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The fourth characteristic of a semimartingale
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We extend the class of semimartingales in a natural way. This allows us to incorporate processes hav-
ing paths that leave the state space R

d . In particular, Markov processes related to sub-Markovian kernels,
but also non-Markovian processes with path-dependent behavior. By carefully distinguishing between two
killing states, we are able to introduce a fourth semimartingale characteristic which generalizes the fourth
part of the Lévy quadruple. Using the probabilistic symbol, we analyze the close relationship between the
generators of certain Markov processes with killing and their (now four) semimartingale characteristics.
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1. Introduction

Let Z = (Zt )t≥0 be a Lévy process. Assume in addition that Z is conservative, that is, Pz(Zt ∈
R

d) = 1 for every t ≥ 0 and each starting point z ∈ R
d . It is a well-known fact that the character-

istic function ϕZt :Rd →C can be written as (t ≥ 0)

ϕZt (ξ) = E
z
(
ei(Zt−z)′ξ ) = E

0(eiZ′
t ξ

) = e−tψ(ξ), (1)

where

ψ(ξ) = −i�′ξ + 1

2
ξ ′Qξ −

∫
Rd\{0}

(
eiy′ξ − 1 − iy′ξ · χ(y)

)
N(dy). (2)

Here, � ∈ R
d , Q is a positive semidefinite matrix, N the so called Lévy measure (cf. [28] (8.2))

and χ : Rd → R is a cut-off function. Every conservative Lévy process is a semimartingale
with respect to its natural filtration. The semimartingale characteristics (Bt ,Ct , ν(·, dt)) are a
generalization of the Lévy triplet (�,Q,N).

The characteristic exponent ψ of each Lévy process is a continuous negative definite function
in the sense of Schoenberg (cf. [2], Section 7). Each function of this class can be represented in
the following way:

φ(ξ) = a − i�′ξ + 1

2
ξ ′Qξ −

∫
Rd\{0}

(
eiy′ξ − 1 − iy′ξ · χ(y)

)
N(dy). (3)

Even with the additional component a > 0 one can associate a stochastic process Z̃ with this
characteristic exponent via (1). This process is the Lévy process Z associated with (�,Q,N) with
the following modification: with a we associate a killing time, which is exponentially distributed
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with parameter a and independent of Z. The new process Z̃ (with killing) behaves like Z, but as
soon as the killing time is reached, it jumps to 	. It will become handy to write this as

Z̃t = Zt + Kt,

where K = (Kt )t≥0 denotes the ‘killing process’ which only attends the values {0,	}. Let us
emphasize already here that 	 denotes one distinguished killing state and we set 	 + r := 	

for every r ∈ R
d . In the case of Lévy processes, Z and K are independent and one killing state

is sufficient. Obviously, there exist more interesting processes admitting (state-space-)dependent
killing. Let us mention that this very simple class of Lévy processes with killing is not included
in the classical semimartingale setting. In [35], we have introduced a class of semimartingales
admitting a predictable killing, but even in this framework Lévy processes with killing are not
included. This is somehow not satisfactory since they perfectly fit into the framework of sub-
Markovian kernels and hence Markov processes which are in turn closely linked to semimartin-
gales (cf. Cinlar et al. [9]).

We have seen that it is canonical to associate the quadruple (a, �,Q,N) with a Lévy process
with killing. This allows us to take the whole class of continuous negative definite functions
into account (cf. [2] Theorem 10.8). In the semimartingale framework, there exists by now no
equivalent concept to the fourth part a of the Lévy quadruple. It is the aim of this paper to provide
a natural extension of the class of semimartingales along with a fourth characteristic.

Since the three characteristics have become canonical, let us give a second motivation, why it
is useful to introduce a fourth characteristic. There is an intimate relationship between Markov
processes and semimartingales which has been studied in [9,35] and [8]. Let us elaborate on this
relationship in the case of Feller processes with sufficiently rich domain.

Let A be the generator of the Feller semigroup. It is a well-known fact ([18] Section 4.5 and
[10]) that if the test functions C∞

c (Rd) are contained in the domain D(A) ⊆ C0(R
d) of A, this

operator can be written as

Au(x) = −
∫
Rd

eix′ξ q(x, ξ)û(ξ) dξ
(
u ∈ C∞

c

(
R

d
))

, (4)

where û(ξ) = 1/(2π)d
∫

e−iy′ξ u(y) dy denotes the Fourier transform and q : Rd ×R
d −→ C is

locally bounded and for fixed x a continuous negative definite function in the co-variable, that is,

q(x, ξ) = a(x) − i�(x)′ξ + 1

2
ξ ′Q(x)ξ −

∫
Rd\{0}

(
eiy′ξ − 1 − iy′ξ · χ(y)

)
N(x,dy). (5)

This function q is called (functional analytic) symbol of the Feller process. Usually it is directly
assumed that a = 0 (cf. [4,5,31,35]). Hence, non-predictable killing is excluded. In [35], we have
shown that under this additional assumption every such Feller process is a semimartingale and
that there is a close relationship between the generator and the semimartingale characteristic (cf.
in this context Çinlar et al. [9]). Subsequently, we establish a framework that allows to handle
the extended setting. In this framework Feller processes with sufficiently rich domain are semi-
martingales, even if they jump to the point-of-no-return ∂ in a non-predictable way. Moreover,
these Feller processes belong to the natural extension of what is often called homogeneous dif-
fusion with jumps (cf. [21] Section III.2c).
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The reader might wonder why the fourth characteristic has been overlooked for quite a long
time. Let us try to give a partial answer: Starting with the Lévy example from above, the fourth
characteristic should describe a kind of ‘local killing rate’. Let X be the solution of some mar-
tingale problem or be given by a family of sub-Markovian kernels. Writing down the state-space
dependent killing rate at zero for such a process in a straightforward way one gets

λx := lim
h↓0

P
x(Xh = ∂)

h
. (6)

The point ∂ can be reached in different ways: jump to ∂ as soon as a certain value in space
or time is reached, instant killing after an exponential waiting time, an accumulation of jumps
having higher-and-higher jump intensity after each jump etc. While the last phenomenon can be
described by the classical three characteristics (here, the third one). This is not the case for the
other phenomena. Therefore, one has to separate the killing time. Doing this in the canonical way
(predictable vs. totally inaccessible) leads nowhere. In fact one has to separate between explosion
vs. everything else. The explosion part can be described by the classical characteristics, while the
remainder part is described by the fourth characteristic. Together this yields a full description of
the paths leaving R

d , allowing e.g. for a general representation result (cf. Theorem 2.5).
The notation closely follows [21]. By E we denote a closed subset of Rd and ∂ is the point-

of-no-return which will be separated into two points subsequently. A function χ : Rd → R is
called cut-off function if it is Borel measurable, with compact support and equal to one in a
neighborhood of zero. In this case h(y) := χ(y) · y is a truncation function in the sense of [21].
We will work on the canonical space, hence  denotes the space of càdlàg functions ω : R+ →
E ∪ {∂} such that ω(t−) = ∂ or ω(t) = ∂ implies ω(u) = ∂ for u ≥ t . Analogously for 	 and
∞. As usual Xt(ω) := ω(t) for t ≥ 0,

FX := σ(Xs : s ≥ 0) and FX
t := σ(Xs : 0 ≤ s ≤ t).

Vectors v are thought of as column vectors and we denote the transposed vector by v′.
The paper is organized as follows: in the subsequent section we present the definitions and our

main results (Theorem 2.13 and Theorem 2.18). Some more examples from various areas of the
theory of stochastic processes are analyzed shortly in Section 3. The final section consists of the
proofs of the main results along with some side remarks.

2. Definitions and main results

One of the main ideas in order to handle the fourth component is to distinguish carefully between
two ways of killing, that is, of leaving the set E ⊆R

d and to associate two different killing states
(∞ and 	) with the two types of killing. Consequently our processes live on Ẽ := E ∪ {∞,	}.
As a topological space E∞ := E ∪ {∞} is the Alexandrov compactification of E. By adding
another point, that is, by applying another Alexandrov extension, we get the isolated point 	. If
not mentioned otherwise, every function f on E is extended to Ẽ by setting f (	) = f (∞) = 0.

Most of the time we will work with one probability measure P, but sometimes we take the
starting point into account, that is, we consider a stochastic basis (,F, (Ft )t≥0,P

x)x∈Ẽ . In this
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case, it is always assumed that the process under consideration is normal, that is, Px(X0 = x) =
1.

Definition 2.1. The sequence of stopping times (σ ′
n)n∈N given by (n ≥ 1)

σ ′
n := inf

{
t ≥ 0 : ‖Xt − x‖ ≥ n or ‖Xt− − x‖ ≥ n

}
,

is called separating sequence. Dealing with (Px)x∈Ẽ , all the stopping times depend on the start-
ing point x. Since x is most of the time fixed in our calculations we refrain from using a sub- or
superscript x.

The sequence (σ ′
n)n∈N will be used subsequently in order to separate explosion and other ways

of killing: if a process is defined via the martingale problem or by a sub-Markovian family of
kernels, usually a single ideal point, say ∂ , is added to the state space. A posteriori it is possible
to divide this ideal point into ∞ and 	. Let ζ ∂ be the stopping time, when X leaves E. If σ ′

n(ω)

converges to ζ ∂(ω) without reaching it, we set X(ω) = ∞ on [[ζ ∂ ,+∞[[ otherwise we set it
equal to 	. In an analogous way, we separate the stopping time ζ ∂ . The ideal point is either
reached by an explosion ζ∞ or by a sudden killing (‘jump’) ζ	:

ζ	 :=
{

ζ ∂ if σ ′
n = ζ ∂ for some n ∈N,

+∞ if σ ′
n < ζ ∂ for all n ∈N,

ζ∞ :=
{

ζ ∂ if σ ′
n < ζ ∂ for all n ∈N,

+∞ if σ ′
n = ζ ∂ for some n ∈N,

σn :=
{

σ ′
n if σ ′

n < ζ ∂,

+∞ if σ ′
n = ζ ∂ ,

(7)

we obtain that {ζ∞ < +∞} and {ζ	 < +∞} are disjoint and that ζ∞ is a predictable time with
announcing sequence σn ∧ n. We set ‖	‖ := ‖∞‖ := ‖∂‖ := ∞ (cf. Cherdito et al. [8]).

Definition 2.2. Let E be a closed subset of Rd . Let X be a stochastic process on the stochastic
basis (,FX, (FX

t )t≥0,P) with values in Ẽ. Let ζ∞ be an explosion, that is, σn ∧ n < ζ∞ for
every n ∈N and let ζ	 be a stopping time.

X is called a process with killing if

X · 1[[0,ζ∞[[ ⊆ E, X · 1[[ζ∞,ζ	[[ = ∞ and X · 1[[ζ	,+∞[[ = 	. (8)

Here, we set as usual [ζ∞(ω), ζ	(ω)[ = ∅ if ζ∞(ω) ≥ ζ	(ω). In the special case that ζ	 =
+∞, we call X a process with explosion.

As we have pointed out above and as it will become clear in the subsequent sections, it is
important to distinguish between ∞ and 	. To this end, we define the following: 	 + r = 	

and ∞ + r = ∞ for every r ∈ R
d , 	 · s = 	 and ∞ · s = ∞ for every s ∈ R, ∞ + ∞ = ∞,
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	 + 	 = 	 and finally 	 + ∞ = 	. The last point is in line with (8) in the sense that we allow
a transition from ∞ to 	, but not in the other direction. If we start with ∂ as described above,
a transition from ∞ to 	 does not happen; in Example 2.6(3), we encounter a situation where
such a transition is natural.

We extend the class of semimartingales (cf. [21] Definition I.4.21) in two steps: We call a
process X with explosion a semimartingale with explosion if for the announcing sequence σn ∧n

every X(σn∧n)− is a (classical) semimartingale. This definition could indeed be used for every
predictable killing time. This is not needed subsequently. A reader who is interested in the details
might consult the Appendix of [35].

The most simple case of a semimartingale with predictable killing which is not an explosion
is the locally constant process given by Xx

t = x on [0,1[ and being killed at time 1. Although
this is a predictable time the process somehow jumps ‘all of a sudden’ to infinity. In the proofs,
it turned out that it is more convenient and more natural to consider this kind of killing – which
is predictable but not an explosion – in the 	 and ζ	 context. Now we have to incorporate this
(possibly) non-predictable killing into the semimartingale framework.

Definition 2.3. A process with killing X̃ = (X̃t )t≥0 is called generalized semimartingale, if it
can be written in the following form: X̃t = Xt +Kt where X = (Xt )t≥0 is a semimartingale with
explosion and K = (Kt )t≥0 is a killing process, that is, for a stopping time ζ	

Kt = 	 · 1[[ζ	,+∞[[.

As in the classical case, the class of generalized semimartingales might often be too general
to be used in application. After some general results we will describe some useful subclasses,
like so called ‘autonomous processes’ which are natural extensions of homogeneous diffusions
with jumps. Furthermore, we will show that a wide class of Markov processes is contained in
this class.

Let X̃ = X + K be a generalized semimartingale. The first three characteristics (B,C, ν) are
defined (pre-)locally up to the predictable time ζ∞: X(σn∧n)− is a classical semimartingale for
every n ∈ N. Hence, the three characteristics can be defined for these pre-stopped processes (cf.
[26] Theorem II.6) in the classical way, see, for example, [21] Section II.2. The characteristics of
X (and hence X̃) are defined to be equal to these localized characteristics on [[0, (σn ∧ n)[[ for
every n ∈ N.

Following our motivating examples from above, the fourth characteristic should describe the
local killing rate. In analogy to reliability theory and the theory of point processes, we define the
following:

Definition 2.4. Let X̃ be a generalized semimartingale with values in Ẽ. The fourth character-
istic (At )t≥0 is the predictable compensator (cf. [21] Theorem I.3.17) of the process 1{X̃=	} on

[[0, ζ	]] that is the unique predictable process A of finite variation such that M defined via

Mt := (1{X̃t=	} − At)
ζ	

is a local martingale.
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Obviously the uniqueness of the process A only holds up to the killing time ζ	. Hence, it is
natural to define this last characteristic on [[0, ζ	]].

The reader might wonder, why 	 is not just included in the state space and the compensation
of 	 in ν. It is not the actual jump, which is important in compensation. It is the jump size. If 	 is
put inside the Euclidean space, one generates a non-canonical finite jump-size. If 	 is infinitely
far away, the jump size is +∞. Such a jump cannot be compensated. What should one subtract
from a process with this jump in order to get a local martingale (stopping before this jump is also
not an option, since the jump time might not be predictable). Hence, we follow the idea of the
classical three characteristics: do not compensate the whole process, but something related to the
process. For the second characteristic, this is the continuous part of the square bracket; for the
fourth characteristic it is 1{X̃t∈	}.

By the Definition 2.3 and Theorem II.2.34 of [21], it is possible to directly derive a general
representation result by localization.

Theorem 2.5. Let X be a generalized semimartingale having characteristics (A,B,C, ν). Then
X can be written as

X = X0 + K + Xc + (χ · id) ∗ (
μX − ν

) +
∑
s≤·

(
	Xs − χ(	Xs) · 	Xs

) + B

Recall that 	 can only be reached by K while ∞ might be reached by the other parts. The
jump measure μX as well as its compensator ν are defined pre-locally up to ζ∞. The same is
true for B and Xc.

Example 2.6. (1) Let Z̃ be a Lévy process with killing. It is a generalized semimartin-
gale by the arguments we have recalled in the Introduction. The first three characteristics are
(�t,Qt, dtN(dy)). Recall that Lévy processes cannot explode. The fourth characteristic of this
process is

At = at on
[[

0, ζ	
]]

,

where a is the fourth component of the Lévy quadruple as well as the local killing rate (cf. λx

in (17) below). This can be seen as follows: the compensator of a Poisson process (Pt )t≥0 is
(at)t≥0. By stopping at ζ	 we obtain that(

(Pt − at)ζ
	)

t≥0

is a local martingale.
(2) Next, we consider spontaneous killing. In case of the process (for Px )

X̃t = x · 1]0,1] + 	1]1,+∞[

the fourth characteristic is 1{X̃t=	}. We obtain such a compensator whenever the killing process
K is predictable.

(3) Let X be the solution of an SDE with locally Lipschitz coefficients. We consider the case
where X has explosions. Define X̃ := X + K where K is an exponential killing independent of
X with killing rate one. This yields a process with a possible transition from ∞ to 	.
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(4) Non-Markovian killing is included in our theory: Let X be any semimartingale. We define
the new process

Yt :=
{

	 if there exists t ∈ [0,1[ such that Xt < 0,

Xt else.

The killing process is predictable but not Markovian.

In order to have an example on how to generalize three-characteristics-results to the new set-
ting, we include the following theorem. The proof is a combination of the classical one ([21]
Theorem II.2.21) plus ideas from the proof of our Theorem 2.13.

Theorem 2.7. Let X̃ be a process with killing and let τn := σn ∧ n be the announcing sequence
of ζ∞. There is equivalence between:

(a) X̃ is a generalized semimartingale with characteristics (A,B,C, ν).
(b) The following processes are local martingales for each n.

(i) M(h)τn where M(h) := X̃(h) − B − X̃0
(ii) (M(h)jM(h)k − C̃jk)τn for each 0 ≤ j, k ≤ d

(iii) (g ∗ μX̃τn − g ∗ ν)τn for g ∈ C+(E)

(iv) (1{X̃t=	} − At)
ζ	

where h = χ ·id, C̃ is the modified second characteristic (cf. [21] Definition II.2.16). In the same
monograph C+(E) resp. X̃(h) can be found in II.2.20 resp. II.2.4.

Let us emphasize that – along the same lines – various other results on the fourth characteristic
can be established which are analogous to those found in [21] Section II.2.

Remark 2.8. The theory of stochastic integration can now be generalized as well. It works for
the explosion part pre-locally as in the classical case. A-posteriori one includes the instant-killing
into the integral process by adding a killing process K having as killing time the minimum of the
	-killing times of the integrand and the integrator.

From now on, we restrict ourselves to the following (still quite general) class of stochastic
processes:

Definition 2.9. An autonomous semimartingale (X̃,Px)x∈Ẽ is a generalized semimartingale on
Ẽ with characteristics (A,B,C, ν) of the form

At(ω) =
∫ t

0
a
(
X̃s(ω)

)
ds on

[[
0, ζ	

]]
,

B
j
t (ω) =

∫ t

0
�j

(
X̃s(ω)

)
ds on

[[
0, ζ∞[[

for j = 1, . . . , d,

(9)

C
jk
t (ω) =

∫ t

0
Qjk

(
X̃s(ω)

)
ds on

[[
0, ζ∞[[

for j, k = 1, . . . , d,
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ν(ω;ds, dy) = N
(
X̃s(ω), dy

)
ds on

[[
0, ζ∞[[

for every x ∈ E with respect to a fixed cut-off function χ . Here, a(x) ≥ 0, �(x) = (�1(x), . . . ,

�d(x))′ is a vector in R
d , Q(x) is a positive semi-definite matrix and N is a Borel transition

kernel such that N(x, {0}) = 0. We call a, �, Q and n := ∫
y �=0(1 ∧ ‖y‖2)N(·, dy) the differential

characteristics of the process.

Remark 2.10. We call the above class ‘autonomous semimartingale’ since each part of the dy-
namics is driven by the process itself.

The following proposition is easily deduced from the definitions above.

Proposition 2.11. Let X̃ be an autonomous semimartingale. Then X̃ can be written as X̃ =
X + K where X is a homogeneous diffusion with jumps and explosion, that is, an autonomous
semimartingale having a = 0. The process K = (Kt )t≥0 attends only the values 0 and 	 and has
the fourth characteristic

At =
∫ t

0
a(Xs) ds.

on [[0, ζ	]].

Subsequently, we analyze the connection between certain Markov processes and autonomous
semimartingales. Since the proof of the following result is involved, we have shifted it to Sec-
tion 4.

We start with Markov processes defined via the martingale problem: let (a, �,Q,n) be as in
Definition 2.9 and assume from now on all four components to be locally bounded. Then

Au(x) := −a(x)u(x) +
d∑

j=1

�j (x)
∂u(x)

∂xj
+ 1

2

d∑
j,k=1

Qjk(x)
∂2u(x)

∂xj ∂xk

=
∫
Rd

(
u(x + y) − u(x) − ∇u(x)′yχ(y)

)
N(x,dy) (10)

defines a linear operator from C2
c (E) to Bb(E), the space of bounded Borel measurable functions.

Definition 2.12. We say that a probability measure P on (,FX) is a solution of the martingale
problem for A, if for all u ∈ C2

c (E),

Mu
t := u(Xt ) − u(X0) −

∫ t

0
Au(Xs) ds, t ≥ 0,

is a P-martingale with respect to (FX
t )t≥0. We say that the martingale problem for A is well-

posed, if for every probability distribution η on E there exists a unique solution P
η of the mar-

tingale problem for A such that Pη ◦ X−1
0 = η.
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Every solution of the martingale problem is an autonomous semimartingale with respect to the
filtration made right continuous:

Theorem 2.13. Let (Px)x∈E be a family of solutions to the martingale problem for A defined
via (a, �,Q,N) and χ , such that

P
x ◦ X−1

0 = εx,

the Dirac measure in x. After separating ∂ into 	 and ∞ as above, X = (Xt )t≥0 is an au-
tonomous semimartingale on (,FX, (FX

t+)t≥0,P
x)x∈E and the characteristics (A,B,C, ν)

with respect to χ are given by (9).

The following result shows, that the above theorem encompasses [4] Theorem 2.44. Compare
in this context Hoh [13]. Dealing with Feller processes, there are different conventions in the
literature: here, we consider Ttu(x) := E

xu(Xt ) (t ≥ 0) as semigroup on (C0(R
d),‖ · ‖∞), the

space of continuous functions vanishing at infinity. For every Markov process in the sense of Blu-
menthal an Getoor, Tt is for every t ≥ 0 a contractive, positivity preserving and sub-Markovian
operator. If in addition

(F1) Tt : C0(R
d) −→ C0(R

d) for every t ≥ 0 and
(F2) limt↓0 ‖Ttu − u‖∞ = 0 for every u ∈ C0(R

d)

we call the semigroup and the associated process X = (Xt )t≥0 Feller. The generator (A,D(A))

is the closed operator given by

Au(x) := lim
t↓0

Ttu(x) − u(x)

t

(
u ∈ D(A)

)
, (11)

where D(A) ⊆ C0(R
d) is the set on which the limit (11) exists in strong sense, that is, uniformly

in x ∈R
d .

Corollary 2.14. Let X be a Feller process on Rd with càdlàg paths. Furthermore, let C∞
c (Rd) ⊆

D(A). After separating ∂ into 	 and ∞ as above, X is an autonomous semimartingale on
(,FX, (FX

t+)t≥0,P
x)x∈Rd .

Proof. Let (A,D(A)) denote the generator of the Feller process X. From the assumption
C∞

c (Rd) ⊆ D(A) it is easily deduced that C2
c (Rd) ⊆ D(A) and that A is given by (10) on

this function space. This result seems to be some kind of folklore anyway, but it can be deduced
rigorously as a straight-forward extension of [35] Theorem 3.7 and its corollary. By [27] Propo-
sition VII.1.6 the process Mu is a martingale for every u ∈ C2

c (Rd). The local boundedness of
the differential characteristic is always fulfilled for rich Feller processes by Lemma 3.3 of [35].
In the proof of that result only properties of negative definite functions have been used. These
remain true, if a fourth component is considered. Hence, the result follows from our theorem
above. �

We have to impose two assumptions on the differential characteristics (a, �,Q,n) in order
to derive our second main result. These assumptions are very weak and they are satisfied by



Fourth characteristic 651

virtually every example in the literature. The first assumption is the local boundedness of the
differential characteristics, the second assumption reads as follows:

Definition 2.15. Let X be a generalized semimartingale and f : Ẽ → R be a Borel-measurable
function. f is called X-finely continuous (or finely continuous, for short) if the function

t �→ f (Xt ) = f ◦ Xt (12)

is right continuous at zero P-a.s.

Remark 2.16. (a) The points 	 and ∞ do not have to be considered in this definition. The
process starting in 	 has to be constant and ∞ can be left only by jumping to 	. (b) Fine
continuity is introduced differently in the Markovian framework (see the monographs [3] Section
II.4 and [12]). By Theorem 4.8 of [3] the classical definition is equivalent to (12) in the Markovian
setting. (c) If the differential characteristics are continuous, the condition stated in Definition 2.15
is obviously fulfilled, since the paths of X are càdlàg.

Now, we are ready to introduce the ‘symbol’ of a stochastic process in this general framework.
The symbol offers a neat way to calculate the (extended) generator (if the process is Markovian)
and the semimartingale characteristics. Since the symbol contains the same information as the
characteristics it has been used (in the conservative case) to analyze e.g. the Hausdorff dimension
of paths [30], their strong variation [25], Hölder conditions [31], ultracontractivity of semigroups
[33], laws of iterated logarithm [24] and stationary distributions of Markov processes [1].

Dealing with the symbol, we could work on E with its relative topology. We make things a bit
easier by prolonging the process to R

d by setting Xt := x for x ∈ R
d\E and t ≥ 0. Hence, from

now on we assume that our processes live on R
d respectively, on R̃d = R

d ∪ {∞,	}. Starting
with a process on Ẽ local boundedness and fine continuity of the differential characteristic are
not harmed by this extension. Furthermore, we write for ξ ∈R

d

eξ (x) :=
{

eix′ξ if x ∈ R
d,

0 if x ∈ {∞,	}.

Definition 2.17. Let X be an R̃d -valued semimartingale, with respect to P
x for every x ∈ R

d .
Fix a starting point x ∈ R

d and let K ⊆ R
d be a compact neighborhood of x. Define σ to be the

first exit time of X from K :

σ := σx
K := inf

{
t ≥ 0 : Xt ∈ R̃d\K}

. (13)

The function p : Rd ×R
d →C given by

p(x, ξ) := − lim
t↓0

E
x(eξ (X

σ
t − x) − 1)

t
(14)

is called the (probabilistic) symbol of the process, if the limit exists for every x ∈ R
d , ξ ∈ R

d

independently of the choice of K .
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If we need the symbol on R̃d , it is defined as follows: in 	 it is zero and in ∞ it is the local
killing rate (starting in ∞).

Due to the definition of the symbol the following simple facts hold which we will use several
times subsequently

σ ≤ ζ∞ and σ ≤ ζ	, (15)

where the first inequality is always strict on {ζ∞ < +∞}.
Finally, we calculate the symbols of the processes under consideration. This concept turns

out to be the space-dependent analog of the Lévy exponent (3). Compare in this context [4]
Section 2.5.

Theorem 2.18. Let X be an autonomous semimartingale on R̃d such that the differential char-
acteristics a, �, Q and n are locally bounded and finely continuous for every Px (x ∈R

d). In this
case, the limit (14) exists and the symbol of X is

p(x, ξ) = a(x) − i�(x)′ξ + 1

2
ξ ′Q(x)ξ −

∫
y �=0

(
eiy′ξ − 1 − iy′ξ · χ(y)

)
N(x,dy). (16)

Remarks 2.19. (a) The symbol allows to calculate the (extended) generator of Markov processes
in a neat way using formula (4). Even in the non-Markovian case, having calculated the symbol,
one can write down the semimartingale characteristics by (9). This is nice in particular if the
process is given as a solution of an SDE (cf. [32]).

(b) Results on conservativeness of Feller processes or Lévy-type processes can now be used
in full generality (cf. Hoh [14] Chapter 9, Böttcher et al. [4] Theorem 2.33 and Schilling [29]
Section 5).

(c) The symbol of an autonomous semimartingale is a state-space dependent continuous nega-
tive definite function. This is natural since the symbol describes the local dynamics of the process.
In contrast to Lévy processes these dynamics depend on the current position in space.

(d) Let us emphasize that the assumptions of the theorem are very weak. If for example, the
differential characteristics are continuous, they are directly fulfilled.

(e) We believe that various results that have been proved and shown to be useful for classical
semimartingales, characteristics and symbols can be transferred to our more general setting.

Having stated our main theorems, let us shortly elaborate on the novelties of the present paper
in contrast to the article [8]: in that paper, the authors stop the exploding paths of the process
before this actually happens and set the instant-killing-point (our 	) equal to a point, say y, in
the space Rd\E, or, if this is not possible in R

d+1\(E ×{0}). By this procedure, the process does
not reach any point, which is infinitely far away, any more. The first (minor) issue is that by this
convention, the process is mapped to a process which already exists in the d- respectively (d +1)-
dimensional space. Hence, a process with killing is treated like a closely related semimartingale
without killing. A general representation as in Theorem 2.5 cannot be reached any more. The
second – and more delicate – problem is that the new process with y only admits finite jumps.
Hence, it can be compensated in the classical way. For the process stopped having reached y

there exists a process N which compensates the jump process to a classical local martingale
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and this N depends on the choice of y which is not canonical. In contrast to this, our fourth
characteristic is canonical and can now be used like the other characteristics: it describes the
fourth component showing up in the general representation (Theorem 2.5), it is characterized
analogously to the other three characteristics (Theorem 2.7) and it could be included in virtually
each result of Section II.2 in [21]. The Lévy quadruple is finally generalized in a natural way. Let
us also emphasize, that various articles have shown the applicability of the stochastic symbol.
This concept is not mentioned in [8] and appears here for the first time in full generality.

3. Complementary results and examples

In order to understand the intuition behind the fourth characteristic, the following example is
helpful.

Example 3.1 (Just killing). Consider a time homogeneous Markov process (X,Px)x∈R with
killing which only attends the values x and 	. Denote the local killing rate by

λx := lim
h↓0

P
x(Xh = 	)

h
. (17)

It is easy to see that in this case

p(x, ξ) = a(x) = λx

holds.

Example 3.2 (Lévy process). Let Z̃ = Z + K be a Lévy process with killing as considered in
the Introduction. We get

−E
0eξ (X

σ
t + Kt) − 1

t
= −

∫
{Kt=	}

eξ (	) − 1

t
dP0 −

∫
{Kt �=	}

eiX′
t ξ − 1

t
dP0

= P
0(Kt = 	)

t
+

∫
1{Kt �=	} dP0

∫
−eiX′

t ξ − 1

t
dP0.

Here, we have used the facts that Lévy processes are homogeneous in space, stopping does not
harm the killing process and X and K are independent in the Lévy case. The last expression tends
to the sum of the local killing rate a and the classical Lévy exponent ψ of Z, since P

0(Kt �= 	)

tends to one for t ↓ 0. Hence, the symbol of a Lévy process with killing is its characteristic
exponent φ (cf. (3)).

The following results encompass [35] Theorem 4.3. It is easily deduced combining Theo-
rem 2.13, Corollary 2.14 respectively its proof and Theorem 2.18:

Theorem 3.3. Let X be a Feller process on R
d with càdlàg paths. Furthermore, let C∞

c (Rd) ⊆
D(A). After separating ∂ into 	 and ∞ as in Section 2, X is an autonomous semimartingale
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on (,FX, (FX
t+)t≥0,P

x)x∈Rd . If the differential characteristics are finely continuous, the func-
tional analytic symbol q(x, ξ) and the probabilistic symbol p(x, ξ) coincide for this process.

Example 3.4 (Superdrift). Let us consider the deterministic Markov process given by

Xt =

⎧⎪⎨⎪⎩
1

1
x

− t
if t ∈ [0,1/x[,

∞ else,

under Px for x ≥ 0. For x < 0 we set Xt = x for t ≥ 0. This process is an autonomous semi-
martingale and even a Feller process. The symbol of this process is p(x, ξ) = −ix2ξ and there-
fore its first characteristic is Bt(ω) = ∫ t

0 X2
s ds. Although the process leaves R the fourth charac-

teristic is zero.

Example 3.5 (CIR with jumps and killing). The following one-dimensional process Z consid-
ered in Cherdito et al. [8] Section 6 is a semimartingale in our extended framework: Let (Wt)t≥0
be a standard Brownian motion, (Nt )t≥0 a compound process with jump arrival rate λ > 0 and
positive jumps. Let the jumps be given by a probability measure m on ]0,∞[. Furthermore, let
τ be an exponentially distributed random time with mean 1/γ > 0. Let σ > 0, b0 ≥ σ 2/2 and
b1 ∈ R. Let Y = (Yt )t≥0 be given on ]0,∞[ as the unique strong solution of

dYt = (b0 + b1Yt ) dt + σ
√

Yt dWt + dNt ,

Y0 = y, y > 0,

and Yt := y identically on ] − ∞,0]. The process Z is then given by

Z := Y1[[0,τ [[ + 	1[[τ,+∞[[

The fourth characteristic of this process is λt on [[0, τ ]] and the symbol of Z on ]0,∞[ is

p(x, ξ) = λ − i(b0 + b1x)ξ + 1

2
σ 2xξ2 − (

ϕm(ξ) − 1
)
,

where ϕm denotes the characteristic function of the measure m. The example in [6] as well as the
affine processes in [7] could be treated in the same way.

Example 3.6 (Dangerous areas). Let Y be a given Markov semimartingale without killing.
Now we add an additional component: Let a ∈ Cb(R

d) and define X to be equal to Y with the
following exception:

P
x(Xt ∈ 	) = E

x

∫ t

0
a(Xs)e

−a(Xs)s ds

In this case a is the fourth differential characteristic of X. Processes Y used in mathematical
finance could be modified in this way. Interpretation: if a company is going through rough times
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(high value of a) for a long time, it is more likely that a sudden bankrupt occurs. The COGARCH
process (cf. [22,23,37]) might be a candidate for such a modification.

If Y is given as a solution of a Lévy driven SDE with coefficient � : Rd → R
d×m, the symbol

of the modified process X is

p(x, ξ) = a(x) + ψ
(
�(x)′ξ

)
,

where ψ is the Lévy exponent of the m-dimensional driver (cf. [25,32]).

4. Proofs of the main results

Proof of Theorem 2.13. Let x ∈ E and Px be a solution to the martingale problem for A with
η = εx , the Dirac measure in x. In the first step we work along the lines of [8] Section 3: we
identify ∂ with a point ∂̂ in R

d\E. Such a point exists without loss of generality since otherwise
we can extend �, Q, N and χ in a straightforward way to R

d+1.
The modified process

X̂ := X1[[0,ζ ∂ [[ + ∂̂1[[ζ ∂ ,+∞[[
is (FX

t )-adapted and has right-continuous paths in R
d . Nevertheless, ‖X̂ζ ∂−‖ = +∞ is still

possible, that is, the modified process might explode.
Now let σ be an arbitrary (FX

t )-stopping time such that σ < ζ∂ . In this case⋃
n≥1

{σ < σn} = .

Therefore, the local boundedness of (a, �,Q,n) implies that the following (FX
t )-predictable

processes and random measures are well defined for every ω ∈ :

Bσ
t :=

∫ σ∧t

0
�(Xs) ds,

Cσ
t :=

∫ σ∧t

0
Q(Xs)ds,

νσ (dt, dy) := (
N(Xt , dy) + a(Xt )ε̂∂−Xt

(dy)
)
dt.

In order to simplify the expression for Bσ
t the truncation function is chosen in a way that χ(̂∂ −

x) = 0 for all x ∈ E.
By Proposition 3.2 of [8] for every (FX

t )-stopping time σ < ζ∞ we obtain that X̂σ is a clas-
sical semimartingale on (,F,FX

t+,Px) with characteristics (Bσ ,Cσ , νσ ) with respect to χ .
Here, ζ∞ denotes the explosion time, cf. (7).

Now we proceed as described in Section 2. Let σ specifically be the σn announcing ζ∞ (n ∈
N). We set ∞ := ∂̂ for those ω with σn(ω) < ζ∂(ω) for all n ∈N. Letting n → ∞ we obtain that
X̂ is a semimartingale with explosion having the characteristics (Bσn,Cσn, νσn) on [[0, σn[[, in
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particular these three characteristics are well defined on [[0, ζ∞[[. Finally, we include the point
	 by setting 	 := ∂̂ for those ω ∈  such that σn(ω) = ζ ∂(ω) for some n ∈ N. Since it is now
possible (again) to jump to 	 /∈R

d we define in addition

Kt := 	 · 1[[ζ	,+∞[[

and obtain X = X̂ +K . Since x +	 = 	 for every x ∈ R
d we can delete the last part of the third

characteristic. This last part directly yields, however, the structure of the fourth characteristic.
Hence, the theorem is proved. �

Now we prove our second main result. For the reader’s convenience we present the one-
dimensional proof, the multi-dimensional versions being alike but notationally more involved.

Proof of Theorem 2.18. By Proposition 2.11, the autonomous semimartingale can be written
as X̃ = X + K where X is a semimartingale with explosion and K a killing process with fourth
differential characteristic a.

Let us consider:

E
x
(
ei(Xσ

t +Kσ
t −x)ξ

)
=

∫
{Kσ

t =	}
eξ

(
Xσ

t − x
) · eξ

(
Kσ

t

)
dPx +

∫
{Kσ

t �=	}
eξ

(
Xσ

t − x
) · eξ

(
Kσ

t

)
dPx

=
∫

{Kσ
t �=	}

eξ

(
Xσ

t − x
)
dPx

Therefore,

Exeξ (X̃
σ
t − x) − 1

t
=

∫


eξ (X
σ
t − x)dPx − 1

t
−

∫
{Kσ

t =	} eξ (X
σ
t − x)dPx

t
(18)

the first term on the right-hand side tends to −p(x, ξ), the classical symbol without a by Theo-
rem 3.6 of [36]. In this theorem, only the conservative case is considered, by (15) this is sufficient.

For the second term of (18), we obtain:∫
{Kσ

t =	} eξ (X
σ
t − x)dPx

t
= 1

t

∫
{Kσ

t =	}
1dPx + 1

t

∫
{Kσ

t =	}
(
eξ

(
Xσ

t − x
) − 1

)
dPx

Here, since the fourth characteristic is defined as a compensator (Kσ
t = 	 iff X̃σ

t = 	), the first
term can be written as (cf. (15) and [21] Theorem I.3.17(ii))

1

t
E

xAσ
t = E

x 1

t

∫ t

0
a
(
X̃σ

s

)
ds = E

x

∫ 1

0
a
(
X̃σ

ts

)
ds,

which tends to a(x) for t tending to zero, because a is finely continuous. To this end, we use the
dominated convergence theorem, the fact that X̃σ is bounded on [[0, ζ∞[[ and that a singleton is
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a Lebesgue nullset. The subsequent lemma shows that the remainder term tends to zero. Hence,
the result. �

Lemma 4.1. Let X̃ be an autonomous semimartingale and σ as in Definition 2.17. Separate
X̃ = X + K as in Proposition 2.11. Furthermore let u : R̃d → K such that u|Rd ∈ C2

b(Rd),
u(∞) = 0 and u(	) = 0 where K =R or =C. Then

lim
t↓0

1

t
E

x
(
1{Kσ

t =	}
(
u
(
Xσ

t

) − u(x)
)) = 0 (19)

for every x ∈R.

This lemma could also be used to derive an alternative proof for Corollary 2.14. Again we
present the one-dimensional proof.

Proof. Let x ∈R and u as in the theorem, with values in R. For the complex valued case separate
into real- and imaginary part. Furthermore, let M > 0 be such that

max
{‖u‖∞,

∥∥u′∥∥∞,
∥∥u′′∥∥∞

} ≤ M < ∞.

Let the stopping time σ be defined as in Definition 2.17 where K is an arbitrary compact
neighborhood of x, such that K is contained in a ball of radius k around zero. We use Itô’s
formula on the (classical) bivariate semimartingale (Xσ

t ,1{Kσ
t =	})′ and the function (y, z)′ �→

(u(y) − u(x)) · z. Using Ys := 1{Kσ
s =	} as a shorthand we obtain

1

t
E

x
((

u
(
Xσ

t

) − u(x)
)
1{Kσ

t =	}
)

= 1

t
E

x

(∫ t

0
u′(Xσ

s−
)
1{Kσ

s =	} dXσ
s

)
(I)

+ 1

t
E

x

(∫ t

0
u
(
Xσ

s−
) − u(x)dYs

)
(II)

+ 1

t
E

x

(
1

2

∫ t

0
u′′(Xσ

s−
)
1{Kσ

s =	} d
[
Xσ ,Xσ

]c
s

)
(III)

+ 1

t
E

x

(
1

2

∫ t

0
u′(Xσ

s−
) · 1d

[
Xσ ,Y

]c
s

)
(IV)

+ 1

t
E

x

(
1

2

∫ t

0

(
u
(
Xσ

s−
) − u(x)

) · 0d[Y,Y ]cs
)

(V)

+ 1

t
E

x

( ∑
0≤s≤t

(
u
(
Xσ

s

) − u
(
Xσ

s−
) − u′(Xσ

s−
)
	Xσ

s

)
1{Kσ

s−=	}
)

(VI)

− 1

t
E

x

( ∑
0≤s≤t

(
u
(
Xσ

s−
) − u(x)

)
	Ys

)
(VII)
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+ 1

t
E

x

( ∑
0≤s≤t

(
u
(
Xσ

s

) − u(x)
)
1{Kσ

s =	} − (
u
(
Xσ

s

) − u(x)
)
1{Kσ

s−=	}
)

. (VIII)

Term (V) is zero. Term (IV) is zero, too, since Y is a quadratic pure jump semimartingale. Term
(II) cancels out with (VII). The left-continuous process Xσ

t− is bounded on [[0, σ ]]. Furthermore,
we have (	X)σ = (	Xσ ) and Xσ admits the stopped characteristics

Bσ
t (ω) =

∫ t∧σ(ω)

0
�
(
Xs(ω)

)
ds =

∫ t

0
�
(
Xs(ω)

)
1[[0,σ ]](ω, s) ds,

Cσ
t (ω) =

∫ t

0
Q

(
Xs(ω)

)
1[[0,σ ]](ω, s) ds,

νσ (ω;ds, dy) := 1[[0,σ ]](ω, s)N
(
Xs(ω), dy

)
ds,

(20)

with respect to the fixed cut-off function χ . One can now set the integrand at the right endpoint
of the stochastic support to zero, as we are integrating with respect to Lebesgue measure:

Bσ
t (ω) =

∫ t

0
�
(
Xs(ω)

)
1[[0,σ [[(ω, s) ds,

Cσ
t (ω) =

∫ t

0
Q

(
Xs(ω)

)
1[[0,σ [[(ω, s) ds,

νσ (ω;ds, dy) = 1[[0,σ [[(ω, s)N
(
Xs(ω), dy

)
ds.

In the first two lines, the integrand is now bounded, because � and Q are locally bounded and
‖Xσ

s (ω)‖ < k on [0, σ (ω)[ for every ω ∈ . In what follows, we will deal with the remaining
terms one-by-one. To calculate the first term, we use the canonical decomposition of the semi-
martingale (see [21], Theorem II.2.34) which we write as follows

Xσ
t = X0 + X

σ,c
t +

∫ t∧σ

0
χ(y)y

(
μXσ

(·;ds, dy) − νσ (·;ds, dy)
)

+ X̌σ (χ) + Bσ
t (χ), (21)

where X̌t = ∑
s≤t (	Xs(1 − χ(	Xs)). Therefore, term (I) can be written as

1

t
E

x

(∫ t

0
1{Kσ

s =	}u′(Xσ
s−

)
d

(
X

σ,c
t︸︷︷︸

(IX)

+
∫ t∧σ

0
χ(y)y

(
μXσ

(·;ds, dy) − νσ (·;ds, dy)
)

︸ ︷︷ ︸
(X)

+ X̌σ (χ)︸ ︷︷ ︸
(XI)

+Bσ
t (χ)︸ ︷︷ ︸
(XII)

))
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We use the linearity of the stochastic integral. Our first step is to prove for term (IX)

E
x

∫ t

0
1{Kσ

s =	}u′(Xσ
s−

)
dXσ,c

s = 0.

The integral (1{Kσ
t =	}u′(Xσ

t−)) • X
σ,c
t is a local martingale, since X

σ,c
t is a local martingale. To

see that it is indeed a martingale, we calculate the following:[(
1{Kσ =	}u′(Xσ

)) • Xσ,c,
(
1{Kσ =	}u′(Xσ − x

)) • Xσ,c
]
t

=
∫ t

0

(
1{Kσ

s =	}u′(Xσ
s

))21[[0,σ ]](s) d
[
Xc,Xc

]
s

=
∫ t

0

((
1{Kσ

s =	}u′(Xσ
s

))21[[0,σ [[(s)Q(Xs)
)
ds,

where we have used several well-known facts about the square bracket. The last term is uniformly
bounded in ω and therefore, finite for every t ≥ 0. This means that (1{Kσ

t =	}u′(Xσ
t )) •X

σ,c
t is an

L2-martingale which is zero at zero and therefore, its expected value is constantly zero.
The same is true for the integrand (X). We show that the function (ω, s, y) �→

1{Kσ
s =	}u′(Xσ

s−)yχ(y) is in the class F 2
p of Ikeda and Watanabe (see [15], Section II.3), that

is,

E
x

∫ t

0

∫
y �=0

∣∣u′(Xσ
s−

) · yχ(y)
∣∣2

νσ (·;ds, dy) < ∞.

To prove this, we observe

E
x

∫ t

0

∫
y �=0

∣∣1{Kσ
s =	}u′(Xσ

s−
)∣∣2 · ∣∣yχ(y)

∣∣2
νσ (·;ds, dy)

= E
x

∫ t

0

∫
y �=0

M2
∣∣yχ(y)

∣∣2
1[[0,σ [[(ω, s)N(Xs, dy)ds.

Since we have by hypothesis ‖ ∫
y �=0(1 ∧ y2)1[[0,σ [[N(·, dy)‖∞ < ∞ this expected value is finite.

Therefore,∫ t

0
1{Kσ

s =	}u′(Xσ
s−

)
d

(∫ s∧σ

0

∫
y �=0

χ(y)y
(
μXσ

(·;dr, dy) − νσ (·;dr, dy)
))

=
∫ t

0

∫
y �=0

(
1{Kσ

s =	}u′(Xs−)χ(y)y
)(

μXσ

(·;ds, dy) − νσ (·;ds, dy)
)

is a martingale. The last equality follows from [21], Theorem I.1.30.
Now we deal with the third term (III). Here we have[

Xσ ,Xσ
]c
t
= [

Xc,Xc
]σ
t

= Cσ
t = (

Q(Xt) • t
)σ = (

Q(Xt) · 1[[0,σ [[(t)
) • t
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and therefore,

1

2

∫ t

0

(
1{Kσ

s =	}u′′(Xσ
s−

))
d
[
Xσ ,Xσ

]c
s
= 1

2

∫ t

0
1{Kσ

s =	}u′′(Xσ
s−

)
Q(Xs) · 1[[0,σ [[(t) ds.

Since Q is finely continuous and locally bounded we obtain by dominated convergence

lim
t↓0

1

2

1

t
E

x

∫ t

0
1{Kσ

s =	}u′′(Xs)Q(Xs)1[[0,σ [[(s) ds

= lim
t↓0

1

2
E

x

∫ 1

0
1{Kσ

st=	}u′′(Xst )Q(Xst )1[[0,σ [[(st) ds = 0.

For the finite variation part of the first term, that is, (XII), we obtain analogously the limit zero.
Finally, we plug together the sum in (VI) and part (XI) of (I):∑

0≤s≤t

1{Kσ
s−=	}

(
u
(
Xσ

s

) − u
(
Xσ

s−
) − u′(Xσ

s−
)
	Xσ

s χ
(
	Xσ

s

))
=

∑
0≤s≤t

1{Kσ
s−=	}

(
u
(
Xσ

s− + 	Xσ
s

) − u
(
Xσ

s−
) − u′(Xσ

s−
)
	Xσ

s χ
(
	Xσ

s

))
=

∫
]0,t]×Rd

1{Kσ
s−=	}

(
u
(
Xσ

s− + y
) − u

(
Xσ

s−
) − u′(Xσ

s−
)
yχ(y)

)
μXσ

(·;ds, dy)

=
∫

]0,t]×Rd

1{Kσ
s−=	}

(
u
(
Xσ

s− + y
) − u

(
Xσ

s−
) − u′(Xσ

s−
)
yχ(y)

)
N(Xs, dy)ds.

Here, we have used the fact that it is possible to integrate with respect to the compensator of a
random measure instead of the measure itself, if the integrand is in F 1

p (see [15], Section II.3).
This follows by a Taylor expansion and the fact that u′′ is bounded. By the continuity assumption
on N(x,dy) we obtain using dominated convergence

lim
t↓0

1

t
E

x

∫ t

0

∫
Rd

1{Kσ
s =	}

(
u
(
Xσ

s− + y
) − u

(
Xσ

s−
) − u′(Xσ

s−
)
yχ(y)

)
N(Xs, dy)ds = 0.

Finally, we obtain for (VIII)

1

t
E

x
∑

0≤s≤t

1{s=ζ	}
(
u
(
Xσ

s

) − u(x)
)

= 1

t
E

x

∫ t

0

(
u
(
X

ζ	∧σ
s−

) − u(x)
)
d(	

(
1[[ζ	,+∞[[(s)

)
= 1

t
E

x

∫ t

0

(
u
(
X

ζ	∧σ
s−

) − u(x)
)
d

(∫ s

0
a
(
Xσ

r

)
dr

)
= E

x

∫ 1

0

(
u
(
X

ζ	∧σ
st

) − u(x)
)
a
(
Xσ

st

)
ds
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and hence the limit zero again by dominated convergence. �

Let us give a short example which shows, that (19) might fail to be true outside the class under
consideration (even in simple cases).

Example 4.2. Let E := R, x = 0 and u ∈ C∞
c (R) be equal to the identity on [−1,1]. Let σ be

the first exit time from [−1,1]. Define Xt := √
t . This deterministic process is independent from

every other stochastic process (and hence from (Kt )t≥0 which we will define). We obtain for
t ≤ 1:

1

t
E

x1{Kσ
t =	}

(
u
(
Xσ

t

) − u(x)
) = 1√

t
· P(Kt = 	)

Now define (Kt )t≥0 in a way that for tj := 1/22j we have P(Ktj = 	) = 1/2j . Hence tj ↓ 0 for
j → ∞ and

1√
tj

· P(Ktj = 	) = 1

for every j ∈N and the limit (19) does not exist.
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[7] Cherdito, P., Filipović, D. and Kimmel, R.L. (2007). Market price risk specification for affine models:
Theory and evidence. J. Financ. Econ. 83 123–170.

http://www.ams.org/mathscinet-getitem?mr=3352058
https://doi.org/10.3150/14-BEJ618
http://www.ams.org/mathscinet-getitem?mr=0481057
http://www.ams.org/mathscinet-getitem?mr=0264757
http://www.ams.org/mathscinet-getitem?mr=3156646
https://doi.org/10.1007/978-3-319-02684-8
http://www.ams.org/mathscinet-getitem?mr=2502474
https://doi.org/10.1142/S0219493709002555
http://www.ams.org/mathscinet-getitem?mr=2211125
https://doi.org/10.1007/s00780-004-0140-9


662 A. Schnurr
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