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The paper is concerned with asymptotic properties of the principal components analysis of functional data.
The currently available results assume the existence of the fourth moment. We develop analogous results
in a setting which does not require this assumption. Instead, we assume that the observed functions are
regularly varying. We derive the asymptotic distribution of the sample covariance operator and of the sample
functional principal components. We obtain a number of results on the convergence of moments and almost
sure convergence. We apply the new theory to establish the consistency of the regression operator in a
functional linear model.
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1. Introduction

A fundamental technique of functional data analysis is to replace infinite dimensional curves by
coefficients of their projections onto suitable, fixed or data-driven, systems, see, for example,
Bosq [2], Ramsay and Silverman [27], Horváth and Kokoszka [11], Hsing and Eubank [13].
A finite number of these coefficients encode the shape of the curves and are amenable to various
statistical procedures. The best systems are those that lead to low dimensional representations,
and so provide the most efficient dimension reduction. Of these, the functional principal compo-
nents (FPCs) have been most extensively used, with hundreds of papers dedicated to the various
aspects of their theory and applications.

If X,X1,X2, . . . ,XN are mean zero i.i.d. functions in L2 with E‖X‖2 < ∞, then

Xn(t) =
∞∑

j=1

ξnj vj (t), Eξ2
nj = λj . (1.1)

The FPCs vj and the eigenvalues λj are, respectively, the eigenfunctions and the eigenvalues
of the covariance operator C : L2 → L2 defined by C(x)(t) = ∫

Cov(X(t),X(s))x(s) ds. As
such, the vj are orthogonal. We assume they are normalized to unit norm. The vj form an op-
timal orthonormal basis for dimension reduction measured by the L2 norm, see, for example,
Theorem 11.4.1 in Kokoszka and Reimherr [17].

The vj and the λj are estimated by v̂j and λ̂j defined by∫
ĉ(t, s)v̂j (s) ds = λ̂j v̂j (t), (1.2)

1350-7265 © 2019 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/19-BEJ1113
mailto:Piotr.Kokoszka@colostate.edu


Principal components analysis of regularly varying functions 3865

where

ĉ(t, s) = 1

N

N∑
n=1

Xn(t)Xn(s). (1.3)

Like the vj , the v̂j are defined only up to a sign. Thus, strictly speaking, in the formulas that
follow, the v̂j would need to be replaced with ĉj v̂j , where ĉj = sign〈v̂j , vj 〉. As is customary, to
lighten the notation, we assume that the orientations of vj and v̂j match, that is, ĉj = 1.

Under the existence of the fourth moment,

E‖X‖4 =
{∫

X2(t) dt

}2

< ∞, (1.4)

and assuming λ1 > λ2 > · · · , it has been shown that for each j ≥ 1,

lim sup
N→∞

NE‖v̂j − vj‖2 < ∞, lim sup
N→∞

NE(λ̂j − λj )
2 < ∞, (1.5)

N1/2(λ̂j − λj )
d→ N

(
0, σ 2

j

)
, (1.6)

N1/2(v̂j − vj )
d→ N(0,Cj ), (1.7)

for a suitably defined variance σ 2
j and a covariance operator Cj . The above relations, especially

(1.5), have been used to derive large sample justifications of inferential procedures based on the
estimated FPCs v̂j . In most scenarios, one can show that replacing the v̂j by the vj and the λ̂j

by the λj is asymptotically negligible. Relations (1.5) were established by Dauxois et al. [3] and
extended to weakly dependent functional time series by Hörmann and Kokoszka [10]. Relations
(1.6) and (1.7) follow from the results of Kokoszka and Reimherr [16]. In case of continuous
functions satisfying regularity conditions, they follow from the results of Hall and Hosseini-
Nasab [9].

A crucial assumption for the relations (1.5)–(1.7) to hold is the existence of the fourth moment,
i.e. (1.4), the i.i.d. assumption can be relaxed in many ways. Nothing is at present known about
the asymptotic properties of the FPCs and their eigenvalues if (1.4) does not hold. Our objective is
to explore what can be said about the asymptotic behavior of Ĉ, v̂j and λ̂j if (1.4) fails. We would
thus like to consider the case of E‖Xn‖2 < ∞ and E‖Xn‖4 = ∞. Such an assumption is however
too general. From mid 1980s to mid 1990s, similar questions were posed for scalar time series
for which the fourth or even second moment does not exist. A number of results pertaining to the
convergence of sample covariances and the periodogram have been derived under the assumption
of regularly varying tails, for example, Davis and Resnick [4,5], Klüppelberg and Mikosch [15],
Mikosch et al. [26], Kokoszka and Taqqu [18], Anderson and Meerschaert [1]; many others are
summarized in the monograph of Embrechts et al. [8]. The assumption of regular variation is
natural because non–normal stable limits can be derived by establishing a connection to random
variables in a stable domain of attraction, which is characterized by regular variation. This is the
approach we take. We assume that the functions Xn are regularly varying in the space L2 with
the index α ∈ (2,4), which implies E‖Xn‖2 < ∞ and E‖Xn‖4 = ∞. Suitable definitions and
assumptions are presented in Section 2.
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The paper is organized as follows. The remainder of the introduction provides a practical
motivation for the theory we develop. It is not necessary to understand the contribution of the
paper, but, we think, it gives a good feel for what is being studied. The formal exposition begins
in Section 2, in which notation and assumptions are specified. Section 3 is dedicated to the
convergence of the sample covariance operator (the integral operator with kernel (1.3)). These
results are then used in Section 4 to derive various convergence results for the sample FPCs and
their eigenvalues. Section 5 shows how the results derived in previous sections can be used in
a context of a functional regression model. Its objective is to illustrate the applicability of our
theory in a well known and extensively studied setting. It is hoped that it will motivate and guide
applications to other problems of functional data analysis. All proofs which go beyond simple
arguments are presented in Online material [19].

We conclude this introduction by presenting a specific data context. Denote by Pi(t) the price
of an asset at time t of trading day i. For the assets we consider in our illustration, t is time in
minutes between 9:30 and and 16:00 EST (NYSE opening times) rescaled to the unit interval
(0,1). The intraday return curve on day i is defined by Xi(t) = logPi(t)− logPi(0). In practice,
Pi(0) is the price after the first minute of trading. The curves Xi show how the return accumulates
over the trading day, see e.g. Lucca and Moench [22]; examples of are shown in Figure 1.

The first three sample FPCs, v̂1, v̂2, v̂3, are shown in Figure 2. They are computed, using (1.2),
from minute-by-minute Walmart returns form July 05, 2006 to Dec 30, 2011, N = 1378 trading
days. (This time interval is used for the other assets we consider.) The curves X̂i = ∑3

j=1 ξ̂ij v̂j ,

with the scores ξ̂ij = ∫
Xi(t)v̂j (t) dt , visually approximate the curves Xi well. One can thus

expect that the v̂j (with properly adjusted sign) are good estimators of the population FPCs vj in
(1.1). Relations (1.5) and (1.7) show that this is indeed the case, if E‖X‖4 < ∞. (The curves Xi

can be assumed to form a stationary time series in L2, see Horváth et al. [12].) We will now argue
that the assumption of the finite fourth moment is not realistic, so, with the currently available
theory, it is not clear if the v̂j are good estimators of the vj . If E‖X‖4 < ∞, then Eξ4

1j < ∞ for

every j . Figure 3 shows the Hill plots of the sample score ξ̂ij for two stocks and for j = 1,2,3.
Hill plots for other blue chip stocks look similar. These plots illustrate several properties. (1) It
is reasonable to assume that the scores have Pareto tails. (2) The tail index α is smaller than

Figure 1. Five consecutive intraday return curves, Walmart stock. The raw returns are noisy grey lines. The
smoother black lines are approximations X̂i (t) = ∑3

j=1 ξ̂ij v̂j .
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Figure 2. The first three sample FPCs of intraday returns on Walmart stock.

4, implying that the fourth moment does not exist. (3) It is reasonable to assume that the tail
index does not depend on j and is between 2 and 4. With such a motivation, we are now able to
formalize in the next section the setting of this paper.

2. Preliminaries

The functions Xn are assumed to be independent and identically distributed in L2, with the same
distribution as X, which is regularly varying with index α ∈ (2,4). By L2 := L2(T ), we denote
the usual separable Hilbert space of square integrable functions on some compact subset T of
an Euclidean space. In a typical FDA framework, T = [0,1], for example, Chapter 2 of Horváth
and Kokoszka [11]. Regular variation in finite-dimensional spaces has been a topic of extensive
research for decades, see, for example, Resnick [28,29] and Meerschaert and Scheffler [24]. We
shall need the concept of regular variation of measures on infinitely-dimensional function spaces.
To this end, we start by recalling some terminology and fundamental facts about regularly varying
functions.

A measurable function L : (0,∞) → R is said to be slowly varying (at infinity) if, for all
λ > 0,

L(λu)

L(u)
→ 1, as u → ∞.

Functions of the form R(u) = uρL(u) are said to be regularly varying with exponent ρ ∈R.
The notion of regular variation extends to measures and provides an elegant and powerful

framework for establishing limit theorems. It was first introduced by Meerschaert [23] and has
been since extended to Banach and even metric spaces using the notion of M0 convergence (see,
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Figure 3. Hill plots (an estimate of α as a function of upper order statistics) for sample FPC scores for
Walmart (left) and IBM (right). From top to bottom: levels j = 1,2,3.

e.g., Hult and Lindskog [14]). Even though we will work only with Hilbert spaces, we review the
theory in a more general context.

Consider a separable Banach space B and let Bε := {z ∈ B : ‖z‖ < ε} be the open ball of
radius ε > 0, centered at the origin. A Borel measure μ defined on B0 := B\{0} is said to be
boundedly finite if μ(A) < ∞, for all Borel sets that are bounded away from 0, that is, such that
A ∩ Bε = ∅, for some ε > 0. Let M0 be the collection of all such measures. For μn,μ ∈ M0,
we say that the μn converge to μ in the M0 topology, if μn(A) → μ(A), for all bounded away



Principal components analysis of regularly varying functions 3869

from 0, μ-continuity Borel sets A, i.e., such that μ(∂A) = 0, where ∂A := A \ A◦ denotes the
boundary of A. The M0 convergence can be metrized such that M0 becomes a complete separable
metric space (Theorem 2.3 in Hult and Lindskog [14] and also Section 2.2 of Meiguet [25]). The
following result is known, see, for example, Chapter 2 of Meiguet [25] and references therein.

Proposition 2.1. Let X be a random element in a separable Banach space B and α > 0. The
following three statements are equivalent:

(i) For some slowly varying function L,

P
(‖X‖ > u

) = u−αL(u) (2.1)

and

P(u−1X ∈ ·)
P (‖X‖ > u)

M0−→ μ(·), u → ∞, (2.2)

where μ is a non-null measure on the Borel σ -field B(B0) of B0 = B\{0}.
(ii) There exists a probability measure 	 on the unit sphere S in B such that, for every t > 0,

P(‖X‖ > tu,X/‖X‖ ∈ ·)
P (‖X‖ > u)

w−→ t−α	(·), u → ∞.

(iii) Relation (2.1) holds, and for the same spectral measure 	 in (ii),

P
(
X/‖X‖ ∈ ·|‖X‖ > u

) w−→ 	(·), u → ∞.

Definition 2.1. If any one of the equivalent conditions in Proposition 2.1 hold, we shall say that
X is regularly varying with index α. The measures μ and 	 will be referred to as exponent and
angular measures of X, respectively.

The measure 	 is sometimes called the spectral measure, but we will use the adjective “spec-
tral” in the context of stable measures which appear in Section 3. It is important to distinguish
the angular measure of a regularly varying random function and a spectral measure of a stable
distribution, although they are related. We also note that we call α the tail index, and −α the tail
exponent.

We will work under the following assumption.

Assumption 2.1. The random element X in the separable Hilbert space H = L2 has mean zero
and is regularly varying with index α ∈ (2,4). The observations X1,X2, . . . are independent
copies of X.

Assumption 2.1 is a coordinate free condition not related in any way to functional princi-
pal components. The next assumption relates the asymptotic behavior of the FPC scores to the
assumed regular variation. It implies, in particular, that the expansion X(t) = ∑∞

j=1 ξj vj (t) con-
tains infinitely many terms, so that we study infinite dimensional objects. We will see in the
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proofs of Proposition 3.1 and Theorem 3.2 that under Assumption 2.1 the limit

Qnm = lim
u→∞

P({∑∞
j=n ξ2

j }1/2{∑∞
j=m ξ2

j }1/2 > u)

P (
∑∞

j=1 ξ2
j > u)

exists and is finite. We impose the following assumption related to condition (2.2).

Assumption 2.2. For every n,m ≥ 1, Qnm > 0.

Assumption 2.2 postulates, intuitively, that the tail sums
∑∞

j=n ξ2
j must have extreme proba-

bility tails comparable to that of ‖X‖2.
We now collect several useful facts that will be used in the following. The exponent measure

μ satisfies

μ(tA) = t−αμ(A), ∀t > 0,A ∈ B(B0). (2.3)

It admits the polar coordinate representation via the angular measure 	. That is, if x = rθ , where
r := ‖x‖ and θ = x/‖x‖, for x �= 0, we have

μ(dx) = αr−α−1 dr 	(dθ). (2.4)

This means that for every bounded measurable function f that vanishes on a neighborhood of 0,
we have ∫

B

f (x)μ(dx) =
∫
S

∫ ∞

0
f (rθ)αr−α−1 dr 	(dθ).

There exists a sequence {aN } such that

NP(X ∈ aNA) → μ(A), (2.5)

for any set A in B(B0) with μ(∂A) = 0. One can take, for example,

aN = N1/αL0(N), (2.6)

with a slowly varying function L0 satisfying L−α
0 (N)L(N1/αL0(N)) → 1.

We will work with Hilbert–Schmidt operators. A linear operator � : H → H is Hilbert–
Schmidt if

∑∞
j=1 ‖�(ej )‖2 < ∞, where {ej } is any orthonormal basis of H . Every Hilbert–

Schmidt operator is bounded. The space of Hilbert–Schmidt operators will be denoted by S . It is
itself a separable Hilbert space with the inner product

〈�1,�2〉S =
∞∑

j=1

〈
�1(ej ),�2(ej )

〉
.

If � is an integral operator defined by �(x)(t) = ∫
ψ(t, s)x(s) ds, x ∈ L2, then ‖�‖2

S =∫∫
ψ2(t, s) dt ds.
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Relations (1.5) essentially follow from the bound

E‖Ĉ − C‖2
S ≤ N−1E‖X‖4,

where the subscript S indicates the Hilbert–Schmidt norm. Under Assumption 2.1 such a bound
is useless because, by (2.1), E‖X‖4 = ∞. In fact, one can show that under Assumption 2.1,
E‖Ĉ‖2

S = ∞, so no other bound on E‖Ĉ −C‖2
S can be expected. The following Proposition 2.2

implies however that under Assumption 2.1 the population covariance operator C is a Hilbert–
Schmidt operator, and Ĉ ∈ S with probability 1. This means that the space S does provide a
convenient framework.

Proposition 2.2. Suppose X is a random element of L2 with E‖X‖2 < ∞ and Ĉ is the sample
covariance operator based on N i.i.d. copies of X. Then C ∈ S and Ĉ ∈ S with probability 1.

Like all proofs, the proof of Proposition 2.2 is presented in the on-line material.

3. Limit distribution of ̂C

We will show that Nk−1
N (Ĉ − C) converges to an α/2-stable Hilbert–Schmidt operator, for an

appropriately defined regularly varying sequence {kN }. Unless stated otherwise, all limits in the
following are taken as N → ∞.

Observe that for any x ∈ H ,

Nk−1
N (Ĉ − C)(x) = Nk−1

N

(
N−1

N∑
n=1

〈Xn,x〉Xn − E
[〈X1, x〉X1

])

= k−1
N

(
N∑

n=1

〈Xn,x〉Xn − NE
[〈X1, x〉X1

])

= k−1
N

(
N∑

n=1

(Xn ⊗ Xn)(x) − NE
[
(X1 ⊗ X1)

]
(x)

)
, (3.1)

where (Xn ⊗ Xn)(x) = 〈Xn,x〉Xn. Since the Xn ⊗ Xn are Hilbert–Schmidt operators, the last
expression shows a connection between the asymptotic distribution of Ĉ and convergence to a
stable limit in the Hilbert space S of Hilbert–Schmidt operators. We therefore restate below, as
Theorem 3.1, Theorem 4.11 of Kuelbs and Mandrekar [20] which provides conditions for the
stable domain of attraction in a separable Hilbert space. The Hilbert space we will consider in
the following will be S and the stability index will be α/2, α ∈ (2,4). However, when stating the
result of Kuelbs and Mandrekar, we will use a generic Hilbert space H and the generic stability
index p ∈ (0,2). Recall that for a stable random element S ∈ H with index p ∈ (0,2), there
exists a spectral measure σS defined on the unit sphere SH = {z ∈ H : ‖z‖ = 1}, such that the
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characteristic functional of S is given by

E exp
{
i〈x,S〉} = exp

{
i〈x,βS〉 −

∫
S

∣∣〈x, s〉∣∣pσS(ds) + iC(p,x)

}
, x ∈ H, (3.2)

where

C(p,x) =

⎧⎪⎨⎪⎩
tan

πp

2

∫
S

〈x, s〉∣∣〈x, s〉∣∣p−1
σS(ds) if p �= 1,

2

π

∫
S

〈x, s〉 log
∣∣〈x, s〉∣∣σS(ds) if p = 1.

We denote the above representation by S ∼ [p,σS,βS]. The p-stable random element S is nec-
essarily regularly varying with index p ∈ (0,2). In fact, its angular measure is precisely the
normalized spectral measure appearing in (3.2), that is,

	S(·) = σS(·)
σS(SH )

.

Kuelbs and Mandrekar [20] derived sufficient and necessary conditions on the distribution of
Z under which

b−1
N

(
N∑

i=1

Zi − γN

)
d→ S, (3.3)

where the Zi are i.i.d. copies of Z. They assume that the support of the distribution of S, equiv-
alently of the distribution of Z, spans the whole Hilbert space H . In our context, we will need to
work with Z whose distribution is not supported on the whole space. Denote by L(Z) the small-
est closed subspace which contains the support of the distribution of Z. Then L(Z) is a Hilbert
space itself with the inner product inherited from H . Denote by {ej , j ∈ N} an orthonormal ba-
sis of L(Z). We assume that this is an infinite basis because we consider infinite dimensional
data. (The finite dimensional case has already been dealt with by Rvačeva [30].) Introduce the
projections

πm(z) =
∞∑

j=m

〈z, ej 〉ej , z ∈ H.

Theorem 3.1. Let Z1, Z2, . . . be i.i.d. random elements in a separable Hilbert space H with the
same distribution as Z. Let {ej , j ∈ N} be an orthonormal basis of L(Z). There exist normalizing
constants bN and γN such that (3.3) holds if and only if

P(‖πm(Z)‖ > tu)

P (‖Z‖ > u)
→ cm

c1
t−p, u → ∞, (3.4)

where for each m ≥ 1, cm > 0, and limm→∞ cm = 0, and where

P(‖Z‖ > u,Z/‖Z‖ ∈ A)

P (‖Z‖ > u,Z/‖Z‖ ∈ A�)
→ σS(A)

σS(A�)
, u → ∞, (3.5)

for all continuity sets A, A� ∈ B(SH ) with σS(A�) > 0.
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If (3.3) holds, the sequence bN must satisfy

bN → ∞,
bN

bN+1
→ 1, Nb−2

N E
(‖Z‖2I{‖Z‖≤bN }

) → λpσS(SH ), (3.6)

where

λp =
⎧⎨⎩

p(1 − p)

	(3 − p) cos(πp/2)
, if p �= 1

2/π, if p = 1,

(3.7)

and 	(a) := ∫ ∞
0 e−xxa−1 dx, a > 0 is the Euler gamma function. Furthermore, the γN ∈ H may

be chosen as

γN = NE(ZI{‖Z‖≤bN }). (3.8)

Remark 3.1. The origin of the constant λp appearing in (3.6) can be understood as follows.
Consider the simple scalar case H = R. Let Z be symmetric α-stable with E[eiZx] = e−c|x|α ,
x ∈ R, where in this case, c = σ(SH ) ≡ σ({−1,1}) > 0. Consider i.i.d. copies Zi , i = 1,2, . . .

of Z and observe that by the p-stability property

1

N1/α

N∑
j=1

Zj
d= Z ≡ S,

and hence (3.3) holds trivially with bN := N1/α and γN := 0.
On the other hand, by Proposition 1.2.15 on page 16 in Samorodnitsky and Taqqu [31], we

have

P
(|Z| > x

) ∼ c(1 − p)

	(2 − p) cos(πp/2)
x−p, as x → ∞.

This along with an integration by parts and an application of Karamata’s theorem yield
Nb−2

N E[Z2I{|Z|≤bN }] → λpσS(SH ), giving the constant in (3.6).

Proposition 3.1. Conditions (3.4) and (3.5) in Theorem 3.1 hold if and only if Z is regularly
varying in H with index p ∈ (0,2) and for each m ≥ 1, μZ(Am) > 0, where

Am =
{

z ∈ H : ∥∥πm(z)
∥∥ =

∥∥∥∥∥
∞∑

j=m

〈z, ej 〉ej

∥∥∥∥∥ > 1

}
. (3.9)

Our next objective is to show that if X is a regularly varying element of a separable Hilbert
space H whose index is α > 0, then the operator Y = X ⊗X is regularly varying with index α/2,
in the space of Hilbert–Schmidt operators. If y, z ∈ H , then y ⊗ z is an element of S defined by
(y ⊗ z)(x) = 〈y, x〉z, x ∈ H . It is easy to check that ‖y ⊗ z‖S = ‖y‖‖z‖. If B1,B2 ⊂ H , we
denote by B1 ⊗ B2 the subset of S defined as the set of operators of the form x1 ⊗ x2, with
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x1 ∈ B1, x2 ∈ B2. Denote by SH the unit sphere in H centered at the origin, and by SS such a
sphere in S .

The next result is valid for all α > 0.

Proposition 3.2. Suppose X is a regularly varying element with index α > 0 of a separable
Hilbert space H . Then the operator Y = X ⊗ X is a regularly varying element with index α/2 of
the space S of Hilbert–Schmidt operators.

Remark 3.2. The proof of Proposition 3.2 shows that the angular measure of X⊗X is supported
on the diagonal {� ∈ SS : � = x ⊗ x for some x ∈ SH } and that 	X⊗X(B ⊗B) = 	X(B), ∀B ⊂
B(SH ).

The next result specifies the limit distribution of the sums of the Xi ⊗ Xi based on the results
derived so far.

Theorem 3.2. Suppose Assumptions 2.1 and 2.2 hold. Then, there exist normalizing constants
kN and operators ψN such that

k−1
N

(
N∑

i=1

Xi ⊗ Xi − ψN

)
d→ S, (3.10)

where S ∈ S is a stable random operator, S ∼ [α/2, σS,0], where the spectral measure σS is
defined on the unit sphere SS = {y ∈ S : ‖y‖S = 1}. The normalizing constants may be chosen
as follows

kN =
(

α

4 − α

)2/α

a2
N, ψN = NE

[
(X ⊗ X)I{‖X‖2≤kN }

]
, (3.11)

where aN is defined by (2.6).

The final result of this section specifies the asymptotic distribution of Ĉ − C.

Theorem 3.3. Suppose Assumptions 2.1 and 2.2 hold. Then,

Nk−1
N (Ĉ − C)

d→ S − α

α − 2

∫
SH

(θ ⊗ θ)	X(dθ), (3.12)

where S ∈ S and {kN } are as in Theorem 3.2. (kN = N2/αL(N) for a slowly varying L.)

If the Xi are scalars, then the angular measure 	X is concentrated on SH = {−1,1}, with
	X(1) = p, 	X(−1) = 1 −p, in the notation of Davis and Resnick [5]. Thus

∫
SH

θ2	X(dθ) = 1,
and we recover the centering α/(α −2) in Theorem 2.2 of Davis and Resnick [5]. Relation (3.12)
explains the structure of this centering in a much more general context.

Theorem 3.3 readily leads to a strong law of large numbers which can be derived by an appli-
cation of the following result, a consequence of Theorem 3.1 of de Acosta [6].
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Theorem 3.4. Suppose Yi, i ≥ 1, are i.i.d. mean zero elements of a separable Hilbert space with
E‖Yi‖γ < ∞, for some 1 ≤ γ < 2. Then,

1

N1/γ

N∑
i=1

Yi
P→ 0 if and only if

1

N1/γ

N∑
i=1

Yi
a.s.→ 0.

Set Yi = Xi ⊗ Xi − E[X ⊗ X]. Then the Yi are i.i.d. mean zero elements of S which, by
Proposition 3.2, satisfy E‖Yi‖γ

S < ∞, for any γ ∈ (0, α/2). Theorem 3.3 implies that for any

γ ∈ (0, α/2), N−1/γ
∑N

i=1 Yi
P→ 0. Thus Theorem 3.4 leads to the following corollary.

Corollary 3.1. Suppose Assumptions 2.1 and 2.2 hold. Then, for any γ ∈ [1, α/2), N1−1/γ ‖Ĉ −
C‖S → 0 with probability 1.

4. Convergence of eigenfunctions and eigenvalues

We first formulate and prove a general result which allows us to derive the asymptotic distribu-
tions of the eigenfunctions and eigenvalues of an estimator of the covariance operator from the
asymptotic distribution of the operator itself. The proof of this result is implicit in the proofs of
the results of Section 2 of Kokoszka and Reimherr [16], which pertain to the asymptotic normal-
ity of the sample covariance operator if E‖X‖4 < ∞. The result and the technique of proof are
however more general, and can be used in different contexts, so we state and prove it in detail.

Assumption 4.1. Suppose C is the covariance operator of a random function X taking values in
L2 such that E‖X‖2 < ∞. Suppose Ĉ is an estimator of C which is a.s. symmetric, nonnegative–
definite and Hilbert–Schmidt. Assume that for some random operator Z ∈ S , and for some rN →
∞,

ZN := rN(Ĉ − C)
d→ Z.

In our setting, Z ∈ S is specified in (3.12), and rN = NβL(N) for some 0 < β < 1/2. More
precisely,

rN = Na−2
N , aN = N1/αL0(N),α ∈ (2,4).

We will work with the eigenfunctions and eigenvalues defined by

C(vj ) = λjvj , Ĉj (v̂j ) = λ̂j v̂j , j ≥ 1.

Assumption 4.1 implies that λ̂j ≥ 0 and the v̂j are orthogonal with probability 1. We assume that,
like the vj , the v̂j have unit norms. To lighten the notation, we assume that sign〈v̂j , vj 〉 = 1. This
sign does not appear in any of our final results, it cancels in the proofs. We assume that both sets
of eigenvalues are ordered in decreasing order. The next assumption is standard, it ensures that
the population eigenspaces are one dimensional.
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Assumption 4.2. λ1 > λ2, . . . ,> λp > λp+1.

Set

Tj =
∑
k �=j

(λj − λk)
−1〈Z,vj ⊗ vk〉vk.

Lemma I.2 in online material shows that the series defining Tj converges a.s. in L2.

Theorem 4.1. Suppose Assumptions 4.1 and 4.2 hold. Then,

rN {v̂j − vj ,1 ≤ j ≤ p} d→ {Tj ,1 ≤ j ≤ p}, in
(
L2)p

,

and

rN {λ̂j − λj ,1 ≤ j ≤ p} d→ {〈
Z(vj ), vj

〉
,1 ≤ j ≤ p

}
, in R

p.

If Z is an (α/2)-stable random operator in S , then the Tj are jointly (α/2)-stable random
functions in L2, and 〈Z(vj ), vj 〉 are jointly (α/2)-stable random variables. This follows directly
from the definition of a stable distribution, for example, Section 6.2 of Linde [21]. Under As-
sumption 2.1, rN = N1−2/αL−2

0 (N). Theorem 4.1 thus leads to the following corollary.

Corollary 4.1. Suppose Assumptions 2.1, 2.2 and 4.2 hold. Then,

N1−2/αL−2
0 (N){v̂j − vj ,1 ≤ j ≤ p} d→ {Tj ,1 ≤ j ≤ p}, in

(
L2)p

,

where the Tj are jointly (α/2)-stable in L2, and

N1−2/αL−2
0 (N){λ̂j − λj ,1 ≤ j ≤ p} d→ {Sj ,1 ≤ j ≤ p}, in R

p,

where the Sj are jointly (α/2)-stable in R.

Corollary 4.1 implies the rates in probability v̂j −vj = OP (r−1
N ) and λ̂j −λj = OP (r−1

N ), with
rN = N1−2/αL−2

0 (N). This means, that the distances between v̂j and λ̂j and the corresponding
population parameters are approximately of the order N2/α−1, that is, are asymptotically larger
that these distances in the case of E‖X‖4 < ∞, which are of the order N−1/2. Note that 2/α −
1 → −1/2, as α → 4.

It is often useful to have some bounds on moments, analogous to relations (1.5). Since the
tails of ‖Tj‖ and |Sj | behave like t−α/2, for example, Section 6.7 of Linde [21], E‖Tj‖γ < ∞,
0 < γ < α/2, with an analogous relation for |Sj |. We can thus expect convergence of moments
of order γ ∈ (0, α/2). The following theorem specifies the corresponding results.

Theorem 4.2. If Assumptions 2.1 and 2.2 hold, then for each γ ∈ (0, α/2), there is a slowly
varying function Lγ such that

lim sup
N→∞

Nγ(1−2/α)Lγ (N)E‖Ĉ − C‖γ

S < ∞
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and for j ≥ 1,

lim sup
N→∞

Nγ(1−2/α)Lγ (N)E|λ̂j − λj |γ < ∞.

If, in addition, Assumption 4.2 holds, then for 1 ≤ j ≤ p,

lim sup
N→∞

Nγ(1−2/α)Lγ (N)E‖v̂j − vj‖γ < ∞.

Several cruder bounds can be derived from Theorem 4.2. In applications, it is often con-
venient to take γ = 1. Then E‖Ĉ − C‖S ≤ N2/α−1L1(N). By Potter bounds, for example,
Proposition 2.6 (ii) in Resnick [29], for any ε > 0 there is a constant Cε such that for x > xε

L1(x) ≤ Cεx
ε . For each α ∈ (2,4), we can choose ε so small that −δ(α) := 2/α − 1 + ε < 0.

This leads to the following corollary.

Corollary 4.2. If Assumptions 2.1 and 2.2 hold, then for each α ∈ (2,4), there are constant Cα

and δ(α) > 0 such that

E‖Ĉ − C‖S ≤ CαN−δ(α) and E‖λ̂j − λj‖ ≤ CαN−δ(α).

If, in addition, Assumption 4.2 holds, then for 1 ≤ j ≤ p, E‖v̂j − vj‖ ≤ Cα(j)N−δ(α).

Corollary 4.2 implies that E‖Ĉ − C‖S , E‖λ̂j − λj‖ and E‖v̂j − vj‖ tend to zero, for any
α ∈ (2,4).

5. An application: Functional linear regression

One of the most widely used tools of functional data analysis is the functional regression model,
for example, Ramsay and Silverman [27], Horváth and Kokoszka [11], Kokoszka and Reimherr
[17]. Suppose X1,X2, . . . ,XN are explanatory functions, Y1, Y2, . . . , YN are response functions,
and assume that

Yi(t) =
∫ 1

0
ψ(t, s)Xi(s) ds + εi(t), 1 ≤ i ≤ N, (5.1)

where ψ(·, ·) is the kernel of � ∈ S . The Xi are mean zero i.i.d. functions in L2 = L2([0,1]),
and so are the error functions εi . Consequently, the Yi are i.i.d. in L2. A question that has been
investigated from many angles is how to consistently estimate the regression kernel ψ(·, ·). An
estimator that has become popular following the work of Yao et al. [32] can be constructed as
follows.

The population version of (5.1) is Y(t) = ∫
ψ(t, s)X(s) ds + ε(t). Denote by vi the FPCs of

X and by uj those of Y , so that

X(s) =
∞∑
i=1

ξivi(s), Y (t) =
∞∑

j=1

ζjuj (t).
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If ε is independent of X, then, with λ� = E[ξ2
� ],

ψ(t, s) =
∞∑

k=1

∞∑
�=1

E[ξ�ζk]
λ�

uk(t)v�(s),

with the series converging in L2([0,1] × [0,1]), equivalently in S , see Lemma 8.1 in Horváth
and Kokoszka [11]. This motivates the estimator

ψ̂KL(t, s) =
K∑

k=1

L∑
�=1

σ̂�k

λ̂�

ûk(t)v̂�(s),

where ûk are the eigenfunctions of ĈY and σ̂�k is an estimator of E[ξ�ζk]. Yao et al. [32] study
the above estimator under the assumption that data are observed sparsely and with measurement
errors. This requires two-stage smoothing, so their assumptions focus on conditions on the var-
ious smoothing parameters and the random mechanism that generates the sparse observations.
Like in all work of this type, they assume that the underlying functions have finite fourth mo-
ments: E‖X‖4 < ∞, E‖ε‖4 < ∞, and so E‖Y‖4 < ∞. Our objective is to show that if the Xi

satisfy the assumptions of Section 2, then

‖�̂KL − �‖L a.s.→ 0, (5.2)

as N → ∞, and K,L → ∞ at suitable rates determined by the rate of decay of the eigenvalues.
The norm ‖ · ‖L is the usual operator norm. The integral operators � and �̂KL are defined by
their kernels ψ(·, ·) and ψ̂KL(·, ·), respectively. We focus on moment conditions, so we assume
that the functions Xi , Yi are fully observed, and use the estimator

σ̂�k = 1

N

N∑
i=1

ξ̂i�ζ̂ik, ξ̂i� = 〈Xi, v̂�〉, ζ̂ik = 〈Yi, ûk〉.

Since the regression operator � is infinitely dimensional, we strengthen Assumption 4.2 to the
following assumption.

Assumption 5.1. The eigenvalues λi = Eξ2
i and γj = Eζ 2

j satisfy

λ1 > λ2 > · · · > 0, γ1 > γ2 > · · · > 0.

Many issues related to the infinite dimension of the functional data in model (5.1) are already
present when considering projections on the unobservable subspaces

VL = span{v1, v2, . . . , vL}, UK = span{u1, u2, . . . , uK}.
Therefore we first consider the convergence of the operator with the kernel

ψKL(t, s) =
K∑

k=1

L∑
�=1

σ�k

λ�

uk(t)v�(s).
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Set σ�k = E[ξ�ζk] and observe that

ψKL(t, s) − ψ(t, s) = −
∑

k>K or �>L

σ�k

λ�

uk(t)v�(s).

Therefore,

‖�KL − �‖2
L ≤ ‖�KL − �‖2

S =
∑

k>K or �>L

σ 2
�k

λ2
�

. (5.3)

The condition
∞∑

k=1

∞∑
�=1

σ 2
�k

λ2
�

< ∞, (5.4)

which is Assumption (A1) of Yao et al. [32], implies that the remainder term is asymptotically
negligible. It is instructive to rewrite condition (5.4) in a different form. Observe that

σ�k = E
[
ξl

〈
�(X) + ε,uk

〉] = E

[
ξl

∞∑
i=1

ξi

〈
�(vi), uk

〉] = λ�

〈
�(v�), uk

〉
. (5.5)

Therefore,

∞∑
k=1

∞∑
�=1

σ 2
�k

λ2
�

=
∞∑

�=1

1

λ2
�

∞∑
k=1

λ2
�

〈
�(v�), uk

〉2 =
∞∑

�=1

∥∥�(v�)
∥∥2 = ‖�‖2

S . (5.6)

We see that condition (5.4) simply means that � is a Hilbert–Schmidt operator, and so it holds
under our general assumptions on model (5.1).

The last assumption implicitly restricts the rates at which K and L tend to infinity with N .
Under Assumption 5.1, the following quantities are well defined

αj = min{λj − λj+1, λj−1 − λj }, j ≥ 2, α1 = λ1 − λ2, (5.7)

βj = min{γj − γj+1, γj−1 − γj }, j ≥ 2, β1 = γ1 − γ2. (5.8)

Assumption 5.2. The truncation levels K and L tend to infinity with N in such a way that for
some γ ∈ (1, α/2),

lim sup
N→∞

λ
−3/2
L L1/2N1/γ−1 < ∞, (5.9)

lim sup
N→∞

λ−1
L

(
L∑

j=1

α−1
j

)
N1/γ−1 < ∞, (5.10)

lim sup
N→∞

λ−1
L K1/2N1/γ−1 < ∞, (5.11)
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lim sup
N→∞

λ−1
L

{(
K∑

k=1

β−1
k

)
+

(
K∑

k=1

β−2
k

)1/2}
N1/γ−1 < ∞. (5.12)

The conditions in Assumption 5.2 could be restated or unified; and could be replaced by
slightly different conditions by modifying the technique of proof. The essence of this assumption
is that K and L must tend to infinity sufficiently slowly, and the rate is influenced by index α;
the closer α is to 4, the larger γ can be taken, so K and L can be larger.

Theorem 5.1. Suppose model (5.1) holds with � ∈ S , the Xi and the Yi satisfying Assump-
tions 2.1 and 2.2, and square integrable εi , E‖εi‖2 < ∞. Then relation (5.2) holds under As-
sumptions 5.1 and 5.2.
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