multiplicative Lévy noise

5.1. Comparison of coupling operators for Lévy processes mentioned in
Section 3

The construction of (17) is motivated by optimal coupling of Gaussian distributions, see [17],
Theorem 1.4, or [19], Section 3, on the one hand, and by reflection coupling for Brownian motion,
see [25], Section 2, or [19], Section 2, on the other hand. Folklore wisdom from the theory
of optimal transport tells us that we should use most of the common mass of two probability
distributions if we want to obtain a coupling with nice properties. In this sense, the first row in
(17) is a natural choice, see [28], Section 2.1, for further details, and this is also the idea behind
basic coupling (14). The problem is, how we should use the remaining mass.

If the Lévy measure is rotationally symmetric, we use reflection of the remaining mass, cf.
the second row of (17). This approach is essentially due to [28], Section 2.2, where q0(|z|) =
q(|z|)1{|z|<m} for some large m � 1. For Lévy processes which are subordinate to a Brown-
ian motion, [5] shows that this type of coupling with m = ∞ is indeed a Markovian maximal
coupling. For further discussions in this direction, we refer our readers to [5], Section 5.



686 M. Liang, R.L. Schilling and J. Wang

In a general setting, one can try to use independent coupling with the remaining mass; this
approach often has poor properties. Intuitively, a much better solution should be to couple the
remaining mass synchronously, but it turns out that such a construction does not produce a cou-
pling. In the preliminary construction of the refined basic coupling (14), the two marginal pro-
cesses jump to the same place only with half of the maximal probability (see the first row in
(14)), while with the other half we perform a transformation which doubles the distance between
the two marginal processes (see the second row in (14)). With the remaining probability we let
the marginal processes move synchronously, see the third row in (14). With a view towards the
refined basic coupling (14), it seems sometimes to be better not to have the marginals jump to
the same place with the maximal possible probability, but to use some of the mass for coupling
the marginals in a more convenient way.

In what follows, let f be a non-decreasing and concave function on [0,∞) such that f (0) = 0.
We will compare L̃f with the three coupling operators introduced in Section 3. There are several
good reasons to compare the corresponding coupling operators L̃f : (i) the estimates for L̃f in
Lemmas 4.3 and 4.4 play a crucial role in the study of the regularity and coupling properties
in Theorem 4.1 and Theorem 4.5, respectively. Roughly speaking, the smaller L̃f is, the better
become results like Theorem 4.1 and 4.5. (ii) recall from [9], Definition 2.3, that a coupling
operator L̄f is said to be f -optimal (f is a non-decreasing and concave function on [0,∞) such
that f (0) = 0), if

L̄f f
(|x1 − x2|

) = inf
L̃

L̃f
(|x1 − x2|

)
, x1, x2 ∈ R

d,

where the infimum ranges over all coupling operators L̃. This means, in particular, that the in-
fimum is attained for the coupling operator L̄f . The f -optimal Markov operator has been effi-
ciently used to consider the spectral gap or the exponential L2-convergence of symmetric Markov
processes, see [10], Chapter 2.4. Hence, it is natural to study optimal (in the sense of Chen) cou-
plings for Lévy noise. In contrast to the diffusion or the birth-and-death process cases – see
[9], Theorem 3.2 and Section 5 – there seems to be no general structure formula for coupling
operators relating to Lévy noise. Therefore, we concentrate on the three couplings presented in
Section 3.

Let Z = (Zt )t≥0 be a rotationally symmetric pure jump Lévy process whose Lévy measure is
of the form ν(dz) = q(|z|) dz for some measurable function q(r) ≥ 0, r > 0. We consider the
following two cases.

Case 1 (Jumps of infinite range). Denote by L̃r the “coupling-by-reflection” operator with
η = ∞, cf. Section 3.1, and by L̃r,b the “combined reflection-and-basic” coupling operator con-
structed in Section 3.3 with q0(|z|) = q(|z|). For any f ∈ C[0,∞) ∩ C2(0,∞) with f (0) = 0
and f ′ ≥ 0, and any x, y ∈R

d with x �= y, we have

L̃rf
(|x − y|)

=
∫
Rd

[
f

(∣∣x − y + z − Rx,y(z)
∣∣) − f

(|x − y|) − f ′(|x − y|) 〈x − y, z〉
|x − y| 1(0,1)

(|z|)
+ f ′(|x − y|) 〈x − y,Rx,y(z)〉

|x − y| 1(0,1)

(|z|)]q
(|z|)dz.
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Since L̃rf (|x − y|) = L̃rf (|y − x|) and Rx,y(z) = Ry,x(z), we can symmetrize the above ex-
pression, and get

L̃rf
(|x − y|)

= 1

2

∫
Rd

[
f

(∣∣x − y + z − Rx,y(z)
∣∣) + f

(∣∣x − y + Rx,y(z) − z
∣∣) − 2f

(|x − y|)]q(|z|)dz.

For the other coupling operator, we get

L̃r,bf
(|x − y|)

=
∫
Rd

[
f

(∣∣x + z − y − z − (x − y)
∣∣) − f

(|x − y|) − f ′(|x − y|) 〈x − y, z〉
|x − y| 1(0,1)

(|z|)
+ f ′(|x − y|) 〈x − y, z + (x − y)〉

|x − y| 1(0,1)

(∣∣z + (x − y)
∣∣)]q

(|z|) ∧ q
(|z + x − y|)dz

+
∫
Rd

[
f

(∣∣x + z − y − Rx,y(z)
∣∣) − f

(|x − y|) − f ′(|x − y|) 〈x − y, z〉
|x − y| 1(0,1)

(|z|)
+ f ′(|x − y|) 〈x − y,Rx,y(z)〉

|x − y| 1(0,1)

(|z|)][
q
(|z|) − q

(|z|) ∧ q
(|z + x − y|)]dz

= −
∫
Rd

f
(∣∣x + z − y − Rx,y(z)

∣∣)q(|z|) ∧ q
(|z + x − y|)dz

+
∫
Rd

[
f

(∣∣x + z − y − Rx,y(z)
∣∣) − f

(|x − y|) − f ′(|x − y|) 〈x − y, z〉
|x − y| 1(0,1)

(|z|)
+ f ′(|x − y|) 〈x − y,Rx,y(z)〉

|x − y| 1(0,1)

(|z|)]q
(|z|)dz.

In the last equality, we use that q(z) ∧ q(z + x − y)dz, x �= y, is a finite measure on R
d as well

as the following identity which one easily checks using (in the last line) the change of variables
z � Rx,y(z) and Rx,y(x − y) = Rx,y(y − x):

∫
Rd

〈x − y, z + (x − y)〉
|x − y| 1(0,1)

(∣∣z + (x − y)
∣∣)q(|z|) ∧ q

(|z + x − y|)dz

=
∫
Rd

〈x − y, z〉
|x − y| 1(0,1)

(|z|)q(z − x + y) ∧ q
(|z|)dz

=
∫
Rd

〈x − y,Rx,y(z)〉
|x − y| 1(0,1)

(|z|)q(|z|) ∧ q
(|z + x − y|)dz.
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Using symmetry as above, we can swap the roles of x and y in the second term of the right-hand
side for L̃r,bf (|x − y|), and get

L̃r,bf
(|x − y|)

= −
∫
Rd

f
(∣∣x + z − y − Rx,y(z)

∣∣)q(|z|) ∧ q
(|z + x − y|)dz

+ 1

2

∫
Rd

[
f

(∣∣x − y + z − Rx,y(z)
∣∣) + f

(∣∣x − y + Rx,y(z) − z
∣∣) − 2f

(|x − y|)]q(|z|)dz.

Comparing the formulae for L̃rf (|x − y|) and L̃r,bf (|x − y|) we see that

L̃r,bf
(|x − y|) ≤ L̃rf

(|x − y|), x, y ∈R
d . (28)

Case 2 (Jumps of finite range). Denote by L̃r the “coupling-by-reflection” operator with η = 1
2 ,

cf. Section 3.1, and by L̃b the “refined-basic-coupling” operator constructed in the same way as
(13) with ν1(dz) = ν2(dz) = 1

21{|z|≤|x−y|/2}q(|z|) dz in Section 3.2. For any f ∈ C[0,∞) ∩
C2(0,∞) with f (0) = 0 and f ′′ ≤ 0, we get with the symmetrization argument for L̃r from
Case 1 that

L̃rf
(|x − y|) = 1

2

∫
{|z|≤|x−y|/2}

[
f

(
|x − y| + 2〈x − y, z〉

|x − y|
)

+ f

(
|x − y| − 2〈x − y, z〉

|x − y|
)

− 2f
(|x − y|)]q

(|z|)dz

and

L̃bf
(|x − y|) = 1

2

[
f

(|x − y| − |x − y| ∧ κ
) + f

(|x − y| + |x − y| ∧ κ
) − 2f

(|x − y|)]
×

∫
Rd

[
q
(|z|)1{|z|≤|x−y|/2}

] ∧ [
q
(|z + x − y|)1{|z+x−y|≤|x−y|/2}

]
dz.

By the mean value theorem and f ′′ ≤ 0, it is easy to see that

L̃rf
(|x − y|) ≤ 0.

On the other hand, we have for all x, y, z ∈ R
d

0 ≤ [
q
(|z|)1{|z|≤|x−y|/2}

] ∧ [
q
(|z + x − y|)1{|z+x−y|≤|x−y|/2}

]
≤ [

q
(|z|)1{|z|≤|x−y|/2}

] ∧ [
q
(|z + x − y|)1{|z|≥|x−y|/2}(z)

] = 0 a.e. (29)

This shows that

L̃bf
(|x − y|) = 0, x, y ∈R

d .
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Let L̃r,b denote the “combined reflection-and-basic” coupling operator constructed in Sec-
tion 3.3 with q0(|z|) = 1{|z|≤|x−y|/2}q(|z|). Using (29) it is easy to see that

L̃r,bf
(|x − y|)

=
∫
Rd

[
f

(∣∣x + z − y − z − (x − y)
∣∣) − f

(|x − y|) − f ′(|x − y|) 〈x − y, z〉
|x − y| 1(0,1)

(|z|)
+ f ′(|x − y|) 〈x − y, z + x − y〉

|x − y| 1(0,1)

(∣∣z + (x − y)
∣∣)]

× [
q
(|z|)1{|z|≤|x−y|/2}

] ∧ [
q
(|z + x − y|)1{|z+x−y|≤|x−y|/2}

]
dz

+
∫

{|z|≤|x−y|/2}

[
f

(
|x − y| + 2〈x − y, z〉

|x − y|
)

− f
(|x − y|)

− f ′(|x − y|) 〈x − y, z〉
|x − y| 1(0,1)

(|z|) + f ′(|x − y|) 〈x − y,Rx,y(z)〉
|x − y| 1(0,1)

(|z|)]
× (

q
(|z|) − [

q
(|z|)1{|z|≤|x−y|/2}

] ∧ [
q
(|z + x − y|)1{|z+x−y|≤|x−y|/2}

])
dz

=
∫

{|z|≤|x−y|/2}

[
f

(
|x − y| + 2〈x − y, z〉

|x − y|
)

− f
(|x − y|)

− f ′(|x − y|) 〈x − y, z〉
|x − y| 1(0,1)

(|z|) + f ′(|x − y|) 〈x − y,Rx,y(z)〉
|x − y| 1(0,1)

(|z|)]q
(|z|)dz.

The symmetrization argument used in Case 1 allows us to change the roles of x and y, and we
get

L̃r,bf
(|x − y|) = 1

2

∫
{|z|≤|x−y|/2}

[
f

(
|x − y| + 2〈x − y, z〉

|x − y|
)

+ f

(
|x − y| − 2〈x − y, z〉

|x − y|
)

− 2f
(|x − y|)]q

(|z|)dz

= L̃rf
(|x − y|).

If f ∈ C[0,∞) ∩ C2(0,∞) with f (0) = 0 and f ′′ ≤ 0, these calculations show that

L̃r,bf
(|x − y|) = L̃rf

(|x − y|) ≤ L̃bf
(|x − y|) = 0 for all x, y ∈ R

d .

Remark 5.1. Lévy processes which are subordinate to a Brownian motions are particular ex-
amples of rotationally symmetric Lévy processes. Thus, the conclusion of Case 1 shows that the
coupling defined by (17) is, for subordinated Brownian motions and from a coupling operator
point-of-view, optimal among the three couplings mentioned in Section 3. In particular, accord-
ing to the proof of Theorem 4.5, Remark 4.6 and (28), the coupling defined by (17) is successful
for a large class of subordinated Brownian motions.
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On the other hand, one essential point in the proof of Case 2 uses the fact that – if the Lévy has
finite-range jumps – the jumping density disappears, q(|z|) ∧ q(|z + x − y|) = 0, for x, y ∈ R

d

which are sufficiently far apart, i.e. |x − y| � 1. In this case, the second row of (17) disappears,
and (17) essentially becomes (10). This illustrates the advantage of the refined basic coupling
(13): it applies both to finite-range jumps and non-necessarily rotationally symmetric Lévy pro-
cesses.

5.2. Coupling operators for SDEs with multiplicative Lévy noise

It is possible to extend the coupling idea explained in the previous sections to SDEs with multi-
plicative Lévy noise

dXt = b(Xt ) dt + σ(Xt−) dZt , X0 = x ∈ R
d, (30)

where b : Rd → R
d is measurable, σ : Rd → R

d ×R
d is continuous, and Z = (Zt )t≥0 is a pure

jump Lévy process on R
d with Lévy measure ν. Since the drift term b is always coupled syn-

chronously, we only need to consider how to couple multiplicative Lévy noise. The multiplicative
term σ(x) affects the jumps in a way that the jump height 	Zt = Zt − Zt− is not simply added
to Xt− (as in the additive noise case) but it is first transformed by the matrix σ(Xt−) and then
added. This means that in our coupling scheme (8) we have to

replace �i(z) by σ(y)�i(z).

More precisely, for any 1 ≤ i < n + 1 ≤ ∞, let �i : Rd →R
d be a bijective continuous map and

νi a nonnegative measure on (Rd ,B(Rd)) such that
∑n

i=1 νi ≤ ν. Now we change the general
formula (8) for the basic coupling with additive noise to

(x, y) �−→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
x + σ(x)z, y + σ(y)�i(z)

)
, μνi ,�i

(dz) for 1 ≤ i < n + 1;
(
x + σ(x)z, y + σ(y)z

)
,

(
ν −

n∑
i=1

μνi,�i

)
(dz).

(31)

As in the proof of Proposition 2.2, we can verify that (31) determines a coupling operator for
the infinitesimal generator of the SDE (30) if (7) is satisfied. It is natural that in the presence of
multiplicative Lévy noise, the maps �i(z) should depend on the coefficient σ(x). In view of the
results from Sections 3.1 and 3.2, let us discuss the following examples.

Example 5.2 (Coupling by reflection for multiplicative Lévy noise). Assume that Z is a pure
jump rotationally symmetric Lévy process in R

d with Lévy measure ν. Let n = 2, ν1(dz) =
ν2(dz) = 1

21{|z|≤η|x−y|}ν(dz) for some η ∈ (0,∞],
�1(z) = σ(y)−1σ(x)Rx,y(z) and �2(z) = �−1

1 (z) = Rx,y

(
σ(x)−1σ(y)z

);
where Rx,y(z) is the reflection operator defined in (9). It is easy to see from the rotational invari-
ance of the Lévy measure ν and the properties of Rx,y(z), that setting σ(x) = idd reduces (31)
to (10).
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Example 5.3 (Refined basic coupling for multiplicative Lévy noise). Let Z be an arbitrary
pure jump Lévy process in R

d , n = 2 and ν1 = ν2 = ν/2. For any κ > 0 and x, y ∈ R
d with

x �= y, let

�1(z) = �κ,x,y(z) := σ(y)−1(σ(x)z + (x − y)κ
)

and

�2(z) = �−1
1 (z) = σ(x)−1(σ(y)z − (x − y)κ

)
.

Again, if σ(x) = idd , (31) becomes (13). This coupling was first introduced in [22] when study-
ing the regularity of semigroups and the ergodicity of the solution to the SDE (30).
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