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In the sparse normal means model, coverage of adaptive Bayesian posterior credible sets associated to
spike and slab prior distributions is considered. The key sparsity hyperparameter is calibrated via marginal
maximum likelihood empirical Bayes. First, adaptive posterior contraction rates are derived with respect
to dq -type-distances for q ≤ 2. Next, under a type of so-called excessive-bias conditions, credible sets are
constructed that have coverage of the true parameter at prescribed 1 − α confidence level and at the same
time are of optimal diameter. We also prove that the previous conditions cannot be significantly weakened
from the minimax perspective.
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1. Introduction

1.1. Setting

In the sparse normal means model, one observes a sequence X = (X1, . . . ,Xn)

Xi = θi + εi, i = 1, . . . , n, (1)

with θ = (θ1, . . . , θn) ∈ Rn and ε1, . . . , εn i.i.d. N (0,1). Given θ , the distribution of X is a
product of Gaussians and is denoted by Pθ . Further, one assumes that the ‘true’ vector θ0 belongs
to

�0[s] = {
θ ∈Rn,

∣∣{i : θi �= 0}∣∣ ≤ s
}
,

the set of vectors that have at most s nonzero coordinates, where s is a sequence such that
s/n = o(1) and s → ∞ as n → ∞. A natural problem is that of reconstructing θ with respect to
the �q -type-metric for 0 < q ≤ 2 (it is a true metric only for q ≤ 1) defined by

dq

(
θ, θ ′) =

n∑
i=1

∣∣θi − θ ′
i

∣∣q .
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A benchmark is given by the minimax rate for this loss over the class of sparse vectors �0[s]. The
minimax rate over �0[s] for the loss dq is of the order, as n → ∞, see [13],

rq := rn,q = s
[
log(n/s)

]q/2
.

The sparse sequence model has become very central in statistics as one of the simplest and
natural models to describe sparsity, in a similar way as the Gaussian white noise model in the
setting of nonparametrics. Many authors have contributed to its study both from Bayesian and
non-Bayesian perspectives, in particular in terms of convergence rates. Some seminal contribu-
tions include [1,6,16]. Methods using an empirical Bayes approach to study aspects of the poste-
rior distribution include works by George and Foster [14], Johnstone and Silverman [19] (whose
approach we describe in more detail in Sections 1.3–1.4) and Jiang and Zhang [17]. Works study-
ing the full posterior have started more recently, and we include a brief overview below. Here our
interest is in a popular class of Bayesian procedures associated to spike and slab prior distribu-
tions. We undertake a so-called frequentist analysis of the posterior distribution. That is, we first
construct a prior distribution on the unknown sparse θ and then use the Bayesian framework to
produce a posterior distribution, which is then studied under the frequentist assumption that the
data has actually been generated from a ‘true’ unknown sparse parameter θ0.

Our interest is in precise understanding of how posterior distributions for spike and slab priors
work for inference in terms of convergence and confidence sets. Such priors play a central role
in statistics, in sparse and non-sparse settings (such as nonparametric function estimation, see,
for example, [21]), and also as tools for lower bounds. In sparsity contexts, especially for �0[s]
classes, they are one of the most natural choice of priors. Despite recent advances, there are many
open questions regarding mathematical properties of such fundamental priors for inference. A
brief overview of the literature on sparse priors is given below. We note also that the present work
is a natural continuation of [9], where rates of convergence in the case q = 2 were investigated.
Here we handle the fundamentally different issue of building confidence regions, as well as
posterior convergence rates, with respect to �q -type-metrics for all q in (0,2].

The construction of confidence sets is of key importance in statistics, but is a delicate issue.
For convenience let us formally denote by {�β : β ∈ B} a collection of models indexed by some
parameter β ∈ B (e.g. sparsity, regularity, dimension, etc.). In practice it is typically unknown
which model �β the true θ belongs to, hence one wants to develop adaptive methods not relying
on the knowledge of β . Constructing adaptive confidence sets in high-dimensional and nonpara-
metric problems is very challenging, in fact impossible in general, see, for instance, [15,22,25]
in context of nonparametric models and [24] in (sparse) high dimensional problems. Therefore,
it is sometimes necessary to introduce further assumptions on the models �β , β ∈ B to derive
positive results, see [24] for more detailed description of the problem in the high-dimensional
setting as well as Sections 2.4–2.6 below.

In various fields of applications, for their flexibility and practical convenience, Bayesian cred-
ible sets are routinely used as a measure of uncertainty. However, it is not immediately clear
what the frequentist interpretation of these sets is, that is, whether such sets can be used as con-
fidence sets or whether by doing so one provides a misleading haphazard uncertainty statement.
The asymptotic properties of Bayesian credible sets have been investigated only in recent years,
see, for instance, [10,28,30] and references therein. In the context of sparse high dimensional
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problems, there are only a few results available. For the sparse normal means model, the fre-
quentist coverage properties of a sparsity prior with empirically chosen Gaussian slabs [4] and
of the horseshoe prior [32] were investigated, while in the more general linear regression model
credible sets for the modified Gaussian slab prior are studied in [3], all for the quadratic risk. In
the present paper, the focus is on the standard and popular spike and slab prior, which requires a
substantially different analysis compared to the previous examples, as explained in more details
below.

1.2. Spike and slab prior and associated posterior distribution

The spike and slab prior with sparsity parameter α is the prior �α on θ given by

θ ∼
n⊗

i=1

(
(1 − α)δ0 + αG(·)) =: �α, (2)

where δ0 denotes the Dirac mass at 0 and G is a given probability measure of density γ . It is
often assumed that γ is a symmetric unimodal density on R. We will make specific choices in
the sequel. The posterior distribution under (1)–(2) is

�α[· | X] ∼
n⊗

i=1

((
1 − a(Xi)

)
δ0 + a(Xi)γXi

(·)), (3)

where we have set, denoting φ the standard normal density and g(x) = φ ∗ γ (x) = ∫
φ(x −

u)dG(u) the convolution of φ and G,

g(Xi) = (φ ∗ γ )(Xi),

γXi
(·) = φ(Xi − ·)γ (·)

g(Xi)
,

a(Xi) = aα(Xi) = αg(Xi)

(1 − α)φ(Xi) + αg(Xi)
.

If the choice of α is clear from the context, we denote a(x) instead of a(α, x) for simplicity.

Introducing the posterior median threshold

For any symmetric γ density, the vector θ̂α of medians of the coordinates of the posterior (3)
(whose ith coordinate by (3) only depends on Xi ) has been studied in [19]. The following prop-
erty is used repeatedly in what follows, see Lemma 2 in [19]: the posterior coordinate-wise
median has a thresholding property: there exists t (α) > 0 such that θ̂α(X)i = 0 if and only if
|Xi | ≤ t (α).



130 I. Castillo and B. Szabó

1.3. Empirical Bayes estimation of α via marginal likelihood

In a seminal paper, Johnstone and Silverman [19] considered estimation of θ using spike and slab
priors combined with a very simple empirical Bayes method for choosing α that we also follow
here and describe next. The marginal likelihood in α is the density of X | α at the observation
points in the Bayesian model. A simple calculation reveals that its logarithm equals

�(α) = �n(α;X) =
n∑

i=1

log
(
(1 − α)φ(Xi) + αg(Xi)

)
.

The corresponding score function equals S(α) := �′(α) = ∑n
i=1 B(Xi,α), where

B(x) = g

φ
(x) − 1; B(x,α) = B(x)

1 + αB(x)
. (4)

Then [19] define α̂ as the maximiser, henceforth abbreviated as MMLE, of the log-likelihood

α̂ = argmax
α∈An

�n(α;X), (5)

where An = [αn,1], and αn is defined by, with t (α) the posterior median threshold as above,

t (αn) = √
2 logn.

1.4. Motivating risk results

Let as above θ̂α denote the posterior coordinate-wise median associated to the posterior (3) with
fixed hyper-parameter α and let θ̂ = θ̂α̂ , with α̂ as in (5). Suppose that s = o(n) as n → ∞ and
that for some constant κ1 > 0,

κ1 log2 n ≤ s. (6)

Fact 1 (Direct consequence of [19], Theorem 1). Let γ be the Laplace or the Cauchy density.
Suppose (6) holds. For any 0 < q ≤ 2, there exists a constant C = C(q,γ ) > 0 such that

sup
θ0∈�0[s]

Eθ0dq(θ̂ , θ0) ≤ Crq,

thereby proving minimaxity (up to a constant multiplier) of the estimator θ̂ = θ̂α̂ over �0[s]. The
estimator is adaptive, as the knowledge of s is not required in its construction. Condition (6) is
quite mild. In case it is not satisfied, the upper bound on the rate above is Crq + log3 n instead
of Crq , which means there may be a slight logarithmic penalty to use θ̂ in the extremely sparse
situation where s 
 log2 n. Theorem 2 in [19] shows that the estimate α̂ can in fact be modified
so that the minimax risk result holds even if the lower bound in (6) is not satisfied. For simplicity
in the present paper, we work under (6) but presumably modifying the estimator as in [19] leads
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to minimax optimality also in the extremely sparse range in the context of Theorem 1. In this
respect, we note that [9], Theorem 5, shows that this is indeed the case when q = 2 and a Cauchy
prior is used.

Consider the plug-in empirical Bayes posterior, for α̂ the MMLE as defined above,

�α̂[· | X] ∼
n⊗

i=1

((
1 − aα̂(Xi)

)
δ0 + aα̂(Xi)γXi

(·)).
Fact 2 ([9], Theorems 1 and 3). Let α̂ be the MMLE given by (5). Let γ be the Cauchy density.
Under (6) there exists C > 0 such that, for n large enough,

sup
θ0∈�0[s]

Eθ0

∫
d2(θ, θ0) d�α̂(θ | X) ≤ Cs log(n/s).

For γ the Laplace density, the result does not hold: there exists θ0 ∈ �0[s] and c > 0 such that

Eθ0

∫
d2(θ, θ0) d�α̂(θ | X) ≥ cMns log(n/s),

where Mn = exp{√log(n/s)} goes to infinity with n/s. This shows that if tails of the slab prior
are not heavy enough, the corresponding posterior does not reach the optimal minimax rate over
sparse classes. In particular, typical credible sets such as balls arising from this posterior will
not have optimal diameter. These observations naturally lead to wonder if confidence sets in the
squared euclidean norm d2 = ‖ · ‖2 could be obtained using a Cauchy slab, for which the optimal
posterior contraction rate is guaranteed, and how the previous facts evolve if dq -type-metrics for
q < 2 are considered.

1.5. Brief overview of results on sparse priors

Many popular sparse priors can be classified into two categories: first, priors that put some co-
efficients to the exact zero value, such as spike and slab priors and second, priors that instead
draw coefficients using absolutely continuous distributions, and thus do not generate exact zero
values. In the first category, one can generalise the spike and slab prior scheme (2) by first select-
ing a random subset S of indexes within {1, . . . , n} and then given S setting θi = 0 for i /∈ S and
drawing θi for i ∈ S from some absolutely continuous prior distribution. This scheme has been
considered for example, in [12], where the case of an induced prior πn on the number of non-
zero coefficients of the form πn(k) ∝ exp[−c1k log(c2n/k)], called complexity prior, is studied
and the slab distribution has tails at least as heavy as Laplace. Belitser and coauthors [3,4], and
Martin and Walker [23], consider the case of Gaussian slabs that are recentered at the observation
points. Other proposals for slab distributions include non-local priors as in [18].

In the second category, one can replace the Dirac mass at zero of the spike by a density ap-
proaching it, as in the spike and slab LASSO introduced by Ročková and George, see [26,27].
One can also directly define a certain continuous density with a lot of mass at zero and heavy
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tails, as does the horseshoe prior introduced in [8] and further studied in [31–33], see also [34]
for other families of mixture priors. Other approaches to continuous shrinkage priors include the
Dirichlet–Laplace priors of [5].

Most previously cited works are concerned with posterior convergence rates, with the excep-
tion of [4]–[3] (that considers also oracle results) and [32], that derive properties of credible sets,
all with respect to the squared �2-loss. The prior and confidence sets introduced in [4] are quite
different from those considered here, in that, for instance, the radius of credible set we consider
is determined directly from the posterior distribution, and the priors and confidence sets in [4]
require some post-processing (e.g., specific separate estimation of the radius and recentering of
the posterior selected components). As noted above, the horseshoe prior belongs to a different
category of priors, not setting any coefficient to 0, and further, it is not clear if its Cauchy tails
would be sufficiently heavy to handle dq -losses for small q , at least via a MMLE–empirical
Bayes choice of its tuning parameter τ . An overview of current research can be found in the
discussion paper [32].

1.6. Outline and notation

Outline and summary of main results

Section 2 contains our main results. First, adaptive convergence rates in dq -type-distances,
0 < q ≤ 2, are derived for the full empirical Bayes posterior �α̂[· | X], for a well-chosen slab dis-
tribution. Second, frequentist coverage results are obtained for credible balls centered at the pos-
terior median estimator θ̂ and whose radius is a constant M times the posterior expected radius∫

dq(θ, θ̂) d�(θ | X), both for deterministic and data-driven choice of the hyper-parameter α. In
the later case, we prove that under an excessive-bias condition, the credible sets have optimal
diameter and frequentist coverage, already for fixed large enough M (so without the need of a
‘blow-up’ M = Mn → ∞). Focusing on the case q = 2, we then discuss the obtained excessive-
bias condition and show that such a condition cannot be weakened from the minimax perspective.
Section 3 briefly discusses the main findings of the paper. Proofs are organised as follows: Sec-
tion 4 regroups some useful preliminary bounds, Section 5 is devoted to proofs for credible sets.
A separate supplementary material [11] gathers proofs of technical lemmas, as well as the proof
of the rate Theorem 1.

Notation. For two sequences an, bn let us write an � bn if there exists a universal constant
C > 0 such that an ≤ Cbn, and an � bn if an � bn and bn � an hold simultaneously. We write
an ∼ bn for bn �= 0 if an/bn = 1 + o(1). We denote throughout by c and C universal constants
whose value may change from line to line. Also, the dq -diameter of a set C is written diamq(C),
that is,

diamq(C) = sup
θ,θ ′∈C

dq

(
θ, θ ′).

For convenience in the case q = 2, we denote by diam(C) the d2-diameter of the set C. Finally,
when D is a finite set, |D| denotes the cardinality of D.
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2. Main results

2.1. Slab prior distributions

For a fixed δ ∈ (0,2), consider the unimodal symmetric density γ = γδ on R given by

γ (x) = cγ

(1 + |x|)1+δ
= cγ �

(
1 + |x|), for �(u) = u−1−δ, (7)

where cγ = cγ (δ) is the normalising constant making γ a density. The purpose of this density is
to have sufficiently heavy tails, possibly heavier than Cauchy. To fix ideas, we take the specific
form (7), but as is apparent from the proofs, similar results continue to hold for densities with
same tails: for instance, the Cauchy density could be used instead of γ2. The possibility of having
a broad range of heavy tails is essential to achieve optimal rates in terms of dq for the considered
empirical Bayes procedure. If δ ≥ 1, the function u → (1 + u2)γ (u) is bounded and the den-
sity γ falls in the framework of [19]. If δ ∈ (0,1), we show below how this changes estimates
quantitatively. In all cases, γ still satisfies

sup
u>0

∣∣∣∣ d

du
logγ (u)

∣∣∣∣ =: � < ∞.

Recall g = φ∗γ is the convolution of the heavy-tailed γ given by (7) and the noise density φ. Ba-
sic properties of g are gathered in Lemma 2, while Lemma 4 provides bounds on corresponding
moments of the score function.

2.2. Adaptive risk bounds for integrated posterior

Theorem 1. Fix δ ∈ (0,2). Let γ = γδ be the density defined by (7) and let α̂ be the correspond-
ing MMLE given by (5) and suppose (6) holds. Then there exists a universal constant C > 0, that
in particular is independent of δ, q , such that, for large enough n, for any q ∈ (2δ,2],

sup
θ0∈�0[s]

Eθ0

∫
dq(θ, θ0) d�α̂(θ | X) ≤ Cs logq/2(n/s).

Theorem 1 shows that the posterior qth moment converges at the minimax rate for dq -type-
distances over �0[s]. By contrast, note that the results in [12] for dq covered complexity priors on
the dimension, but not spike and slab priors (which induce a binomial prior on the dimension),
and were results on the posterior convergence as a probability measure and as such did not imply
convergence at minimax rate of for example, the posterior mean. The proof of Theorem 1 is given
in the supplement, Section A.3.

Let us now briefly comment on the behaviour of some point estimators and on simulations
from the empirical Bayes posterior. Under the conditions of Theorem 1, the posterior mean is
rate-minimax for any 1 ≤ q ≤ 2. This follows from Theorem 1 using the convexity of θ →
dq(θ, θ0) if 1 ≤ q ≤ 2 and Jensen’s inequality. More details on the posterior mean, in particular
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its suboptimality when q < 1, can be found in the supplement, Section A.8. Concerning the
posterior median, one can check that it is rate-minimax for any 0 < q ≤ 2, see Section A.8 in
the supplement. We also note in passing that simulation from the considered empirical Bayes
posterior distribution is fast: for Cauchy-type slab tails, one can directly use the EbayesThresh
package of Johnstone and Silverman, see [20]. To compute α̂ corresponding to the precise slab
form γ in (7), one can compute approximations of g(x) = (γ ∗ φ)(x) by a numerical integration
method and next insert this in the EbayesThresh subroutine computing α̂.

Remark 1. One may consider a density γ ‘on the boundary’ by setting, say,

�(u) = u−1 log−2 u.

For this choice of γ , it can be checked that the risk bound of Theorem 1 holds uniformly for
q ∈ (0,2]. However, this prior density has some somewhat undesired properties for confidence
sets: it can be checked that the variance term of the empirical Bayes posterior is, for q = 2, of the
order sτ (α)2/ log τ(α), which turns out to be sub-optimally small and a blow-up factor of order
at least log log(n/s) would be needed to guarantee coverage of the corresponding credible set.

2.3. Credible sets for fixed α

For q ∈ (0,2], and as before θ̂α the posterior coordinate-wise median for fixed α, we set

Cq,α = {
θ ∈ Rn, dq(θ, θ̂α) ≤ Mvq,α(X)

}
, (8)

where M is a constant to be chosen below, and where we denote

vq,α(X) =
∫

dq(θ, θ̂α) d�α(θ | X).

Note that by Markov’s inequality, for M ≥ 1/β it holds

�α[Cq,α | X] ≥ 1 − β,

so that Cq,α is a 1 − β credible set (actually it is sufficient to take M = 1 + ε, for arbitrary ε > 0,
to achieve 1 −β posterior coverage asymptotically, see Remark 2 below). The proposition below
reveals the frequentist properties of the so-constructed credible sets for a fixed value of the tuning
parameter α. Taking α � s logδ/2(n/s)/n, the size of the credible set is (nearly) optimal, reaching
the (nearly) minimax rate s logq/2(n), and by taking α � s logδ/2(n/s)/n the exact minimax
rate (up to a constant) s logq/2(n/s) is achieved. On the other hand, the frequentist coverage
properties of Cq,α behave in an opposite way with respect to α. Indeed, one can find elements of
the class �0[s] for which too small choice of the hyperparameter α, i.e. α = o(s logδ/2(n/s)/n),
results in misleading uncertainty statements. At the same time sufficiently large values of α (i.e.,
α � s logδ(n/s)/n) provide high frequentist coverage. Let us introduce the set

�̃s,α = {
θ ∈ �0[s] : ∣∣{i : t (α)/8 ≤ |θ0,i | ≤ t (α)/4

}∣∣ = s
}
. (9)

Note that this sets contains non-zero signals with large enough (but not too large) values.
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Proposition 1. Let δ ∈ (0,2) be arbitrary and �α be the spike and slab prior with γ = γδ the
density defined by (7). Then for any q > δ and s logδ/2(n/s)/n � α ≤ α1 for sufficiently small
constant α1, the Bayes credible set (8) has, with respect to dq , frequentist coverage tending to
one for some sufficiently large choice of M

inf
θ0∈�0[s]

Pθ0(θ0 ∈ Cq,α) → 1.

However, for α = o(s logδ/2(n/s)/n) the credible set has frequentist coverage tending to zero for
true signals θ0 in the set �̃s,α defined in (9), for arbitrary choice of M > 0, i.e.

sup
θ0∈�̃s,α

Pθ0(θ0 ∈ Cq,α) → 0.

The next proposition shows that the region of α’s where the diameter of the fixed α-credible
set is optimal is in a sense ‘reversed’. Both results are proved in Section 5.1.

Proposition 2. Let δ ∈ (0,2) be arbitrary and �α be the spike and slab prior with γ = γδ

the density defined by (7). Then for any δ < q ≤ 2 and for any s logδ/2(n/s)/n 
 α ≤ α1 for
sufficiently small constant α1, the Bayes credible set (8) has, with respect to dq , suboptimal
diameter

inf
θ0∈�0[s]

Eθ0

[
diamq(Cq,α)

] � s logq/2(n/s).

However, if (s/n)c1 � α � (s/n) logδ/2(n/s) for some c1 ≥ 1, the credible set has optimal diam-
eter

sup
θ0∈�0[s]

Eθ0

[
diamq(Cq,α)

]
� s logq/2(n/s).

Remark 2. One can consider other types of credible sets as well, for instance balls centered
around the posterior coordinate-wise median, that is,

C̃q,α = {
θ ∈Rn, dq(θ, θ̂α) ≤ rβ

}
, with rβ taken as �α(C̃q,α|X) = 1 − β (10)

(if the equation has no solution, one takes the smallest rβ such that �α(C̃q,α|X) ≥ 1 − β).
One can show that these two types of credible sets are the same up to a (1 + o(1)) blow-up

factor for every fixed 0 < β < 1, since

rβ = (
1 + o(1)

)
vq,α(X), (11)

for all α ∈ (Mn(log2 n)δ/2/n,α1), with α1 > 0 a small enough constant and Mn → ∞ arbitrarily
slowly. The proof of this statement is given in Section A.7 of the supplement.

Therefore, by inflating the credible set (10) by a sufficiently large constant factor L, it has
frequentist coverage tending to one for s logδ/2(n/s)/n � α ≤ α1, that is, for C̃q,α(L) = {θ ∈
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Rn, dq(θ, θ̂α) ≤ Lrβ}, we have

inf
θ0∈�0[s]

Pθ0

(
θ0 ∈ C̃q,α(L)

) → 1.

However, for α = o(s logδ/2(n/s)/n) the credible set has frequentist coverage tending to zero for
true signals θ0 in the set �̃s,α .

2.4. Adaptive credible sets for q = 2

In this section, we investigate the adaptive version of the credible set Cα introduced in (8), in the
case q = 2. Define the random set, for M ≥ 1 to be chosen,

Cα̂ = C2,α̂ = {
θ ∈ Rn,‖θ − θ̂α̂‖2 ≤ Mvα̂(X)

}
, (12)

where ‖ · ‖2 = d2 is the square of the standard euclidian norm and

vα̂(X) =
∫

‖θ − θ̂α̂‖2 d�α̂(θ | X).

By Markov’s inequality the set Cα̂ has at least 1 − β posterior coverage for M ≥ 1/β . Also, it is
a direct consequence of Theorem 1, Markov’s inequality and the rate optimality of the posterior
median estimator that the size of this sets adapts to the minimax rate: for every ε > 0, there exists
Mε > 0 such that for any θ0 ∈ �0[s],

Pθ0

(
vα̂(X) ≥ Mεs log(n/s)

) ≤ ε.

So the credible set has an optimal diameter uniformly. However, from similar arguments as in
[24], this means that the present credible set cannot have honest coverage for every sparse θ0,
since the construction of adaptive and honest confidence sets for the quadratic risk is impossible
in the sparse normal means model, see the Supplement [11] for a precise statement and proof.

To achieve good frequentist coverage one has to introduce certain extra assumptions on the
parameter set �0[s]. We consider the excessive-bias restriction investigated in the context of the
sparse normal means model in [4,31], that is, we say that θ0 ∈ �0[s] satisfies the excessive-bias
restriction for constants A > 1 and C2,D2 > 0, if there exists an integer s ≥ � ≥ log2 n, with

∑
i:|θ0,i |<A

√
2 log(n/�)

θ2
0,i ≤ D2� log(n/�),

∣∣{i : |θ0,i | ≥ A
√

2 log(n/�)
}∣∣ ≥ �

C2
. (13)

We denote the set of all such vectors θ0 by �2
0[s] = �2

0[s;A,C2,D2], and let s̃ = s̃(θ0) be
|{i : |θ0,i | ≥ A

√
2 log(n/�)}|, for the smallest possible � such that (13) is satisfied. We note that

the assumption � ≥ log2 n can be relaxed to � ≥ 1 by considering a modified MLE estimator,
as discussed below assumption (6). However for the sake of simplicity and better readability
we work under the assumption � ≥ log2 n. The necessity of condition (13) is investigated in
Section 2.6.
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By definition s̃ ≤ s and possibly, if θ0 has many small coefficients, one can have s̃ = o(s). We
call the quantity s̃ the effective sparsity of θ0 ∈ �0[s]. It shows the number of large enough signal
components which can be distinguished from the noise. The rest of the signals are too small to
be detectable, but at the same time their energy (the sum of their squares) is not too large so
the bias of standard estimators (which will shrink or truncate the observations corresponding to
small signals) won’t be dominant. Our goal is to adapt to the present effective sparsity value and
at the same time have appropriate frequentist coverage for the credible sets.

Theorem 2. Let δ ∈ (0,2) be arbitrary and let �α be the spike and slab prior with γ = γδ the
density defined by (7). Let α̂ be the corresponding MMLE given by (5) and suppose that the
excessive-bias condition (13) hold. Then the MMLE empirical Bayes credible set (12) has, with
respect to the d2-type distance (q = 2), adaptive size to the effective sparsity s̃ and frequentist
coverage tending to one, that is, for any s = o(n)

inf
θ0∈�2

0[s;A,C2,D2]
Pθ0

(
diam(Cα̂) ≤ Cs̃ log(n/s̃)

) → 1, (14)

inf
θ0∈�2

0[s;A,C2,D2]
Pθ0(θ0 ∈ Cα̂) → 1, (15)

for sufficiently large constants C,M > 0 (the latter in (12)), depending on A, C2 and D2 in the
excessive bias condition.

This result is a particular case of Theorem 3 below, whose proof is given in Section 5.2. Similar
to the risk results presented in Section 1.4, choosing a Laplace slab would lead to suboptimal
diameter of the confidence sets. A heavy tail slab is crucial when following an empirical Bayes
method for estimating α in the spike and slab prior.

2.5. Adaptive credible sets: Extension to the case q < 2

Let q ∈ (0,2] and let us start by defining an analogous condition to (13) in order to control the
bias of the posterior. We say that θ0 ∈ �0[s] satisfies the dq -excessive-bias restriction, in short
EB(q), for constants A > 1 and Cq,Dq > 0, if there exists an integer s ≥ � ≥ log2 n with

∑
i:|θ0,i |<A

√
2 log(n/�)

|θ0,i |q ≤ Dq� logq/2(n/�),
∣∣{i : |θ0,i | ≥ A

√
2 log(n/�)

}∣∣ ≥ �

Cq

. (16)

The set of all such vectors θ0 is denoted �
q

0 [s] = �
q

0 [s;A,Cq,Dq ]. For any q ′ ∈ (q,2],

�
q

0 [s;A,Cq,Dq ] ⊂ �
q ′
0

[
s;A,Cq,Dq(

√
2A)q

′−q
]
. (17)

This means that up to a change in the constants, the EB(q) condition becomes stronger when q

decreases. Let s̃q = s̃q (θ0) be |{i : |θ0,i | ≥ A
√

2 log(n/�)}|, for the smallest possible � such that
(16) is satisfied.
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Next, we define the random set, for any q ∈ (0,2] and M ≥ 1 to be chosen,

Cq,α̂ = {
θ ∈ Rn, dq(θ, θ̂α̂) ≤ Mvq,α̂(X)

}
, (18)

where vq,α̂(X) = ∫
dq(θ, θ̂α̂) d�α̂(θ | X). By Markov’s inequality, this set has at least 1 − β

posterior coverage for M ≥ 1/β . Once again, from Theorem 1 and the optimality of the posterior
median estimator in dq , the size of these sets adapts to the minimax rate: for every ε > 0, there
exists Mε > 0 such that for any θ0 ∈ �0[s],

Pθ0

(
vq,α̂(X) ≥ Mεs logq/2(n/s)

) ≤ ε.

Theorem 3. Fix δ ∈ (0,2) and let q ∈ (2δ,2]. Let γ = γδ be the density defined by (7). Let α̂

be the corresponding MMLE given by (5) and suppose (16) holds. Then the MMLE empirical
Bayes credible set (18) for sufficiently large M (M > 3c0(2qDqCq + 1)(2q−1 ∨ 1)26(q − δ)/δ

is sufficiently large, where c0 is given in Lemma 8), has adaptive size to the effective sparsity s̃q
and frequentist coverage tending to one, that is, for any s = o(n)

inf
θ0∈�

q
0 [s;A,Cq,Dq ]

Pθ0

(
diamq(Cq,α̂) ≤ Cs̃q logq/2(n/s̃q)

) → 1, (19)

inf
θ0∈�

q
0 [s;A,Cq,Dq ]

Pθ0(θ0 ∈ Cq,α̂) → 1, (20)

for some sufficiently large constant C > 0 (depending on A, Cq and Dq )

The proof of this result is given in Section 5.2.

Remark 3. The results of Theorem 3 are uniform over q ∈ (2δ,2) provided M is larger than
supq∈(2δ,2) 3c0(2qDqCq + 1)(2q−1 ∨ 1)26(q − δ)/δ as seen in the proof of Theorem 3.

Remark 4. In Lemma 8, we shall see that, under condition EB(q), the parameters s̃ and s̃q are
equivalent up to a constant multiplier, hence the result above also holds with the effective sparsity
s̃ corresponding to the parametrisation �2

0(s;A,Cq,Dq(
√

2A)2−q).

Remark 5. We note that the same results as in Theorem 3 hold for the inflated version of the
credible set define in (10) as well. The proof is deferred to Section A.7 of the supplementary
material.

2.6. Excessive bias conditions: Comparison and minimax necessity

In this section for simplicity, we restrict the discussion to the case q = 2. Let us briefly summarise
the results obtained in [24], where the authors work in the random design sparse regression
model. If s is of smaller order than

√
n, the authors in [24] show, see their Theorem 4 part (A),

that construction of adaptive and honest confidence sets is impossible (strictly speaking this result
is for the regression model, and for completeness we derive a sequence model version of it in
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the Supplement [11]). They also show, see their Theorem 4 part (B), that if one cuts out part of
the parameter set, thus obtaining a certain slicing formulated in terms of a certain separation (or
‘testing’) condition, adaptive confidence sets do again exist. If one knows beforehand that one
deals with a moderately sparse vector, for which s is of larger order than

√
n, then construction of

adaptive confidence sets is possible as well, but requires a different procedure than in the highly
sparse case under the testing condition, see, for example, Theorem 1 in [24].

First, we compare the excessive-bias condition with the testing condition introduced in [24]
adapted to the sparse sequence model (of course they work on a somewhat different model, but on
the same parameter space �0[s]). The testing condition was originally given for two sparseness
classes �0[s1] and �0[s2] for some s1 ≤ s2 ∧ n1/2 and it was shown in Theorems 3 and 4 of [24]
that constructing adaptive and honest confidence sets is possible when restricting true signals to
the set

�0[s1] ∪ T [s1, s2; c] with T [s1, s2; c] := {
θ ∈ �0[s2] : ∥∥θ − �0[s1]

∥∥2
∗ ≥ c

[
n1/2 ∧ (s2 logn)

]}
,

for some large enough constant c > 0, where in the setting of [24] the loss is ‖ · ‖2∗ = n × d2,
while here we take ‖ · ‖2∗ = ‖ · ‖2 = d2.

This condition can be extended to cover every sparsity class up to a certain level s (possibly
s = n) for instance by introducing the dyadic partition si = 2i , i = 1,2, . . . , �log2 s� and formu-
lating the testing condition on every consecutive sparsity class on this grid. A similar type of
dyadic partitioning was introduced in [7] in the nonparametric regression and density estimation
for Hölder smoothness classes. Set, for given c > 0 and 0 ≤ s ≤ n,

Td [s; c] :=
�log2 s�−1⋃

i=1

T [si , si+1; c].

Then one can construct adaptive and honest confidence sets on the set Td [s; c] provided c is
large enough, see, for instance, the closely related result in context of the nonparametric regres-
sion model in [7]. If a vector θ ∈ Rn belongs to Td [s; c] for some s, c, we say that it satisfies
the testing condition. The next lemma, whose proof can be found in Section 6, shows that for
well-chosen constants A,C2,D2 > 0 the excessive-bias condition is a weaker condition than the
testing condition for sparsities s = o(

√
n) (up to a log factor).

Lemma 1. Let c > 0 and s ≤ smax = �√n/(c logn)�. For 1 ≤ smax ≤ n/e, we have

Td [s; c] ⊂ �2
0[s;

√
c/2,1, c].

Further if c log (n/smax) > 1, we have the strict inclusion Td [s; c] � �2
0[s;

√
c/2,1, c].

Next, we show that the slicing of the parameter space induced by the excessive-bias condi-
tion in some sense cannot be weakened to construct adaptive confidence sets even between two
sparsity classes. To do so, we proceed in a similar way as for the testing condition in [24], and
consider three different types of weakening of the excessive-bias assumption. Let mn denote a
sequence tending to zero arbitrary slowly. First, we relax the upper bound on the energy of the
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small signal component from Cq log(n/�) to m−1
n q log(n/�), second we relax the lower bound

on the number of signal components above the detection boundary from �/C2 to mn� and third
we relax the detection threshold A

√
2 log(n/�) to mn

√
2 log(n/�). More formally, the three dif-

ferent relaxations are∑
i:|θ0,i |<A

√
2 log(n/�)

θ2
0,i ≤ m−1

n � log(n/�),
∣∣{i : |θ0,i | ≥ A

√
2 log(n/�)

}∣∣ ≥ �/C2. (21)

∑
i:|θ0,i |<A

√
2 log(n/�)

θ2
0,i ≤ D2� log(n/�),

∣∣{i : |θ0,i | ≥ A
√

2 log(n/�)
}∣∣ ≥ mn�, (22)

∑
i:|θ0,i |<mn

√
2 log(n/�)

θ2
0,i ≤ D2� log(n/�),

∣∣{i : |θ0,i | ≥ mn

√
2 log(n/�)

}∣∣ ≥ �/C2. (23)

Theorem 4 below, whose proof is given in Section 6, shows that under neither of these relaxations
is it possible to construct adaptive confidence sets.

Theorem 4. Take any L > 0, s2 = n1/2−ε , for some ε > 0, and s1 = mns2, for some mn = o(1).
Then under neither of the weaker excessive-bias condition (21) or (22) or (23) (each of them
denoted by �0 for simplicity) with A > 1 and C2,D2 > 0, exists a confidence set Cn(X) satisfying
simultaneously for i = 1,2 that

lim
n

inf
θ0∈�0∩�0[si ]

Pθ0

(
θ0 ∈ Cn(X)

) ≥ 1 − β, (24)

lim
n

inf
θ0∈�0∩�0[si ]

Pθ0

(
diam

(
Cn(X)

) ≤ Lsi log(n/si)
) ≥ 1 − β ′, (25)

for some β,β ′ ∈ (0,1/3).

The above result shows that, if one slices the parameter space according to an excessive-
bias condition, the slicing cannot be refined by making constants arbitrarily smaller: one cannot
construct adaptive confidence sets for the resulting larger parameter set. In [24], a similar result
is shown for the testing condition above. The slicing induced by the excessive-bias condition is
a bit more general as indicated by Lemma 1: it has more flexibility given that it depends also
on more parameters. While the impossibility of the weakening (23) can proved appealing to as
similar proof as for the testing condition in [24], the other two weakenings correspond to slicing
the space in different directions and require a completely new proof.

Theorem 4 can be interpreted as showing the optimality of the slicing within the excessive-bias
scale, in the highly sparse regime s = o(

√
n), where adaptive confidence sets do not exist without

further assumptions on the space. It could be also interesting to consider the dense regime where
one knows beforehand that s is of larger order than

√
n, although it is a qualitatively different

question which is not considered here from the optimality perspective. In that case, a different
empirical Bayes choice of the sparsity parameter could presumably be used, in a similar spirit
as [29] in context of the Gaussian white noise model, enabling the construction of adaptive
confidence sets from corresponding posteriors, but this is beyond the scope of the present paper.
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3. Discussion

In the paper, we show that the empirical Bayes posterior distribution corresponding to the spike
and slab prior, with heavy enough slab tails, results in optimal recovery and reliable uncertainty
quantification in �q -type-norm, q ∈ (0,2], under the excessive-bias assumption. We have further
shown that the excessive-bias assumption is optimal in a minimax sense for s = o(

√
n) and �2-

norm. A natural extension of the derived results could be to consider hierarchical Bayes methods.
Relatively similar results are expected, but computationally simulating from the posterior can be
more involved.

We note that the derived contraction and coverage results heavily depend on the choice of
the slab prior. The empirical Bayes procedure with Laplace slabs results in sub-optimal contrac-
tion rate and therefore too conservative credible sets in �2-norm, see [9]. Therefore, to achieve
optimal recovery of the truth one has to use slab priors with polynomial tails. Considering �q -
type-metrics, q ∈ (0,2], one has to carefully choose the order of the polynomial, for instance,
for q ∈ (0,1) sub-Cauchy tails have to be applied. In view of Propositions 1 and 2, one can
see that the optimal choice of mixing hyper parameter α in terms of rates and coverage is
α � (s/n) logδ/2(n/s), for δ < q . Also note that we have looked at a special excessive-bias type
slicing with specific effective sparsity definition; but the ‘effective sparsity’ in particular could
presumably be more general, thus leading to an even more general slicing (but presumably more
difficult to study).

4. Preliminaries to the proofs

In Section 4.1, we introduce quantities used repeatedly in the proofs, and state their properties.
Notably, the function B appearing in the score function, see (4), is shown to be increasing on R+,
and bounds for its moments are given. In Section 4.2, risk bounds for fixed α are derived, that
will be useful both for the rate and confidence sets results. The proofs of these results is given in
the Supplement [11], Section A.2.

4.1. General properties and useful thresholds

Lemma 2. For γ defined by (7), δ ∈ (0,2) and g = φ ∗ γ , as x → ∞,

g(x) � γ (x),

g(x)−1
∫ ∞

x

g(u)du � x/δ.

Also, g/φ is strictly increasing from (g/φ)(0) < 1 to +∞ as x → ∞.

Threshold ζ(α). The monotonicity property in Lemma 2 enables one to define a pseudo-
threshold from the function B = (g/φ) − 1 as

ζ(α) = B−1(α−1).
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Using the bounds from [19] Sections 5.3 and 5.4, noting that these do not use any moment bound
on γ (so their bounds also hold even if δ < 1 in the prior density (7)), one can link thresholds t (α)

(the threshold of the posterior median for given α, see Section 1.3) and ζ(α) as follows: t (α)2 <

ζ(α)2, and φ(t (α)) < Cφ(ζ(α)), where C is independent of δ, and B(ζ(α)) ≤ 2 + B(t (α)),
arguing as in the proof of Lemma 3 of [19].

Threshold τ(α). As g/φ is continuous, one can define τ(α) as the solution in x of

�(x,α) := a(x)

1 − a(x)
= α

1 − α

g

φ
(x) = 1.

Equivalently, a(τ(α)) = 1/2. Define α0 as τ(α0) = 1 and set

τ̃ (α) = τ(α ∧ α0).

This is the definition from [19], but note that for α small enough, τ̃ (α) = τ(α). Also, it follows
from the definition of τ(α) that B(τ(α)) = B(ζ(α)) − 2 ≤ B(t (α)), by the inequality mentioned
above, so that τ(α) ≤ t (α), as B is increasing. This and the previous inequalities relating the
thresholds ζ(α), t (α), τ(α) will be freely used in the sequel.

Lemma 3. For γ defined by (7), δ ∈ (0,2), there exists C1 > 0, C2 ∈ R and a1 > 0 such that for
any α ≤ a1,

2 log(1/α) + C1 ≤ ζ(α)2 ≤ 2 log(1/α) + (1 + δ) log log(1/α) + C2.

The same bounds hold, with possibly different constants C1, C2, for τ(α)2 and t (α)2.

Moments of the score function. Recall that B(x,α) = B(x)/(1 + αB(x)) and set

m̃(α) = −E0B(X,α), m1(μ,α) = EμB(X,α), m2(μ,α) = EμB(X,α)2.

Lemma 4. The function α → m̃(α) is nonnegative and increasing in α. For every fixed α ∈
(0,1), the function μ �→ m1(μ,α) is symmetric and monotone increasing for μ ≥ 0. For every
fixed μ > 0, the map α → m1(μ,α) is decreasing. As α → 0,

m̃(α) �
∫ ∞

ζ

g(u)du � ζg(ζ ) � ζ−δ/δ.

We have m1(μ,α) ≤ (α ∧ c)−1 and m2(μ,α) ≤ (α ∧ c)−2 for all μ, and

m1(μ,α) ≤
⎧⎨
⎩

−m̃(α) + Cζ(α)2−δμ2, for |μ| < 1/ζ(α),

C
φ(ζ/2)

α
, for |μ| < ζ(α)/2,

m2(μ,α) ≤

⎧⎪⎨
⎪⎩

Cδ

ζ(α)2

m̃(α)

α
, for |μ| < 1/ζ(α),

C

ζ

φ(ζ/2)

α2
, for |μ| < ζ(α)/2,

for universal constants c,C > 0. Finally, as α → 0, one has m1(ζ,α) ∼ 1
2α−1, as α → 0.
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Bounds on a(x). By definition of a(x), for any real x and α ∈ [0,1],

α
g

g ∨ φ
(x) ≤ a(x) ≤ 1 ∧ α

1 − α

g

φ
(x). (26)

The following bound in terms of τ(α), see [19] p. 1623, that again extends to the case of a density
(7) with δ < 1, is useful for large x: for α ≤ α0, so that τ̃ (α) = τ(α),

1 − a(x) ≤ 1|x|≤τ(α) + e− 1
2 (|x|−τ(α))2

1|x|>τ(α). (27)

4.2. Risk bounds for fixed α

Let us consider the posterior dq -loss for a fixed value of the tuning parameter α, that is

∫
dq(θ, θ0) d�α(θ | X) =

n∑
i=1

∫
|θi − θ0,i |q d�α(θi | X).

To study
∫ |θi − θ0,i |q d�α(θi | X), let πα(· | x) be the posterior given α evaluated at X = x,

rq(α,μ,x) =
∫

|u − μ|q dπα(u | x) = (
1 − a(x)

)|μ|q + a(x)

∫
|u − μ|qγx(u) du.

Lemma 5. Denoting γx(u) = γ (u)φ(x − u)/g(x), for any q ∈ (0,2] and μ,x ∈R,

∫
|u − μ|qγx(u) du ≤ C

[|x − μ|q + 1
]
. (28)

For α small enough, for any q > 2δ and any μ,x ∈ R, the following risk bounds hold

E0rq(α,0, x) � ατ(α)q−δ/(q − δ) + τ(α)q−1φ
(
τ(α)

) + φ
(
τ(α)

)
/τ(α),

Eμrq(α,μ,x) �
(
1 + τ(α)q

)
.

5. Proofs for credible sets

The credible set Cq,α in (8) is centered around the posterior median θ̂α . We shall use below a few
basic properties of this estimator, which were established in [19] (they extend without difficulty
to the case of heavier tails than Cauchy, as no moments conditions on γ are needed for their
proof): the fact that θ̂α is a shrinkage rule with the bounded shrinkage property, from Lemma 2
of [19], and the bounds of the risk Eθ0dq(θ̂α, θ0) for fixed α in Lemmas 5 and 6 of [19], recalled
in the Supplement [11], see (A.6)–(A.7) there.
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5.1. Proof of Propositions 1 and 2

For any given θ1, θ2 in the credible set Cq,α from (8), by Lemma 7,

dq(θ1, θ2) ≤ (
2q−1 ∨ 1

)(
dq(θ1, θ̂α) + dq(θ2, θ̂α)

) ≤ 2
(
2q−1 ∨ 1

)
Mvq,α(X).

Using the risk bounds from Lemma 5 with μ = θ0,i for each index i between 1 and n leads to,
distinguishing between the signal case (θ0,i = 0) and non-zero signal case (θ0,i �= 0),

Eθ0

∫
dq(θ, θ0) d�α(θ | X) ≤ C

[
(n − s)ατ(α)q−δ + s

(
1 + τ(α)q

)]
.

Also, combining Lemmas 5 and 6 in [19] with fixed non-random threshold equal to t (α), one
gets

Eθ0dq(θ̂α, θ0) ≤ C
[
(n − s)t (α)q−1φ

(
t (α)

) + s
(
1 + t (α)q

)]
.

From the last displays one deduces that, for any θ1, θ2 in Cq,α ,

Eθ0dq(θ1, θ2) ≤ CM
[
(n − s)

{
ατ(α)q−δ + t (α)q−1φ

(
t (α)

)} + s
(
1 + τ(α)q + t (α)q

)]
.

Let us recall the inequality α−1 = B(ζ(α)) ≤ 2 + B(t (α)) stated in Section 4.1 and B(·) =
(g/φ)(·) − 1 by (4). As t (α) → +∞ when α → 0, we have that for small α it holds
1 + (g/φ)(t (α)) � (g/φ)(t (α)). Lemma 2 gives that g(x) has tails x−1−δ as x → ∞, which
implies, using again that t (α) goes to infinity as α goes to 0, that for α small enough,

φ
(
t (α)

)
� αg

(
t (α)

)
� αt(α)−1−δ. (29)

Using Lemma 3, the above inequality on the diameter becomes the following, hereby proving
the second part of Proposition 2: for any θ1, θ2 in Cq,α and small enough α,

Eθ0dq(θ1, θ2) ≤ CM
[
nα log(q−δ)/2(1/α) + s logq/2(1/α)

]
.

Confidence. Next, one considers the coverage probability

Pθ0 [θ0 ∈ Cq,α] = Pθ0

[
dq(θ0, θ̂α) ≤ Mvq,α(X)

]
.

Let μn = μn(X) = dq(θ0, θ̂α) and S0 := {i : θ0,i �= 0}, then

μn =
∑
i∈S0

|θ0,i − θ̂α,i |q +
∑
i /∈S0

|θ̂α,i |q1|εi |>t(α) =: μ1 + μ2.

With vq,α = vq,α(X), ωq(x) = ∫ |u|qγx(u) du, and κα,q,i (x) = ∫ |u − θ̂α,i |qγx(u) du,

vq,α =
n∑

i=1

∫
|θi − θ̂α,i |q d�(θi | Xi)

=
∑

i:|Xi |≤t (α)

∫
|θi |q d�(θi | Xi) +

∑
i:|Xi |>t(α)

∫
|θi − θ̂α,i |q d�(θi | Xi)
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=
∑

i∈S0:|Xi |≤t (α)

a(Xi)ωq(Xi) +
∑

i∈S0:|Xi |>t(α)

[
a(Xi)κα,q,i (Xi) + (

1 − a(Xi)
)|θ̂α,i |q

]

+
∑

i /∈S0:|εi |≤t (α)

a(εi)ωq(εi) +
∑

i /∈S0:|εi |>t(α)

[
a(εi)κα,q,i (εi) + (

1 − a(εi)
)|θ̂α,i |q

]
=: v1 + v2 + v3 + v4. (30)

Step 1, lower bound on the variance. The variance at fixed α is bounded from below by, using
first Lemma 10 to bound ωq from below, and next using (1 − α)φ(εi) + αg(εi) ≤ 2(1 − α)φ(εi)

when |εi | ≤ τ(α) to bound a(εi) from below,

v3 ≥
∑

i /∈S0,C0≤|εi |≤τ(α)

a(εi)ωq(εi) ≥ cα
∑
i /∈S0

g

φ
(εi)

(|εi |q + 1
)
1C0≤|εi |≤τ(α), (31)

for any C0 > 0 and α < 1/2 (say). One deduces that, in view of the assumption q > δ, for small
enough choice of C0 > 0

E

[
α

∑
i /∈S0

g

φ
(εi)

(|εi |q + 1
)
1C0≤|εi |≤τ(α)

]
≥ (n − s)α

4

∫ τ(α)

C0

g(x)xq dx

≥ 1

23(q − δ)
nατ(α)q−δ.

Furthermore in view of the inequality (1 + |u|q)2 ≤ Cu2q and Lemma 2, we get that

Var

[
α

∑
i /∈S0

g

φ
(εi)

(|εi |q + 1
)
1C0≤|εi |≤τ(α)

]
≤ nα2

∫ τ(α)

C0

g2

φ2
(u)u2qφ(u)du

� nα2
∫ τ(α)

C0

u−2−2δ+2qφ(u)−1 du.

An integration by parts shows that, setting d = −2−2δ+2q , the right hand side of the preceding
display is further bounded from above by a multiple of nα2τ(α)d−1eτ(α)2/2. Using that τ(α) ≤
t (α) and t (αn)

2 = 2 logn (so that eτ(α)2/2 ≤ n for α > αn), one gets that the variance term is of
smaller order than the square of the expectation, so

vq,α ≥ 1

24(q − δ)
nατ(α)q−δ, (32)

with high probability. The diameter lower bound in Proposition 2 follows, as Mvq,α ≤
diamq(Cq,α), where we have used that δ < q , the lower bound on τ(α) from Lemma 3, the
inequality nατ(α)q−δ � nα(2 log(1/α) + C)(q−δ)/2, and the latter is increasing in α.

Step 2, upper bound on the bias. As a first step, we give upper bounds for the terms μ1 and μ2.
The posterior median is, as stated in [19] Lemma 2, a shrinkage rule with the bounded shrinkage
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property: there exists b > 0 such that for all x ≥ 0 and α,(
x − t (α) − b

) ∨ 0 ≤ θ̂α(x) ≤ x. (33)

This implies, as θ̂α(−x) = −θ̂α(x), that by using Lemma 7

μ1 ≤ (
2q−1 ∨ 1

)(∑
i∈S0

|εi |q +
∑
i∈S0

(
t (α) + b

)q
)
�

∑
i∈S0

|εi |q + s
(
t (α) + b

)q
. (34)

Let us now use a standard chi-square bound: if Zi are N (0,1) i.i.d., for any integer s ≥ 1 and
t > 0, one has P [∑s

i=1(Z
2
i − 1) ≥ t] ≤ exp{−t2/[4(s + t)]}. For t = s(log(n/s))1/2, the bound

is exp{−s(log(n/s))1/2} ≤ exp{−c log1/2 n} = o(1), so

P

[∑
i∈S0

(
ε2
i − 1

)
> s

√
log(n/s)

]
= o(1).

Also note that by Hölder’s inequality,
∑

i∈S0
|εi |q ≤ (

∑
i∈S0

ε2
i )

q/2s1−q/2. Hence,

∑
i∈S0

|εi |q �
(
s + s

√
log(n/s)

)q/2
s1−q/2 � s logq/4(n/s), (35)

with probability tending to one. For μ2, using again that the posterior median is a shrinkage rule,
μ2 ≤ μ3 := ∑n

i=1 |εi |q1|εi |>t(α). Then in view of Lemma 12 (with t1 = 0, and t2 = t (α) ≥ 1) we
have with probability tending to one that

μ3 � t (α)q−1[ne−t (α)2/2] + Mnt(α)(q+1)/2[ne−t (α)2/2]1/2
.

For the first term to dominate this expression it is enough, provided Mn → ∞ slow enough, that

t (α)2 ≤ 2 logn − (3 − q + c) log logn = 2 log
(
n/

(
log(3−q+c)/2 n

))
, (36)

for some c > 0, which follows from the assumption α � s/n � (logn)2/n and Lemma 3. There-
fore with probability tending to one

μ1 + μ2 � s log
q
4 (n/s) + st (α)q + t (α)q−1[ne−t (α)2/2].

Now recall the bound vq,α � nατ(α)q−δ . We conclude the proof of the first part of Proposition 1
(the positive coverage result) by noting that for α ≥ s logδ/2(n/s)/n, in view of (29) we have
μ1 +μ2 � s logq/2(n/s)+nαt(α)q−δ−2 � vq,α . Indeed, for the second term one has q − δ −2 <

0, so t (α)q−δ−2 ≤ τ(α)q−δ−2 using t (α) ≥ τ(α). For the first term, using the lower bound in
Lemma 3, τ(α)2 � log(1/α) and next that α → α log(1/α)(q−δ)/2 is increasing, so that, using
α ≥ s logδ/2(n/s)/n again, one gets

vq,α � n
{
s logδ/2(n/s)/n

}
τ
(
s logδ/2(n/s)/n

)q−δ � s logq/2(n/s).

Hence for large enough choice of M in (12), one gets frequentist coverage tending to one.
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To obtain the second part of Proposition 1 (the non-coverage result), we will use that by as-
sumption α = o(s logδ/2(n/s)/n) and show below that for some C > 0,

inf
θ0∈�̃s,α

Pθ0

(
μn ≥ Cs logq/2(n/s)

) → 1, (37)

vq,α = o
(
s logq/2(n/s)

)
. (38)

Then the result follows by combining the above statements.
Step 3, lower bound on the bias. To show (37) note that for θ0 ∈ �̃s,α , and as τ(α) ≤ t (α),

μn ≥
∑
i∈S0

|θ̂α,i − θ0,i |q

≥
∑

τ(α)/8≤|θ0,i |≤τ(α)/4

|θ0,i |q1εi∈(−(3/4)τ (α),(3/4)τ (α))

≥ 2−3qτ (α)q
∑
i∈S0

1εi∈(−(3/4)τ (α),(3/4)τ (α)).

Then as P(εi ∈ (−(3/4)τ (α), (3/4)τ (α))) ≥ 3/4 if α ≤ α1 for some sufficiently small α1 > 0,
we get by Hoeffding’s inequality that

P

(∑
i∈S0

1εi∈(−(3/4)τ (α),(3/4)τ (α)) ≤ s/2

)
� e−s/2 = o(1).

This implies that μn ≥ 2−3q−1sτ (α)q with high probability. This is at least of the order
Cs logq/2(n/s) using the assumption on α.

Step 4, upper bound on the variance. Next, we deal with (38) by giving upper bounds
for v1, v2, v3 and v4 in (30) for θ0 ∈ �̃s,α , separately. Let us start with v1. Recalling that
τ(α) and t (α) differ slightly, let us split the sum defining v1 over indexes i ∈ S0 with
|Xi | ≤ τ(α) and τ(α) < |Xi | ≤ t (α), respectively. In view of (26) and (28) (with μ = 0), one
gets

v1 � α
∑

i∈S0:|Xi |≤τ(α)

g

φ
(Xi)

(
1 + |Xi |q

) +
∑

i∈S0:τ(α)≤|Xi |≤t (α)

(
1 + |Xi |q

)

� αseτ(α)2/4τ(α)q−δ + Mnαs1/2e3τ(α)2/8τ(α)q−δ−1/2

+ sτ (α)q−1e−32τ(α)2/25 + Mns
1/2τ(α)(q+1)/2e−32τ(α)2/26

= O(s),

where the second inequality follows from Lemma 11 (with t = τ(α)/4) and Lemma 12 (with
t2 = τ(α), t1 = τ(α)/4). Then in view of |θ̂α,i |q ≤ |Xi |q and κα,q,i � |θ̂α,i |q + |Xi |q + 1 �
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|Xi |q + 1, see equation (28), we get that

v2 =
∑

i∈S0,|Xi |>t(α)

a(Xi)κα,q,i + (
1 − a(Xi)

)|θ̂α,i |q

�
∑

i∈S0,|Xi |>t(α)

(
1 + |Xi |q

)

� st (α)q−1e−32t (α)2/25 + Mns
1/2t (α)(q+1)/2e−32t (α)2/26 = O(s),

where the last line follows from Lemma 12 (with t2 = t (α), t1 = t (α)/4) and from
e−c1t (α)2

t (α)c2 = O(1) for c1, c2 > 0 and α � α1. Next in view of Lemma 11 (with t = 0)
and Lemma 12 (with t1 = 0 and t2 = τ(α))

v3 � α
∑

i /∈S0:|εi |≤τ(α)

g

φ
(εi)

(
1 + |εi |q

) +
∑

i /∈S0:τ(α)≤|εi |≤t (α)

(
1 + |εi |q

)

� αnτ(α)q−δ + nτ(α)q−1e−τ(α)2/2 + Mn

√
nτ(α)(q+1)/2e−τ(α)2/4 = o

(
s logq/2(n/s)

)
,

where the last line follows from the definition of τ(α) (implying e−τ(α)2/2 � αg(τ(α)) �
ατ(α)−1−δ) as well as nα = o(s logδ/2(n/s)) as assumed. To conclude the proof of Proposi-
tion 1, it is enough to note that, using similar arguments,

v4 �
∑

i /∈S0,|εi |>t(α)

(
1 + |εi |q

)

� nt (α)q−1e− t (α)2
2 + Mnn

1
2 t (α)

q+1
2 e−t (α)2/4

= o

(
s log

q
2

(
n

s

))
.

5.2. Proof of Theorem 3

Step 0, Concentration of α̂ under the excessive-bias condition. A key component is to describe
the behaviour of the MMLE α̂ over the set �

q

0 [s;A,Cq,Dq ]. In view of (17) (see also Lemma 8,
below) let us consider the larger set �2

0[s;A,Cq,Dq(
√

2A)2−q ] and denote by s̃ = s̃(θ0) the
effective sparsity of θ0 ∈ �2

0[s;A,Cq,Dq(
√

2A)2−q ], i.e.

s̃ = s̃(θ0) = ∣∣{i : |θ0,i | ≥ A
√

2 log(n/�)
}∣∣, (39)

where � ≥ (log2 n)2 is the smallest integer satisfying (13) with parameters A = A, C2 = Cq and
D2 = Dq(

√
2A)2−q .
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Next, we introduce weights α̃i , for i = 1,2, as the solution of the respective equations

diα̃im̃(α̃i) = s̃/n, (40)

where the constants 0 < d2 < d1 are specified later. We note that in view of the fact that α →
αm̃(α) is increasing, which follows from Lemma 4,

α̃2/α̃1 ≤ d1/d2, α̃2 = o(1). (41)

We now show that by appropriate choice of constants d1 > d2 the corresponding α̃1 < α̃2 are
upper and lower bounds, respectively, for α̂ under the excessive-bias condition.

Lemma 6. Under the conditions of Theorem 3, for α̃1, α̃2 as in (40), we have

inf
θ0∈�

q
0 [s;A,Cq,Dq ]

Pθ0(α̃1 ≤ α̂ ≤ α̃2) → 1. (42)

The proof of the lemma is deferred to Section A.4 of the Supplement [11].
Step 1, lower bound on the variance. In view of (30)–(31) and Lemma 6, with Pθ0 -probability

tending to one

vq,α̂ ≥ v3(α̂)

≥ cα̂
∑
i /∈S0

g

φ
(εi)

(|εi |q + 1
)
1C0≤|εi |≤τ(α̂)

≥ cα̃1

∑
i /∈S0

g

φ
(εi)

(|εi |q + 1
)
1C0≤|εi |≤τ(α̃2).

Then following from the computations above assertion (32), Lemma 4 and the inequality τ(α) ≤
ζ(α) we have, for large enough n,

vq,α̂ ≥ 1

24(q − δ)
α̃1nτ(α̃2)

q−δ ≥ 1

24(q − δ)

s̃τ (α̃2)
q−δ

d1ζ(α̃1)−δ/δ
≥ δ

24d1(q − δ)
s̃ logq/2(n/s̃).

Step 2, upper bound on the bias. Let split the bias term

μn(α̂) =
n∑

i=1

|θ0,i − θ̂α̂,i |q

along the index sets Q1 = {i : |θ0,i | ≤ 1/t (α̃2)}, Q2 = {i : 1/t (α̃2) ≤ |θ0,i | ≤ t (α̃2)/2} and Q3 =
{i : |θ0,i | ≥ t (α̃2)/2}, i.e.

μn(α̂) =
∑

i∈Q1∪Q2

|θ0,i − θ̂α̂,i |q +
∑
i∈Q3

|θ0,i − θ̂α̂,i |q =: μ1(α̂) + μ2(α̂).
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Using that |θ̂α̂,i |q ≤ 1|Xi |>t(α̂)|Xi |q , Lemma 7, the monotone decreasing property of the functions
t �→ 1|Xi |>t and Lemma 6 we have with probability tending to one that

μ1(α̂) ≤ (
2q−1 ∨ 1

)( ∑
i∈Q1∪Q2

|θ0,i |q +
∑
i∈Q1

|Xi |q1|Xi |>t(α̂) +
∑
i∈Q2

|Xi |q1|Xi |>t(α̂)

)

≤ (
2q−1 ∨ 1

)( ∑
i∈Q1∪Q2

|θ0,i |q +
∑
i∈Q1

|Xi |q1|Xi |>t(α̃2) +
∑
i∈Q2

|Xi |q1|Xi |>t(α̃2)

)
. (43)

The first term is smaller than CqDqc0s̃ logq/2(n/s̃) following from Lemma 8 and t (α̃2)/2 ∼
{0.5 log(n/s̃)}1/2 < A′{2 log(n/s̃)}1/2, for any A′ > 0 and large enough n. Furthermore, by ap-
plying Lemma 12 (with t1 = 1/t (α̃2), t2 = t (α̃2)) and the inequality |Q1| < n the second term on
the right hand side of the preceding display is bounded from above with Pθ0 -probability tending
to one by a multiple of, for arbitrary Mn → ∞,

nt(α̃2)
q−1e−t (α̃2)

2/2 + Mnt(α̃2)
(q+1)/2(ne−t (α̃2)

2/2)1/2
.

Then by noting that in view of Lemma 9, we have nt(α̃2)e
−t (α̃2)

2/2 � s̃ ≥ (logn)2,

t (α̃2)
(q+1)/2(ne−t (α̃2)

2/2)1/2 = o
(
nt(α̃2)

q−1e−t (α̃2)
2/2). (44)

Finally, in view of Lemma 12 (with t1 = t (α̃2)/2 and t2 = t (α̃2)) the third term in the right-hand
side of (43) is bounded with probability tending to one by a multiple of

|Q2|t (α̃2)
q−1e−t (α̃2)

2/8 + Mnt(α̃2)
(q+1)/2(|Q2|e−t (α̃2)

2/8)2
.

Then note that in view of Lemma 13 (with t = 1/t (α̃2)) the cardinality of the set Q2 is bounded
from above by a multiple of s̃t (α̃2)

q logq/2(n/s̃), hence by using that the function t �→ tc1e−c2t
2

tends to zero as t goes to infinity for arbitrary c1 ∈ R and c2 > 0, the preceding display is of
smaller order than s̃. By putting together the obtained bounds, one concludes that by choosing
Mn tending to infinite sufficiently slowly, for example, Mn = o(logq/4(n/s̃)), one gets

μ1(α̂) ≤ (
2q−1 ∨ 1

)(
Cnt(α̃2)

q−1e−t (α̃2)
2/2 + DqCqc0s̃ logq/2(n/s̃)

)
.

It remained to deal with μ2(α̂). In view of assertion (34)

μ2(α̂) ≤ (
2q−1 ∨ 1

)( ∑
i∈Q3

|εi |q +
∑
i∈Q3

(
t (α̂) + b

)q
)

. (45)

Lemma 13 with t = t (α̃2)/2 implies |Q3| ≤ c0(2qDqCq + 1)s̃, so the second term is bounded
with probability tending to one using Lemma 6 and then Lemma 9 by∑

i∈Q3

(
t (α̂) + b

)q ≤ |Q3|
(
t (α̃1) + b

)q ≤ 3c0
(
2qDqCq + 1

)
s̃ logq/2(n/s̃),
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for n large enough. Next, we deal with the first term on the right hand side of (45). In view of
(35) we have with probability tending to one that∑

i∈Q3

|εi |q � |Q3| logq/4(n/|Q3|
) ≤ c0

(
2qDqCq + 1

)
s̃ logq/4(n/s̃).

Now combining (29) and Lemmas 4 and 9, one sees that

nt(α̃2)
q−1e−t (α̃2)

2/2 � nα̃2t (α̃2)
q−2−δ � ζ(α̃2)

δs̃t (α̃2)
q−2−δ = o(s̃) (46)

so putting the bounds on μ1, μ2 together, with probability tending to one,

μn(α̂) ≤ (
2q−1 ∨ 1

)
3c0

(
2qDqCq + 1 + o(1)

)
s̃ logq/2(n/s̃).

Therefore by choosing M > 3c0(2qDqCq + 1)(2q−1 ∨ 1)24d1(q − δ)/δ, we get frequentist cov-
erage tending to one. Note that the preceding results hold simultaneously for all q ∈ (2δ,2) if
M > supq∈(2δ,2) 3c0(2qDqCq + 1)(2q−1 ∨ 1)24d1(q − δ)/δ.

To conclude the proof of Theorem 3, it is enough to obtain the diameter bound, which is done
using similar arguments as for the upper bound of Proposition 2, once the MMLE α is controlled
using Lemma 6 as above. The detailed argument can be found in Section A.5 of the Supplement
[11]. This concludes the proof.

5.3. Technical lemmas for credible sets

Lemma 7. For any reals x, y, and q > 0,

|x + y|q ≤ (
2q−1 ∨ 1

)[|x|q + |y|q]
. (47)

Proof. First note that for q < 1 the map x → |x + y|q − |x|q − |y|q is monotone. Furthermore,
since the map x �→ |x|q is convex for q ≥ 1 we have by Jensen’s inequality that |(x + y)/2|q ≤
(|x|q + |y|q)/2. �

The proofs of Lemmas 8 up to 13 can be found in Section A.6 of the Supplement [11].

Lemma 8. Assume that θ0 satisfies the excessive-bias condition EB(q) in (16) for some positive
parameters A, Cq , Dq and therefore it belongs also to �2

0[s;A,Cq,Dq(
√

2A)2−q ]. Let us denote
by s̃q and s̃ the corresponding effective sparsity parameters. Then there exists a large enough
c0 ≥ 1 such that

s̃ ≤ s̃q ≤ c0s̃.

Furthermore, for every 1 < A′ < A, and large enough n,∑
|θ0,i |≤A′√2 log(n/s̃)

|θ0,i |q ≤ CqDqc0s̃ logq/2(n/s̃), s̃ ≤ ∣∣{|θ0,i | ≥ A′√2 log(n/s̃)
}∣∣.
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Lemma 9 (Basic bounds on ζ(α1), τ(α1) and t (α1) and tilde versions). Let α1 be defined by
(A.8) for d a given constant, and let ζ1 = ζ(α1). Then for some constants C1, C2,

2 log(n/s) + C1 ≤ ζ(α1)
2 ≤ 2 log(n/s) + log

(
1 + log(n/s)

) + C2.

The same bounds hold, with possibly different constants C1 and C2, for τ(α1)
2 and t (α1)

2.
Furthermore, the same result holds (with possibly different constants C1,C2 > 0) when α1 is
replaced by α̃1 or α̃2 (defined in (40)) and s by s̃.

Lemma 10. There exists c > 0 such that for any q > 0 and μ ∈ R, and any x ∈R,∫
|u − μ|qγx(u) du ≥ c

(
1 + |x − μ|q)

.

Lemma 11. Let q ∈ (0,4] and suppose δ < q ∧ 2, with δ as in (7). There exists a constant C > 0
such that for a set Rt ⊆ {i : |θ0,i | ≤ t} and t ≥ 0 arbitrary, we have, with Pθ0 -probability tending
to one ∑

i∈Rt ,|Xi |≤τ(α)

g

φ
(Xi)

(|Xi |q + 1
)

≤

⎧⎪⎨
⎪⎩

C|Rt |τ(α)q−δ for t ≤ 1/τ(α),

C|Rt |eτ(α)2/4τ(α)q−δ

[
1 + Mn

eτ(α)2/8

|Rt |1/2τ(α)1/2

]
for t ≤ τ(α)/4,

(48)

where Mn is an arbitrary sequence such that Mn → ∞.

Lemma 12. Let q ∈ (0,4]. Let t1 ≥ 0 and t2 ≥ max{2,2t1}. For Rt1 ⊆ {i : |θ0,i | ≤ t1}, we have
with Pθ0 -probability tending to one that

∑
i∈Rt1

(|Xi |q + 1
)
1|Xi |>t2 ≤ c̃0|Rt1 |tq−1

2 e−(t2−t1)
2/2 + Mnt

(q+1)/2
2

(|Rt1 |e−(t2−t1)
2/2)1/2

,

for arbitrary Mn → ∞ and c̃0 = (2q ∨ 2)[4((2 − q) ∨ 1) + 2]/√2π .

Lemma 13. Under the excessive-bias restriction EB(q) (16) the size of the set Rt = {i : t ≤
|θ0,i |} is bounded from above by c0(CqDqt−q logq/2(n/s̃) + 1)s̃, with s̃ as in (39).

6. Proofs for the excessive-bias assumption

Proof of Lemma 1. First, we show that for every i = 1, . . . , log2 s − 1 and c > 0

T [si , si+1; c] ⊂ �2
0[s;

√
c/2,1, c]. (49)
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Take any θ ∈ T [si , si+1; c] and note that θ2
(si+1) ≥ c logn (where θ(j) denotes the j th de-

creasingly ordered value of the parameter of interest). Let us denote by I the largest index
satisfying θ2

(I ) ≥ c log(n/si) and note that I ∈ {si + 1, . . . , si+1}. Then one can also see that

this I satisfies the condition (13), since |{j : θ2
j ≥ c log(n/I)}| ≥ |{j : θ2

j ≥ c log(n/s1)}| = I

and
∑

|θj |≤√
c log(n/I)

θ2
i ≤ (s2 − I )c log(n/I) ≤ s1c log(n/s1), for I ≤ n/e, using s2 ≤ 2s1 and

I ≥ s1 + 1. To show the strict inclusion, let θ0 be defined as

θ2
0,j =

⎧⎪⎨
⎪⎩

n, for 1 ≤ j ≤ si ,

1, for si + 1 ≤ j ≤ 2si,

0, for 2si + 1 ≤ j,

for any i = 1, . . . , log2 s − 1. Then ‖θ0 − �0(si)‖2
2 ≤ ∑n

j=si+1 θ2
0,j = si < c2si logn so θ0 /∈

T [si , si+1; c] and therefore θ0 /∈ Td [s; c]. Furthermore, by choosing � = si we have that |{j :
|θ0,j | ≥ log(n/�)}| ≥ � and

∑
|θ0,j |≤√

c log(n/�)
θ2

0,i = � ≤ c� log(n/�), satisfying the excessive-

bias restriction with parameters given in the lemma. �

Proof of Theorem 4. First, consider the result under condition (23). We show below that

T [s1, s2; c] ⊂ �2
0[s3;

√
c/2,1,1] (50)

for every c > 0, and s1 < s2 ≤ s3 = o(
√

n/ logn), satisfying s2 < c−1s1. This inclusion is sim-
ilar in spirit to (49), but allows that s2 ≥ 2s1 (for c < 1/2), which was required in (49). It
is in particular true for c = m2

n = o(1) and s1, s2 as in the theorem, hence T [s1, s2;m2
n] ⊂

�2
0[s;mn/

√
2,1,1]. Then the proof of the statement simply follows from of Theorem 4(A) of

[24] (the authors consider the loss ‖ · ‖2∗ = n × d2, but the same argument goes through with the
loss ‖ · ‖2∗ = d2 in the sequence model), where it is shown that it is not possible to construct adap-
tive confidence sets over the classes {θ ∈ �0[s2] : ‖θ − �0[s1]‖2

2 ≥ m2
ns2 logn} and �0[s1] (more

precisely in the proof it is shown that it is not possible to construct a confidence set with size
bounded by a multiple of s2 logn over {θ ∈ �0[s2] : ‖θ − �0[s1]‖2

2 ≥ m2
ns2 logn} and by s1 logn

for θ = 0, which completes the proof since the zero signal satisfies the excessive-bias assumption
with s̃ = 0).

We now prove assertion (50), along the lines of (49). We highlight here only the dif-
ferences. Note that in view of the proof of Lemma 1, for every θ ∈ T [s1, s2; c], we have∑

|θi |≤
√

c log(n/I)
θ2
i ≤ (s2 − I )c log(n/s2) ≤ I log(n/I) (for I ≤ n/e), where we use cs2 < s1

and I ∈ {s1 + 1, . . . , s2}.
Next, we deal with the conditions (21) and (22). In these cases, one can not directly apply the

results of [24], since elements of the set {θ ∈ �0[s2] : ‖θ − �0[s1]‖2
2 ≥ m2

ns2 logn} will not nec-
essarily satisfy the excessive-bias assumptions (21) and (22) (consider for instance a signal with
n− s2 and s2 coefficients of size zero and mn

√
logn, respectively). The proof of the nonexistence

result combines then ideas from [2] and [24], and adapts them to the present setting.
We argue by contradiction. Let us assume that under (21) or (22) one can construct confidence

sets satisfying assertions (24) and (25). We show below that this would imply the existence of a
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test ψ such that

lim
n

(
Eθ0ψ + sup

θ∈B0

Eθ(1 − ψ)
)

≤ γ ′ + 2γ, (51)

where the signal θ0 = (θ0,1, . . . , θ0,n) and the set B0 respectively are defined by

θ0,i =
{

A
√

2 log(n/s1), for i ≤ s1,

0, else,

B0 = {
θ ∈ �0[s2] : θ1 = · · · = θs1 = A

√
2 log(n/s1),

∣∣{i : θ2
i = c22 log(n/s2)

}∣∣ = s2 − s1
}
,

with c2 < 2ε/(1 + 2ε) < 1, it that is, the parameters in B0 have signal strength A
√

2 log(n/s1)

in the first s1 coordinates, amongst the rest of the coefficients s2 − s1 is of squared size
2c2 log(n/s2), while the rest of the coefficients are zero. Assuming further that 2c2 < 1, note
that θ0 and any θ ∈ B0 satisfy both of the conditions (21) (with � = s1 and C2 = 1) and (22)
(with � = s2 and D2 = 1). We also show below that for any γ1 ∈ (0,1), ε1 ∈ (0,1 − γ1),

lim
n

inf
φγ1

sup
θ∈B0

Eθ(1 − φγ1) ≥ ε1, (52)

where the infimum is taken over every test of level γ1. This leads to a contradiction with (51)
(noting that γ, γ ′ < 1/3).

First we verify assertion (51), by constructing a test ψ satisfying

lim
n

Eθ0ψ ≤ γ ′ + γ, (53)

lim
n

sup
θ∈B0

Eθ(1 − ψ) ≤ γ. (54)

Let us consider the test ψ = 1{Cn(X) ∩ B0 �=∅}, and using (24),

lim
n

sup
θ∈B0

Eθ(1 − ψ) = lim
n

sup
θ∈B0

Pθ

(
Cn(X) ∩ B0 =∅

) ≤ lim
n

sup
θ∈B0

Pθ

(
θ /∈ Cn(X)

) ≤ γ,

while one also has, using the diameter bound (25) and coverage (24),

lim
n

Eθ0ψ = lim
n

Pθ0

(
θ0 ∈ Cn(X),Cn(X) ∩ B0 �=∅

) + lim
n

Pθ0

(
θ0 /∈ Cn(X),Cn(X) ∩ B0 �=∅

)
≤ lim

n
Pθ0

(
diam

(
Cn(X)

) ≥ Ls1 log(n/s1)
) + lim

n
Pθ0

(
θ0 /∈ Cn(X)

) ≤ γ ′ + γ,

where in the first inequality we have used that

inf
θ∈B0

‖θ0 − θ‖2
2 ≥ 2c2(s2 − s1) log(n/s2) � Ls1 log(n/s1).

Hence, it remained to verify assertion (52). The minimax risk over B0 in (52) is bounded from
below by any Bayes risk for a prior distribution on B0. Let us define a specific prior � on the
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set B0 as follows. Let the first s1 coordinates be fixed to the value A
√

2 log(n/s1), and next
let S be sampled uniformly at random over subsets of cardinality s2 − s1 among the remaining
coordinates {s1 + 1, . . . , n}. Let {εj } be i.i.d. Rademacher and, given S, set

θj = c
√

2 log(n/s2)εj if j ∈ S,

and θk = 0 otherwise. For convenience let us introduce the notation λ = c
√

2 log(n/s2). The
corresponding marginal likelihood ratio L�(Y ) = ∫

(dPθ/dPθ0)(Y ) d�(θ) is

L�(Y ) = 1(
n−s1
s2−s1

) ∑
S∈S(s2−s1,n−s1)

Eε|S
[

exp

(
−(s2 − s1)λ

2/2 + λ
∑
j∈S

εjYj

)]
,

where S(s2 −s1, n−s1) denotes the subsets of size s2 −s1 of a set of size n−s1 of {s1 +1, . . . , n},
and Eε|S denotes the expected value corresponding to the i.i.d. Rademacher random variables
ε = {εj : j ∈ S}. Let us introduce the notation K(Ys1+1) = Eε|S[exp(−λ2/2 + λεjYj )], for some
j ∈ S and

a = Eθ0

[
K(Ys1+1)

2], b = Eθ0

[
K(Ys1+1)

]
.

Note that a, b do not depend on θ0, since θ0,s1+1 = 0. Then

Eθ0

[
L�(Y )2] = 1(

n−s1
s2−s1

)2

∑
S,S′∈S(s2−s1,n−s1)

Eθ0

[∏
j∈S

Eε|S exp
(−λ2/2 + λεjYj

)

×
∏
j∈S′

Eε|S′ exp
(−λ2/2 + λεjYj

)]

= 1(
n−s1
s2−s1

)2

∑
S,S′∈S(s2−s1,n−s1)

Eθ0

[ ∏
j∈S∩S′

Eε|S∩S′ exp
(−λ2 + 2λεjYj

)

×
∏

j∈S�S′
Eε|S�S′ exp

(−λ2/2 + λεjYj

)]

= 1(
n−s1
s2−s1

)2

∑
S,S′∈S(s2−s1,n−s1)

a|S∩S′|b|S�S′|

= b2(s2−s1)

s2−s1∑
j=1

(
a/b2)j

pj,s2−s1,n−s1 ,

where A�B = {A\B} ∪ {B\A} and pj,s2−s1,n−s1 = (
n−s1
s2−s1

)−2|{(S,S′) ∈ S(s2 − s1, n − s1)
2 :

|S ∩ S′| = j}|. One can notice that the random variable X satisfying P(X = j) = pj,s2−s1,n−s1

has a hypergeometric distribution with parameters n − s1, s2 − s1 and (s2 − s1)/(n − s1) and the
right-hand side of the preceding display can be written as b2(s2−s1)E[(a/b2)X]. Then in view of
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(27) of [2] (with cosh(λ2) replaced by a/b2 and k by s2 − s1), one obtains

Eθ0

[
L�(Y )2] ≤ b2(s2−s1) exp

(
(s2 − s1) log

[
1 + s2 − s1

n − s1

(
a

b2
− 1

)])

≤ b2(s2−s1) exp

(
(s2 − s1)

2

n − s1

(
a

b2
− 1

))
. (55)

Note that in view of Eθ0 cosh(λYs1+1) = eλ2/2 for any λ ∈ R we have

b = e−λ2/2Eθ0 cosh(λYs1+1) = 1.

Furthermore, in view of Eθ0 cosh2(λYs1+1) = eλ2
cosh(λ2)

a = Eθ0

(
e−λ2/2 cosh(λYs1+1)

)2 = cosh
(
λ2) = (

1/2 + o(1)
)
(n/s2)

2c2
.

By noting that s1 = o(s2) and s2 ≤ n1/2−ε and substituting the preceding two displays into (55)
one gets, using (s2 − s1)/(n − s1) ≤ s2/n and 1 + o(1) ≤ 2 for large enough n,

Eθ0

[
L�(Y )2] ≤ exp

(
s2

2

n

(
n2c2

2s2c2

2

− 1

)(
1 + o(1)

))

≤ 1 + s2−2c2

2 n2c2−1

≤ 1 + nc2(1+2ε)−2ε = 1 + o(1). (56)

Finally, in view of (24) of [2] (and the display below (24) in [2]), we obtain that

inf
φγ1

sup
θ∈B0

Eθ(1 − φγ1) ≥ inf
φγ1

∫
B0

Eθ(1 − φγ1)�(dθ)

≥ 1 − γ1 −
∥∥∥∥
∫

B0

Pθ�(dθ) − Pθ0

∥∥∥∥
TV

/
2

≥ 1 − γ1 − (
Eθ0

[
L�(Y )2] − 1

)1/2
/2

≥ 1 − γ1 − o(1),

where the last display follows from assertion (56), concluding the proof of assertion (52) and
therefore the proof of the theorem. �
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[26] Ročková, V. (2018). Bayesian estimation of sparse signals with a continuous spike-and-slab prior.
Ann. Statist. 46 401–437. MR3766957 https://doi.org/10.1214/17-AOS1554
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