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We show weak convergence of quantile and expectile processes to Gaussian limit processes in the space
of bounded functions endowed with an appropriate semimetric which is based on the concepts of epi-
and hypo- convergence as introduced in A. Bücher, J. Segers and S. Volgushev (2014), ‘When Uniform
Weak Convergence Fails: Empirical Processes for Dependence Functions and Residuals via Epi- and Hy-
pographs’, Annals of Statistics 42. We impose assumptions for which it is known that weak convergence
with respect to the supremum norm generally fails to hold. For quantiles, we consider stationary observa-
tions, where the marginal distribution function is assumed to be strictly increasing and continuous except
for finitely many points and to admit strictly positive – possibly infinite – left- and right-sided derivatives.
For expectiles, we focus on independent and identically distributed (i.i.d.) observations. Only a finite second
moment and continuity at the boundary points but no further smoothness properties of the distribution func-
tion are required. We also show consistency of the bootstrap for this mode of convergence in the i.i.d. case
for quantiles and expectiles.
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1. Introduction

Quantiles are fundamental parameters of a probability distribution which have various applica-
tions in statistics and econometrics (Koenker [8]) as well as in finance (McNeil, Frey and Em-
brechts [9]). For distributions with finite first moments, expectiles are defined as minimizers of a
weighted quadratic loss, similarly to quantiles which minimize a weighted absolute loss. Expec-
tiles were introduced in Newey and Powell [11] and have found renewed interest as a coherent,
elicitable class of risk measures (Bellini et al. [1], Ziegel [15]).

The asymptotic properties of sample quantiles and expectiles have been addressed in detail
under suitable conditions. For quantiles, differentiability of the distribution function at the quan-
tile with positive derivative implies asymptotic normality of the empirical quantile, and under a
continuity assumption on the density one obtains weak convergence of the quantile process to
a Gaussian limit process in the space of bounded functions with the supremum distance from
the functional delta method (van der Vaart [13]). However, without the existence of a positive
derivative of the distribution function at the quantile, the weak limit will be non-normal (Knight
[7]), and thus process convergence to a Gaussian limit with respect to the supremum distance
cannot hold true.

Similarly, for a distribution with finite second moment, the empirical expectile is asymptot-
ically normally distributed if the distribution function is continuous at the expectile, but non-
normally distributed otherwise (Holzmann and Klar [5]). For continuous distribution functions,
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process convergence of the empirical expectile process in the space of continuous functions also
holds true, but for discontinuous distribution functions this can no longer be valid.

In this paper, we discuss convergence of expectile and quantile processes under more gen-
eral conditions. We show that the expectile process of independent and identically distributed
(i.i.d.) observations converges to a Gaussian limit in the semimetric space of bounded functions
endowed with the hypi-semimetric as recently introduced in Bücher, Segers and Volgushev [2]
under the assumption of a finite second moment only. Since the Gaussian limit process is discon-
tinuous in general while the empirical expectile process is continuous, this convergence cannot
hold with respect to the supremum distance. As we will see, the hypi-semimetric is appropriate
in this situation. The discussion in Molchanov [10], p. 377, and in Bücher, Segers and Volgushev
[2] relates the hypi-semimetric to the Skorohod M2 metric for càdlàg functions, indicating that
our results are true in this metric as well. Further, we consider quantile processes for general sta-
tionary and ergodic sequences. If a Donsker theorem for the associated empirical process of the
stationary sequence is satisfied (Dehling, Durieu and Volny [4]), and if its marginal distribution
function is strictly increasing, continuous except for finitely many points and if it admits strictly
positive – possibly infinite – left- and right-sided derivatives, then the quantile process converges
weakly to a Gaussian limit with respect to the hypi-semimetric. These limit theorems still imply
weak convergence of important statistics such as Kolmogorov–Smirnov and Cramér–von Mises
type statistics. We also show consistency of the n out of n bootstrap for i.i.d. observations for
both expectile and quantile processes.

The paper is organized as follows. In Section 2, we briefly introduce weak convergence under
the hypi-semimetric and derive the limit results mentioned above. Section 3 contains a short sim-
ulation study, which in particular illustrates the discontinuity of the limit process in the expectile
case. Section 4 contains an outline of the proofs of the main results as well as details for the most
relevant steps. In the supplement (Zwingmann and Holzmann [16]), we provide the remaining
technical proofs, and also carry our results over to Skorohod M2-convergence.

2. Weak convergence of quantile and expectile processes under
the hypi-semimetric

2.1. Weak convergence under the hypi-semimetric

Let us briefly discuss the concept of hypi-convergence as introduced by Bücher, Segers and
Volgushev [2]. Let (T,d) be a compact, separable metric space, and let �∞(T) denote the space
of all bounded functions h : T → R. The lower- and upper-semicontinuous hulls of h ∈ �∞(T)

are defined by

h∧(t) = lim
ε↘0

inf
{
h
(
t ′
) | d

(
t, t ′

)
< ε

}
, h∨(t) = lim

ε↘0
sup

{
h
(
t ′
) | d

(
t, t ′

)
< ε

}
(2.1)



Weak convergence of quantile and expectile processes 325

and satisfy h∧, h∨ ∈ �∞(T) as well as h∧ ≤ h ≤ h∨. A sequence hn ∈ �∞(T) hypi-converges to
a limit h ∈ �∞(T), if it both epi-converges to h∧, that is,

for all t, tn ∈ T with tn → t : h∧(t) ≤ lim inf
n→∞ hn(tn)

for all t ∈ T there exist tn ∈ T, tn → t : h∧(t) = lim
n→∞hn(tn),

(2.2)

and hypo-converges to h∨, that is,

for all t, tn ∈ T with tn → t : lim sup
n→∞

hn(tn) ≤ h∨(t)

for all t ∈ T there exist tn ∈ T, tn → t : lim
n→∞hn(tn) = h∨(t).

(2.3)

The limit function h is only determined in terms of its lower- and upper-semicontinuous hulls.
Indeed, there is a semimetric, denoted by dhypi, so that the convergence in (2.2) and (2.3) is
equivalent to dhypi(hn,h) → 0, see Bücher, Segers and Volgushev [2] for further details. To
transfer the concept of weak convergence from metric to semimetric spaces, Bücher, Segers and
Volgushev [2] consider the space L∞(T) of equivalence classes [h] = {g ∈ �∞(T) | dhypi(h, g) =
0}. The convergence of a sequence of random elements (Yn) in g ∈ �∞(T) to a Borel-measurable
Y is defined by weak convergence of ([Yn]) to [Y ] in the metric space (L∞(T),dhypi) in the sense
of Hofmann-Jørgensen, see van der Vaart and Wellner [14] and Bücher, Segers and Volgushev

[2]. Ordinary weak convergence of real-valued random variables will be denoted by
L→.

2.2. Convergence of the quantile process

We shall denote the α-quantile, α ∈ (0,1), of a distribution function F by

F Inv(α) = qα = inf
{
x ∈ R : F(x) ≥ α

}
.

The following Assumption A will imply semi-Hadamard differentiability w.r.t. the hypi-
semimetric of the map which takes a function to its quasi-inverse. From the functional delta
method in the version of Theorem B.7 in Bücher, Segers and Volgushev [2], a Donsker theorem
for the empirical process then implies weak convergence of the quantile process.

In the following, we shall say that a function h is càdlàg in a point x of its domain if h is right
continuous in x with existing left-sided limit; similarly for làdcàg. The space of functions which
are càdlàg in every point of an interval I ⊂ R are denoted by D(I ); C(I ) denotes all continuous
functions on I .

Assumption A. For given 0 < αl < αu < 1 and ε > 0, the distribution function F is strictly
increasing on [qαl

− ε, qαu + ε] and is continuous except at finitely many points {y1, . . . , yr}.
In addition, F admits right- and left-sided derivatives – which may be infinite – at any point of
(qαl

− ε, qαu + ε), that is

∂+(F )(q) = lim
h→0,h>0

F(q + h) − F(q)

h
and ∂−(F )(q) = lim

h→0,h>0

F(q) − F(q − h)

h
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exist in [0,∞] for any q ∈ (qαl
− ε, qαu + ε). Further, both functions q �→ ∂+(F )(q) and q �→

∂−(F )(q) are bounded from below by some constant c > 0, are càdlàg or làdcàg in every point
except at {y1, . . . , yr}, have right- and left-sided limits in {y1, . . . , yr} and are continuous in qαl

and qαu .

Remark (Discussion of Assumption A). Assumption A is rather general, and contains the
standard case of a continuously differentiable distribution function with strictly positive deriva-
tive (van der Vaart [13]). An example of an absolutely continuous distribution function F

for which the derivative is unbounded can be obtained by gluing together in 1
4 the function

x �→ −
√

−x + 1
4 + 1

2 , x ∈ [0, 1
4 ] and a normal distribution with mean 1

4 and variance 1. How-
ever, a strictly increasing, singular distribution function does not satisfy Assumption A.

For a compact subset K ⊂R, we denote by

‖ϕ‖ = ‖ϕ‖K = sup
τ∈K

∣∣ϕ(τ)
∣∣, ϕ ∈ �∞(K),

the supremum norm on �∞(K). For the subset D0 ⊆ D([qαl
, qαu ]) of non-decreasing càdlàg

functions consider the map

� : (D0,‖ · ‖) −→ (
�∞([αl,αu]

)
,dhypi

)
, �(h) = hInv. (2.4)

We denote the set of discontinuities of a function h ∈D([qαl
, qαu ]) by Dsc(h). Further for s ∈R

we write s−1 instead of 1
s
. The following is the main technical result of this section.

Lemma 1. Under Assumption A the map � is semi-Hadamard differentiable with respect to
dhypi in F tangentially to

WF = {
ϕ ∈ D

([qαl
, qαu ]

) | Dsc(ϕ) ⊆ Dsc(F )
}

(2.5)

with semi-derivative given by

�̇(ϕ) = −ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1
, (2.6)

that is, for sequences tn > 0, tn → 0 and ϕn ∈ D([qαl
, qαu ]) which satisfy ϕn → ϕ ∈ WF with

respect to ‖ · ‖[qαl
,qαu ] as well as F + tnϕn ∈ D0 we have that

dhypi
(
t−1
n

(
�(F + tnϕn) − �(F)

)
, �̇(ϕ)

) → 0. (2.7)

In (2.6) if ∂−(F )(F Inv(α)) = ∞ we set (∂−(F )(F Inv(α)))−1 = 0. To formulate a limit theo-
rem for the quantile process, consider a stationary and ergodic sequence (Yn)n∈N of real-valued
random variables with marginal distribution function F . Given n ∈N we let

Fn(x) = 1

n

n∑
k=1

1(Yk ≤ x)

denote the empirical distribution function.
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Assumption B. Assume that the ordinary empirical process
√

n(Fn − F) of the sequence
(Yn)n∈N converges weakly in (�∞([qαl

, qαu ]),‖ · ‖) to a process Z which concentrates on WF in
(2.5).

See, for example, Rio [12], Theorem 7.2, for conditions on the strong mixing coefficients
which imply Assumption B.

From Assumption B, Lemma 1 and the functional delta method in the version of Theorem B.7
in Bücher, Segers and Volgushev [2], we obtain the following theorem.

Theorem 2. Suppose that for given 0 < αl < αu < 1, the stationary and ergodic sequence
(Yn)n∈N of real-valued random variables satisfies Assumption B, and that its marginal distri-
bution function F satisfies Assumption A. Then the weak convergence

√
n
(
F Inv

n − F Inv) � −(
∂−(F ) ◦ F Inv)−1 · Z ◦ F Inv

in (L∞([αl,αu]),dhypi) holds true.

From Propositions 2.3 and 2.4 in Bücher, Segers and Volgushev [2], hypi-convergence of the
quantile process implies ordinary weak convergence of important statistics such as Kolmogorov–
Smirnov or Cramér–von Mises type statistics.

Corollary 3. Under the assumptions of Theorem 2, as n → ∞ we have that

√
n
∥∥F Inv

n − F Inv
∥∥[αl,αu]

L→ ∥∥(
∂−(F ) ◦ F Inv)−1 · Z ◦ F Inv

∥∥[αl,αu], (2.8)

as well as

np/2
∫ αu

αl

∣∣F Inv
n (α) − F Inv(α)

∣∣pw(α)dα
L→

∫ αu

αl

∣∣(∂−(F ) ◦ F Inv)−1
(α) · Z ◦ F Inv(α)

∣∣pw(α)dα

for p ≥ 1 and a bounded, non-negative weight function w on [αl,αu].

Remark (Necessity of lower bound in Assumption A). We discuss the necessity of the lower
bound on ∂±(F )(q) in Assumption A. Indeed, if for some quantile qα0 , α0 ∈ (αl, αu), the deriva-
tive f of F satisfies f (qα0) = 0, then the discussion in Knight [7] shows that for a sequence
bn/n → 0,

√
bn(̂qn,α0 − qα0) converges in distribution to a non-degenerate limit. However, the

conclusion (2.8) of Theorem 2 in particular implies that
√

n‖q̂n,α − qα‖ = OP(1), which cannot
simultaneously hold true.

Next we turn to a bootstrap version of Theorem 2. Here, we restrict ourselves to the i.i.d. situa-
tion for two reasons. First, we then do not need to get into variants of the bootstrap for dependent
observations (Bühlmann [3]). More importantly, we were not able extend Lemma 1 to the uni-
form semi-Hadamard differentiability of � in (2.4) in the sense of van der Vaart and Wellner
[14], p. 379, which requires (2.7) to hold if F is replaced by a sequence Fn → F w.r.t. dhypi and
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which seems to be required for the analysis of the bootstrap. Instead, the proof of Theorem 4 be-
low uses a somewhat different approach, and uniform semi-Hadamard differentiability is proved
for a different functional in Zwingmann and Holzmann [16], Lemma B.1.

Let (Yn)n∈N be an i.i.d. sequence of real-valued random variables with distribution function
F . For n ∈N let Y ∗

1 , . . . , Y ∗
n be a sample drawn from Y1, . . . , Yn with replacement, that is, having

distribution function Fn. Let F ∗
n denote the empirical distribution function of Y ∗

1 , . . . , Y ∗
n .

Theorem 4. Let (Yn)n∈N be an i.i.d. sequence of real-valued random variables with distribu-
tion function F satisfying Assumption A. Then, the bootstrap quantile process

√
n((F ∗

n )Inv −
F Inv)(α), α ∈ [αl,αu], converges weakly in (L∞[αl,αu],dhypi) to (∂−(F ) ◦ F Inv(α))−1 · Vα ,
α ∈ [αl,αu] conditionally on Y1, Y2, . . . in probability. Here (Vα) is a standard Brownian bridge
process on [0,1].

The proof of Theorem 4 is relegated to the technical supplement, Section B.

Remark (Failure of the bootstrap). The simple n out of n bootstrap does not apply for the
empirical quantile at level τ if F is not differentiable at qα (Knight [6]). Thus, Theorem 4 is
somewhat surprising. Further insight is offered in Remark 7 below.

2.3. Convergence of the expectile process

For a random variable Y with distribution function F and E[|Y |] < ∞, the τ -expectile μτ =
μτ (F ), τ ∈ (0,1), can be defined as the unique solution of E[Iτ (x,Y )] = 0, x ∈R, where

Iτ (x, y) = τ(y − x)1(y ≥ x) − (1 − τ)(x − y)1(y < x), (2.9)

and 1(·) is the indicator function. Given a sequence of independent and identically distributed
copies Y1, Y2, . . . of Y and a natural number n ∈N, we let

μ̂τ,n = μτ (Fn), Fn(x) = 1

n

n∑
k=1

1(Yk ≤ x),

be the empirical τ -expectile and the empirical distribution function, respectively.

Theorem 5. Suppose that E[Y 2] < ∞. Given 0 < τl < τu < 1 such that F is continuous
in μτl

, μτu , the standardized expectile process τ �→ √
n(μ̂τ,n − μτ ), τ ∈ [τl, τu], converges

weakly in (L∞[τl, τu],dhypi) to the limit process (ψ̇ Inv
0 (Z)(τ ))τ∈[τl ,τu]. Here, ψ̇ Inv

0 (ϕ)(τ ) =
ϕ(τ)

(τ+(1−2τ)F (μτ ))
, ϕ ∈ �∞[τl, τu], and (Zτ )τ∈[τl ,τu] is a centred tight Gaussian process with

continuous sample paths and covariance function cov(Zτ ,Zτ ′) = E[Iτ (μτ ,Y )Iτ ′(μτ ′ , Y )] for
τ, τ ′ ∈ [τl, τu].

Similar as above we have the following corollary using results from Bücher, Segers and Vol-
gushev [2].
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Corollary 6. Let the assumptions of Theorem 5 be true, then we have as n → ∞ that

√
n‖μ̂·,n − μ·‖[τl ,τu]

L→ ∥∥ψ̇ Inv
0 (Z)

∥∥[τl ,τu].

Further, for p ≥ 1 and a bounded, non-negative weight function w on [τl, τu],

np/2
∫ τu

τl

∣∣(μ̂τ,n − μτ )
∣∣pw(τ)dτ

L→
∫ τu

τl

∣∣(ψ̇ Inv
0 (Z)

)
(τ )

∣∣pw(τ)dτ.

Remark 7 (Point evaluation). Evaluation at a given point x is only a continuous operation under
the hypi-semimetric if the limit function is continuous at x, see Proposition 2.2 in Bücher, Segers
and Volgushev [2]. In particular, this does not apply to the expectile process if the distribution
function F is discontinuous at μτ . Indeed, Theorem 7 in Holzmann and Klar [5] shows that the
weak limit of the empirical expectile is not normal in this case.

Next we turn to the validity of the bootstrap. Given n ∈ N let Y ∗
1 , . . . , Y ∗

n denote an i.i.d.
sample drawn from Y1, . . . , Yn with replacement, that is, having distribution function Fn. Again,
let F ∗

n denote the empirical distribution function of Y ∗
1 , . . . , Y ∗

n , and let μ∗
τ,n = μτ (F

∗
n ) denote

the bootstrap expectile at level τ ∈ (0,1).

Theorem 8. Suppose that E[Y 2] < ∞. Then, almost surely, conditionally on Y1, Y2, . . . the stan-
dardized bootstrap expectile process τ �→ √

n(μ∗
τ,n − μ̂τ,n), τ ∈ [τl, τu], converges weakly in

(L∞[τl, τu],dhypi) to (ψ̇ Inv
0 (Z)(τ ))τ∈[τl ,τu], where the map ψ̇ Inv

0 and the process (Zτ )τ∈[τl ,τu] are
as in Theorem 5.

Remark (Finite second moments). Dropping the assumption of finite second moments in The-
orems 5 and 8 leads to stable limit distributions for individual expectiles, see Holzmann and Klar
[5]. Possibly this result could be generalized to process convergence, which is, however, beyond
the scope of the present paper.

Remark (Convergence of the expectile process for dependent sequences). It would be of
some interest to deduce the convergence of the expectile process from the weak convergence of
the empirical process

√
n(Fn − F) similarly as in Theorem 2. Semi-Hadamard differentiability

of the map ν �→ μ·(ν) should suffice, however, our proof of Theorem 5 proceeds differently and
hence we do not have an immediate extension for dependent sequences.

3. Numerical illustrations

In this section, we illustrate the asymptotic results for the expectile process in a short simulation.
Let Y be a random variable with distribution function

F(x) = 9

10

∫ x

−∞
1

4
√

2π
exp

(
−y2

32

)
dy + 1

10
1(x ≥ 1),
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Figure 1. The pictures show simulated paths of the empirical expectile process based on n = 104 observa-
tions of Y . If the path is negative (positive) around τ0, a downward- (upward-) jump seems to evolve. This
is plausible when considering the form of the hulls of ψ̇ Inv in the limit process.

which is a mixture of a N (0,16) random variable and a point mass in 1, so that E[Y ] = 1
10 and

E[Y 2] = 14.5. We will concentrate on the weak convergence of the sup-norm of the empirical
expectile process. Using equation (2.7) in Newey and Powell [11], we numerically find μτ0 = 1
for τ0 ≈ 0.6529449, and investigate the expectile process on the interval [0.6,0.7].

Figure 1 contains four paths of the expectile process
√

n(μ̂τ,n − μτ ) for samples of size n =
104. All plotted paths seem to evolve a jump around τ0.

Now we investigate the distribution of the supremum norm of the expectile process on the
interval [0.6,0.7]. To this end, we simulate M = 104 samples of sizes n ∈ {10,102,104} and
compute the expectile process and its supremum norm. Plots of the resulting empirical distribu-
tion functions and density estimates of this statistic are contained in Figure 2. The distribution of

Figure 2. Figure (a) shows the cumulative distribution function of the supremum norm of
√

n(μ̂τ,n −μτ ),
based on M = 104 samples of sizes n ∈ {10,102,104}, Figure (b) the corresponding density estimate.
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Table 1. Empirical quantiles for
√

n‖μ̂·,n − μ·‖, based on 104 samples of sizes n ∈ {102,103,104} and
last averaged over 2 · 102 repetitions. The terms in brackets are the resulting standard deviations

Size Quantile

n 1% 5% 10% 25% 50% 75% 90% 95% 99%

102 0.338 0.740 1.076 1.900 3.313 5.195 7.155 8.374 10.744
(0.015) (0.017) (0.017) (0.023) (0.033) (0.038) (0.047) (0.069) (0.135)

103 0.336 0.736 1.072 1.895 3.307 5.200 7.168 8.425 10.880
(0.015) (0.018) (0.020) (0.023) (0.030) (0.043) (0.054) (0.072) (0.14)

104 0.339 0.740 1.074 1.897 3.305 5.182 7.137 8.385 10.833
(0.015) (0.017) (0.019) (0.023) (0.030) (0.038) (0.061) (0.074) (0.149)

the supremum distance seems to converge quickly. In Table 1, we compute empirical quantiles
over the M samples for the three sizes, which also stabilize already at n = 102.

Finally, to illustrate performance of the bootstrap, Figure 3 displays the distribution of M =
104 bootstrap samples of ‖√n(μ∗·,n − μ̂·,n)‖ based on a single sample of size n ∈ {102,103,104}
from the n out of n bootstrap, together with the distribution of ‖√n(μ̂·,n − μ·)‖. The bootstrap
distribution for n = 104 is quite close to the empirical distribution. In Table 2, we also computed
bootstrap quantiles, which are close to their empirical versions from Table 1.

4. Proofs

This section contains the proofs of the main results. Section 4.1 gives outlines of the proofs of
Theorems 2, 5 and 8. Section 4.2 contains auxiliary results on hypi-convergence and lower- and
upper-semicontinuous hulls. Section 4.3 contains details for the proof outlines from Section 4.1.

Figure 3. Figure (a) shows the estimated cumulative bootstrap distribution function of ‖√n(μ̂∗·,n −μ·,n)‖,

figure (b) the estimated density thereof, obtained from M = 104 estimates of this statistic. The red line in-
dicates the estimated empirical distribution and density function, respectively, taken from ‖√n(μ·,n −μ·)‖
for n = 104.
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Table 2. Bootstrap quantiles for the supremum norm
√

n‖μ∗·,n − μ̂·,n‖, obtained from 104 estimates of this

statistic, averaged over 2 · 102 repetitions. The bracketed numbers are the calculated standard deviations

Size Quantile

n 1% 5% 10% 25% 50% 75% 90% 95% 99%

102 0.339 0.734 1.065 1.885 3.300 5.190 7.155 8.406 10.842
(0.032) (0.062) (0.088) (0.152) (0.269) (0.431) (0.606) (0.714) (0.938)

103 0.344 0.741 1.074 1.901 3.321 5.215 7.195 8.465 10.938
(0.016) (0.025) (0.031) (0.051) (0.092) (0.143) (0.202) (0.250) (0.355)

104 0.345 0.742 1.077 1.904 3.324 5.217 7.200 8.469 10.955
(0.015) (0.019) (0.020) (0.027) (0.043) (0.064) (0.087) (0.108) (0.162)

Emp. 104 0.339 0.740 1.074 1.897 3.305 5.182 7.137 8.385 10.833

Some technicalities as well as the proof of Theorem 4 are deferred to the supplementary material,
Zwingmann and Holzmann [16].

Notation

Let us recall some notation. For s ∈R we will write s−1 instead of 1
s
. Given a function g :R−→

R, we will denote the pseudo inverse of g with gInv, that is gInv(y) = inf{x ∈R : g(x) ≥ y}.
We write En[g(Y )] = 1

n

∑n
k=1 g(Yk), and use the abbreviation∥∥√

n(Fn − F)
∥∥
G = sup

g∈G

∣∣√n
[
En

[
g(Y )

] −E
[
g(Y )

]]∣∣
for a class of measurable functions G.

4.1. Outline of proofs of main results

In this section, we present an outline of the proofs of the main results. Additional details are
provided in Section 4.3.

4.1.1. Outline of the proofs of Lemma 1 and Theorem 2

We give an outline of the proof of Lemma 1, which has Theorem 2 as an immediate consequence.
Step 1. Upper- and lower semicontinuous hulls of �̇(ϕ) defined in (2.6).

Lemma 9. Let Assumption A be true. Then it holds that

∂−(F )(y−) = ∂+(F )(y−) and ∂−(F )(y+) = ∂+(F )(y+).
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Lemma 10. Let Assumption A hold for the distribution function F and let ϕ ∈ WF . Then ϕ ◦
F Inv · (∂−(F ) ◦ F Inv)−1 is càdlàg or làdcàg in every point α ∈ [αl,αu], and furthermore the
following assertions are true.

(i) If F is continuous in qα , then it holds that

(
ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)

∧(α) = ϕ(qα) · ((∂−(F ) ◦ F Inv)−1)
∧(α) · 1(

ϕ(qα) > 0
)

+ ϕ(qα) · ((∂−(F ) ◦ F Inv)−1)
∨(α) · 1(

ϕ(qα) < 0
)

and(
ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)

∨(α) = ϕ(qα) · ((∂−(F ) ◦ F Inv)−1)
∨(α) · 1(

ϕ(qα) > 0
)

+ ϕ(qα) · ((∂−(F ) ◦ F Inv)−1)
∧(α) · 1(

ϕ(qα) < 0
)

with (observe Lemma 9)

((
∂−(F ) ◦ F Inv)−1)

∧(α) = min
{(

∂±(F )(qα−)
)−1

,
(
∂±(F )(qα+)

)−1}
and((

∂−(F ) ◦ F Inv)−1)
∨(α) = max

{(
∂±(F )(qα−)

)−1
,
(
∂±(F )(qα+)

)−1}
.

Now let qα ∈ Dsc(F ) be a jump discontinuity of F .

(ii) If α ∈ (F (qα−),F (qα)), then

(
ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)

∧(α) = 0 = (
ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)

∨(α).

(iii) If α = F(qα), then

(
ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)

∧(α) = ϕ(qα) · ((∂−(F ) ◦ F Inv)−1)
∨(α) · 1(

ϕ(qα) < 0
)
,(

ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)
∨(α) = ϕ(qα) · ((∂−(F ) ◦ F Inv)−1)

∨(α) · 1(
ϕ(qα) > 0

)
,

where ((∂−(F ) ◦ F Inv)−1)∨(α) = ∂±(F )(qα+).
(iv) If α = F(qα−), then

(
ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)

∧(α)

= ϕ(qα−) · ((∂−(F ) ◦ F Inv)−1)
∨(α) · 1(

ϕ(qα−) < 0
)
,(

ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)
∨(α)

= ϕ(qα−) · ((∂−(F ) ◦ F Inv)−1)
∨(α) · 1(

ϕ(qα−) > 0
)
,

where ((∂−(F ) ◦ F Inv)−1)∨(α) = ∂±(F )(qα−).
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Step 2. Outline of the proof of the semi-Hadamard differentiability (2.7).
Let tn > 0, tn → 0 and ϕn ∈ D([qαl

, qαu ]) fulfilling ϕn → ϕ ∈W with respect to ‖ ·‖ as well as
F + tnϕn ∈D0. To show (2.7), we proceed as follows. First, observe that since �̇(ϕ) is càdlàg or
làdcàg in every point of [αl,αu] by Lemma 10 (applied to −ϕ), the set S = [αl,αu] \ Dsc(�̇(ϕ))

is dense in [αl,αu] and the restriction �̇(ϕ)|S of �̇(ϕ) to S is continuous. Note that αl,αu ∈ S
by Assumption A. If we now form the lower- and upper- semicontinuous hulls in (2.1) restricted
over the set S , that is,(

�̇(ϕ)|S
)S:[αl,αu]
∧ (x) = lim

ε↘0
inf

{
�̇(ϕ)

(
x′) | d

(
x, x′) < ε, x′ ∈ S

}
,

and similarly for (�̇(ϕ)|S)
S:[αl,αu]
∨ , then since �̇(ϕ) is càdlàg or làdcàg at every point we have

that (
�̇(ϕ)|S

)S:[αl,αu]
∧ = �̇(ϕ)∧ and

(
�̇(ϕ)|S

)S:[αl,αu]
∨ = �̇(ϕ)∨. (4.1)

Hence from Bücher, Segers and Volgushev [2], Corollary A.7, is suffices to show that

lim inf
n

t−1
n

(
(F + tnϕn)

Inv(αn) − F Inv(αn)
) ≥ (

�̇(ϕ)
)
∧(α) and

lim sup
n

t−1
n

(
(F + tnϕn)

Inv(αn) − F Inv(αn)
) ≤ (

�̇(ϕ)
)
∨(α)

(4.2)

in order to obtain (2.7). Thus in (2.2) and (2.3) we no longer need to exhibit the convergent
subsequences.

We shall prove (4.2) by distinguishing the same cases as in Lemma 10. Full details are provided
in Section 4.3.1 and in the technical supplement, Section A.

4.1.2. Outline of proofs of Theorem 5 and 8

Proof of Theorem 5 (Outline). We give an outline of the proof of Theorem 5. For a distri-
bution function S with finite first moment let Iτ (x, S) = ∫

Iτ (x, y)dS(y) and [ψ(ϕ,S)](τ ) =
−Iτ (ϕ(τ ), S), where τ ∈ [τl, τu] and ϕ ∈ �∞[τl, τu]. Set ψ0(·) = ψ(·,F ) and ψn(·) = ψ(·, F̂n).

Step 1. Weak convergence of
√

n(ψ0(μ̂·,n) − ψ0(μ·)) to Z in (�∞[τl, τu],‖ · ‖).
This step uses standard results from empirical process theory based on bracketing properties of

Lipschitz-continuous functions. The main issue in the proof of the lemma below is the Lipschitz-
continuity of τ �→ μτ , τ ∈ [τl, τu], for a general distribution function F .

Lemma 11. In (�∞[τl, τu],‖ · ‖) we have the weak convergence
√

n
(
ψn(μ·) − ψ0(μ·)

)
(τ ) → Zτ , τ ∈ [τl, τu]. (4.3)

Further, given δn ↘ 0 we have as n → ∞ that

sup
‖ϕ‖[τl ,τu]≤δn

sup
τ∈[τl ,τu]

√
n
∣∣ψn(μ· + ϕ)(τ ) − ψ0(μ· + ϕ)(τ )

− [
ψn(μ·)(τ ) − ψ0(μ·)(τ )

]∣∣ = oP(1). (4.4)
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Since ψ0(μ·) = ψn(μ̂·,n) = 0, we can rewrite
√

n
(
ψ0(μ̂·,n) − ψ0(μ·)

) = √
n
(
ψ0(μ̂·,n) − ψn(μ̂·,n)

)
= √

n
[
ψ0(μ· + ϕn) − ψn(μ· + ϕn)

]
(4.5)

for ϕn(·) = μ̂·,n − μ· and adding and subtracting −√
n(ψn(μ·) − ψ0(μ·)) yields

√
n
(
ψ0

(
μ· + ϕn(·)

) − ψn

(
μ· + ϕn(·)

))
= −√

n
(
ψn(μ·) − ψ0(μ·)

)
+ √

n
[
ψn(μ·) − ψ0(μ·) − (

ψn(μ· + ϕn) − ψ0(μ· + ϕn)
)]

. (4.6)

Due to the uniform consistency shown in Theorem 2, Holzmann and Klar [5], it holds that ‖ϕn‖ =
oP(1), such that the supremum (over τ ∈ [τl, τu]) of the term in angle brackets above is smaller
than (or equal to) the expression in (4.4). Using this together with (4.5) and (4.6) shows

√
n
(
ψ0(μ̂·,n) − ψ0(μ·)

) = −√
n
(
ψn(μ·) − ψ0(μ·)

) + oP(1).

Then (4.3) and the fact that Z and −Z have the same law conclude the proof of
√

n
(
ψ0(μ̂·,n) − ψ0(μ·)

)
� Z (4.7)

in (�∞([τl, τu]),‖ · ‖), finishing Step 1.
Step 2. Invertibility of ψ0 and semi-Hadamard differentiability of the inverse with respect to

dhypi.
The first part of Step 2 is observing the following lemma.

Lemma 12. The map ψ0 is invertible, and for the inverse map we have that ψ Inv
0 (ϕ) ∈ �∞[τl, τu]

for any ϕ ∈ �∞[τl, τu], so that ψ0 : �∞[τl, τu] → �∞[τl, τu] is bijective.

The next result then is the key technical ingredient in the proof of Theorem 5. The general
definition of semi-Hadamard differentiability can be found in Definition B.6, Bücher, Segers and
Volgushev [2].

Lemma 13. The map ψ Inv
0 is semi-Hadamard differentiable with respect to the hypi-semimetric

in 0 ∈ C[τl, τu] tangentially to C[τl, τu] with semi-Hadamard derivative given by ψ̇ Inv
0 (ϕ)(τ ) =

(τ + (1 − 2τ)F (μτ ))
−1ϕ(τ), ϕ ∈ �∞[τl, τu], that is, we have

t−1
n

(
ψ Inv

0 (tnϕn) − ψ Inv
0 (0)

) → ψ̇ Inv
0 (ϕ)

for any sequence tn → 0, tn > 0 and ϕn ∈ �∞[τl, τu] with ϕn → ϕ ∈ C[τl, τu] with respect to
dhypi.

The proof of the lemma is based on an explicit representation of increments of ψ Inv
0 , and novel

technical properties of convergence under the hypi-semimetric for products and quotients.
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We observe here that until the former lemma the results did not depend on the hypi-semimetric.
When wanting to obtain Theorem 5 directly for the M2-topology, one can use the same steps,
just replacing dhypi with M2-convergence in the above lemma. We will give more details on that
in the supplement, Section C.

Step 3. Conclusion with the generalized functional delta method.
From (4.7), Lemma 13 and the generalized functional delta method, Theorem B.7 in Bücher,

Segers and Volgushev [2], we obtain

√
n(μ̂·,n − μ·) = √

n
(
ψ Inv

0

(
ψ0(μ̂·,n)

) − ψ Inv
0 (0)

) → ψ̇ Inv
0 (Z)

in (L∞[τl, τu],dhypi).
Note that the generalized functional delta method is formulated for arbitrary (semi-)metric

spaces, such that the conclusion would also work with respect to M2-convergence, given
Lemma 13 is proven with respect to the M2-topology as well. �

Proof of Theorem 8 (Outline). The steps in the proof are similar to those of Theorem 5. In
the analogous result to Lemma 11 and (4.7), we require the uniform consistency of μ∗·,n as in
Holzmann and Klar [5], Theorem 1. The weak convergence statements require the changing
classes central limit theorem, van der Vaart [13], Theorem 19.28. In the second step, we argue
directly with the extended continuous mapping theorem, Theorem B.3 in Bücher, Segers and
Volgushev [2]. �

4.2. Auxiliary results on hypi-convergence and hulls

A major technical issue in the above arguments is to determine hypi-convergence of sums, prod-
ucts and quotients of hypi-convergent functions. The proofs of Lemmas 14 and 15 are given
below, while those of Lemmas 16 and 17 are provided in the supplement, Section E.

Lemma 14. Let ν, νn,ϕn ∈ �∞([l, u]) and ϕ ∈ C[l, u].
(i) If dhypi(ϕn,ϕ) → 0 and dhypi(νn, ν) → 0 hold true, then νnϕn hypi-converges to νϕ. More

precisely νnϕn epi-converges to (νϕ)∧ and hypo-converges to (νϕ)∨, where

(ϕν)∧ = ϕ
(
ν∧1(ϕ > 0) + ν∨1(ϕ < 0)

)
,

(ϕν)∨ = ϕ
(
ν∨1(ϕ > 0) + ν∧1(ϕ < 0)

)
.

(4.8)

(ii) If ν admits right- and left-sided limits in every x ∈ [l, u], the functions x �→ ν(x−) and
x �→ ν(x+) do the same. More precisely, the right-sided limit of both ν(x−) and ν(x+)

is ν(x+), the left-sided limit for them is ν(x−).
(iii) Assume ν has left- and right-sided limits at every point in [l, u]. Then

ν∧(x) = min
{
ν(x−), ν(x), ν(x+)

}
, ν∨(x) = max

{
ν(x−), ν(x), ν(x+)

}
.

(iv) If νn, ν > 0, the convergence dhypi(
1
νn

, 1
ν
) → 0 follows from dhypi(νn, ν) → 0.
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For the proof of Lemma 10 we need to determine the hulls of products of functions as follows.

Lemma 15. Let ϕ,h ∈ D(I ) and t ∈ I .

(i) If (ϕ(t) − ϕ(t−))(h(t) − h(t−)) ≥ 0, then it holds that

(ϕh)∧(t) = min
{
(ϕ∧h∧)(t), (ϕ∨h∨)(t)

}
, (ϕh)∨(t) = max

{
(ϕ∧h∧)(t), (ϕ∨h∨)(t)

}
.

(ii) If h(t) = 0, then it holds that

(ϕh)∧(t) = min
{
ϕ(t−)h(t−),0

}
and (ϕh)∨(t) = max

{
ϕ(t−)h(t−),0

}
.

(iii) If h(t−) = 0, then it holds that

(ϕh)∧(t) = min
{
ϕ(t)h(t),0

}
and (ϕh)∨(t) = max

{
ϕ(t)h(t),0

}
.

The strength of the second assertion is that h and ϕ do not have to jump in the same direction
as needed in the first statement. In general, if h does not jump in the same direction as ϕ, the
equalities stated in (i) are not valid.

In addition, we shall require the following basic relations between lim sup and lim inf.

Lemma 16. Let (an)n, (bn)n be bounded sequences. Then

lim inf
n→∞ an + lim sup

n→∞
bn ≥ lim inf

n→∞ (an + bn) ≥ lim inf
n→∞ an + lim inf

n→∞ bn

and

lim sup
n→∞

an + lim inf
n→∞ bn ≤ lim sup

n→∞
(an + bn) ≤ lim sup

n→∞
an + lim sup

n→∞
bn.

If an > 0, then

lim inf
n

1

an

= 1

lim supn an

.

Lemma 17. Let (bn)n be a bounded sequence and let (an)n be convergent with limit a ∈ R. Then

lim inf
n

anbn = lim inf
n

abn, lim sup
n

anbn = lim sup
n

abn.

Proof of Lemma 14. From the definition in (2.1), for a function h ∈ �∞([l, u]) the lower semi-
continuous hull h∧ at x ∈ [l, u] is characterized by the following conditions

For any sequence xn → x, we have lim inf
n→∞ h(xn) ≥ h∧(x),

there is a sequence x′
n → x for which lim

n→∞h
(
x′
n

) = h∧(x),
(4.9)

and similarly for h∨.
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Ad (i): By continuity of ϕ we have ϕ(xn) → ϕ(x) for any sequence xn → x. The statement
(4.8) now follows immediately using (4.9) and Lemma 17 and noting that for ϕ(x) < 0,

lim inf
n→∞ ϕ(x)ν(xn) = ϕ(x) lim sup

n→∞
ν(xn), lim sup

n→∞
ϕ(x)ν(xn) = ϕ(x) lim inf

n→∞ ν(xn).

Further, by continuity of ϕ, the hypi-convergence of ϕn to ϕ actually implies the uniform con-
vergence. Therefore, for any xn → x we have that ϕn(xn) → ϕ(x). Using the pointwise criteria
(2.2) and (2.3) for hypi-convergence, Lemma 17 and (4.8) we obtain the asserted convergence
ϕnνn → ϕν with respect to the hypi-semimetric.

Ad (ii): This is Lemma C.5, Bücher, Segers and Volgushev [2]; we give a proof here for conve-
nience. We show limx′↘x ν(x′−) = ν(x+). First, we consider the expression lim infx′↘x ν(x′−).
Observe that

lim inf
x′↘x

ν
(
x′−) = lim

ε↘0
inf

x′∈(x,x+ε)
lim

x′′↗x′ ν
(
x′′) = lim

ε↘0
inf

x′∈(x,x+ε)
lim
δ↘0

inf
x′′∈(x′−δ,x′)

ν
(
x′′).

Therefore, choose any ε > 0 and x′ ∈ (x, x + ε). Then for some small δ > 0 it holds that (x′ −
δ, x′) ⊂ (x, x + ε) and thus

lim
δ↘0

inf
x′′∈(x′−δ,x′)

ν
(
x′′) ≥ inf

x′′∈(x,x+ε)
ν
(
x′′)

is valid. Taking the infimum over x′ ∈ (x, x + ε) and then letting ε ↘ 0 yields

lim
ε↘0

inf
x′∈(x,x+ε)

lim
δ↘0

inf
x′′∈(x′−δ,x′)

ν
(
x′′) ≥ lim

ε↘0
inf

x′′∈(x,x+ε)
ν
(
x′′) = lim

x′′↘x
ν
(
x′′) = ν(x+),

as ν has a right-sided limit in x. This means

lim inf
x′↘x

ν
(
x′−) ≥ ν(x+).

Similar we deduce that

lim sup
x′↘x

ν
(
x′−) ≤ ν(x+),

hence we obtain

lim
x′↘x

ν
(
x′−) = ν(x+)

as asserted. The remaining assertions are proven analogously.
Ad (iii): The proof of Lemma C.6, Bücher, Segers and Volgushev [2] show that for a function,

which admits right- and left-sided limits, the supremum over a shrinking neighbourhood around
a point x converges to the maximum of the three points ν(x−), ν(x) and ν(x+). The analogues
statement holds for the infimum, which is the first part of (ii). From (ii) shown before, the maps
x �→ ν(x−) and x �→ ν(x+) both have a right-sided limit equal to ν(x+) and a left-sided limit
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equal to ν(x−), hence this is also true for the functions ν∨(x) = max{ν(x−), ν(x), ν(x+)} and
ν∧(x) = min{ν(x−), ν(x)ν(x+)}. From the above argument, we obtain

(ν∨)∧(x) = min
{
ν(x−), ν(x+),max

{
ν(x−), ν(x), ν(x+)

}} = min
{
ν(x−), ν(x+)

}
and

(ν∧)∨(x) = max
{
ν(x−), ν(x+),min

{
ν(x−), ν(x), ν(x+)

}} = max
{
ν(x−), ν(x+)

}
.

If ν(x0−) ≤ ν(x0) ≤ ν(x0+) or ν(x0−) ≥ ν(x0) ≥ ν(x0+), we deduce

ν∨(x0) = max
{
ν(x−), ν(x+)

} = (ν∧)∨(x0),

ν∧(x0) = min
{
ν(x−), ν(x+)

} = (ν∨)∧(x0).

Ad (iv): From Lemma 16 (last statement) and (4.9), we obtain ( 1
ν
)∧ = 1

ν∨ and ( 1
ν
)∨ = 1

ν∧ . The

hypi-convergence of 1
νn

to these hulls follows similarly from Lemma 16 (last statement) and the
pointwise criteria (2.2) and (2.3) for hypi-convergence. �

Proof of Lemma 15. In (i) note that the assumption guarantees that ϕ and h jump in the same
direction, such that

ϕ∨(t) = ϕ(t−) if and only if h∨(t) = h(t−)

and likewise for ϕ∧ and h∧. By Lemma 14, (iii), we thus know that

(ϕh)∨(t) = max
{
ϕ(t−)h(t−), ϕ(t)h(t)

} = max
{
ϕ∨(t)h∨(t), ϕ∧(t)h∧(t)

}
and similar for (ϕh)∧.

For (ii) we use Lemma 14, (iii), to deduce

(ϕh)∧(t) = min
{
ϕ(t−)h(t−), ϕ(t)h(t)

} = min
{
ϕ(t−)h(t−),0

}
.

The second part of (ii) and the assertion in (iii) are proven analogous. �

4.3. Details for proof outlines from Section 4.1

4.3.1. Details for the proofs of Lemma 1 and Theorem 2

Proof of Lemma 9. Since the points in which F is differentiable form a dense set, we can choose
a sequence ys ↗ y such that F ′(ys) exists. For this sequence it holds that

∂−(F )(y−) = lim
s→∞ ∂−(F )(ys) = lim

s→∞ ∂+(F )(ys) = ∂+(F )(y−)

where all values are in the interval [c,∞]. This shows the first equality, the second follows
likewise. �
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Proof of Lemma 10. We note that F Inv is continuous as F is assumed to be strictly increasing.
We work through the cases (i)–(iv), in each the arguments will imply that ϕ ◦ F Inv · (∂−(F ) ◦
F Inv)−1 is càdlàg or làdcàg in α.

Ad (i). As Dsc(ϕ) ⊂ Dsc(F ) and Dsc(F ) is finite by Assumption A, ϕ ◦ F Inv is continuous in
a neighborhood of α. Using (4.8) in Lemma 14, (i), it remains to determine the semicontinuous
hulls of (∂−(F ) ◦ F Inv)−1. From Lemma 14, (iii), it follows that

((
∂−(F ) ◦ F Inv)−1)

∨(α)

= max
{(

∂−(F ) ◦ F Inv)−1
(α−),

(
∂−(F ) ◦ F Inv)−1

(α),
(
∂−(F ) ◦ F Inv)−1

(α+)
}

= max
{(

∂−(F )(qα−)
)−1

,
(
∂−(F )(qα+)

)−1}
where the second equality follows since ∂−(F ) is càdlàg or làdcàg in qα by Assumption A.
Lemma 9 now implies the assertion, and the lower-semicontinuous hulls are determined likewise.

Ad (ii). Since qα ∈ Dsc(F ) we have that ∂−(F )(qα) = ∞. Note that F Inv(α′) = qα for every
α′ ∈ (F (qα−),F (qα)), hence (∂−(F ) ◦ F Inv)−1(α′) = 0 is valid from the convention 1

∞ = 0.
Therefore (∂−(F ) ◦ F Inv)−1|(F (qα−),F (qα)) = 0, and the conclusion follows since the hulls of a
continuous function are equal to the function itself.

Ad (iii). Since F Inv is continuous, increasing and F Inv(α′) = qα , α′ ∈ (α − δ,α] for some
small δ > 0, by right-continuity of ϕ it follows that ϕ ◦F Inv is continuous for in a neighbourhood
of α. Hence we may apply (4.8) in Lemma 14, (i), and it remains to compute the semicontinuous
hulls of (∂−(F ) ◦ F Inv)−1. Using Lemma 14, (iii) we observe that

((
∂−(F ) ◦ F Inv)−1)

∨(α)

= max
{(

∂−(F ) ◦ F Inv)−1
(α−),

(
∂−(F ) ◦ F Inv)−1

(α),
(
∂−(F ) ◦ F Inv)−1

(α+)
}
. (4.10)

In Assumption A, it is not assumed that ∂−(F ) necessarily is càdlàg nor làdcàg in qα , so that we
have to argue differently compared to case (i). For a sequence αn ↗ α and n big enough it holds
that F Inv(αn) = qα , hence

(
∂−(F ) ◦ F Inv)−1

(α−) = 0 = (
∂−(F ) ◦ F Inv)−1

(α),

see case (ii). By non-negativity of ∂−(F ) by Assumption A, we obtain that the maximum in
(4.10) is ((

∂−(F ) ◦ F Inv)−1)
∨(α) = (

∂−(F ) ◦ F Inv)−1
(α+) = ∂±(F )(qα+),

where the last equality follows from Lemma 9. Similarly it follows that ((∂−(F ) ◦
F Inv)−1)∧(α) = 0.

Ad (iv). Note that (∂−(F ) ◦ F Inv)−1(α′) = 0 for α′ ∈ [α,α + δ), so that (∂−(F ) ◦ F Inv)−1 is
càdlàg in α. The map ϕ ◦ F Inv is càdlàg since F Inv is increasing and continuous and ϕ is càdlàg.
Hence, we may apply Lemma 15, (ii). Using analogue arguments as in case (iii), we deduce
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((∂−(F ) ◦ F Inv)−1)∨(α) = ∂±(F )(qα−) and ((∂−(F ) ◦ F Inv)−1)∧(α) = 0, and the conclusion
follows from Lemma 15, (ii). �

Proof of Lemma 1. To show (4.2), observe that n = ‖tnϕn‖, we have F − n ≤ F + tnϕn ≤
F + n and hence

F Inv(αn − n) = (F + n)
Inv(αn) ≤ (F + tnϕn)

Inv(αn)

≤ (F − n)
Inv(αn) = F Inv(αn + n). (4.11)

Further, since n → 0 we obtain αn + n → α and therefore F(αn ± n) ∈ (qαl
− ε, qαu + ε)

for n big enough by continuity of F in the boundary points qαl
and qαu , where ε is given as in

Assumption A. Without loss of generality, we assume that this inclusion holds for all n.
(i) If α ∈ (F (qα−),F (qα)), we have (�̇(ϕ))∨(α) = (�̇(ϕ))∧(α) = 0 by Lemma 10. We shall

show that actually

t−1
n

(
(F + tnϕn)

Inv(αn) − F Inv(αn)
) = 0 (4.12)

for n large enough, which then in particular implies (4.2). Indeed, since αn → α and αn ±n →
α it holds that αn,αn ±n ∈ (F (qα−),F (qα)) for n big enough, such that F Inv(αn) = F Inv(αn ±
n) = qα . (4.11) then implies (4.12).

For the remaining cases, we start with some general observations. From the definition of the
generalized inverse for non-decreasing functions, for εn > 0 it holds that

(F + tnϕn)
(
(F + tnϕn)

Inv(αn) − εn

)
≤ αn ≤ (F + tnϕn)

(
(F + tnϕn)

Inv(αn)
)
. (4.13)

The left inequality together with αn ≤ F(F Inv(αn)) implies

F
(
(F + tnϕn)

Inv(αn) − εn

) − F
(
F Inv(αn)

)
≤ −tnϕn

(
(F + tnϕn)

Inv(αn) − εn

)
.

Expanding the left-hand side with (F + tnϕn)
Inv(αn) − εn − F Inv(αn) and reorganizing finally

gives

t−1
n

(
(F + tnϕn)

Inv(αn) − F Inv(αn)
)

≤ −ϕn

(
(F + tnϕn)

Inv(αn) − εn

)
×

(
F((F + tnϕn)

Inv(αn) − εn) − F(F Inv(αn))

(F + tnϕn)Inv(αn) − εn − F Inv(αn)

)−1

+ εn

tn
, (4.14)

where we note that the “big” fraction on the right-hand side of (4.14), by which we divided
to get (4.14), is positive due to the strict monotonicity of F if we choose εn such that (F +
tnϕn)

Inv(αn) − εn − F Inv(αn) �= 0. Similarly, since αn > F(F Inv(αn) − δn) for any δn > 0, from
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the right-hand side of (4.13), we obtain that

−tnϕn

(
(F + tnϕn)

Inv(αn)
) ≤ F

(
(F + tnϕn)

Inv(αn)
) − F

(
F Inv(αn) − δn

)
.

We expand the right-hand side with (F + tnϕn)
Inv(αn)−F Inv(αn)+δn, where we choose δn such

that the latter term is non-zero, and reorganize the resulting inequality to obtain

t−1
n

(
(F + tnϕn)

Inv(αn) − F Inv(αn)
)

≥ −ϕn

(
(F + tnϕn)

Inv(αn)
)

×
(

F((F + tnϕn)
Inv(αn)) − F(F Inv(αn) − δn)

(F + tnϕn)Inv(αn) − F Inv(αn) + δn

)−1

− δn

tn
, (4.15)

where the “big” fraction is again positive by strict monotonicity of F .
In the following, we choose εn, δn = o(tn), so that t−1

n εn in (4.14) and t−1
n δn in (4.15) converge

to zero. Further, by continuity of F Inv and (4.11) the convergences

(F + tnϕn)
Inv(αn) → qα, F Inv(αn) → qα (4.16)

are valid. In particular, for large n, (F + tnϕn)
Inv(αn) − εn,F

Inv(αn) − δn ∈ (qαl
− ε, qαu + ε),

where ε is as in Assumption A.
Next, we aim to show (4.2) by using the bounds (4.14) and (4.15).
(ii) Let F be continuous at qα . We start by bounding the “big” fractions in (4.14) and (4.15).

By Assumption A, F is then continuous in a neighbourhood (qα − ,qα + ) for some small
 > 0. From (4.16) and εn, δn → 0 it follows that the intervals

In = [
min

{(
(F + tnϕn)

Inv(αn) − εn

)
,F Inv(αn)

}
,

max
{(

(F + tnϕn)
Inv(αn) − εn

)
,F Inv(αn)

}]
,

Jn = [
min

{
(F + tnϕn)

Inv(αn),
(
F Inv(αn) − δn

)}
,

max
{
(F + tnϕn)

Inv(αn),
(
F Inv(αn) − δn

)}]
,

(4.17)

are contained in (qα − ,qα + ) for sufficiently large n. Hence, we can apply the extended
mean value theorem for left- and right-sided derivatives to F over the intervals In and Jn to
conclude that

min
{(

∂−(F )(ξn)
)−1

,
(
∂+(F )(ξn)

)−1}
≤

(
F((F + tnϕn)

Inv(αn) − εn) − F(F Inv(αn))

(F + tnϕn)Inv(αn) − εn − F Inv(αn)

)−1

≤ max
{(

∂−(F )(ξn)
)−1

,
(
∂+(F )(ξn)

)−1} (4.18)
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for some ξn ∈ In, and that

min
{(

∂−(F )(ζn)
)−1

,
(
∂+(F )(ζn)

)−1}
≤

(
F((F + tnϕn)

Inv(αn)) − F(F Inv(αn) − δn)

(F + tnϕn)Inv(αn) − F Inv(αn) + δn

)−1

≤ max
{(

∂−(F )(ζn)
)−1

,
(
∂+(F )(ζn)

)−1} (4.19)

for some ζn ∈ Jn.
Further, to deal with the first factor on the right-hand sides of (4.14) and (4.15), note ϕ is also

continuous in qα since Dsc(ϕ) ⊆ Dsc(F ). The uniform convergence of ϕn to ϕ then implies that

ϕn

(
(F + tnϕn)

Inv(αn) − εn

)
, ϕn

(
(F + tnϕn)

Inv(αn)
) → ϕ(qα).

Applying “lim sup” across (4.14), we obtain

lim sup
n

t−1
n

(
(F + tnϕn)

Inv(αn) − F Inv(αn)
)

≤ lim sup
n

(−ϕ(qα)
)(F((F + tnϕn)

Inv(αn) − εn) − F(F Inv(αn))

(F + tnϕn)Inv(αn) − εn − F Inv(αn)

)−1

Lemma 17

≤
⎧⎨
⎩

−ϕ(qα)min
{

lim inf
n

(
∂−(F )(ξn)

)−1
, lim inf

n

(
∂+(F )(ξn)

)−1
}

if ϕ(qα) ≥ 0,

−ϕ(qα)max
{

lim sup
n

(
∂−(F )(ξn)

)−1
, lim sup

n

(
∂+(F )(ξn)

)−1
}

if ϕ(qα) ≤ 0; (4.20)

where we use (4.18) for the second inequality. Since ξn → qα , and since ∂−(F ) and ∂+(F ) are
càdlàg or làdcàg in qα by Assumption A, we further have

lim sup
n

(
∂−(F )(ξn)

)−1 ≤ max
((

∂−(F )(qα+)
)−1

,
(
∂−(F )(qα−)

)−1)
,

lim sup
n

(
∂+(F )(ξn)

)−1 ≤ max
((

∂+F
)
(qα+)

)−1
,
(
∂+(F )(qα−)

)−1
),

so that in case ϕ(qα) ≥ 0 we obtain

lim sup
n

t−1
n

(
(F + tnϕn)

Inv(αn) − F Inv(αn)
)

≤ −ϕ(qα)max
{(

∂±(F )(qα−)
)−1

,
(
∂±(F )(qα+)

)−1}
= (−ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)

∨(α)

by Lemma 10, (i) applied to −ϕ. The case ϕ(qα) ≤ 0 is dealt with similarly, together showing
the second inequality in (4.2). The first follows similarly: Applying “lim inf” on (4.15) and using
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(4.19) yields

lim inf
n

t−1
n

(
(F + tnϕn)

Inv(αn) − F Inv(αn)
)

≥
⎧⎨
⎩

−ϕ(qα)max
{

lim sup
n

(
∂−(F )(ζn)

)−1
, lim sup

n

(
∂+(F )(ζn)

)−1
}

if ϕ(qα) ≥ 0,

−ϕ(qα)min
{

lim inf
n

(
∂−(F )(ζn)

)−1
, lim inf

n

(
∂+(F )(ζn)

)−1
}

if ϕ(qα) ≤ 0,

≥ (−ϕ ◦ F Inv · (∂−(F ) ◦ F Inv)−1)
∧(α).

This concludes the proof of case (ii). The remaining cases (iii) α = F(qα−) and (iv) α = F(qα)

for qα ∈ Dsc(F ) are dealt with in the supplementary material. �

4.3.2. Details for the proof of Theorem 5

Recall from Holzmann and Klar [5] the identity

Iτ (x,F ) = τ

∫ ∞

x

(
1 − F(y)

)
dy − (1 − τ)

∫ x

−∞
F(y)dy. (4.21)

We start with some technical preliminaries.

Lemma 18. We have that for x1, x2 ∈ R,

Iτ (x1,F ) − Iτ (x2,F ) = (x2 − x1)

[
τ + (1 − 2τ)

∫ 1

0
F

(
x2 + s(x1 − x2)

)
ds

]
. (4.22)

Lemma 19. We have

min{τl,1 − τu} ≤ τ + (1 − 2τ)s ≤ 3/2, τ ∈ [τl, τu], s ∈ [0,1]. (4.23)

Next, we discuss Lipschitz-properties of relevant maps.

Lemma 20. For any x1, x2, y ∈ R and τ ∈ [τl, τu],∣∣Iτ (x1, y) − Iτ (x2, y)
∣∣ ≤ |x2 − x1| (4.24)

Further, for any τ, τ ′ ∈ [τl, τu] and x, y ∈R,∣∣Iτ (x, y) − Iτ ′(x, y)
∣∣ ≤ ∣∣τ − τ ′∣∣(|x| + |y|) (4.25)

Finally, the map τ �→ μτ , τ ∈ [τl, τu], is Lipschitz-continuous.

The proofs of Lemmas 18, 19 and 20 are given in Section D.
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Details for Step 1.

Proof of Lemma 11. Proof of (4.3).
By Lemma 20, the function class

F = {
y �→ −Iτ (μτ , y) | τ ∈ [τl, τu]

}
is Lipschitz-continuous in the parameter τ for given y, and the Lipschitz constant (which depends
on y) is square-integrable under F . Indeed, the triangle inequality first gives∣∣Iτ (μτ , y) − Iτ ′(μτ ′ , y)

∣∣ ≤ ∣∣Iτ (μτ , y) − Iτ ′(μτ , y)
∣∣ + ∣∣Iτ ′(μτ , y) − Iτ ′(μτ ′ , y)

∣∣.
Using (4.25) the first summand on the right fulfils∣∣Iτ (μτ , y) − Iτ ′(μτ , y)

∣∣ ≤ ∣∣τ − τ ′∣∣(|μτl
| ∨ |μτu | + |y|),

and the second is bounded by

∣∣Iτ ′(μτ , y) − Iτ ′(μτ ′ , y)
∣∣ ≤ |μτ − μτ ′ | ≤ ∣∣τ − τ ′∣∣ |μτu | ∨ |μτl

| +E[|Y |]
a

,

utilizing (4.24) and (D.3). Thus∣∣Iτ (μτ , y) − Iτ ′(μτ ′ , y)
∣∣ ≤ ∣∣τ − τ ′∣∣(C + |y|) (4.26)

for some constant C ≥ 1. By example 19.7 in combination with Theorem 19.5 in van der Vaart
[13], F is a Donsker class, so that

√
n(ψn(μ·) − ψ0(μ·)) converges to the process Z. The same

reasoning as in Theorem 8, Holzmann and Klar [5], then shows continuity of the sample paths
of Z with respect to the Euclidean distance on [τl, τu].

Proof of (4.4).
Setting

Fδn = {
y �→ Iτ (μτ + x, y) − Iτ (μτ , y) | |x| ≤ δn, τ ∈ [τl, τu]

}
we estimate that

sup
‖ϕ‖[τl ,τu]≤δn

sup
τ∈[τl ,τu]

√
n
∣∣ψn(μ· + ϕ)(τ ) − ψ0(μ· + ϕ)(τ ) − [

ψn(μ·)(τ ) − ψ0(μ·)(τ )
]∣∣

is smaller than ‖√n(Fn −F)‖Fδn
. From the triangle inequality, for any τ, τ ′ ∈ [τl, τu] and x, x′ ∈

[−δ1, δ1] we first obtain∣∣Iτ (μτ + x, y) − Iτ (μτ , y) − (
Iτ ′

(
μτ ′ + x′, y

) − Iτ ′(μτ ′ , y)
)∣∣

≤ ∣∣Iτ (μτ + x, y) − Iτ ′
(
μτ ′ + x′, y

)∣∣ + ∣∣Iτ (μτ , y) − Iτ ′(μτ ′ , y)
∣∣,

where the second term was discussed above and the first can be handled likewise to conclude∣∣Iτ (μτ + x, y) − Iτ ′
(
μτ ′ + x′, y

)∣∣ ≤ (∣∣τ − τ ′∣∣ + ∣∣x − x′∣∣)(C + δ1 + |y|) (4.27)
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with the same C as above. Hence,∣∣Iτ (μτ + x, y) − Iτ (μτ , y) − (
Iτ ′

(
μτ ′ + x′, y

) − Iτ ′(μτ ′ , y)
)∣∣

≤ m(y)
(∣∣τ − τ ′∣∣ + ∣∣x − x′∣∣)

with Lipschitz-constant

m(y) = 2C + δ1 + 2|y|,
which is square-integrable by assumption on F . By example 19.7 in van der Vaart [13] the
bracketing number N[](ε,Fδ1 ,L2(F )) of Fδ1 is of order ε−2, so that for the bracketing integral

J[]
(
εn,Fδn ,L2(F )

) ≤ J[]
(
εn,Fδ1,L2(F )

) → 0 as εn → 0.

From (4.24), the class Fδn has envelope δn, and hence using Corollary 19.35 in van der Vaart
[13], we obtain

E
[∥∥√

n(Fn − F)
∥∥
Fδn

] ≤ J[]
(
δn,Fδn ,L2(F )

) → 0. (4.28)

An application of the Markov inequality ends the proof of (4.4). �

Details for Step 2.

Proof of Lemma 12. Given τ ∈ [τl, τu], by (4.22) and the lower bound in (4.23), the function
x �→ Iτ (x,F ) is strictly decreasing, and its image is all of R. Hence, for any z ∈ R there is a
unique x satisfying Iτ (x,F ) = z, which shows that ψ0 is invertible.

Next for fixed ϕ ∈ �∞[τl, τu] the preimage ((Iτ (·,F ))Inv([−‖ϕ‖,‖ϕ‖]) is by monotonicity an
interval [Lτ ,Uτ ], |Lτ |, |Uτ | < ∞. By (4.21),

Iτ (x,F ) = τ

{∫ ∞

x

(
1 − F(y)

)
dy +

∫ x

−∞
F(y)dy

}
−

∫ x

−∞
F(y)dy,

thus the map τ �→ Iτ (x,F ) is increasing, showing Lτ ′ ≤ Lτ and Uτ ′ ≤ Uτ for τ ≥ τ ′. Hence,
the solution of z = Iτ (x,F ) for z ∈ [−‖ϕ‖,‖ϕ‖] lies in [Lτl

,Uτu ], which means that ψ Inv
0 (ϕ) is

bounded. �

Before we turn to the proof of Lemma 13, we require the following technical assertions about
ψ Inv

0 .

Lemma 21. Given t > 0 and ν ∈ �∞[τl, τu], we have that

t−1(ψ Inv
0 (tν) − ψ Inv

0 (0)
)
(τ )

= ν(τ )

{
τ + (1 − 2τ)

∫ 1

0
F

(
μτ + s

(
ψ Inv

0 (tν)(τ ) − μτ

))
ds

}−1

. (4.29)
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In particular, if νn ∈ �∞[τl, τu] with ‖νn‖ → 0, then ‖ψ Inv
0 (νn)(·) − μ·‖ → 0, so that for any

τ ∈ [τl, τu] and τn → τ ,

ψ Inv
0 (νn)(τn) − μτn → 0. (4.30)

The proof of Lemma 21 is given in Section D.
We now introduce the following notation for the sequel. Given ϕ ∈ �∞[τl, τu] let cϕ ∈

�∞[τl, τu] be defined by

cϕ(τ ) = τ + (1 − 2τ)

∫ 1

0
F

(
μτ + sϕ(τ)

)
ds. (4.31)

Proof of Lemma 13. Let tn → 0, tn > 0, (ϕn)n ⊂ �∞[τl, τu] with ϕn → ϕ ∈ C[τl, τu] with re-
spect to dhypi and thus uniformly by Proposition 2.1 in Bücher, Segers and Volgushev [2]. From
(4.29), and using the notation (4.31) we can write

t−1
n

(
ψ Inv

0 (tnϕn) − ψ Inv
0 (0)

) = ϕn/cκn, κn(τ ) = ψ Inv
0 (tnϕn)(τ ) − μτ

and we need to show that

ϕn/cκn → ψ̇ Inv
0 (ϕ) = ϕ/c0 (4.32)

with respect to dhypi, where c0(τ ) = τ + (1 − 2τ)F (μτ ).
Now, since ϕn → ϕ uniformly and ϕ is continuous, to obtain (4.32) if suffices by Lemma 14,

(i) and (iv), to show that cκn → c0 under dhypi. To this end, by Lemma A.4, Bücher, Segers and
Volgushev [2] and Lemma 14, (iv), it suffices to show that under dhypi

hn(τ) =
∫ 1

0
F

(
μτ + s

(
ψ Inv

0 (tnϕn)(τ ) − μτ

))
ds → h(τ) := F(μτ ), (4.33)

for which we shall use Corollary A.7 in Bücher, Segers and Volgushev [2]. Let

T = [τl, τu], S = T \ {
τ ∈ [τl, τu] | F is not continuous in μτ

}
,

so that S is dense in T and h|S is continuous. Observe that τl,μτu ∈ S by assumption. Using the
notation from Bücher, Segers and Volgushev [2], Appendix A.2, for F(μτ−) = limτ ′↗τ F (μτ ′)
we have that

(h|S)S:T∧ = h∧ = F(μ·−) and (h|S)S:T∨ = h∨ = h, (4.34)

where the first equalities follow from the discussion in Bücher, Segers and Volgushev [2], Ap-
pendix A.2, and the second equalities from Lemma 14, (iii) below. If we show that

(i) for all τ ∈ [τl, τu] with τn → τ it holds that lim infn hn(τn) ≥ F(μτ−) and
(ii) for all τ ∈ [τl, τu] with τn → τ it holds that lim supn hn(τn) ≤ F(μτ ),

Corollary A.7 in Bücher, Segers and Volgushev [2] implies (4.33), which concludes the proof of
the convergence in (4.32).
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To this end, concerning (i), we compute that

F(μτ−) ≤
∫ 1

0
lim inf

n
F

(
μτn + s

(
ψ Inv

0 (tnϕn)(τn) − μτn

))
ds

≤ lim inf
n

∫ 1

0
F

(
μτn + s

(
ψ Inv

0 (tnϕn)(τn) − μτn

))
ds = lim inf

n
hn(τn),

where the first inequality follows from (4.30) and the fact that F(μτ−) ≤ F(μτ ), and the second
inequality follows from Fatou’s lemma. For (ii), we argue analogously

F(μτ ) ≥
∫ 1

0
lim sup

n
F

(
μτn + s

(
ψ Inv

0 (tnϕn)(τn) − μτn

))
ds

≥ lim sup
n

∫ 1

0
F

(
μτn + s

(
ψ Inv

0 (tnϕn)(τn) − μτn

))
ds = lim sup

n
hn(τn).

This concludes the proof of the lemma. �

4.3.3. Details for the proof of Theorem 8

We let ψ∗
n (ϕ)(τ ) = −Iτ (ϕ(τ ),F ∗

n ), ϕ ∈ �∞[τl, τu], and denote by P∗
n the conditional law of

Y ∗
1 , . . . , Y ∗

n given Y1, . . . , Yn, and by E
∗
n expectation under this conditional law.

Lemma 22. We have, almost surely, conditionally on Y1, Y2, . . . , the following statements.

(i) If E[|Y |] < ∞, then

sup
τ∈[τl ,τu]

∣∣μ∗
τ,n − μ̂τ,n

∣∣ = oP∗
n
(1). (4.35)

Now assume E[Y 2] < ∞.

(ii) Weakly in (�∞[τl, τu],‖ · ‖) it holds that

√
n
(
ψ∗

n (μ̂·,n) − ψn(μ̂·,n)
) → Z (4.36)

with Z as in Theorem 5.
(iii) For every sequence δn → 0 it holds that

sup
‖ϕ‖≤δn

sup
τ∈[τl ,τu]

√
n
∣∣ψ∗

n (μ̂·,n + ϕ)(τ ) − ψn(μ̂·,n + ϕ)(τ )

− [
ψ∗

n (μ̂·,n)(τ ) − ψn(μ̂·,n+)(τ )
]∣∣ = oP∗

n
(1).

(4.37)

(iv) Weakly in (�∞[τl, τu],‖ · ‖) we have that

√
n
(
ψn

(
μ∗·,n

) − ψn(μ̂·,n)
) → Z. (4.38)

The proof of Lemma 22 is contained in Section D.
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Lemma 23. The map ψn is invertible. Further, if tn → 0, ϕ ∈ C[τl, τu] and ϕn → ϕ with respect
to dhypi and hence uniformly, we have that almost surely, conditionally on Y1, Y2, . . . ,

t−1
n

(
ψ Inv

n (tnϕn) − ψ Inv
n (0)

) → ψ̇ Inv
0 (ϕ) (4.39)

with respect to the hypi-semimetric.

Proof. The first part follows from Lemma 12 with F in ψ0 replaced by Fn in ψn as no spe-
cific assumptions on F were used in that lemma. For (4.39), with the same calculations as for
Lemma 21 we obtain the representation

t−1
n

(
ψ Inv

n (tnϕn) − ψ Inv
n (0)

)
(τ )

= ϕn(τ)

{
τ + (1 − 2τ)

∫ 1

0
Fn

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

))
ds

}−1

,

and we have to prove hypi-convergence to ψ̇ Inv
0 (ϕ). By the same reductions as in the proof of

Theorem 13, it suffices to prove the hypi-convergence of

hn(τ) =
∫ 1

0
Fn

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

))
ds

to h(τ) for almost every sequence Y1, Y2, . . . . To this end, observe that for any s ∈ [0,1] the
sequence μ̂τ,n + s(ψ Inv

n (tnϕn)(τ ) − μ̂τ,n) converges to μτ almost surely by the same argu-
ments as in Lemma 21. Since μτ is continuous in τ , for any sequence τn → τ the almost
sure convergence μ̂τn,n + s(ψ Inv

n (tnϕn)(τn) − μ̂τn,n) → μτ holds. By adding and subtracting
Fn(μ̂τ,n + s(ψ Inv

n (tnϕn)(τ ) − μ̂τ,n)) and using Lemma 16, we now can estimate

F(μτ−) ≤
∫ 1

0
lim inf

n

(
Fn

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

)))
+ lim sup

n

(
F

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

))
− Fn

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

)))
ds

≤
∫ 1

0
lim inf

n
Fn

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

))
ds + lim sup

n
‖Fn − F‖R

≤ lim inf
n

∫ 1

0
Fn

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

))
ds = lim inf

n
hn(τn)
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almost surely, where the ‘lim sup’ vanishes due to the Glivenko–Cantelli-theorem for the empir-
ical distribution function. Similarly, we almost surely have

F(μτ ) ≥
∫ 1

0
lim sup

n
Fn

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

))
ds + lim inf

n
‖Fn − F‖R

≥ lim sup
n

∫ 1

0
Fn

(
μ̂τ,n + s

(
ψ Inv

n (tnϕn)(τ ) − μ̂τ,n

))
ds = lim sup

n
hn(τn).

The proof is concluded as that of Theorem 13 by using Corollary A.7, Bücher, Segers and Vol-
gushev [2]. �

Proof of Theorem 8. Set tn = 1/
√

n and define the function gn(ϕ) = t−1
n (ψ Inv

n (tnϕ)−ψ Inv
n (0)).

Then from (4.39) the hypi-convergence gn(ϕn) → ψ̇ Inv
0 (ϕ) holds almost surely, whenever ϕ ∈

C[τl, τu] and ϕn → ϕ with respect to dhypi. In addition
√

n(ψn(μ
∗·,n) − ψn(μ̂·,n)) → Z condi-

tional in distribution with respect to the sup-norm, almost surely, by (4.36), where Z is continu-
ous almost surely. Hence the convergence is also valid with respect to dhypi, such that

√
n
(
μ∗·,n − μ̂·,n

) = gn

(√
n
(
ψn

(
μ∗·,n

) − ψn(μ̂·,n)
)) → ψ̇ Inv

0 (Z)

holds conditionally in distribution, almost surely, by using the extended continuous mapping
theorem, Theorem B.3, in Bücher, Segers and Volgushev [2]. �
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