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It is well-known that large deviations of random walks driven by independent and identically distributed
heavy-tailed random variables are governed by the so-called principle of one large jump. We note that
further subtleties hold for such random walks in the large deviations scale which we call hidden large devi-
ations. Our results are illustrated using two examples. First, we apply this idea in the context of queueing
processes with heavy-tailed service times and study approximations of probabilities of severe congestion
times for (buffered) queues. We exhibit our techniques by using limit measures from different large devia-
tion regimes to provide a unified estimate of rare event probabilities in a simulated queue. Furthermore, we
use our result to provide probability estimates of rare events governed by more than one jump in case the
innovations of a random walk have infinite mean.

Keywords: buffered queues; heavy-tails; large deviations; regular variation

1. Introduction

Stochastic processes with heavy-tailed components as building blocks are of interest in many
areas of application, including, but not restricted to hydrology (Anderson and Meerschaert [2]),
finance, insurance and risk management (Smith [37], Embrechts, Klüppelberg and Mikosch [18],
Ibragimov, Jaffee and Walden [23]), tele-traffic data (Crovella, Bestavros and Taqqu [11]), queue-
ing theory (Boxma and Cohen [10], Zwart [40]), social networks and random graphs (Bollobás
et al. [9], Durrett [17]). The notion of heavy-tails in applied probability is often studied under
the paradigm of regular variation. In this paper, we concentrate on investigating subtle properties
of heavy-tailed random walks which helps us in understanding intricate underlying structures of
queueing models with heavy-tailed service times under certain regularity conditions. In partic-
ular, we establish how queueing congestion (which we define in terms of long intense periods)
may occur in a simple GI/G/1 queue, not only because of one large jump, but also in terms of
further jumps occurring in the process. Moreover, our result also aids in computing probabilities
of certain rare events in random walks with innovations having infinite mean.

It is well known that if {Zi}i≥1 are independent and identically distributed (i.i.d.) zero mean
regularly varying random variables, then a large deviation in the partial sum Sn =∑n

i=1 Zi is
most likely to be the result of one of the random variables Zi attaining a very large value, see
Embrechts, Klüppelberg and Mikosch [18], Section 8.6, for further details. Early results on this
notion popularly known as the principle of one large jump were obtained in Nagaev [31–33].
More formally, the notion of one large jump in this case can be written as

P
(|Sn| > x

)= nP
(|Z1| > x

)(
1 + o(1)

)
, x > bn (1)
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for some choice of bn ↑ ∞ as n → ∞. Similar large deviation results have been obtained in
Denisov, Dieker and Shneer [16] under the more general assumption of the random variables
being sub-exponential. In further generality, the notion of regular variation of càdlàg processes
has been characterized in Hult and Lindskog [20]. It was aptly noted in Hult et al. [22] that large
deviations for such processes with heavy-tailed margins are very closely related to the notion of
regular variation.

A precise large deviation result for partial sum processes on the space D := D([0,1],R) of
càdlàg functions was provided in Hult et al. [22], Theorem 2.1; in fact this result was obtained
for d-dimensional processes. Let Sn denote the càdlàg embedding of {Sk}nk=1 into D with S0 = 0,
that is, Sn = (S�nt�)t∈[0,1], where �x� denotes the largest integer no larger than x. In particular
for d = 1, the authors establish that for suitably chosen sequences γn > 0 and λn ↑ ∞ one may
observe that

γnP
(
Sn/λn ∈ ·) w#→ μ(·), n → ∞, (2)

for a non-null measure μ, where
w#→ denotes convergence in the space of boundedly finite mea-

sures on D0; see Daley and Vere-Jones [12], Appendix 2.6, and Hult et al. [22] for further de-
tails on the space and w#-convergence. In particular, the result shows that an appropriate choice
of scaling is γn = [nP(Z1 > λn)]−1 and the limit measure μ concentrates all its mass on step
functions with exactly one jump discontinuity, which essentially retrieves the one large jump
principle.

Hence, this indicates of a possibility, albeit rarer than the above case, that a large deviation of
Sn may occur because two or more of the random variables {Zi}ni=1 were large. The probabilities
of such events, although negligible under the scaling γn = [nP(Z1 > λn)]−1, are not exactly zero.
In this paper, we aim to recover the rates at which such deviations happen and examine their
structure. Furthermore, our goal is to use such results in the context of queueing to understand
the behavior of what we call long intense periods in a large-deviation-type event. Analyses of
hidden behavior of regularly varying sequences on R

d (Resnick [34], Das, Mitra and Resnick
[13]) and more recently on R

∞ and Lévy processes on D (Lindskog, Resnick and Roy [28])
have been conducted under the name hidden regular variation.

In this paper, our first contribution is to extend the large deviation result in (2) to hidden
large deviations in the spirit of hidden regular variation. We establish that the most probable
way a large deviation event occurs, which is not the result of only one random variable being
large, is actually when two random variables are large; resulting in a non-null limit measure as
in (2) concentrating on processes having two jump discontinuities. For our analyses, we use the
framework proposed in Lindskog, Resnick and Roy [28] and the notion of convergence used here
is known as MO-convergence which is closely related to the w#-convergence of boundedly finite
measures and developed in Hult and Lindskog [21], Das, Mitra and Resnick [13], Lindskog,
Resnick and Roy [28]. We recall in brief the required background on regular variation and MO-
convergence in Section 2. The results on hidden large deviations of random walks are dealt with
in Section 3, where the key result is obtained in Theorem 3.5. In this theorem, we show that
for each j ≥ 1 and a suitably chosen sequence λn ↑ ∞, there exists a non-zero limit measure



Heavy-tailed buffered queues 63

μ ∈M(D\{D≤(j−1)}) such that

[
nP
(|Z1| > λn

)]−j
P
(
Sn/λn ∈ ·)→ μ(·), n → ∞, (3)

where D≤j−1 denotes the set of all step functions in D with at most (j −1) jumps and → denotes
convergence in M(D\{D≤(j−1)}). The results in the literature most closely related to the results in
this paper are Theorem 2.1 of Hult et al. [22], Theorem 5.1 of Lindskog, Resnick and Roy [28]
and, most recently, Theorem 3.2 of Rhee, Blanchet and Zwart [36]. As mentioned above, the
results in Hult et al. [22] include a version of (3) for the case of j = 1. Theorem 5.1 in Lindskog,
Resnick and Roy [28] provides a result similar to (3) with Sn replaced by a Lévy process X

on D with regularly varying Lévy measure ν which is assumed to concentrate on (0,∞). We
paraphrase this result as

[ν([λn,∞
)
)]−j

P(X/λn ∈ ·) → μ(·), n → ∞. (4)

Note that the time scale of X remains the same throughout. In their work, Rhee, Blanchet and
Zwart [36] also study Lévy processes X with regularly varying Lévy measure ν, with both time
and space rescaled by n, that is, Xn = {X(nt)/n, t ∈ [0,1]}, and show that

[nν
([n,∞)

)]−j
P
(
Xn ∈ ·)→ μ(·), n → ∞. (5)

Note that in (3) and (5) the rate term has an additional n (compared to (4)) to compensate for
the larger time scales considered. In the latter paper, the authors further establish two-sided limit
results for Lévy processes where the Lévy measure is regularly varying with potentially differing
coefficients at positive and negative infinity (Rhee, Blanchet and Zwart [36], Theorem 3.5). Par-
ticularly, Rhee, Blanchet and Zwart [36] establishes (3) for λn = n in Theorem 4.1. In compari-
son, our result allows for greater flexibility in the scaling function, that is, we assume λn ∈RV−ρ

with ρ > 1
2∧α

while they consider the case λn = n throughout. Their results are more general with
respect to the processes considered, which are Lévy processes and random walks with possibly
different coefficients of regular variation for positive (upward) and negative (downward) jumps.

We show an application of our results in understanding queueing congestion in a simple GI/G/1
queueing model. Queues with heavy-tailed service times have been of interest to researchers for
a few years (Boxma and Cohen [10], Jelenković [26], Zwart [40]). Our interest lies in figuring
out how often would we observe long busy or intense periods in a queue and how does it happen.
In Zwart [40], the author shows that for a GI/G/1 queue with heavy-tailed service times, the
most likely way a long busy period occurs is when one big service requirement arrives at the
beginning of the busy period and the queue drifts back to zero linearly thereafter. Consequently,
a large deviation of a queueing process also looks exactly the same. Jelenković [26] studies the
steady state loss in buffered queues and shows that for large buffers K the steady state loss can
be approximated by the expected loss due to one arrival A filling the buffer completely starting
zero, that is the expected loss is approximately E[A − K]; see Zwart [39] for similar results
concerning fluid queues.

Equipped with Theorem 3.5 on hidden large deviations for random walks, in Section 4 we
study queueing processes with heavy-tailed service times and finite capacity, which is a natural
model to assume in many contexts. We define a long intense period as the fraction of time a
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queue with buffer capacity K > 0 spends continuously above a level θK, θ ∈ (0,1) for one
sojourn and study the length of the longest such period for a given observation horizon. A closely
related notion of long strange segments, defined in Mansfield, Rachev and Samorodnitsky [29]
has also consequently been investigated in Hult et al. [22], Section 4, which examines the length
of time the average process value spends in an unexpected regime. Considering hidden large
deviations in such a setting provides further insight since we observe that the first large deviation
approximation gives only a crude estimate of the distribution of the length of intense periods for
large buffers. In Theorem 4.3, we derive an approximation to the distribution of the length of long
intense periods in queues with large buffer sizes and conduct a simulation study in Section 4.5
to show the effectiveness of the result. In our simulation study of the buffered queue, we provide
an estimate of a rare event probability using both regular and hidden large deviations which we
believe has not been used in conjunction in the literature yet.

Moreover, in Section 5, we illustrate the usefulness of our result in computing probabilities of
large deviation events where the step sizes in a random walk do not have finite mean. In such
a case, computation of probabilities of events defined by one large jump has been discussed in
Hult et al. [22]; we additionally exemplify the case governed by two large jumps. The theoretical
results are verified using simulation. Finally, future directions for research are indicated with
conclusions summarized in Section 6.

2. Notations and background

In this section, we provide a summary of frequently used notations and concepts along with a
review of material necessary for the results in the following sections. We mostly adhere to the
notations and definitions introduced in Lindskog, Resnick and Roy [28].

2.1. Basic notations

A few notations and concepts are summarized here. Detailed discussions are in the references
provided. Unless otherwise specified, capital letters like X, Z, S with various subscripts and su-
perscripts are reserved for real-valued (and sometimes vector-valued) random variables, whereas
bold-symbolled capital letters like X, Z, S (again with various subscripts and superscripts) de-
note vector- or function-valued random elements. Small letters in bold, like z, are vectors in a
suitable Euclidean space where z = (z1, . . . , zn) if z ∈ R

n. The following table lists notations
which are often used in the paper.

RVβ Class of regularly varying functions with index β ∈ R: that is, f ∈ RVβ

if f : R+ �→ R+ satisfying limt→∞ f (tx)/f (t) = xβ , for x > 0. We abuse
notation and write X ∈ RV−α for regularly varying random variables as in
Definition 2.3, that is, if 1 − F ∈RVβ where X ∼ F .

M(S\C) M(S,C) = M(S\C) is the set of Borel measures on S\C that are finite on
sets bounded away from C.

μn → μ Convergence in M(S\C); see Definition 2.1.
U

↑
j {u ∈ [0,1]j : 0 ≤ u1 < · · · < uj ≤ 1}.
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a ∧ b;a ∨ b min{a, b};max{a, b}, respectively.
D=D([0,1],R) Space of all real-valued càdlàg functions on [0,1] equipped with the Sko-

rohod J1-metric. Càdlàg functions are functions which are right continuous
and have a left limit at every point of the domain.

ν
j
α Product measure on (R\{0})j : να × · · · × να︸ ︷︷ ︸

j times

with να as defined in (7).

dJ1 Skorohod J1-metric on D. If 	 denotes the class of strictly increasing
continuous functions λ : [0,1] → [0,1] with λ(0) = 0, λ(1) = 1, then for
f,g ∈D, we define

dJ1(f, g) := inf
λ∈	

max
{

sup
t∈[0,1]

∣∣f (t) − g ◦ λ(t)
∣∣, sup

t∈[0,1]
∣∣λ(t) − t

∣∣}
= inf

λ∈	
‖f − g ◦ λ‖ ∨ ‖λ − e‖ (6)

where e(t) = t , ∀t ∈ [0,1]. See Billingsley [6] for further details on the
J1-topology. Note that similar definitions could be worked out if we take
DM =D([0,M],R) in place of D.

D=j Space of all real-valued step functions on [0,1] with exactly j jumps, j ≥ 1.
Assume D=0 is the space containing only the constant function at 0. More-
over, D=j ⊂D.

D≤j Space of all step functions on [0,1] with j or less jumps, D≤j =⋃j

k=0 D=k .
C=k(λ) {z ∈ R

n : |{i : |zi | > λ}| = k} for λ > 0, 1 ≤ k ≤ n. It denotes the subset of
Rn where exactly k co-ordinates are above λ > 0 in absolute value. More-
over, Rn =⋃n

k=0 C=k(λ). See Section 3 for further details.

2.2. Convergence in MO

We state our results as convergence in MO, a mode of convergence closely related to standard
weak convergence of probability measures. The idea is as follows: to allow for hidden large
deviations we need to exclude the set of all possible occurrences of (regular) large deviation
events from the space under consideration in order to keep the limit measure non-degenerate in
that region. This is similar to how large deviations avoid the law of large numbers for zero mean
random variates: we need to exclude 0 from the non-negative real line to obtain a limit measure
for P(|Z1 + · · · + Zn| ≥ nz), z > 0. Convergence in MO follows the same principle but we allow
for the removal of an arbitrary closed set. As a consequence, we can define convergence in càdlàg
spaces where we exclude certain types of step functions which form a closed set in D.

In particular, let S be a complete separable metric space, B(S) the collection of Borel sets on S

and C⊂ S a closed subset of S. Then we denote M(S,C) =M(S\C) the set of Borel measures on
S\C which are finite on sets bounded away from C, that is, the collection of sets A ∈ B(S) such
that inf{d(x, y) : x ∈C, y ∈ A} > 0 where d denotes the metric on S. Finally, we call a sequence
{μn}n≥0 convergent if the assigned values converge for a suitable class of test functions or sets.
Denoting O= S\C the support set we use the notation MO := M(S,C) as eponym for the mode
of convergence and use the following definition of MO-convergence.
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Definition 2.1. A sequence of measures {μn}n≥0 ⊂ MO converges to μ0 ∈ MO if for all closed
sets F and open sets G in B(S) which are bounded away from C we have

lim sup
n→∞

μn(F ) ≤ μ0(F ), and,

lim inf
n→∞ μn(G) ≥ μ0(G).

We write μn → μ0 in MO as n → ∞, or simply μn → μ0.

The definition above states MO-convergence in terms of open and closed subsets of O. The-
orem 2.1 of Lindskog, Resnick and Roy [28] provides several alternative characterizations of
convergence in MO. The corresponding version of a continuous mapping theorem in MO fol-
lows as Theorem 2.3 in the same publication. We state the continuous mapping theorem again
for the sake of convenience. Let S′ be a second complete separable metric space with a closed
set C′ ⊂ S

′ and with the same properties as S; we add primes (′s) to denote the corresponding
elements of the second space.

Theorem 2.2 (Lindskog, Resnick and Roy [28], Theorem 2.3). Let h : S \ C → S
′ \ C′ be a

measurable map such that for all sets A′ ∈ B(S′) ∩ h(S\C) bounded away from C
′, we also have

h−1(A′) is bounded away from C. Also assume, μ(Dh) = 0, where Dh is the set of discontinuity
points of h. Then μn → μ in M(S,C) implies μn ◦ h−1 → μ ◦ h−1 in M(S′,C′).

Remark 1 (Relationship between MO-convergence and w# convergence). In Hult et al. [22],
the large deviation result for random walks is stated in terms of w# convergence, with boundedly
finite measures. Specifically they consider the space D0 = (0,∞] × SD, where SD is the unit
sphere in D. The metric on the radial part is defined as d(0,∞](x, y) := |1/x − 1/y|, thus making
any set not bounded away from the zero function (in the usual J1 metric) unbounded in the
modified space. Unfortunately it is not immediately clear how to extend this theory to allow for
the removal of more than just the zero function, whereas convergence in MO on the contrary is
specifically designed for this purpose and hence we use this as our notion of convergence.

2.3. Regular variation and heavy-tailed large deviations

A measurable function f : (0,∞) → (0,∞) is regularly varying at infinity with index α ∈ R

if limt→∞ f (tx)/f (t) = xα for all x > 0. A sequence of positive numbers {an}n≥1 is regularly
varying with index α ∈ R if limn→∞ a[cn]/an = cα for all c > 0. Regular variation of unbounded
random variables thus usually is defined in terms of regular variation of the tail of the corre-
sponding cumulative distribution functions at infinity; see Bingham, Goldie and Teugels [7],
de Haan and Ferreira [14], or Resnick [35] for related properties and examples. We work with
an equivalent definition stated in terms of MO-convergence Lindskog, Resnick and Roy [28],
Section 3.2.
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Definition 2.3. A random variable X is regularly varying at infinity if there exists a regularly
varying sequence γn and a non-zero measure μ ∈ M(R\{0}) such that

γnP(X/n ∈ ·) → μ(·), n → ∞,

in M(R\{0}).

Since the measure μ satisfies the scaling property μ(sA) = s−αμ(A), s > 0, A ∈ B(R\{0}) for
some α ≥ 0 we write X ∈RV−α . In addition, Definition 2.3 implies that P(|X| > n) = L(n)n−α

for some slowly varying function L(n). Throughout this paper, we assume α > 0. Moreover, for
X ∈ RV−α , we also assume that the following condition is satisfied:

lim
n→∞

P(X > n)

P(|X| > n)
= p, lim

n→∞
P(X < −n)

P(|X| > n)
= 1 − p := q,

for some 0 ≤ p ≤ 1. This is called the tail balance condition. For univariate random variables
X ∈ RV−α we stick to this choice unless otherwise specified. We also denote by να , the following
measure on R\{0} for x > 0, y > 0,

να

(
(−∞,−y) ∪ (x,∞)

)= qy−α + px−α. (7)

The limit measure μ(·) in Definition 2.3 is equal to να(·) if we choose the sequence γn to be
[P(|X| > n)]−1. To clearly distinguish the concepts of regular variation and large deviations for
heavy-tailed random variables, we provide the following definition.

Definition 2.4. A sequence of random variables {Xn}n≥1 ⊆ R, with Xn → 0 in probability, sat-
isfies a heavy-tailed large deviation type limit on R\{0} if there exists a positive sequence γn ↑ ∞
and a non-zero measure μ ∈M(R\{0}) such that as n → ∞,

γnP(Xn ∈ ·) → μ(·),

in M(R\{0}).

Remark 2. The similarity between the definitions of regular variation and heavy-tailed large
deviation type limit (LDL) is quite evident here. One salient difference is that regular variation is
defined for a single random element, whereas an LDL, for a sequence of random elements. The
special case of Xn = X/n shows that regular variation is a specific form of heavy tailed LDL
according to our definition. The definition of an LDL implies that P(Xn ∈ ·) → 0 as n → ∞ for
all Borel sets in R\{0}.

We provide a more general definition of LDLs for random elements on a complete separable
metric space S, which helps in defining hidden large deviations eventually. Additionally, we no
longer restrict to removing the zero element, but an arbitrary closed set C⊂ S.
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Definition 2.5. A sequence of random elements {Xn}n≥1 ⊂ S satisfies a heavy-tailed large de-
viation type limit on S\C for a closed set C ⊂ S if there exists a positive sequence γn ↑ ∞, and
a non-zero measure μ ∈M(S\C) such that as n → ∞,

γnP(Xn ∈ ·) → μ(·),

in M(S\C). We write Xn ∈ LD(γn,μ,S\C).

The definition of heavy-tailed large deviations principle as given in Hult et al. [22], Defini-
tion 1.3, is equivalent to Definition 2.5 for stochastic processes with sample paths in D. To avoid
any confusion with regards to the established use of the term large deviations principle (see, e.g.,
Dembo and Zeitouni [15]), we use a variation of the term, namely, large deviation type limit
(LDL). It has been observed, especially in the case of heavy-tailed random walks, that the limit
measure μ obtained on D\{0}, concentrates only on step functions with one jump; see Hult et al.
[22], Theorem 2.1. Hence, we enquire whether a different structure is observable if we do not
allow one jump functions to be in the support of the limit measure μ above. Essentially, we
are asking how often do we see events which are not governed by just exactly one jump in the
space D. The same question may be asked iteratively by removing the support set of a new found
limit measure and examining the hidden structure of rarer and rarer events. Hence, one may
be able to find a sequence {C(j)}j≥1 of closed subsets of S with C

(j+1) ⊃ C
(j) and positive se-

quences γ
(j)
n ↑ ∞ with γ

(j+1)
n /γ

(j)
n → ∞ as n → ∞, and non-zero measures μ(j) ∈M(S\C(j)),

for j ≥ 1 such that

Xn ∈ LD
(
γ

(j)
n ,μ(j),S\C(j)

)
, j ≥ 1.

The limit measure μ(j) necessarily concentrates on C
(j+1)\C(j). Thus, the kth level LDL un-

covers the structure of rare events which were hidden (i.e., negligible) under the scaling of the
preceding j th level LDLs of the sequence with j < k.

3. Hidden large deviations and random walks

Equipped with the terminology and tools in Section 2, we proceed to understand the structure
of heavy-tailed random walks in this section. We look at heavy-tailed random walks as elements
of D. The key result for hidden large deviations for heavy-tailed random walks is in Theorem 3.5.

3.1. Bounds on sums of random variables

For random variables Z1, . . . ,Zn, denote their sum by Sn = Z1 + · · · + Zn. Here Sn denotes the
n-th step of a random walk. One of the key tools to bound movements in the random walk caused
by “small” realizations will be Bernstein’s inequality, see Bennett [5].
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Lemma 3.1 (Bernstein’s inequality). Let Z1, . . . ,Zn be i.i.d. bounded random variables with
EZ1 = 0, Var[Z1] = σ 2 and |Z1| ≤ M . Then for any t > 0,

P
(|Sn| ≥ t

)≤ 2 exp

{
− t2

2nσ 2 + 2
3Mt

}
.

We use this exponential bound on the absolute value of the sum to bound the probability
of a large deviation in the sum of regularly varying random variables happening due to many
variables attaining a small but non-negligible value. This bound, as we see hence, turns out to be
exponential rather than polynomial in the deviation level λn.

Lemma 3.2. Let {Zi}i≥1 be a sequence of i.i.d. random variables with Z1 ∈ RV−α , α > 0. In
case E|Z1| < ∞, we assume EZ1 = 0. Denote Sn =∑n

k=1 Zk and let λn ∈ RVρ be a regularly
varying sequence such that in case

(1) Var[Z1] < ∞, we have ρ >
1

2
, and,

(2) Var[Z1] = ∞, we have αρ > 1.

Then for any δ > 0 and ε0 > 0 small enough, there exists a constant c > 0 such that for large
enough n,

P
(|Sn| > δλn, |Zi | ≤ λ1−ε0

n ,∀i ≤ n
)
< 2 exp

(−cλε0
n

)
.

Remark 3. When Z1 has finite variance, the condition, ρ > 1/2 guarantees that λn ↑ ∞ fast
enough such that we avoid the central limit regime. When Z1 has infinite variance, then αρ > 1
ensures that the probability of at least one of the variables exceeding a large threshold on the
scale of λn still tends to zero.

Proof of Lemma 3.2. We obtain the result by applying Lemma 3.1 to an appropriately truncated
version of Zi ’s (where the truncation still depends on n). Note that for Var[Z1] = ∞ we assume
αρ > 1 and for Var[Z1] < ∞, we assume ρ > 1/2 and we know α ≥ 2, hence αρ > 1. First, we
need to show the following auxiliary result, which follows from Karamata’s theorem (Bingham,
Goldie and Teugels [7]) and the assumption that αρ > 1. We claim that for 0 < ε0 < 1, with ε0

small enough,

∣∣∣∣ n

λn

E[Z11[|Z1|≤λ
1−ε0
n ]]

∣∣∣∣→ 0, n → ∞. (8)

We show (8) separately for the cases when E|Z1| < ∞ and E|Z| = ∞.
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1. First, assume that E|Z1| < ∞ and thus by assumption E[Z1] = 0. Then∣∣∣∣ n

λn

E[Z11[|Z1|≤λ
1−ε0
n ]]

∣∣∣∣=
∣∣∣∣ n

λn

(−1)E[Z11[|Z1|>λ
1−ε0
n ]]

∣∣∣∣
≤ n

λn

E
[|Z1|1[|Z1|>λ

1−ε0
n ]

]= n

λn

∫ ∞

λ
1−ε0
n

P
(|Z1| > x

)
dx.

The final expression above is bounded above by a regularly varying function with index 1−
ρ + (−α + 1)ρ(1 − ε0) which for small enough ε0 is negative since αρ > 1 by assumption.

2. In the other case E|Z1| = ∞. Hence α ≤ 1, so that the condition αρ > 1 implies ρ > 1, and
we use the following bound:∣∣∣∣ n

λn

E[Z11[|Z1|≤λ
1−ε0
n ]]

∣∣∣∣≤ n

λn

E
[|Z1|1[|Z1|≤λ

1−ε0
n ]

]≤ n

λn

∫ λn

0
P
(|Z1| > x

)
dx.

Since αρ > 1 and ρ > 1, by assumption, for small enough ε0, the final term above vanishes
as n → ∞.

Hence, (8) holds. Next, observe that given δ > 0, for small enough ε0 and large enough n,

P(An) := P
(|Sn| > δλn, |Zi | ≤ λ1−ε0

n ∀1 ≤ i ≤ n
)

≤ P

(∣∣∣∣∣
n∑

i=1

Zi1[|Zi |≤λ
1−ε0
n ]

∣∣∣∣∣> δλn

)

≤ P

(∣∣∣∣∣
n∑

i=1

(
Zi1[|Zi |≤λ

1−ε0
n ] −E[Zi1[|Zi |≤λ

1−ε0
n ]]

)∣∣∣∣∣> δ

2
λn

)
,

where the last inequality is obtained using (8). Using Lemma 3.1 to bound the sum of n zero mean
random variables bounded in absolute value by M = 2λ

1−ε0
n , we obtain that for large enough n,

P(An) ≤ 2 exp

(
− ( δ

2λn)
2

2nVar[Z11[|Z1|≤λ
1−ε0
n ]] + 4

3λ
1−ε0
n

δ
2λn

)

≤ 2 exp

(
−λε0

n

c1

c2 + β(n)

)
,

where c1, c2 are positive constants and

β(n) =
2nVar[Z11[|Z1|≤λ

1−ε0
n ]]

λ
2−ε0
n

.

Next, we show that β(n) → 0 as n → ∞ which implies that for large enough n, there exists
ζ > 0 such that

P(An) ≤ 2 exp

(
−λε0

n

c1

c2 + ζ

)
= 2 exp

(−cλε0
n

)
,
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where c = c1
c2+ζ

, and thus the lemma is proven. We show β(n) → 0 in the three different cases
as follows.

1. If α ∈ (0,2) (implying infinite variance and αρ > 1), using Karamata’s theorem (Bingham,
Goldie and Teugels [7], Proposition 1.5.8) for small enough ε0, large enough n and constant
C > 0 we have

β(n) ≤ 2n

λ
2−ε0
n

E
[
Z2

11[|Z1|≤λ
1−ε0
n ]

]
∼ 2n

λ
2−ε0
n

× Cλ2(1−ε0)
n P

(|Z1| > λ1−ε0
n

)
∼ 2Cnλ−ε0

n P
(|Z1| > λ1−ε0

n

)→ 0 (n → ∞).

2. If Var[Z1] < ∞, then β(n) ≤ C n

λ
2−ε0
n

for some C > 0 and hence vanishes as n → ∞ for

small enough ε0 > 0.
3. If α = 2 and Var[Z1] = ∞, then the variance is a slowly varying function. Again, for ε0

small enough nλ
−2+ε0
n → 0 at a polynomial rate and hence β(n) → 0. �

Remark 4. By considering sets of the form

Ak,n = {|Sk| > δλn, |Zi | ≤ λ1−ε0
n ∀1 ≤ i ≤ n

}
, 1 ≤ k ≤ n,

the proof of Lemma 3.2 can easily be adapted to show that under the conditions of Lemma 3.2
we have

P
(|Sk| > δλn, |Zi | ≤ λ1−ε0

n ,∀1 ≤ i ≤ n
)≤ 2 exp

(−cλε0
n

)
, 1 ≤ k ≤ n.

3.2. Random walks embedded in D := D([0,1],R)

Now we embed the random walk Sn = Z1 + · · · + Zn in D = D([0,1],R) and discuss its large
deviations. Let Z(n) = (Z1, . . . ,Zn) where Zi ’s are i.i.d. realizations having the same distribution
as Z1. For t ∈ [0,1] and k ∈ {1, . . . , n} define the functions X

(n)
k (t) = Zk1[ k

n
≤t] on D. Now define

X(n)(t) :=
n∑

k=1

X
(n)
k (t) =

�nt�∑
k=1

Zk = S�nt�

to be the embedding of the random walk induced by Z1, . . . ,Zn into the space D. Moreover, let
C=0(λ) := {z ∈Rn : |zi | ≤ λ,∀i}. The following corollary is a consequence of Lemma 3.2.

Corollary 3.3. Under the conditions of Lemma 3.2, for any δ > 0 and ε0 > 0 small enough,
there exist a constant c > 0 such that for large enough n,

P

(
sup

t∈[0,1]
∣∣X(n)

∣∣> δλn,Z
(n) ∈ C=0

(
λ1−ε0

n

))≤ 2 exp
(−cλ

ε0/2
n

)
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Proof. Observe that from Lemma 3.2, for any δ > 0 and ε0 > 0 small enough and for large
enough n,

P

(
sup

t∈[0,1]
∣∣X(n)

∣∣> δλn,Z
(n) ∈ C=0

(
λ1−ε0

n

))= P

(
sup

t∈[0,1]
|S�nt�| > δλn, |Zi | ≤ λ1−ε0

n ,∀i ≤ n
)

≤ P

(
sup

1≤k≤n

|Sk| > δλn, |Zi | ≤ λ1−ε0
n ,∀i ≤ n

)
≤ 2n exp

(−cλε0
n

)
≤ 2 exp

(−cλ
ε0/2
n

)
(for large enough n),

for some constant c > 0. �

Now we define functions which relate vectors in R
n to càdlàg step functions in D. For integers

j ∈ N, denote U
↑
j := {u ∈ [0,1]j : 0 ≤ u1 < · · · < uj ≤ 1} and define functions

hj : (R\{0})j × U
↑
j →D,

hj

(
(z,u)

)
(t) :=

j∑
i=1

zi1[ui≤t].

The maps hj allow us to define the collection of functions with exactly j jumps as subsets of D.
Hence, we define the following classes of càdlàg functions.

D=0 := {
x ∈ D : x(t) = 0,0 ≤ t ≤ 1

}= {
the zero function in [0,1]

}
,

D=j := {
x ∈ D : x(t) = hj (z,u)(t),0 ≤ t ≤ 1, (z,u) ∈ (R\{0})j × U

↑
j )
}
,

D≤j :=
j⋃

i=0

D=i = {càdlàg step functions with j or less jumps}.

Lemma 3.4. The map hj : (R\{0})j × U
↑
j �→ D is continuous for j ∈N.

Proof. The proof which is similar to Lemma 5.3 in Lindskog, Resnick and Roy [28] is skipped
here. �

Remark 5. The function hj maps points in (R\{0})j × U
↑
j to functions in D=j ⊂ D, which

are càdlàg functions in [0,1] with exactly j jumps. Hence for any F ⊂ D bounded away from
D≤(j−1), we have h−1

j (F ) = h−1
j (F ∩D=j ). Hence, hj ◦ h−1

j (F ) = F ∩D=j .

The following result is the main theorem of this paper and extends the large deviation result
of Hult et al. [22] in the setting of Lindskog, Resnick and Roy [28] in order to obtain, what we
call hidden large deviations. The special case of j = 1 in Theorem 3.5 corresponds to Hult et al.
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[22], Theorem 2.1. The Lebesgue measure (in R
j ) is denoted Lebj and ν

j
α is the j -fold product

measure of να (again in R
j ) with να as defined in (7).

Theorem 3.5. Let j ≥ 1. Under the conditions of Lemma 3.2, for λn → ∞ as n → ∞,

γ
(j)
n P

(
X(n)/λn ∈ ·)→ (

νj
α × Lebj

) ◦ h−1
j (·) (9)

in M(D\D≤(j−1)) as n → ∞, where γ
(j)
n = [nP(|Z1| > λn)]−j .

Remark 6. First note that under the conditions of Lemma 3.2 we have X(n)/λn → 0 (0 ∈ D) in
probability.

Remark 7. The theorem states that the random element Xn = X(n)/λn satisfies a sequence of
LDLs on {D\D≤j−1}j≥1, which means that the large deviations of the random walk concentrate
on step functions with an increasing number of steps at increasingly faster rates. In particular,
for polynomially bounded rates γn, large deviations of partial sum processes of i.i.d. regularly
varying random variables will always concentrate on step functions, among all functions in D.
Naturally, one may ask whether any LDL on D\⋃∞

j=0 D=j can be found and at what rate would
events in such a space occur. Evidently, it seems that the rate must be faster than all polynomials.
However, such considerations are beyond the framework and scope of the current paper and we
leave these for later investigations.

Proof of Theorem 3.5. We show convergence in MO according to Definition 2.1 for (9), starting
with the upper bound for closed sets. The idea is to dissect the space R

n, which contains the first
n elements of the random walk, into a union of n disjoint sets that define which dimensions are
allowed to be “big”. For any k = 0,1, . . . , n, and λ > 0, define

C=k(λ) = {
z ∈ R

n : ∣∣{i : |zi | > λ
}∣∣= k

}
.

Hence, C=k ⊂ R
n are all points in R

n which have exactly k-co-ordinates with absolute value
greater than λ. Clearly

R
n =

n⋃
k=0

C=k(λ).

Upper bound. Let F ⊂D be a closed set, bounded away from D≤(j−1). Then for small ε0 > 0,

P
(
X(n)/λn ∈ F

)= P

(
X(n)/λn ∈ F,Z(n) ∈

n⋃
k=0

C=k

(
λ1−ε0

n

))

=
n∑

i=0

P
(
X(n)/λn ∈ F,Z(n) ∈ C=k

(
λ1−ε0

n

))=:
n∑

i=0

P(Bi).

We show that when multiplied by γ
(j)
n , all the probabilities above are negligible except P(Bj ).

Now, since F was chosen to be bounded away from D≤(j−1), there exists a δ0 > 0, such that
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all elements of F have a minimum distance δ0 to step functions with at most j − 1 jumps. In
particular, F is bounded away from the zero element in D.

1. Bounding P(B0). Using Corollary 3.3, we have constants c0 > 0 and ε0 > 0 such that,

P(B0) ≤ P
(
sup

∣∣X(n)(t)/λn

∣∣> δ0/2, |Zi | ≤ λ1−ε0
n

)
≤ 2 exp

(−c0λ
ε0
n

)
.

Hence, this term is exponentially bounded and goes to 0 when multiplied by γ
(j)
n .

2. Bounding P(Bi) for 1 ≤ i ≤ j − 1. For i ∈ I := {1,2, . . . , n}, denote by

K(i) = {
k = {k1, . . . , ki} : 1 ≤ k1 < · · · < ki ≤ n

}
,

all possible subsets of size i of the index set I . We show that P(Bi) for 1 ≤ i ≤ j − 1 are also
exponentially bounded. With the same δ0 as previously chosen, we have

P(Bi) = P
(
X(n)/λn ∈ F,Z(n) ∈C=i

(
λ1−ε0

n

))
=

∑
k∈K(i)

P
(
X(n)/λn ∈ F, |Zl | > λ1−ε0

n ,∀l ∈ k, |Zl | ≤ λ1−ε0
n ,∀l ∈ I\k)

≤
∑

k∈K(i)

P

(
sup

t∈[0,1]

∣∣∣∣∣X(n)(t) −
i∑

m=1

X
(n)
km

(t)

∣∣∣∣∣> λn

δ0

2
,

|Zl | > λ1−ε0
n ,∀l ∈ k, |Zl | ≤ λ1−ε0

n ,∀l ∈ I\k
)

≤
∑

k∈K(i)

P

(
sup

t∈[0,1]

∣∣∣∣ ∑
l∈I\k

X
(n)
l (t)

∣∣∣∣> λn

δ0

2
, |Zl | ≤ λ1−ε0

n ,∀l ∈ I\k
)

=
∑

k∈K(i)

P

(
sup
m∈I

∣∣∣∣ ∑
1≤l≤m,l∈I\k

Zl

∣∣∣∣> λn

δ0

2
, |Zl | ≤ λ1−ε0

n ,∀l ∈ I\k
)

.

Now note that the probability on the right-hand side of the last inequality above is invariant under
changing subsets k ∈ K(i). Since the size of the set K(i) is |K(i)| = (

n
i

)
, we have

P(Bi) ≤
(

n

i

)
P

(
sup

1≤j≤n−i

|Sj | > λn

δ0

2
, |Zl | ≤ λ1−ε0

n ,1 ≤ l ≤ n − i

)
,

≤ 2

(
n

i

)
(n − i) exp

(−ciλ
ε0
n

)
,

for some ci > 0 according to Corollary 3.3. Since our choice of γ
(j)
n = [nP(|Z1| > λn)]−j ,

clearly γ
(j)
n

∑j−1
i=1 P(Bi) → 0, as n → ∞.
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3. Bounding P(Bi) for j + 1 ≤ i ≤ n. We bound the quantity γ
(j)
n

∑n
i=j+1 P(Bi) together. We

argue that when multiplied with γ
(j)
n , the probability of events with more than j large jumps is

also negligible. Observe that

γ
(j)
n

n∑
i=j+1

P(Bi) ≤ γ
(j)
n P

(∃k1, . . . , kj+1 ∈ I : |Zki
| > λ1−ε0

n , i = 1, . . . , j + 1
)

≤ γ
(j)
n

(
n

j + 1

)
P
(|Z1| > λ1−ε0

n

)j+1

≤ cn
P(|Z1| > λ

1−ε0
n )j+1

P(|Z1| > λn)j
=: fn,

for some c > 0. Now fn ∈RVr0 with parameter

r0 := 1 − (j + 1)ρα + ε0ρ(j + 1)α + jρα = (1 − αρ) + (j + 1)ε0ρα,

see de Haan and Ferreira [14], Appendix, for details on operations on regular variation. Since by
choice αρ > 1, for small enough ε0, we have r0 < 0. Hence,

γ
(j)
n

n∑
i=j+1

P(Bi) ≤ fn → 0

as n → ∞.
4. Bounding P(Bj ). Finally, we are left with the term γ

(j)
n P(Bj ) which is the non-negligible

contributing term for large n. For δ > 0, let

Fδ := {
x ∈D : dJ1(x,F ) ≤ δ

}
with δ small enough such that Fδ is still bounded away from D≤(j−1).

P(Bj ) = P
(
X(n)/λn ∈ F,Z(n) ∈ C=j

(
λ1−ε0

n

))
=

∑
k∈K(j)

P
(
X(n)/λn ∈ F, |Zl | > λ1−ε0

n ,∀l ∈ k, |Zk| ≤ λ1−ε0
n ,∀l ∈ I\k)

≤
∑

k∈K(j)

P

(
sup

t∈[0,1]

∣∣∣∣∣X(n)(t) −
j∑

m=1

X
(n)
km

(t)

∣∣∣∣∣≤ λnδ,X
(n)/λn ∈ F,

|Zl | > λ1−ε0
n ,∀l ∈ k, |Zl | ≤ λ1−ε0

n ,∀l ∈ I\k
)

+
∑

k∈K(j)

P

(
sup

t∈[0,1]

∣∣∣∣∣X(n)(t) −
j∑

m=1

X
(n)
km

(t)

∣∣∣∣∣> λnδ,X
(n)/λn ∈ F,
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|Zl | > λ1−ε0
n ,∀l ∈ k, |Zl | ≤ λ1−ε0

n ,∀l ∈ I\k
)

≤
∑

k∈K(j)

P

(
j∑

m=1

X
(n)
km

/λn ∈ Fδ

)

+
(

n

j

)
P

(
sup

t∈[0,1]

∣∣∣∣ ∑
l∈I\k

X
(n)
l

∣∣∣∣> λnδ, |Zl | ≤ λ1−ε0
n ,∀l ∈ I\k

)

= P
(n)
j,1 + P

(n)
j,2 . (10)

Now, using Lemma 3.2, and arguments similar to the one for bounding P(Bi) for 1 ≤ i ≤ j − 1,
we can check that the quantity P

(n)
j,2 is negligible at rate γ

(j)
n and hence γ

(j)
n P

(n)
j,2 → 0 as n → ∞.

In the remaining term P
(n)
j,1 , we use the inverse of the map hj to measure the probability. For

any set F ∗ ⊂D, define

(
J
(
F ∗), T (F ∗)) := h−1

j

(
F ∗ ∩D=j

)⊂ (
R\{0})j × U

↑
j

to be the pre-image of F ∗ ∩D=j under the map hj broken into the jump part and the time part.

Clearly,
∑j

m=1 X
(n)
km

/λn ∈ Fδ is equivalent to
∑j

m=1 X
(n)
km

/λn ∈ Fδ ∩ D=j , as Fδ is bounded
away from D≤j−1. Thus,

P
(n)
j,1 =

∑
k∈K(j)

P

(
j∑

m=1

X
(n)
km

/λn ∈ Fδ

)

=
∑

k∈K(j)

P

(
j∑

m=1

X
(n)
km

/λn ∈ Fδ ∩D=j

)

=
∑

k∈K(j)

P

(
j∑

m=1

Zkm1[km/n](t)/λn ∈ Fδ ∩D=j

)

=
∑

1≤k1,...,kj ≤n

P

((
Zkm

λn

)
1≤m≤j

∈ J
(
Fδ
))

1

((
k1

n
, . . . ,

kj

n

)
∈ T

(
Fδ
))

= P
(
(Z1, . . . ,Zj )/λn ∈ J

(
Fδ
)) ∑

1≤k1<···<kj ≤n

1

((
k1

n
, . . . ,

kj

n

)
∈ T

(
Fδ
))

.

Note that as n → ∞,

P
(|Z1| > λn

)−j
P
(
(Z1, . . . ,Zj )/λn ∈ J

(
Fδ
))→ νj

α

(
J
(
Fδ
))

, (11)
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which, in case J (F δ) is a rectangle, follows from the assumption that the Zi are i.i.d. regularly
varying random variables. The general case then follows from the fact that να has no discontinu-
ity points and agrees with the limit measure on all rectangles (see, e.g., Resnick [35], Lemma 6.1
for a similar argument). Similarly, for T (F δ), we obtain for n → ∞,

n−j
∑

1≤k1<···<kj ≤n

1

((
k1

n
, . . . ,

kj

n

)
∈ T

(
Fδ
))→ Lebj

(
T
(
Fδ
))

. (12)

Hence using (11) and (12), we have as n → ∞,

γ
(j)
n P

(n)
j,1 → (

νj
α × Lebj

)(
J
(
Fδ
)
, T
(
Fδ
))= (

νj
α × Lebj

) ◦ h−1
j

(
Fδ
)
.

Therefore,

lim sup
n→∞

γ
(j)
n P(Bj ) ≤ (

νj
α × Lebj

) ◦ h−1
j

(
Fδ
)
,

for δ > 0. Summing up all the bounds we obtained, we have

lim sup
n→∞

γ
(j)
n P

(
X(n)/λn ∈ F

)≤ (
νj
α × Lebj

)(
h−1

j

(
Fδ
))

.

Since h−1
j (F ) =⋂

δ>0 h−1
j (F δ), letting δ → 0 gives us the required upper bound

lim sup
n→∞

γ
(j)
n P

(
X(n)/λn ∈ F

)≤ (
νj
α × Lebj

) ◦ h−1
j (F ).

Lower bound. Let G be open and bounded away from D≤(j−1). Now define, G−δ ⊂ G,

G−δ = {
f ∈ G : dJ1(f, g) < δ implies g ∈ G

}
.

Choose δ small enough such that G−δ is non-empty. It is still open and bounded away from
D≤(j−1). Searching for a lower bound, we shrink the set G to its bare minimum,

P
(
X(n)/λn ∈ G

)≥
∑

1≤k1<···<kj ≤n

P

(
j∑

i=1

X
(n)
ki

/λn ∈ G−δ, sup

∣∣∣∣∣X(n) −
j∑

i=1

X
(n)
ki

∣∣∣∣∣< λnδ

)

=
∑

1≤k1<···<kj ≤n

P

(
j∑

i=1

X
(n)
ki

/λn ∈ G−δ

)
P

(
sup

∣∣∣∣∣X(n) −
j∑

i=1

X
(n)
ki

∣∣∣∣∣< λnδ

)
.

The second factor converges to one since Sn/λn → 0 in probability as n → ∞. For the first
factor, we are able to proceed in the same fashion as we found the convergence rate of P

(n)
j,1

(defined in (10)) for the upper bound, to obtain the lower bound. �

Remark 8. Note that instead of our functions being in D := D([0,1],R), we can easily extend
Theorem 3.5 to càdlàg functions in DM = D([0,M],R) for some number M > 0, with minor
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modifications to the proof. Hence, all the results obtained in this section hold if we amend the
definitions of the spaces D, D=j , D≤j accordingly. Without loss of generality, we refer to these
results as if they hold for DM and its appropriate subsets from now on.

3.3. Random walks with a constant drift

The conclusion in Theorem 3.5 assumes that the random variables are centered. If the random
variables driving the random walk have a finite but non-zero mean, a similar result holds. By
setting λn = n we are able to preserve the drift in the limit. Theorem 3.5 can be modified easily
to incorporate such a drift term. For completeness and subsequent use, we state the result without
proof as Corollary 3.6 below. A formal proof of this version of Theorem 3.5 with λn = n and
non-trivial drift can be found in Theorem 4.1 of Rhee, Blanchet and Zwart [36].

Corollary 3.6. Let {Zi}∞i=1 be a sequence of i.i.d. random variables with Z1 ∈ RV−α , α > 1.
Denote m = E[Z1] and define

hm
j : (R\{0})j × U

↑
j → D,

hm
j

(
(z,u)

)
(t) :=

j∑
i=1

zi1[ui≤t] + mt,

and correspondingly D
m=j := hm

j (Rj\{0} × U
↑
j ). Then, as n → ∞,

γ
(j)
n P

(
X(n)/n ∈ ·)→ (

νj
α × Lebj

) ◦ (hm
j

)−1
(·),

in M(D\Dm
≤(j−1)).

Remark 9. The space Dm=j is defined as the space of step functions with exactly j jump disconti-
nuities and a constant drift term “mt”. In particular, Dm

=0 = {x(t) = mt, t ∈ [0,M]}. Theorem 3.5
allowed for scalings λn that grow fast enough such that X(n)/λn stays close to zero for large
n. Note that in Corollary 3.6 we restrict to α > 1 and specify λn = n to preserve the drift term.
Necessarily, we observe for sets A bounded away from D

m
=0 that P(X(n)/n ∈ A) → 0 as n → ∞.

Hence, we examine (a sequence of) large deviation type limits on D\Dm
≤j−1. This result becomes

particularly applicable in the queueing context we discuss next.

4. Application to finite buffer queues

In this section, we apply the results of Theorem 3.5 and Corollary 3.6 to the modified Lindley
recursion; see (13) below. This formula is usually interpreted as describing the evolution of the
queue length in a queue with finite buffer. First we derive a result on large deviations for what we
call long intense periods, defined as the maximum time a queue-size process spends continuously
above a certain threshold. These large deviations concern limits where both the threshold level
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and the buffer size approach infinity while the arrival process is sped up appropriately. Secondly,
we present a simulation study which combines two of the derived large deviation type limits
to provide a simple analytical approximation and explanation for the empirical distribution of
extremal lengths of long intense periods.

4.1. Queueing processes

We study recursions of the form

QK
n = min

{
max

{
QK

n−1 + An − Cn,0
}
,K
}
, (13)

for n ≥ 1 with Q0 ≥ 0 where {An}n≥1 and {Cn}n≥1 are two sequences of i.i.d. non-negative
random variables. This is the modified version of Lindley’s recursion (Lindley [27]) to accom-
modate queues with finite buffers of size K . The recursion in (13) can be interpreted in many
different ways. For example, in the context of network traffic, An may be interpreted as the num-
ber of packets arriving in the time interval Cn − Cn−1, whereas Qn−1 describes the amount of
work previously in the buffer of a single server processing work at a fixed rate. Any number of
packets arriving at a full buffer are immediately discarded. For example, Jelenković [26] studies
(13) under the assumption that

∫ x

0 P(A1 > z)dz/EA1 follows a subexponential distribution to
conclude that the stationary loss rate is essentially due to one large observation when the buffer
size approaches infinity. Denote QK the stationary queue length. Then

E
[(

QK + A1 − C1 − K
)∨ 0

]= E
[
(A1 − K) ∨ 0

](
1 + o(1)

)
, K → ∞.

Sample path large deviation principles for queueing processes with both infinite and finite
buffers are studied in Ganesh, O’Connell and Wischik [19] mostly under the assumption that
the moment generating function exists. We work with regularly varying random variables A1 ∈
RV−α , α > 0 throughout which do not satisfy this assumption.

To study the queueing recursion (13), we follow the continuous mapping approach. First, we
define a suitable embedding of the sequences {An} and {Cn} in the space DM and then employ
a continuous map to obtain a process which agrees with the queueing recursion at specified
discrete time stamps. See, for example, Whitt [38], Asmussen [3] or Andersen et al. [1] for more
on this approach applied to queueing processes. This map is usually called a reflection map or
the Skorohod map. We briefly recall the required results. For a process x ∈ DM with x(0) = 0,
we call {v(t), l(t), u(t)} the solution to the Skorohod problem if v(t) ∈ [0,K] and

v(t) = x(t) + l(t) − u(t),

∫ ∞

0
v(t)dl(t) = 0,

∫ ∞

0

(
K − v(t)

)
du(t) = 0,

and both l, u are non-negative non-decreasing functions. Denote ψK
0 : DM → DM the reflection

map on the interval [0,K] as

ψK
0 : x �→ v, (14)
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where v denotes the resulting regulated process of the Skorohod problem. This map is
(Lipschitz-) continuous on DM equipped with the J1 metric, see Andersen et al. [1], Lemma 4.6.
To facilitate the discussion let Cn = c, n ≥ 1 for some c > 0 and denote

A(t) :=
∞∑
i=1

(Ai − c)1[t≥i], t ≥ 0

the embedding of the random walk induced by An − c in DM . Then

QK := ψK
0 (A) (15)

is an embedding of QK
n into DM satisfying QK(t) = QK

t for t ∈ N0. Consequently we call QK

a queueing process with buffer K .

Remark 10. We could also work with other embeddings, for example,

B(t) :=
∞∑

n=1

An1[t≥n] − ct, t ≥ 0,

and define QK
B := ψK

0 (B) to allow for more nuanced interpretations of the queueing process Q.
But since this work focuses on scaled versions of the queueing process with both time t and
space QK(t) scaled appropriately, the exact form of the interpolation is mostly irrelevant for the
limit.

4.2. Long intense periods

We adopt the position that a queueing process with the queue size close to the buffer K corre-
sponds to an undesirable state. In such a state, the service quality (of which QK(t) is a proxy) is
perceived as suboptimal. In the following, we introduce and study the longest period an observed
queueing process spends above a certain threshold θK during the observation horizon [0,M].
We call such intervals long intense periods and investigate their length.

Definition 4.1 (Long intense period). For a càdlàg function x ∈ DM and a fixed level η ∈ R+
we define

Lη : DM →R+,

x �→ sup
0≤s<t≤M

{
t − s : x(u) > η ∀u ∈ (s, t)

}
.

(16)

For a queueing process Q with buffer K we call LθK(QK) the length of the intense period at
level θ ∈ (0,1).

How useful is it to calculate large deviations for long intense periods in queues? Can we gain
more insight into waiting times in queues with this information? To illustrate the applicability of
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such results, we use a simulation study which investigates the distribution of long intense periods
for large threshold levels θ ∈ (0,1).

Example 4.2. The object of our simulation study is a queueing process QK(t) with N = 50,000
arrival variables following a power law distribution with tail index α = 1.44 and expectation
m = 0.5. The queue has a finite buffer K = 20,000 and any additional service requirements will
be lost. We assume the server works at a fixed rate c = 1 with Ai describing the amount of service
requirements arriving in one unit of time. We study long intense periods above the level θ = 0.85,
that is QK(t) > 17,000 is considered intense. The queueing process is observed on [0,M] with
M = N . In this example, we treat service time distributions that still have finite means but infinite
variance. The particular α value corresponds to the tail parameter of file sizes in Internet traffic
reported in Jelenković and Momčilović [25]. To be precise, we consider the arrival distribution

P(A1 > z) =
(

z

(α − 1)m
+ 1

)−α

, z > 0.

Clearly, P(A1 > z) ∈ RV−α .
Figure 1 contains a histogram of the realized lengths of the long intense periods in queueing

processes with the parameters stated above. It is based on 22,000 observations which exhibit
a strictly positive long intense period, which means, Figure 1 shows a histogram of LθK(Q)

conditioned on LθK(Q) > 0. We would like to understand the shape of the histogram that we
observe here; why is there a peak in the middle and a decay afterwards? We revisit the histogram

Figure 1. Histogram for LθK(Q)|LθK(Q) > 0 generated by 22,000 realizations of a queueing process
with 50,000 arrivals at integer time points and maximum capacity K = 20,000. The critical level was set to
θ = 0.85. The red vertical line marks the location of the theoretical point mass at L = 1−θ

c−mK . The service
time distribution follows an exact power law with −α = −1.44 and mean 1/2.
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at the end of this section, accompanied by an explanation for its shape, based on (hidden) large
deviations.

4.3. Large deviations for long intense periods

We work out the corresponding sequence of LDLs for long intense periods of queueing processes.

Theorem 4.3. Let {Ai}i≥1 be a sequence of i.i.d. non-negative regularly varying random vari-
ables with A1 ∈ RV−α , α > 1. Assume c > m := E[A1] and define the queueing process
QK,(n)(t) := QnK(nt)/n, t ∈ [0,M], n ≥ 1 with QK defined as in (15). Denote κ := 1−θ

c−m
K .

The intense periods Ln := LθK(QK,(n)) of the queueing process QK,(n) observed on [0,M] sat-
isfy a sequence of LDLs on [0,M]\[0, (j − 1)κ] with the limit measure μ

(j)
L concentrating it’s

mass on ((j − 1)κ, jκ]. Specifically,

Ln ∈ LD
(
γ

(j)
n ,μ

(j)
L , [0,M]\[0, (j − 1)κ

])
, 1 ≤ j ≤

⌊
M

κ

⌋
,

where the limit measure is given by

μ
(j)
L = (

νj
α × Lebj

) ◦ (hm−c
j

)−1 ◦ (ψK
0

)−1 ◦ (LθK
)−1

.

Remark 11. The assumption c > E[A1] ensures that the process drifts in the negative direction
on an average, such that the process being close to its buffer is actually a rare event. At the first
level for j = 1, the theorem states that the long intense periods of a queueing process with buffer
K and negative drift may be approximated by summing over all one-jump functions that contain
a jump of size at least θK . Since the measure concentrates on one-jump functions, the maximum
attainable long intense period is attained by a single jump that exceeds the buffer limit K , with
the process drifting in the negative direction at a rate m − c afterwards. Thus, no matter the size
of the jump, the process will leave the intense region at most κ time units after the jump.

Remark 12. Measuring the longest connected interval of time spent above a certain threshold is
not a continuous operation for càdlàg processes. For example, consider for M > 2 the function
x ∈DM such that

x(t) :=
{

1 − t if t ∈ [0,1),

2 − t if t ∈ [1,M].

Adding a small constant via φc(x)(t) := x(t) + c we obtain for c < 0: L0(φc(x)) = (1 − |c|) ∧ 0
but L0(x) = L0(φ0(x)) = 2, while at the same time φc(x) → x as c → 0. Consequently, L is not
continuous. Nevertheless LθK is continuous almost everywhere with respect to the limit measure
μ = να × Leb1 ◦ (hm−c

1 )−1 ◦ (ψK
0 )−1 on DM as the only way to obtain a discontinuity is through

the jump at the end of the long intense interval. But the jump position is uniformly distributed
hence the measure of that set is zero. Additionally, for our purposes, there is no need to consider
functions outside the support of μ.
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We need the following lemma to prove Theorem 4.3.

Lemma 4.4. Let j ∈ N. Denote

Ej := {
x ∈ DM : [x(t) = 0

]
OR

[
x(t + s) = x(t) − s(c − m), |s| small enough

]
for all but j points t . Additionally x(t) ≥ x(t−) ∀t ∈ [0,M]},

Dj := {
x ∈ Ej : ∃t ∈ {discontinuity points of x}

such that x(t−) = θK OR x(t) = θK OR t ∈ {0,M}}.
Then LθK is continuous on Ej\Dj .

Remark 13. Note that Ej contains all càdlàg functions which contain exactly j positive jumps
and decrease at a rate c − m otherwise, regulated to take values in [0,K]. The set Dj further
restricts to those functions whose jumps are bounded away from the critical level θK .

Proof of Lemma 4.4. To show the claim, we need to introduce additional notations. We define
an intense period as a period during which the function x ∈ Ej stays continuously above the
critical level θK and enumerate all such periods. Subsequently, we show that the length of each
such period cannot change much in case x is not perturbed too much. Define

sL(l, x, v), tL(l, x, v) : R+ ×DM × [0,M] → R+

sL(l, x, v) := inf
{
u ∈ (v,M] : x(u) > l

}
,

tL(l, x, v) := inf
{
u ∈ (sL(l, x, v),M] : x(u) < l OR u = M

}
.

We assume, as is usually the case, that inf∅ = ∞. Next, we recursively record the start and end
times of what we call intense periods, starting at zero.

s1 := sL(l, x,0), t1 := tL(l, x,0),

si := sL(l, x, ti−1), ti := tL(l, x, ti−1), i ≥ 2,

nx := max{i : si < ∞}.

In case the tuple si , ti are finite, we call ti − si the length of the ith intense period of x. Note that
for x ∈ Ej there are exactly nx intense periods, with 0 ≤ nx ≤ j . The length of the longest of
these corresponds to what we defined above in (16) as the length of the long intense period of x.

Let x ∈ Ej\Dj . Then the set of time points at which x is above the critical level can be
partitioned as

{
u : x(u) > θK

}=
nx⋃
i=1

[si , ti).



84 H. Bernhard and B. Das

Since all jump discontinuities of x have values bounded away from the critical level, all of the
intervals [si , ti) and [ti , si+1) are of positive length. Moreover, denoting

�θK
J (x) := min

{∣∣x(u−)− θK
∣∣∧ ∣∣x(u) − θK

∣∣∧ u ∧ M − u : u is a discontinuity point of x
}
,

we find that for all 0 < δ < �θK
J (x),

x(u) ∈ (θK − δ, θK + δ)

⇔ u ∈
(

ti − δ

c − m
, ti + δ

c − m

)
∩ [0,M] for some 1 ≤ i ≤ nx.

(17)

Next, we show that for all ε > 0, small enough such that ε(c − m) < �θK
J (x), there exists a ζ

such that whenever dJ1(x, y) < ζ we have

u ∈ [si + ε, ti − ε) ⇒ y(u) > θK,

u ∈ [ti + ε, si+1 − ε) ⇒ y(u) < θK.
(18)

This implies that any y close enough to x has similar intense periods as x, ignoring any negligible
intense periods of y. Hence, LθK is continuous at x in (DM,dJ1). We proceed by showing that
the above claim holds for ζ = ε((c−m)∧1)

3 . Then there exists a λ ∈ 	 such that

‖x − y ◦ λ‖ <
ε((c − m) ∧ 1)

2
, (19)

‖λ − e‖ <
ε((c − m) ∧ 1)

2
. (20)

Now (19) combined with (17) (where δ = ε(c − m)/2) implies

u ∈ [si , ti − ε/2) ⇒ (y ◦ λ)(u) > θK + ε(c − m)

2
− ε((c − m) ∧ 1)

2
≥ θK,

u ∈ (ti − ε/2, si+1) ⇒ (y ◦ λ)(u) < θK.

(21)

Accounting for the time change introduced through λ, we infer from (20) that the last two impli-
cations in (21) hold when the two intervals get reduced by a further ε/2 on each side. In turn, this
proves the statement in (18) and thus implying the continuity of LθK on Ej\Dj for all j ≥ 1. �

Proof of Theorem 4.3. We apply the continuous mapping argument in Theorem 2.2 twice. First,
using the Skorohod map of (14), the large deviations result in Corollary 3.6 and continuous
mapping yield

γ
(j)
n P

(
QnK(nt)/n ∈ ·)→ (να × Lebj ) ◦ (hm−c

j

)−1 ◦ (ψK
0

)−1
(·), n → ∞ (22)

in M(DM\ψK
0 ((DM)m−c

≤j−1)). This is due to the definition in (14) satisfying ψK
0 (x/n) =

ψnK
0 (x)/n. The Lipschitz continuity of ψK

0 ensures that the “bounded away” condition of The-
orem 2.2 is satisfied.
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Next, note that the limit measure in (22) concentrates all its mass on Ej . Additionally, note that

μ
(j)
L (Dj ) = 0, j ≥ 1 as (hm−c

j )−1 ◦ (ψK
0 )−1(Dj ) ⊂ R

2j is not of full dimension; the condition
of having x(t) or x(t−) = θK amounts to imposing restrictions linking the time and value of a
jump through relations of the form

x(ti−1) − (ti − ti−1)(c − m) + J (ti) = θK,

OR x(ti−1) − (ti − ti−1)(c − m) = θK,

OR J (ti) = θK,x
(
t−i
)= 0.

where ti denotes the time of the ith jump and J (ti) denotes the corresponding size of the jump.
Hence, Lemma 4.4 above combined with another application of Theorem 2.2 (continuous map-
ping) yields the result. �

4.4. Calculating explicit limit measures

In the following, we compute the limit measures μ
(1)
L and μ

(2)
L explicitly. Assume M > 2κ

throughout. For j = 1, we obtain

μ
(1)
L

(
(l,∞)

)=
{

(M − l)
(
l(c − m) + θK

)−α if l ∈ (0, κ]
0 otherwise.

In other words, the measure μ
(1)
L is the sum of a point mass at l = κ with value K−α(M − κ) and

an absolutely continuous part on (0, κ). Considering this initial large deviations estimate on its
own we would approximate P(LθK(QK) > κ) ≈ 0. For any finite buffer non-limit scenario this
may be too coarse. A more refined estimate based on hidden large deviations allows for more
accuracy. Namely on [0,M]\[0, κ], we have

γ (2)
n P

(
LθnK

(
QnK(nt)

) ∈ ·)→ μ
(2)
L (·), n → ∞,

in M([0,M]\[0, κ]), which concentrates on (κ,2κ]. This again can be explained by the rate
γ

(2)
n only allowing for at most two jumps in the random walk. Any intense period with length

L < κ is more likely to happen due to one jump; hence processes containing only one jump
must be excluded in the hidden large deviation limit. Long intense periods with length L > 2κ

are not possible since the maximum length is achieved if the buffer is filled at some initial time
t0 < M − 2κ starting the long intense period and an additional jump at time t0 + κ of size at least
(1 − θ)K occurs. We compute the limit measure for the events {L > l}, l ∈ (κ,2κ]:

μ
(2)
L,θ,K

(
(l,∞)

)= μ(2)
({All two jump functions with L > l})

= (M − l)

∫ ∞

θK

να(dj1)

∫ (K∧j1−θK)/(c−m)

l−κ

du2

∫ ∞

l(c−m)−(K∧j1−θK)

να(dj2)
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= (M − l)

∫ ∞

θK

να(dj1)1[ K∧j1−θK

c−m
>l−κ]

K∧j1−θK
c−m

− (l − κ)

(l(c − m) − (K ∧ j1 − θK))α

= M − l

c − m

∫ K

θK+l(c−m)−(1−θ)K

αx−α−1 x − θK − l(c − m) + (1 − θK)

(l(c − m) + θK − x)α
dx

+ M − l

c − m
K−α 2(1 − θ)K − l(c − m)

(l(c − m) − (1 − θ)K)α
. (23)

Remark 14. Further limit measures can be computed but the explicit derivation becomes more
cumbersome as the level increases; we leave this to the user’s discretion to compute according to
their chosen precision level.

4.5. Simulation study – combining the first two LDLs

In this section, we provide some insights on the practical relevance of hidden large deviations.
We find that in the setting of the simulation study described in Example 4.2 we are able to
numerically validate the rate and limit measure of hidden large deviations. The previous section
established large deviation limits for long intense periods for any interval [(j − 1)κ, jκ] with
j ≤ �M/κ�, each with its own rate. And indeed, for the theory of LDLs we may only treat
these limit measures separately due to the different magnitudes of the rates γ

(j)
n . In practice

however, for any finite observation period of a queue with finite buffer size, several of the limit
measures might be relevant for a single statistic. The simulation study will examine the interplay
of different rates in a single probability estimate. We proceed to construct the two estimates
involving the first and second level LDLs separately.

One jump. According to traditional large deviation estimates for heavy tailed queueing pro-
cesses with “large” buffers, the long intense period will be due to a single jump reaching above
the threshold level θK and the queue drifting in direction −(c − m) thereafter. To use Theo-
rem 4.3, we need to choose a queue sequence number n. We thus obtain the following approxi-
mation.

P
(
LθK

(
QK

)
> l
)= P

(
LθK/n

(
QK/n,(n)

)
> l/n

)
≈ 1

γ
(1)
n

μ
(1)
L

(
(l/n,∞)

)

=
{

nα
P(A1 > n)(M − l)

(
l(c − m) + θK

)−α if l ∈ (0, κ],
0 otherwise.

The point mass at κ yields

P
(
LθK

(
QK

) ∈ (κ − ε, κ + ε)
)≈

(
n

K

)α

P(A1 > n)(M − κ).

One or two jumps. The two jump measure can be approximated in the same fashion as the
approximation for one jump above using equation (23) instead. To get a single estimate for the
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Figure 2. Left: Histogram for LθK(Q)|LθK(Q) > 0 generated by 22,000 realizations of a queueing pro-
cess with 50,000 arrivals at integer time points and maximum capacity K = 20,000. The critical level was
set to θ = 0.85. The red vertical line marks the location of the theoretical point mass at L = 1−θ

c−mK . The
service time distribution follows an exact power law with −α = −1.44 and mean 1/2. Approximations of
the densities with the large deviations estimate (in red) and the hidden large deviations estimate (in blue)
are added on top of the histogram. Right: Same data as on the left restricted to L > 7000. Density estimate
with HLD compared to empirical values of the histogram on logarithmic scale.

distribution of the long intense periods of the queueing process QK , we propose to combine the
two estimates into a single approximation.

P
(
LθK

(
QK

)
> l
)≈

⎧⎪⎨
⎪⎩

nP(A1 > n)μ
(1)
L

(
(l/n,∞)

)
if l ∈ (0, κ][

nP(A1 > n)
]2

μ
(2)
L

(
(l/n,∞)

)
if l ∈ (κ,2κ]

0 otherwise,

(24)

where the buffer size K and observation horizon M are scaled accordingly in the limit measures.
In Figure 2, we plot the same histogram as in Figure 1, and view it as an estimate of the density

P
(
LθK

(
QK

) ∈ dl|LθK
(
QK

)
> 0

)
, l > 0.

The limit measure μ
(1)
L puts zero mass on values beyond the vertical red line which marks the

location of the point mass of μ
(1)
L . Since n is finite, we expect some values immediately to

the right of the point mass caused by only a finite number of random variables approximating
the mean rate of decrease for the queue content. Nevertheless, concerning the values on the
far right we believe an explanation via Hidden Large deviations (HLD) is best suited for the
distribution of LθK(QK). Hence, we add the estimate in (24) to the plot. To visualize the point
mass, we fix two ε1, ε2 > 0 such that the point mass at κ gets distributed over the area (κ −
ε1, κ + ε2). Outside of this region we approximate the measure with the corresponding densities.
Additionally, we provide a plot of the tail of the distribution on a log scale to better visualize
the fit for the hidden large deviation estimate. The figures clearly show how our hidden large
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deviation estimates closely approximate the histogram observed; it becomes more evident in the
right-hand plot of Figure 2 which is plotted on a log-scale.

5. A random walk with very heavy-tailed innovations

In general, for processes driven by innovations Zi ∈ RV−α with α > 1 one may always be
able to choose a scaling λn = cn (as in Theorem 3.5) for some constant c > 0 for computing
large deviation probabilities. The application in Section 4 was a special case which required
setting λn = n, meaning ρ = 1, in Theorem 3.5, so that we could retain the drift structure of the
queue while obtaining the limit probability of congestion events. Interestingly, our result actually
allows us to compute probabilities where λn �= n. This of course is useful if α ≤ 1 implying that
Sn/n does not converge to 0 necessarily where Sn = Z1 + · · · + Zn is the partial sum process.
We illustrate with a concrete example as follows. Suppose {Zi}i≥1 are i.i.d. random variables
with

P(Z1 > x) = P(Z1 < −x) = 1

2
x−1/2, x ≥ 1.

Clearly, Zi ∈ RV−α where α = 1/2. Moreover, E[|Zi |] = ∞. Hence, Theorem 3.5 is applica-
ble, but requires a sequence λn ∈ RVρ with αρ = ρ/2 > 1 to obtain a proper limit distribu-
tion in (9). Let λn = n3, n ≥ 1, meaning ρ = 3. Applying Theorem 3.5 for a fixed j ≥ 1, we
get:

nj/2
P

(
X(n)(t)

n3
∈ ·
)

→ (
ν

j

1/2 × Lebj

) ◦ h−1
j (·),

as n → ∞ in the appropriate space. Let us take as examples two particular types of limit sets
with a fixed parameter � > 0:

A1 :=
{
x ∈D : sup

0≤t≤1
x(t) > �

}
;

A2 :=
{
x ∈D : x ∈ A1 and inf

0≤t≤1
x(t) < −�

}
.

Referring back to Remark 5, we know that h−1
i (Ai) = h−1

i (Ai ∩ D=i ). For i = 1, the
set A1 ∩ D=1 corresponds to the set of all one jump functions with positive jump size
larger than �. For i = 2, the set A2 ∩ D=2 consists of all two jump functions with one
positive and one negative jump of size at least � such that the sum of the two jumps
is larger than � in absolute value. It is of course possible to compute probabilities of
events governed by three or more large jumps; but we restrict to at most two jumps for
illustrative purposes. An application of Theorem 3.5 now yields the following approxima-
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tions.

For j = 1: P
(
X(n)(t) ∈ n3 × A1

)≈ n−1/2 × (
ν1/2(l,∞) × Leb1[0,1])

= 1

2
√

nl
, and,

for j = 2: P
(
X(n)(t) ∈ n3 × A2

)≈ n−2/2 × Leb2
(
U

↑
2

)
× 2

∫∫
x1>l,x2<−x1−2l

dν1/2(x2)dν1/2(x1)

= 1

2n
× 1

2

∫ ∞

l

(x1 + 2l)−1/2 1

2
x

−3/2
1 dx1

=
√

3 − 1

8nl
.

(25)

These values obtained can also be verified using simulation. We use Monte Carlo simulation
with N = 2 × 105 realizations of random walks with n steps each to get a probability estimate
which is averaged over R = 100 repetitions to yield the probability point estimates presented in
Table 1 for A1, A2 and different values of n and �. In general, regular Monte Carlo estimates
of such large deviation events in a heavy-tailed regime often introduce a certain bias; efficient
computation of probabilities in such rare event scenarios is of interest and has been addressed in
the literature; see Asmussen, Binswanger and Højgaard [4], Blanchet and Liu [8]. We observe
that our simulation estimates are pretty close to the theoretical large deviation estimates and
hence we do not pursue a further refined technique for simulation here. Also note that further
large deviation events relating to three or more jumps can be computed using formulas similar to
(25), but computing Monte Carlo estimates would require a larger value of N .

Table 1. Monte Carlo and large deviation estimates for scaled probabilities of sets A1 and A2

n � pLD(A1) p̂(A1) σ̂ (p(A1)) pLD(A2) p̂(A2) σ̂ (p(A2))

200 0.5 0.0500 0.0488 0.00048 0.000915 0.001014 0.000065
200 1.0 0.0354 0.0347 0.00035 0.000458 0.000498 0.000046
200 2.0 0.0250 0.0247 0.00036 0.000229 0.000253 0.000038
500 0.5 0.0316 0.0311 0.00040 0.000366 0.000405 0.000054
500 1.0 0.0224 0.0221 0.00037 0.000183 0.000207 0.000033
500 2.0 0.0158 0.0157 0.00027 0.000092 0.000102 0.000022

1000 0.5 0.0224 0.0221 0.00032 0.000183 0.000207 0.000029
1000 1.0 0.0158 0.0157 0.00030 0.000092 0.000104 0.000020
1000 2.0 0.0112 0.0111 0.00023 0.000046 0.000050 0.000016

Here p̂(Aj ) denotes the estimated probability for P(X(n) ∈ n3Aj (l)), j = 1,2 from R = 100 repetitions with σ̂ (p(Aj ))

denoting the estimated standard deviation based on R = 100 computations of p̂(Aj ); and pLD(Aj ) denotes the approx-
imated value obtained in (25).
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6. Conclusion and further remarks

We provide limit measures for successively rarer large deviations of random walks with regularly
varying i.i.d. increments. By scaling time and space appropriately we are able to obtain limit
measures for large deviations of queueing processes which preserve the drift term in the limit. We
have exhibited that hidden large deviations at the second level, though happening at the squared
rate of the first large deviation, are numerically observable. Our simulation example exhibits
that hidden large deviation estimates in conjunction with regular heavy-tailed large deviation
estimates perform quite well in approximating the behavior observed in the data histogram –
even at the tail (on a log scale). We have also computed large deviation probabilities for random
walk processes without a finite mean and shown the accuracy of our estimates via Monte Carlo
simulation.

For future directions of study, one may explore large deviations on a space D\⋃∞
j=1 D=j

which we have not ventured into, mostly since the exact structure of such deviations remains
largely an open question. Similarly, we have not explored situations where the “i.i.d.” assump-
tion is relaxed. A j th level LDL happens at a rate which is the j th power of the rate of the
first LDL. This clearly is a consequence of the independence among the random variables driv-
ing the random walk. Researchers have looked into large deviations for regular variation under
dependence (Mikosch and Wintenberger [30]) and hidden regular variation with asymptotic in-
dependence (not under a large deviation scaling) (Janssen and Drees [24]), but such results are
still under investigation for a large deviation scaling assuming hidden regular variation.
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