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We present a topological multiple testing scheme for detecting peaks on the sphere under isotropic Gaus-
sian noise, where tests are performed at local maxima of the observed field filtered by the spherical needlet
transform. Our setting is different from the standard Euclidean large domain asymptotic framework, yet
highly relevant to realistic experimental circumstances for some important areas of application in astron-
omy, namely point-source detection in cosmic Microwave Background radiation (CMB) data. Motivated
by this application, we shall focus on cases where a single realization of a smooth isotropic Gaussian ran-
dom field on the sphere is observed, and a number of well-localized signals are superimposed on such
background field. The proposed algorithms, combined with the Benjamini–Hochberg procedure for thresh-
olding p-values, provide asymptotic control of the False Discovery Rate (FDR) and power consistency as
the signal strength and the frequency of the needlet transform get large.

Keywords: CMB; false discovery rate; Gaussian random fields; height distribution; needlet transform;
overshoot distribution; power; sphere

1. Introduction

A classical problem of modern high-dimensional statistics is multiple testing in the presence of
background noise. Applications are common in the areas of neuroimaging, genomic arrays and
astronomy. These issues become particularly challenging when the background noise is allowed
to exhibit more realistic properties than the simple i.i.d. framework, in particular when noise
is modeled as a stochastic process or a random field. In this setting, important progresses have
been recently obtained combining ideas from two different streams of research, namely tech-
niques from the multiple testing literature, such as False Discovery Rate (FDR) algorithms, and
techniques to investigate excursion probabilities and local maxima for random fields [5,6,23].
These works have covered applications in a univariate and multivariate Euclidean setting; ana-
lytic properties have been derived under a large sample asymptotic framework, that is, under the
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assumption that the domain of observations is growing steadily, together with the signals to be
detected.

In this paper, we introduce a related multiple testing procedure in a setting that is different
from the standard Euclidean large domain asymptotic framework, yet highly relevant to real-
istic experimental circumstances for some important areas of application in astronomy. More
precisely, we focus on cases where a single realization of a smooth isotropic Gaussian ran-
dom field on the sphere is observed, and a number of well-localized signals are superimposed
on such background field. This is exactly the setting for the so-called point-source detection
issue in cosmic Microwave Background radiation (CMB) data experiments [20–22]. As dis-
cussed now in any modern textbook in cosmology [9], CMB data can be viewed as a sin-
gle realization of an isotropic Gaussian random field, which represents a “snapshot” of the
Universe at the last scattering surface, that is, the time (approximately 4 × 105 years after
the Big Bang, or 1.38 × 1010 years ago) when photons decoupled from electrons and pro-
tons and started to travel nearly without interactions in space. As such, CMB has been re-
peatedly defined as a goldmine of information on cosmology – two very successful satel-
lite experiments, WMAP from NASA (http://map.gsfc.nasa.gov/) and Planck from ESA (http:
//www.esa.int/Our_Activities/Space_Science/Planck) have now produced full-sky maps of CMB
radiations, and these data have been used in several thousand papers over the last few years to
address a number of fundamental questions on the dynamics of the Big Bang, the matter-energy
content of the Universe, the mechanisms of structure formation, and several others.

From the experimental point of view, it is very important to recall that, superimposed to CMB
radiation, a number of foreground contaminants are present; as a first approximation, we can
view them as point-like objects (galaxies or clusters of galaxies, typically). A major statistical
challenge in the analysis of CMB data is the proper identification of such sources; on one hand
this is important for the proper construction of filtered CMB maps, on the other hand these
sources are of great interest on their own as proper astrophysical objects (in some cases they
can be matched with existing catalogues, while in other cases they lead to new discoveries).
A number of algorithms have been proposed for these tasks and these solutions have all been
shown to perform well in practice, see, that is, [24] and the references therein. However, these
procedures have all avoided the specific challenges of multiple testing and none of them has
been shown to control in any proper statistical way any aggregate statistics such as the classical
Family-Wise Error Rate (FWER) (the probability of observing any false detections at all), False
Discovery Proportion (FDP) (the fraction of false detections among the detections in a given
sample) or False Discovery Rate (FDR) (the expected FDP in a population).

Our purpose in this paper is to develop in such a spherical framework a rigorous statistical
procedure to control error rates in a multiple testing framework. Our starting idea is to extend
to these circumstances the STEM procedure advocated in [6,23], and investigate rigorously its
statistical properties. While our construction follows in several ways what was earlier done by
these authors, we wish to stress that the new spherical framework poses some major technical
and foundational new challenges.

The first of these new challenges is the proper definition of filters and point-like signals in a
spherical framework. Here, natural solutions can be found by exploiting recent developments in
the analysis of spherical random fields an spherical wavelets. In particular, we can define bell-
shaped signals by adopting a natural definition of a Gaussian distribution on the sphere, motivated

http://map.gsfc.nasa.gov/
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in terms of diffusion processes; likewise, filtering can be implemented by wavelet techniques –
we find particularly convenient the Mexican needlet construction introduced by [10,11], see also
[25] for some earlier applications to CMB data.

A second, more delicate, issue is the rigorous investigation of asymptotic statistical proper-
ties. A crucial staple of the STEM algorithm is the possibility to control the FDR, assuming
convergence of the empirical distribution of local maxima to its theoretical counterpart. In stan-
dard settings, this can be done by resorting to ergodicity properties, assuming that the domain
of the observations grows larger and larger. This form of ergodic properties cannot be exploited
here because our spherical domain is compact. We shall hence require a convergence result on
the empirical distribution of local maxima in a high-frequency/fixed domain setting, that is, as
the observed frequencies diverge: this result extends to the case of the needlet transform some
related computations which were recently performed in [3] for the case of random spherical har-
monics. In this sense, our setting is related to the increasingly popular fixed-domain asymptotics
approach for the analysis of random fields [14].

The plan of this paper is as follows. Our basic setting and model is introduced in Section 2,
with Section 3 devoted to a careful discussion on the nature and effects of filtering. Section 5 pro-
vides a description of the multiple testing scheme and discusses the error and power definitions,
including the derivation of asymptotic p-values and our adoption of Benjamini and Hochberg’s
(1995) pioneering approach [2]. The proofs of FDR control and tests consistency are collected in
Section 6, while in Section 7 we provide numerical results on the empirical performance of the
proposed procedures in simulated CMB fields.

Because of the technical issues involved in processing of real astrophysical data, we limit
ourselves in this paper to the algorithmic and theoretical issues described above and defer the
application to real CMB data to follow-up work.

2. The model

As motivated above, our purpose here is to represent a situation where a large number of “point
sources”, defined here as “signal”, are superimposed on some isotropic background “noise”. Of
course, the notions of “noise” and “signal”, here as in any other motivating field, are very much
conventional. For CMB-oriented applications the background Gaussian field is the primary object
of physical interest, while the super-imposed point sources are contaminants to be removed; in
other astrophysical areas, the identification of the sources may be by itself a major scientific goal
(a very recent catalogue of detected point sources/astrophysical objects is given for instance by
[22]). Moreover, “follow-up” observations of these sources by means of ground telescopes are
expensive, hence we need to minimize false detections, in a suitable sense to be discussed below.

2.1. Spherical Gaussian

To introduce our model for the signal, we first need to justify the notion of a “Gaussian-shaped”
density on the sphere. Our “point source” signal will be built from a set of such bell-shaped
distributions. Let S2 denote the unit sphere in R

3. The diffusion equation on the sphere is given
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by

∂

∂t
h(x; t, x0) = −�S2h(x; t, x0), h(x;0, x0) = δx0(x), x ∈ S

2,

where �S2 is the Laplacian operator of S2 and δx0(x) is the Dirac’s delta measure centered at
x0 ∈ S

2, and the second line is to be understood in the weak sense. It is standard to write the
solution in terms of diffusion operators as

h(x; t, x0) = exp(−t�S2)h(x;0, x0) =
∑

�

2� + 1

4π
exp(−tλ�)P�

(〈x0, x〉), (2.1)

where again the first equality is to be understood in the weak sense, −λ� := −�(� + 1) denotes
the set of eigenvalues of the spherical Laplacian, � = 1,2, . . . , while {P�(·)} represents the family
of Legendre polynomials

P�(u) = (−1)�

2�

d�

du�

(
1 − u2)�

, � = 1,2, . . . , (2.2)

that is, P1(u) = u, P2(u) = (3u2 − 1)/2, P3(u) = (5u3 − 3u)/2, etc., and 〈·, ·〉 denotes inner
product on R

3. By a straightforward analogy with the Euclidean case, it is natural/customary to
view h(·; t, x0) as the density on S

2 of a spherical Gaussian centered on x0 and having variance t .

2.2. Signal plus noise model

We can hence introduce the following sequence of signal-plus-noise models, for N = 1,2, . . . ,

yN(x) = μN(x) + z(x), x ∈ S
2, (2.3)

where μN(x) denotes a sequence of deterministic functions on the sphere defined by

μN(x) =
N∑

k=1

akh(x; tk,N , ξk), ak > 0, (2.4)

and h(x; tk,N , ξk) is the family of “spherical Gaussian distributions” on S
2 (centered on ξk and

with variance tk,N ) which we introduced in (2.1). As mentioned earlier, we will set tk,N → 0 as
N → ∞, so that each kernel h(x; tk,N , ξk) will become in the limit more and more concentrated
around its center ξk .

Let us now focus on the “noise” component z(x). Assume that {z(x), x ∈ S
2} is Gaussian,

zero-mean and isotropic. For such fields, it is well known that the following representation holds
in the mean square sense [15]:

z(x) =
∞∑

�=1

z�(x), z�(x) =
�∑

m=−�

a�mY�m(x), (2.5)
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where {Y�m(·)} denotes the family of spherical harmonics, which form an orthonormal basis for
the L2(S2) space of square integrable functions on the sphere (see, for instance, [15], Chapters 3
and 5); on the other hand, {a�m} denotes the uncorrelated array of random spherical harmonic
coefficients, which can be obtained by means of the spherical Fourier transform

a�m =
∫
S2

z(x)Y �m(x)dx; (2.6)

here, E[a�ma�′m′ ] = C�δ
�′
� δm′

m , where δb
a is the Kronecker delta function, and the sequence {C�}

represents the so-called angular power spectrum of the field; (2.5) is hence the Karhunen-Loeve
expansion on the sphere. As pointed out in [16], under isotropy and finite-variance the sequence
{C�} necessarily satisfies

∑
� C�(2� + 1)/(4π) = E[z2(x)] < ∞ and the random field z(x) is

mean square continuous, meaning that limx→x0 E(z(x) − z(x0))
2 = 0 for all x0 ∈ S

2. Its covari-
ance function is given by

	(x1, x2) = E
[
z(x1)z(x2)

] =
∞∑

�=0

2� + 1

4π
C�P�

(〈x1, x2〉
)
, x1, x2 ∈ S

2.

The Fourier components {z�(x)}, can be viewed as random eigenfunctions of the spherical Lapla-
cian:

�S2z� = −�(� + 1)z�, � = 1,2, . . . ;
the asymptotic behaviour of critical points for z�(x) has been studied for instance, by [3].

3. Filtering and smoothing

An important step in the implementation of the STEM algorithm is smoothing of the observed
data. Given the very delicate nature of the asymptotic results in our setting, the definition of the
kernel function requires here special care. We shall propose here to adopt a kernel which is based
upon the so-called Mexican needlet construction introduced by [10]; see also [13,18,25] for the
investigation of stochastic properties and statistical applications of these techniques.

Mexican needlets can be viewed as a natural development of the standard needlet frame which
was introduced by [19]. Loosely speaking, Mexican needlets differ from the standard needlet
construction inasmuch as they allow for providing a kernel which is unboundedly supported in
the spectral domain; they can hence be shown to enjoy better localization properties in the spatial
domain, that is, faster (Gaussian rather than nearly exponential) decay of their tails. For our
purposes, these better localization properties in the spatial domain turn out to be very important,
as they allow a tight control of leakage in the signals.

The Mexican needlet transform of order p ∈N can be defined by


j

(〈x1, x2〉
) = 
j

(〈x1, x2〉;B, s
) :=

∞∑
�=0

b

(
�

Bj
; s

)
2� + 1

4π
P�

(〈x1, x2〉
); (3.1)
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here the function b(·; s) is defined by b(u; s) = u2se−u2
, with u ∈R+; it is easily seen to belong

to the Schwartz class (i.e., all its derivatives decay faster than any polynomial). The user-chosen
integer parameter s is usually labelled p in the literature, but we avoid this choice here for
possible notational conflicts with p-values; it has been shown that higher values of s entail better
properties in the frequency domain, but worse spatial localization, in particular, a higher number
of sidelobes. Finally, B > 1 plays the role of a bandwidth parameter: for any given value j , a
higher value of B implies better localization properties in the spatial domain, and worse in the
spectral domain; values in the range 1.1–1.3 have been shown to perform well in practice [25].

4. High frequency asymptotics

Our asymptotic theory will be developed in the so-called “high-frequency” framework as the
filtering frequency j increases. To achieve non-trivial limits, we shall allow the number of point
sources N to grow with j (N = Nj → ∞ as j → ∞), and their shape to become more and more
localized (tk,N = tk,Nj

→ 0 as Nj → ∞). Under this regime, in what follows we shall only use
the index j for asymptotics.

The above conditions can be understood by an analogy with the (now standard) high-
dimensional asympotics framework where the number of parameters is allowed to grow to infin-
ity in the presence of growing number of observations. From the point of view of astronomy, this
reflects a growing number of sharper and sharper sources as the resolution of our experiments
grow better and better, or equivalently as the scales that we are able to probe become smaller and
smaller.

It should be noted that, in the absence of these conditions, all our procedures to follow have
properties that can be trivially established: in particular, the power of our detection procedures is
very easily seen to converge to unity. More explicitly, we believe that our setting is meaningful
and relevant as a guidance for applied scientists; indeed, in many circumstances the cardinality of
possible signals (i.e., the number of potential galactic sources in an astrophysical environment)
is in the order of several thousands, so it seems more useful to consider this quantity as diverging
to infinity together with the number of observations.

To formally achieve the right balance, we shall introduce the following assumption.

Condition 1. Let tNj
= maxk=1,...,N tk,Nj

. As j → ∞, tNj
B2j → 0.

In words, we are assuming that both the signal and the filter become more and more localized,
the former more rapidly to make identification meaningful.

4.1. The filtered signal

Applied to (2.3), the kernel transform (3.1) produces the sequence of observable smoothed fields

yj (x) := μj (x) + βj (x), (4.1)
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where μj (x) denotes the smoothed signal and βj (x) denotes the smoothed noise (the change
in notation in Eq. (4.1) with respect to Eq. (2.3) reflects the dependence of all the quantities,
including N , on j ). We describe both components in detail below.

For the filtered signal, we obtain

μj (x) :=
N∑

k=1

ak

〈

j

(〈x, y〉), h(y; tk,N , ξk)
〉
L2(S2)

=
N∑

k=1

∞∑
�=0

akb

(
�

Bj
; s

)
exp

(−�(� + 1)tk,N

)2� + 1

4π
P�

(〈ξk, x〉).
In words, both the filtered noise and signals are averaged versions, in the spectral domain, of (ran-
dom and deterministic, respectively) Fourier components. We neglect the numerical approxima-
tions that can arise when computing these integrals on real data (these numerical approximations
are certainly of lower order with current packages such as Healpix [12]).

For further analysis, it is convenient to introduce the simple approximation

μj (x) =
N∑

k=1

∞∑
�=0

ak

(
�

Bj

)2s

exp
(−�(� + 1)tk,N − B−2j �2)2� + 1

4π
P�

(〈ξk, x〉)

=
N∑

k=1

∞∑
�=0

ak

(
�

Bj

)2s

exp
(−B−2j �2)2� + 1

4π
P�

(〈ξk, x〉) + oj (1)

=
N∑

k=1

ak
j

(〈x, ξk〉
) + oj (1),

where the second line can be easily justified resorting to Condition 1 above. It is also known that
the smoothing filter 
j(〈·, ξk〉), for any ξk ∈ S

2, has Gaussian tails (up to a polynomial factor),
and hence decays faster than exponentially; more precisely one has that there exists a constant
Cs such that [10,11]∣∣
j

(〈x, ξk〉
)∣∣ ≤ CsB

2j e− B2j d2(x,ξk )

4
(
1 + ∣∣H2s

(
Bjd(x, ξk)

)∣∣), (4.2)

where d(x, y) = arccos(〈x, y〉) is the standard geodesic distance on the sphere and Hq(·) denotes
the Hermite polynomial of degree q , which is defined by

Hq(x) = (−1)qex2/2 dq

dxq

(
e−x2/2).

It is also possible to provide a useful analytic approximation for the functional form of the needlet
filter at high frequencies j ; indeed Geller and Mayeli [10] proved the following.

Lemma 4.1. Let s = 1 and let ξk ∈ S
2 be fixed. Then as j → ∞,


j

(〈x, ξk〉
) = g

(
d(x, ξk)

)(
1 + O

(
B−2j

))
,
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where

g(θ) = 1

4π
B2j e− B2j θ2

4

(
1 − B2j θ2

4

)
, θ ∈ [0,π],

and d is the standard geodesic distance on the sphere.

As a consequence, we have the following analytic expression for our signal when s = 1, as
j → ∞:

μj (x) =
N∑

k=1

ak

1

4π
B2j e− B2j d2(x,ξk )

4

(
1 − B2j d2(x, ξk)

4

)(
1 + O

(
B−2j

)) + oj (1). (4.3)

It is readily verified that the function g(·) has the global maximum g(0) = 1
4π

B2j and a local

minimum g(2
√

2B−j ) = − 1
4π

e−2B2j .

4.2. The filtered noise

Our next step is to focus on the sequence of filtered noise fields.
Recalling the standard addition theorem for spherical harmonics (see [15], Eq. (3.42))

�∑
m=−�

Y�m(x1)Y �m(x2) = 2� + 1

4π
P�

(〈x1, x2〉
)
,

it is then easy to see that the “filtered noise” is given by

βj (x) := 〈

j

(〈x, y〉), z(y)
〉
L2(S2)

=
∞∑

�=0

b

(
�

Bj
; s

) �∑
m=−�

a�mY�m(x) =
∞∑

�=0

b

(
�

Bj
; s

)
z�(x),

where the last line is due to (2.5).
As derived in (4.4), they can be expressed as averaged forms of random spherical eigenfunc-

tions,

βj (x) =
∞∑

�=1

b

(
�

Bj
; s

)
z�(x), j = 1,2, . . . . (4.4)

It is convenient to normalize these fields to have unit variance, as follows:

β̃j (x) = βj (x)√
E[β2

j (x)]
, j = 1,2, . . . . (4.5)
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Let us define also

ỹj = yj√
E[β2

j (x)]
= β̃j + μj√

E[β2
j (x)]

. (4.6)

In this paper, we assume that the angular power spectrum of the spherical noise field is known,
and from this it is immediate to compute the normalizing variance needed to construct β̃j (x)

and ỹj . In practical applications, it should be noted that there are usually both tight theoretical
predictions on the angular power spectrum and very efficient empirical estimates which converge
very rapidly to the true values, in the high-frequency sense, so that these statistics can be usually
implemented without difficulties.

A rigorous investigation of the asymptotic properties of these smoothed fields requires some
mild regularity assumptions on the power spectrum C�, which are customary in this branch of
literature. More precisely (see, for instance, [15], page 257, or [1,13,17,18]).

Condition 2. There exist M ∈N, γ > 2 and a function G(·) ∈ C∞ such that

C� = �−γ G(�), (4.7)

where G(�) > 0 for all �, and for some c1, . . . , cM > 0 and r = 1, . . . ,M , we have

sup
u

∣∣∣∣ dr

dur
G(u)

∣∣∣∣ ≤ cru
−r .

Condition 2 entails a weak smoothness requirement on the behaviour of the angular power
spectrum, which is satisfied by cosmologically relevant models; for instance, this condition is ful-
filled by models of the form (4.7), where G(�) = P(�)/Q(�) and P(�),Q(�) > 0 are two positive
polynomials of the same order. In what follows we denote by G0 the limit G0 := lim�→∞ G(�).

Under Condition 2, it is possible to establish an upper bound on the correlation function of
{β̃j (·)}, as follows (see [13,18] for a proof).

Proposition 4.2. Assume Condition 2 holds with γ < 4s + 2 and M ≥ 4s + 2 − γ ; then there
exists a constant KM > 0, not depending on j , x, and y, such that the following inequality holds∣∣Cor

(
βj (x),βj (y)

)∣∣ ≤ KM

(1 + j−1Bjd(x, y))4s+2−γ
, (4.8)

where d(x, y) = arccos(〈x, y〉) is the standard geodesic distance on the sphere.

The inequality (4.8) is qualitatively similar to others which were earlier established in the case
of standard needlets; see, for instance, [1]. A quick comparison with the results in [1] shows
an important difference, namely that the rate of decay for the bound on the right-hand side de-
pends on the shape of the kernel (in particular, on the parameter s) and on the rate of decay of
the angular power spectrum (i.e., on the parameter γ ); none of these values affect the rate of
convergence in the standard needlet case. As a consequence, in the case of Mexican needlets,
asymptotic uncorrelation only holds under the assumption that γ < 4s + 2, so that higher values
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of s are needed to ensure asymptotic uncorrelation for larger values of γ . We believe this issue
can be easily addressed by a plug-in procedure; for instance, for the CMB applications we men-
tioned earlier there are strong theoretical motivations and experimental constraints that allow to
set 2 < γ < 3, so that taking s = 1 is already enough to ensure the correlation function decays to
zero: ample numerical evidence on the uncorrelation properties of Mexican needlets is collected
in [25]. The term j−1 appearing in the denominator of (4.8) is a consequence of some standard
technical difficulties when dealing with boundary cases such as M = 4s + 2 − γ .

Recall that a Gaussian random field {X(x), x ∈ S
2} is isotropic if and only if its covariance

function is invariant to rotations, that is,

	(x, y) := Cov
(
X(x),X(y)

) = Cov
(
X(g · x),X(g · y)

)
for all elements g ∈ SO(3) of the three-dimensional group of rotations. For such fields the co-
variance functions can be expressed by

	
(
x, y; {C�}�=1,2,...

) =
∞∑

�=1

2� + 1

4π
C�P�

(〈x, y〉);
it turns now to be convenient to make explicit the dependence of the covariance function from
the angular power spectrum sequence {C�}�=1,2,.... The fields βj (x) are obviously isotropic and
from Proposition 4.2 it is immediate to obtain a bound on the covariance (rather than correlation)
function, indeed we have

	j,s(x, y) := E
[
βj (x)βj (y)

] =
∞∑

�=1

b2
(

�

Bj
; s

)
C�

2� + 1

4π
P�

(〈x, y〉)
= 	

(
x, y;

{
b2

(
�

Bj
; s

)
C�

}
�=1,2,...

)

≤ KM

(1 + j−1Bjd(x, y))4s+2−γ

∞∑
�=1

b2
(

�

Bj
; s

)
C�

2� + 1

4π
.

For the implementation of our multiple testing procedures, we shall need to write down an
analytic formula for the asympotic distribution of maxima of the noise components; to this aim,
we need the exact limiting behaviour of higher-order derivatives of the covariance function, eval-
uated at the origin. Let us first introduce the functions

cs,2n(γ ) := 2γ /2−2−n−2s	(1 − γ /2 + n + 2s), 	(t) :=
∫ ∞

0
xt−1 exp(−x)dx.

Let us also define

	′(C�) :=
∞∑

�=1

2� + 1

4π
C�P

′
�(1), 	′′(C�) :=

∞∑
�=1

2� + 1

4π
C�P

′′
� (1),



Multiple testing on the sphere 41

where

P ′
�(1) = �(� + 1)

2
and P ′′

� (1) = �(� − 1)(� + 1)(� + 2)

8

represent the derivatives of the Legendre polynomials evaluated at 1. Moreover, let us write also

ηj =
√

	′(C�)√
	′′(C�)

, κj = 	′(C�)√
	′′(C�)

. (4.9)

In the sequel, it should be kept in mind that ηj and κj are for the standardized fields β̃j (and not
for βj ).

Proposition 4.3. As j → ∞, we have

	′(β̃j ) ∼ cs,2(γ )

2cs,0(γ )
B2j , 	′′(β̃j ) ∼ cs,4(γ )

8cs,0(γ )
B4j ,

and therefore

ηj ∼ 2
√

cs,2(γ )√
cs,4(γ )

B−j , κj ∼
√

2cs,2(γ )√
cs,0(γ )cs,4(γ )

;

where aj ∼ bj denotes limj→∞ aj/bj = 1.

The proof is provided in the Supplement [4]. We note that the expressions for ηj and κj will
be used in the applied sections below for the numerical evaluation of p-values. In the sequel, we
let s = 1; all the results below can be trivially extended to choices of other forms of filtering, with
different values of s (we stress that the case s = 1 is the choice that has been usually adopted for
applications, see [24,25]).

5. The multiple testing scheme

5.1. The signal and null regions

To properly approach the detection of point sources as a multiple testing problem, we first need
to carefully define the spatial region occupied by the needlet-transformed point sources.

Define the signal region D
ρ
1 = ⋃N

k=1 D(ξk, ρ) and null region D
ρ
0 = S

2 \ Dρ
1 , where ρ > 0 is

a pre-specified location tolerance parameter and D(ξk, ρ) is the geodesic ball on S2 with center
ξk and radius ρ. The presence of a tolerance parameter is not only required to settle properly the
theoretical framework, but is also consistent with the common scientific practice, see again [24].
We introduce now a further condition.
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Condition 3. As j → ∞, we have

ρ = ρj ∼ jνB−j , min
1≤k �=k′≤N

d(ξk, ξk′) > 2ρ, and min
1≤k≤N

ak > a0, ∀N,

where d(x, y) is the geodesic distance on the sphere, and ν and a0 are positive constants.

Condition 3 is meant to ensure that the tolerance radius ρ decays to zero asymptotically faster
than the distance between separate sources. Otherwise proper identification and counting of point
sources would become unfeasible.

Notice that the restriction min1≤k �=k′≤N d(ξk, ξk′) > 2ρ in Condition 3 yields

Area
(
D(ξ1, ρj )

)
Nj < 4π = Area

(
S

2),
for every j , implying that the area of null region is always positive and that Nj cannot grow too
fast, specifically Nj = O(ρ−2

j ) = O(j−2νB2j ). It is easy to check that

Area
(
D(ξ1, ρj )

) = 2π(1 − cosρj ) ∼ πρ2
j ∼ πj2νB−2j .

Here are some examples for Condition 3. If Nj = �B2j (1−δ)� for some 0 < δ < 1/2 (�·� de-
noting integer part), then the area of signal region tends to 0. If Nj ∼ c0ρ

−2
j ∼ c0j

−2νB2j for
some c0 ∈ (0,4), then the area of signal region tends to πc0.

5.2. The STEM algorithm on the sphere

As some general notation, for a smooth Gaussian random field {X(x), x ∈ S
2}, define the number

of local maxima of X exceeding the level u ∈ R over a domain D ⊂ S
2 as

Mu(X;D) = #
{
x ∈ D : X(x) > u,∇X(x) = 0,∇2X(x) ≺ 0

}; (5.1)

here ∇X(x) and ∇2X(x) denote the gradient and Hessian of the field X at x, and ∇2X(x) ≺ 0
means the Hessian ∇2X(x) is negative definite. The gradient and Hessian can be computed
as ∇X = (E1X,E2X) and ∇2X = (EiEjX)1≤i,j≤2, respectively, where E1 and E2 are or-
thonormal tangent vectors. In spherical coordinates, at any given point x = (θ,ϕ), 0 ≤ θ ≤ π ,
0 ≤ ϕ < 2π these are given by

E1,x = ∂

∂θ
, E2,x = 1

sin θ

∂

∂ϕ
.

For convenience, denote by M(X;D) = M−∞(X;D) the total number of local maxima of X

over D.
Suppose now we observe yN(t) on S

2 defined by (2.3). In accordance to [6,23], we call the
following procedure STEM (Smoothing and TEsting of Maxima).
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Algorithm 1 (STEM algorithm).

1. Smoothing: For a given j , apply the needlet transform to the observed field (2.3) to obtain
the filtered field (4.1). Normalize by the (known) noise variance to obtain the field (4.6).

2. Candidate peaks: Find the set of local maxima of ỹj (x) on S
2

T̃j = {
x ∈ S

2 : ∇ỹj (x) = 0,∇2ỹj (x) ≺ 0
}
. (5.2)

3. p-values: For each x ∈ T̃j , compute the p-value pj (x) for testing the (conditional) hypoth-
esis

H0(x) : {μj

(
x′) = 0 for all x′ ∈ D(x,ρj )

}
vs.

HA(x) : {μj

(
x′) > 0 for some x′ ∈ D(x,ρj )

}
,

(5.3)

where B(x,ρj ) is a geodesic ball centered at x on the sphere and of radius equal to the
tolerance radius ρj .

4. Multiple testing: Notice that M(ỹj ;S2) = #{x ∈ T̃j } is the number of tested hypotheses.
Perform a multiple testing procedure on the set of M(ỹj ;S2) p-values {pj (x), x ∈ T̃j },
and declare significant all local maxima whose p-values are smaller than the significance
threshold.

Next, we carefully define detection errors and power for this testing scheme.

5.3. Error and power definitions

We shall consider two forms of inference, one with fixed significance threshold u and one where
the significance threshold is determined by the data according to a multiple testing procedure
(see Section 5.4). For fixed u ∈ R, denote by T̃j (u) the set of local maxima of ỹj exceeding u

defined via (5.1). Define the total number of detected peaks and the number of falsely detected
peaks as

Rj (u) = Mu

(
ỹj ;S2), Vρj

(u) = Mu

(
ỹj ;Dρj

0

)
, (5.4)

respectively. Both are defined as zero if T̃j (u), is empty. As usual, the False Discovery Proportion
(FDP) is proportion of falsely detected peaks, that is,

FDPρj
(u) = Vρj

(u)

Rj (u) ∨ 1
= Mu(ỹj ;Dρj

0 )

(Mu(ỹj ;Dρj

0 ) + Mu(ỹj ;Dρj

1 )) ∨ 1
, (5.5)

while the False Discovery Rate (FDR) is the expected FDP, that is,

FDRρj
(u) = E

{
Vρj

(u)

Rj (u) ∨ 1

}
. (5.6)

We shall denote Wρj
(u) = Rj (u) − Vρj

(u).
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Finally, again following the same conventions as in [6,23], we define the power of Algorithm 1
as the expected fraction of true discovered peaks

Powerρj
(u) = E

(
1

Nj

Nj∑
k=1

1{T̃j (u)∩D(ξk,ρj )�=∅}

)
= 1

Nj

Nj∑
k=1

Powerρj ,k(u), (5.7)

where Powerρj ,k(u) is the probability of detecting peak k

Powerρj ,k(u) = P
(
T̃j (u) ∩ D(ξk, ρj ) �=∅

)
. (5.8)

The indicator function in (5.7) ensures that only one significant local maximum is counted
within the same peak support, so power is not inflated. In other words, no matter if the number of
elements in Tj falling into D

ρj

k is one or larger the value of the indicator function will be always
unity.

5.4. P-values and BH procedure

For each observed local maximum, its P-value is the probability, under the null hypothesis, of
obtaining such height as the one observed or higher. Given the observed heights ỹj (x) at the
local maxima x ∈ T̃j , the p-values in step (3) of Algorithm 1 are computed as pj (t) = Fj (ỹj (t)),
t ∈ T̃j , where

Fj (u) = P
(
β̃j (x) > u | x ∈ T̃j

)
(5.9)

denotes the right tail probability of β̃j (x) at the local maximum x ∈ T̃j , evaluated under the null
hypothesis that there are no point masses at all, that is, μN(x) = 0,∀x.

Note that, since only local maxima are evaluated as candidates for point sources, the probabil-
ity (5.9) must be conditional on the location x being a local maximum. Such probabilities have
been derived in [7]. Applying the technique there, we have that

Fj (u) = E[Mu(β̃j ;S2)]
E[M(β̃j ;S2)] =

∫ ∞

u

fj (x) dx, (5.10)

where

fj (x) =
2
√

3 + η2
j

2 + η2
j

√
3 + η2

j

{[
η2

j + κ2
j

(
x2 − 1

)]
φ(x)�

(
κjx√

2 + η2
j − κ2

j

)

+
κj

√
(2 + η2

j − κ2
j )

2π
xe

− (2+η2
j
)x2

2(2+η2
j
−κ2

j
)

+
√

2√
π(3 + η2

j − κ2
j )

e
− (3+η2

j
)x2

2(3+η2
j
−κ2

j
)
�

(
κjx√

(2 + η2
j − κ2

j )(3 + η2
j − κ2

j )

)}
.
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Here ηj and κj are defined in (4.9) above, and φ(x) and �(x) denote the standard normal density
and cumulative distribution functions, respectively.

As a multiple testing procedure in step (4) of Algorithm 1, we apply the Benjamini–Hochberg
(BH) procedure [2]. In the context of this work, it is implemented directly as follows. Consider
the Nj p-values in increasing order. For a fixed significance level α ∈ (0,1), let k be the largest
index for which the ith smallest P-value is less than iα/M(ỹj ;S2). Then the null hypothesis
H0(x) at x ∈ T̃j is rejected if

pj (x) <
kα

M(ỹj ;S2)
⇐⇒ ỹj (x) > ũBH,j = F−1

j

(
kα

M(ỹj ;S2)

)
, (5.11)

where kα/M(ỹj ;S2) is defined as 1 if M(ỹj ;S2) = 0. Since ũBH,j is random, definition (5.6) is
hereby modified to

FDRBH,ρj
= E

{
Vρj

(ũBH,j )

Rj (ũBH,j ) ∨ 1

}
, (5.12)

where Rj(·) and Vρj
(·) are defined in (5.4) and the expectation is taken over all possible realiza-

tions of the random threshold ũBH,j .
Since ũBH,j is random, similarly to the definition of FDRBH,ρj

(5.12), we define

PowerBH,ρj
= E

(
1

Nj

Nj∑
k=1

1{T̃j (ũBH,j )∩D(ξk,ρj )�=∅}

)
. (5.13)

6. FDR control and power consistency

6.1. FDR control

The strategy to prove FDR control is to first quantify the expected number of local maxima above
any level u over the null region (false discoveries) and signal region (true discoveries). This is
given in Lemmas 6.1 and 6.3 below.

Lemma 6.1. Let u ∈ R be fixed. Then under Condition 2 as j → ∞, the expected number of
local maxima of ỹj above u in the null region D

ρj

0 is

E
[
Mu

(
ỹj ;Dρj

0

)] = [
4π − 2π(1 − cosρj )Nj

]
rj (u) + o

(
e−jν )

, (6.1)

where

rj (u) = E
[
Mu

(
β̃j ;S2)] = Fj (u)rj , u ∈ R, (6.2)

is the expected number of local maxima of β̃j exceeding u over a unit area on S
2, Fj (u) is the

tail distribution function (5.10), and

rj = rj (−∞) = 1

4π
+ 1

2πη2
j

√
3 + η2

j

. (6.3)
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Proof. Recall Area(D(ξk, ρj )) = 2π(1 − cosρj ) for every k, therefore

Area
(
D

ρj

0

) = Area
(
S

2) − Area
(
D(ξk, ρj )

)
Nj = 4π − 2π(1 − cosρj )Nj .

By the Kac–Rice metatheorem, Lemma 4.1 and Condition 3,

E
[
Mu

(
ỹj ;Dρj

0

)]
=

∫
D

ρj
0

1

2π
√

det Cov(∇ỹj (x))
E

[∣∣det
(∇2ỹj (x)

)∣∣1{ỹj (x)>u,∇2ỹj (x)≺0} | ∇ỹj (x) = 0
]
dx

=
∫
D

ρj
0

1

2π

√
det Cov(∇β̃j (x))

E
[∣∣det

(∇2β̃j (x)
)∣∣1{β̃j (x)>u,∇2β̃j (x)≺0} | ∇β̃j (x) = 0

]
dx

+ O
(
NjB

mjj2νe−j2ν )
,

where m is some positive constant. Evaluating the integral yields (6.1), where

rj (u) = 1

2πC′(β̃j )
E

[∣∣det
(∇2β̃j (x)

)∣∣1{β̃j (x)>u,∇2β̃j (x)≺0} | ∇β̃j (x) = 0
]

is the expected number of local maxima of β̃j exceeding u over a unit area on S
2. The exact

expression (6.2) follows from (5.10), while (6.3) was proved in [7]. �

Remark 6.2 (Asymptotics of rj (u)). By Proposition 4.3, as j → ∞,

rj ∼ cs,4(γ )

8π
√

3cs,2(γ )
B2j and rj (u) = Fj (u)rj ∼ Fj (u)

cs,4(γ )

8π
√

3cs,2(γ )
B2j .

Lemma 6.3. Let u ∈ R be fixed. Then under Conditions 2,3 as j → ∞, the number of local
maxima of ỹj over the signal region D

ρj

1 satisfies

Mu

(
ỹj ;Dρj

1

) ≥ Nj + Op

(
B−2j

)
, E

[
Mu

(
ỹj ;Dρj

1

)] ≥ Nj + O
(
B−2j

)
.

Proof. Let ρ̃j = B−j < ρj = jνB−j . By Lemma 4.1, within the domain B(ξk, ρ̃j ), the mean
function of ỹj satisfies the assumptions of the unimodal signal model in [6] with the signal
strength being a = B2j . It then follows from similar arguments as in [6] that

Mu

(
ỹj ;Dρ̃j

1

) = Nj + Op

(
B−2j

)
,

E
[
Mu

(
ỹj ;Dρ̃j

1

)] = Nj + O
(
B−2j

)
.

The desired results then follow immediately from the observation

Mu

(
ỹj ;Dρj

1

) ≥ Mu

(
ỹj ;Dρ̃j

1

)
,
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where the inequality admits the possibility of there being other local maxima in the flatter areas
D(ξk, ρj ) \ D(ξk, ρ̃j ) of the needlet transform impulse response. The exact expected number of
these is presumably small, but hard to estimate. �

Remark 6.4 (The rate of ρj ). The proof of Lemma 6.3 explains why we make the assumption
ρj ∼ jνB−j in Condition 3 above. This choice of rate for ρj , decaying slightly less slowly than
B−j , allows obtaining an asymptotic limit to the number of local maxima over the null region
E[Mu(ỹj ;Dρj

0 )], while the number of local maxima over the signal region E[Mu(ỹj ;Dρj

1 )] can
be bounded asymptotically. If we had chosen the rate of ρ̃j for ρj , decaying at a rate B−j , then
as shown in the proof of Lemma 6.3, we could obtain an exact limit for the number of local
maxima over the signal region; however in that case, the number of local maxima over the null
region would be difficult to quantify due to complicated behavior of the mean function μ̃j (after
the needlet transform) immediately outside that radius.

The following ergodic result, which will be used in the proof of Theorem 6.6 below, shows
that the variance of the number of local maxima goes to zero after normalization by the expected
value. The result itself is theoretically important and the proof is given in the Supplement.

Theorem 6.5. Under Conditions 1, 2, 3, as j → ∞,

Var
[
Mu

(
β̃j ;S2)] ≤ c(u)j2B2j + o

(
j2B2j

)
,

where the constant c(u) is uniformly bounded with respect to u and the o(·) term is universal.

The following is the first main result of this paper, showing control of FDP and FDR.

Theorem 6.6. Let Conditions 1, 2, 3 hold.

(i) Suppose that Algorithm 1 is applied with a fixed threshold u, then

FDPρj
(u) ≤ [4π − 2π(1 − cosρj )Nj ]rj (u)

[4π − 2π(1 − cosρj )Nj ]rj (u) + Nj

(
1 + op(1)

)
, (6.4)

where rj (u) is defined in (6.2).
(ii) Suppose that Algorithm 1 is applied with the random threshold ũBH,j (5.11), then

FDRBH,ρj
≤ α

[4π − 2π(1 − cosρj )Nj ]rj
[4π − 2π(1 − cosρj )Nj ]rj + Nj

+ o(1) ≤ α + o(1), (6.5)

where rj is given by (6.3).
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Proof. (i) By Theorem 6.5 and Chebyshev’s inequality,

FDPρj
(u) = Mu(ỹj ;Dρj

0 )/B2j

Mu(ỹj ;Dρj

0 )/B2j + Mu(ỹj ;Dρj

1 )/B2j

≤ E[Mu(ỹj ;Dρj

0 )]/B2j

E[Mu(ỹj ;Dρj

0 )]/B2j + Mu(ỹj ;Dρj

1 )/B2j

(
1 + op(1)

)
.

It then follows from Lemmas 6.1 and 6.3 that

FDPρj
(u) = [4π − 2π(1 − cosρj )Nj ]rj (u)

[4π − 2π(1 − cosρj )Nj ]rj (u) + Nj

(
1 + op(1)

)
.

(ii) Following a similar argument to that in [6], we use the fact that ũBH,j is the smallest u

satisfying αG̃j (u) ≥ Fj (u), where

G̃j (u) = Mu(ỹj ;Dρj

0 ) + Mu(ỹj ;Dρj

1 )

M(ỹj ;Dρj

0 ) + M(ỹj ;Dρj

1 )

and Fj (u) is the height distribution (5.10) of β̃j . Notice that

Fj (u) = E[Mu(ỹj ;Dρj

0 )]
E[M(ỹj ;Dρj

0 )] .

Similarly to the proof of part (i), we have

G̃j (u) ≥ E[M(ỹj ;Dρj

0 )]Fj (u) + Nj

E[M(ỹj ;Dρj

0 )] + Nj

+ op(1)

= [4π − 2π(1 − cosρj )Nj ]rjFj (u) + Nj

[4π − 2π(1 − cosρj )Nj ]rj + Nj

+ op(1).

Solving the equation

α
[4π − 2π(1 − cosρj )Nj ]rjFj (u) + Nj

[4π − 2π(1 − cosρj )Nj ]rj + Nj

+ op(1) = Fj (u)

gives an asymptotic solution

ũ∗
BH,j = F−1

j

(
αNj

Nj + (1 − α)[4π − 2π(1 − cosρj )Nj ]rj
)

+ op(1). (6.6)
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Since ũBH,j ≤ ũ∗
BH,j almost surely, we have

FDRBH,j = E

[
Vρj

(ũBH,j )

Vρj
(ũBH,j ) + Wρj

(ũBH,j )

]
≤ E

[
Vρj

(ũ∗
BH,j )

Vρj
(ũ∗

BH,j ) + Wρj
(ũ∗

BH,j )

]

≤ E[Vρj
(ũ∗

BH,j )]
E[Vρj

(ũ∗
BH,j )] +E[Wρj

(ũ∗
BH,j )]

(
1 + o(1)

)
≤ E[M(ỹj ;Dρj

0 )]Fj (ũ
∗
BH,j )

E[M(ỹj ;Dρj

0 )]Fj (ũ
∗
BH,j ) + Nj

(
1 + o(1)

)
= α

[4π − 2π(1 − cosρj )Nj ]rj
[4π − 2π(1 − cosρj )Nj ]rj + Nj

+ o(1). �

Remark 6.7 (Threshold for FDP). To make the bound for FDP asymptotically equal to a sig-
nificance level α, the corresponding threshold u must satisfy the equation

[4π − 2π(1 − cosρj )Nj ]rj (u)

[4π − 2π(1 − cosρj )Nj ]rj (u) + Nj

= α,

implying

rj (u) = αNj

(1 − α)[4π − 2π(1 − cosρj )Nj ] . (6.7)

By Remark 6.2,

rj (u) ∼ Fj (u)
cp,4(γ )

8π
√

3cs,2(γ )
B2j ,

implying that as j → ∞ and u → ∞, log(rj (u)) ∼ log(B2j e−u2/2). Solving the equation

B2j e−u2/2 = αNj

(1 − α)[4π − 2π(1 − cosρj )Nj ]
yields the approximate solution

u ∼
√

2 log
(
B2j /Nj

)
. (6.8)

According to Condition 3, Njρ
2
j = O(1), implying Nj = O(ρ−2

j ) = O(j−2νB2j ). Therefore,

u ≥ 2
√

ν log(j) → ∞.

Remark 6.8 (Comparison between FDP and BH Procedure). Dividing both sides of (6.7) by
rj yields

Fj (u) = αNj

(1 − α)[4π − 2π(1 − cosρj )Nj ]rj ,
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implying the following threshold by FDP for controlling significance level α:

uα = F−1
j

(
αNj

(1 − α)[4π − 2π(1 − cosρj )Nj ]rj
)

.

In comparison, for controlling significance level α by the BH procedure, the asymptotic threshold
is given by (6.6). If we replace α by

α̃ = α
[4π − 2π(1 − cosρj )Nj ]rj

[4π − 2π(1 − cosρj )Nj ]rj + Nj

,

then the FDP threshold at significance level α̃ is given by

uα̃ = F−1
j

(
αNj

Nj + (1 − α)[4π − 2π(1 − cosρj )Nj ]rj
)

.

This coincides with the asymptotic threshold ũ∗
BH,j (6.6) by the BH procedure. Since rj =

O(B2j ) and Nj = O(ρ−2
j ) = O(j−2νB2j ), we see that the upper bound in (6.5) tends to α

in the limit of high-frequency.

Remark 6.9 (Comparison with FWER control (the expected Euler characteristic thresh-
olding)). For high values of the threshold u, the expected Euler characteristic exceeding u can
be approximated by rj (u); hence, the threshold for controlling the FWER can be obtained by
solving the equation rj (u) = α. By the discussion in the previous remark, this equation becomes

B2j e−u2/2 = α, which gives the solution u ∼ √
2 log(B2j ) = 2

√
j log(B). In comparison, the

FDR threshold increases at rate 2
√

ν log(j), which is much slower.

6.2. Power consistency

To prove power consistency, we first show that, asymptotically, there will be at least one local
maximum of ỹj within a small ball centered at every point source.

Lemma 6.10. Under Conditions 1, 2, 3, for each fixed k, there exists c > 0 such that for suffi-
ciently large j ,

P
(
#
{
x ∈ T̃j (u) ∩ D(ξk, ρ̃j )

} ≥ 1
) ≥ 1 − exp

(−cBj(γ−2)/2),
where ρ̃j = B−j and u =

√
2 log(B2j /Nj ) is the asymptotic BH threshold (6.8).

Proof. For each k, the probability ỹj (x) has at least one local maximum above u in D(ξk, ρ̃j ) is
the complement of the probability that: (1) ỹj (x) has no local maxima in D(ξk, ρ̃j ), or (2) ỹj (x)

is below u everywhere in D(ξk, ρ̃j ).
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For (1), this is less than the probability that there exists some x ∈ D(ξk, ρ1) such that
〈∇ỹj (x), ξk − x〉 ≤ 0, since all x ∈ ∂D(ξk, ρ̃j ) satisfying 〈∇ỹj (x), ξk − x〉 > 0 would imply
the existence of at least one local maximum in D(ξk, ρ̃j ). This probability is bounded above by

P

(
inf

∂D(ξk,ρ̃j )

〈∇β̃j (x), ξk − x
〉 ≤ − inf

∂D(ξk,ρ̃j )

〈∇μ̃j (x), ξk − x
〉)

= P

(
sup

∂D(ξk,ρ̃j )

−
〈
∇β̃j (x),

ξk − x

‖ξk − x‖
〉
≥ inf

∂D(ξk,ρ̃j )

〈
∇μ̃j (x),

ξk − x

‖ξk − x‖
〉)

≤ P

(
sup

x∈D
ρ̃j
k

sup
‖τ‖=1

〈∇β̃j (x), τ
〉 ≥ c1B

2j+j (γ−2)/2
)
,

where c1 is a positive constant and the last inequality is due to the result proved in the Supplement
that Var(βj ) ∼ cs,0(γ )/Bj(γ−2), together with (4.3), Lemma 4.1 and the fact that ∂D(ξk, ρ̃j )

is contained in the closure of D(ξk, ρ̃j ). By Proposition 4.3, there exists c2 > 0 such that for
sufficiently large j

sup
x∈D(ξk,ρ̃j )

sup
‖τ‖=1

Var
(〈∇β̃j (x), τ

〉) ≤ c2B
2j .

Then by the Borell–TIS inequality, there exists c3 > 0 such that for sufficiently large j ,

P
(
#
{
x ∈ T̃j ∩ D(ξk, ρ̃j )

} = 0
) ≤ exp

(−c3B
j(γ−2)/2).

On the other hand, for (2), the probability that ỹj (x) is below u everywhere in D(ξk, ρ̃j ) is
bounded above by 1 −�(|u−B2j+j (γ−2)/2|). The desired result then follows from the observa-
tion

P
(
#
{
x ∈ T̃j (u) ∩ D(ξk, ρ̃j )

} ≥ 1
) ≥ 1 − exp

(−c3B
j(γ−2)/2) − (

1 − �
(∣∣u − B2j+j (γ−2)/2

∣∣)),
where the last term in parentheses is much smaller than the second when u =

√
2 log(B2j /Nj ). �

Following is the second main result of this paper, showing that the detection power tends to
one asymptotically.

Theorem 6.11. Let Conditions 1, 2, 3 hold.

(i) Suppose that Algorithm 1 is applied with a fixed threshold u, then Powerρj
(u) → 1.

(ii) Suppose that Algorithm 1 is applied with the random threshold ũBH (5.11), then
PowerBH,ρj

→ 1.

Proof. The desired results follow directly from Lemma 6.10 and the definitions of power (5.7)
and (5.13). �
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7. Numerical validation

In this section, we present numerical evidence on the performance of the algorithm advocated in
this work. One crucial step in the STEM algorithm (Algorithm 1) is the computation of p-values
of detected peaks, based on the distribution of peak heights under the null hypothesis, that is,
no point masses at all. We therefore start our validation by comparing the analytical peak height
distribution function given in (5.10) with the empirical result from filtered noise Monte Carlo
simulations.

Once we establish the validity of the peak height distribution on the noise field, we add simu-
lated point sources to form the full signal-plus-noise Monte Carlo simulations. These simulations
are used to evaluate the numerical performance of the asymptotic FDP approximation and FDR
control of Section 6. For all the results we report, the Mexican needlet parameters used are
B = 1.2 and s = 1.

7.1. Simulation of the CMB noise field

All our maps and the corresponding spherical harmonic coefficients are generated using the
HEALpix package, which is now the standard routine software for handling cosmological data:
see [12] for a detailed discussion on this package and its main features. In HEALpix one can
use the create_alm routine to generate random spherical harmonic coefficients, a�m, with a given
power spectrum. The code alm2map takes these coefficients and generate a pixelized Gaussian
map; the inverse process is implemented using the map2alm code. To decompose a map into
Mexican needlet components, we filter the a�m coefficients by the Mexican needlet window
functions as given in (4.4).

A single HEALpix pixel has an area of 4π/Npix where Npix = 12N2
side is the total number of

pixels on a given map. The resolution is specified by the Nside parameter, which is a multiple
of 2.

As it is the case in typical experimental circumstances, we assume that known astrophysical
contaminants (for instance, the Milky Way) have been preliminarily removed from the data.
To simulate our noise field, we then generated 100 Gaussian realization maps of the CMB sky
starting from the Planck CMB power spectrum. We refer to Figure 11 on page 21 of [20], which
provides a plot showing the theoretical prediction on the C�, and their estimated values on Planck
CMB data; the errors bars at high � become so narrow that they do not show up in the figure,
being actually thinner than the thickness of the theoretical line prediction. This plot shows both
that very efficient estimates for the power spectrum exist, and that theoretical models in this area
should be considered very reliable.

All maps are simulated with a pixel resolution of Nside = 1024. The standard deviation, also
called root mean square (RMS), of the simulated noise field is given by

σ 2
noise = σ 2

cmb =
∑

�

(2� + 1)C�

4π
, (7.1)

where C� is the Planck CMB power spectrum [21].
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To simulate the finite resolution of the measuring instrument, these maps are then smoothed
by a Gaussian filter with full-width half max (FWHM) of 10 arcmin. In the literature, this is
usually referred to as a 10 arcmin Gaussian beam. Its effect can be thought of as part of the
noise autocovariance function, although it is essentially negligible at � ∼ 1000 as in our needlet
analysis.

7.2. Simulation of point sources

As mentioned above, a point source in the sky is observed by a detector which has a finite an-
gular resolution. With some abuse of nomenclature, the opening angle of the smallest resolvable
angular unit, tN , is called the beam of the detector. The typical angular size of galaxies is of
a few arcsecs (i.e., one degree divided by 602) while the detector beam sizes for typical CMB
experiments (10 arcmin) are an order of magnitude larger. This means that galaxies and other
objects with angular size smaller than the beam can be viewed as point sources. As argued in
the previous sections, the convolution of the point sources by the detector beam yields a Gaus-
sian bell-like profile in the final map with the peak of the Gaussian being at the location of the
point sources, ξk . The signal part of our simulations is hence given by (2.4) above, where the
coefficient ak represent the brightness of the kth point source and N is their total number.

It would be possible to consider more realistic models for these point sources, for instance
using the so-called Planck sky model (see, for instance, [8]). However, this would require a
rather lengthy technical discussion on some specific astrophysical and experimental settings,
which would not add anything substantial to the understanding of our current algorithm, nor
would alter significantly our numerical results. We therefore delay a more complete analysis of
these practical issues to a future, more applied paper.

To simulate our signal model with N point sources, we first generated N coordinate points
randomly with a uniform probability density over the sphere. Second, we found the pixels that
correspond to these locations on the HEALpix map; third we set the values ak of these pixels
as draws from a uniform distribution in the range 0 and Amax. These amplitudes are given as
a multiple of the RMS of the noise (7.1). Finally, to simulate the instrumental resolution, we
convolved the map obtained in the last step by means of a Gaussian beam of FWHM = 10 arcmin.
This final map is now a pixelized version of (2.3). Notice that for clarity we have described the
smoothing process as a separate operation in the noise and signal maps, but this is, of course,
equivalent to doing a single smoothing operation on a signal plus noise map.

The Gaussian beam decreases the sources magnitude by a factor proportional to the ratio
between the area of a pixel and the area covered by the detector beam. For our choice of the beam
and the pixel resolution, this factor is an order of magnitude. Since we desired to generate point
sources uniformly distributed between 0 and 3σnoise after smoothing, we used Amax = 30σcmb.
We considered different values for the total number of sources, i.e., N = 1000,3000,5000.

The final signal-plus-noise Monte Carlo simulations are then obtained by adding the point
sources map to the 100 noise simulations; an example is provided in Figure 1. Note that the point
sources are weak and hard to find without statistical analysis.
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Figure 1. Signal plus noise maps: Upper panel is an equal area stereographic projection (the so called
Mollweide projection) of the signal plus noise simulation before needlet filtering; the color map is given
in standardized RMS units. Bottom left panel is a gnomonic projection of the unfiltered map around a
point source with 5 degree diameter; bottom right panel is a similar gnomonic projection around the same
point source but from a Mexican needlet filtered map. The red marks have been added only to visualize the
location of the point sources but are not part of the simulation.

7.3. Distribution of peak heights

The theoretical distribution of local maxima (peaks) on a Mexican needlet filtered Gaussian map
is given by (5.10). In Figure 2 we present the comparison of the theoretical density, hj (x), with
what we obtained empirically using 100 Gaussian map simulations with no point sources. The
upper panels from left to right respectively, present the normalized Gaussian peak PDFs for
needlet frequency j = 31,34, with Mexican needlet parameters B = 1.2 and p = 1, while in
Figure 1 we had taken B = 1.2 and j = 38. The choice of the parameters B and j needs some
discussion. In short, it is known (see again [24,25]) that the Mexican needlet filter at scale j

is centered around the multipole �∗ = Bj and has most of its power concentrated in the multi-
poles [Bj−1,Bj+1]. In practical experimental circumstances, the multipoles to be covered will
be fixed mainly by the technical characteristics of the device collecting the data. For instance, it
is known that the antennae in the satellite Planck can reach a resolution of about 7 arcminutes,
corresponding roughly to � = 1800; however, a detailed technical analysis (which is discussed in
the Planck papers, see, for instance, [20]) has shown that the highest multipoles are affected by
instrumental noise which can make the corresponding data unreliable. Focussing for instance on
B = 1.2, j = 38 means that we will be concentrating the statistical analysis on multipoles in the
order of 1021 ± 200; in this range, instrumental noise is known to be basically negligible. This
form of knowledge on the technical features of the experiment should be known in practice to
any applied scientist which is investigating a specific data set (not necessarily in astrophysics);
the range of values that we reported are also meant to illustrate the convergence result as j grows
larger and larger.

In the lower panel of Figure 2, we show the relative percentage difference between the analyti-
cal and simulation results. It is easy to see from these figures that the theory fits the numerical re-
sults remarkably well. Moreover, the dispersion around the expected value of the PDF decreases
as j increases, consistently with the ergodicity result of Theorem 6.5.
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Figure 2. Peaks PDF: probability density of height of local maxima. In the upper panels, the red curves
represent the analytical values, while the black curves and the gray contours are the mean and the 68, 95,
99% percentiles from the simulations from 100 Monte Carlo simulations with no point sources. The lower
panels show the difference between the analytical (hG) and numerical (h) result. Here j = 31,34, which
corresponds to central multipoles of � = [284,492].

7.4. Application of the STEM algorithm

The first step in the STEM algorithm, after needlet filtering, is to normalize the map using its
standard deviation, as defined in (4.5), to obtain (4.6).

To find local peaks on a map we compute the first and second derivatives using HEALpix’s
routine alm2map_der. The pixels where the first derivative is close to zero (within a precision of
10−6) are classified as the local extrema. We then partition these extrema into maxima, minima
and saddle using the eigenvalue decomposition of the Hessian matrix – of course, maxima are
those with all the eigenvalues negative.

It is instructive to look at how the brightness of point sources increase as we filter the signal
plus noise map with Mexican needlets. In Figure 3, we plot the PDF of point source amplitudes
before adding noise (grey curve), after adding noise but before needlet filtering (thick black
curve), and after filtering with increasing j . For the high frequency Mexican needlet we consid-
ered, j = 38, filtering increases the brightness by a factor greater than 4. The negative values in
the histogram are due to the added Gaussian noise; we do not expect to detect such weak sources
based on their amplitude information only.
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Figure 3. Needlet filtering increases signal-to-noise ratio: Histogram of signal amplitudes at the location
of the point sources, before adding noise (grey curve), after adding noise but before filtering (thick black
curve), and after filtering with the Mexican needlet at different j .

7.5. False discovery proportion (FDP)

In (6.5) of Section 6, we provided the analytical result on the upper bound of the FDP as a func-
tion of the power spectrum of the noise, the total number and the spatial profile of the sources.
Here we compare this result with what is obtained from numerical simulations.

The empirical FDP is computed using the following steps: locate maxima on needlet filtered
signal-plus-noise Monte Carlo simulations using our peak detection code; classify peaks as True
discovery if the location of a maxima corresponds to a known (input) point source within ρ pixel
radius or False discovery if there are no input sources within ρ pixels radius of the peak (ρ
corresponding to the tolerance parameter); count the number of True and False discoveries as a
function of ρ and the RMS of the noise.

The empirical FDP as a function of u, which is in units of the RMS of the noise, and the source
detection tolerance parameter ρ is computed, according to (5.5), as

F̂DPρj
(u) = # of False discoveries above u

total # of peaks above u
. (7.2)

In Figure 4, we illustrate the comparison of the FDP for thresholds in the filtered map above
3σ and ρ = 3 for different values of j . We found that setting 2 ≤ ρ ≤ 8 does not alter signifi-
cantly our results (note that the smallest practical radius is ρ = 2). The red curve in these plots
corresponds to the first term on the right hand side of (6.5), while the black curve is from the
mean of the simulations. The contours from dark to light gray corresponds to the 68, 95 and 99%
confidence intervals. We note that, as expected, the analytic results for the upper bound become
larger than the numerical simulations as j increases.

7.6. False discovery rate (FDR)

We now proceed in validating the analytical formalism established in Section 6 to control the
false discovery rate (FDR). This is done by comparing the analytical upper bound of the FDR,
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Figure 4. False Discovery Proportion: FDP as a function of threshold (in units of standard deviation) for
different needlet scales. The dashed red curves are for the analytical upper bounds while the black curves are
for the mean of the empirical FDPs from 100 Monte Carlo simulations. The gray shades are for percentiles
68, 95 and 99%.

which is given by (6.5), with the empirical result from simulations. In Figure 5, it is shown that
for a given error rate, the empirical FDR is always below the upper limit set by the theory; in
Figure 6 we present the mean FDP and FDR curves together with the corresponding theoretical
results for different number of input sources. Again, the FDP and FDR are bounded above by the
theoretical bounds.

7.7. Detection power

To quantify how many of the input point sources we discovered in our analysis, in Figure 7 we
show the number of peaks that matches the true sources, that is, the numerator of (5.7), which
measures the statistical power of the algorithm. These results show that the power of the STEM
algorithm is almost 100% in detecting bright sources – indeed, we have detected all input sources
whose brightness was above 1σ in the unfiltered simulated maps.

Overall, we believe that the results in this section provide a strong numerical support for the
asymptotic findings that we described earlier in this paper. Applications to real CMB data from
the Planck satellite are currently being developed and will appear in a follow-up paper.
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Figure 5. False Discovery Rate: FDR as a function of error rate α for different needlet scales. The red
curve is a plot of α ∗ FDP(u = 3), while the black curve is the mean from 100 Monte Carlo simulations.
The gray shades are for percentiles 68, 95 and 99%. The number of point sources is 5000.

Figure 6. Theoretical vs. numerical results for FDP and FDR: FDP as a function of thresholds and FDR as
a function of global P-value, α, for needlet scale j = 38. The dashed curves are the analytical upper bounds
while the solid curves are the corresponding empirical results from 100 Monte Carlo simulations.
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Figure 7. Detection power: number of true discoveries for threshold u > 3 as a function of needlet scales, j .
The three curves are the mean of 100 Monte Carlo simulations for the corresponding cases. The legend
shows the number of input point sources in simulations.
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