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Determinantal Point Processes (DPPs) are popular models for point processes with repulsion. They appear
in numerous contexts, from physics to graph theory, and display appealing theoretical properties. On the
more practical side of things, since DPPs tend to select sets of points that are some distance apart (repulsion),
they have been advocated as a way of producing random subsets with high diversity. DPPs come in two
variants: fixed-size and varying-size. A sample from a varying-size DPP is a subset of random cardinality,
while in fixed-size “k-DPPs” the cardinality is fixed. The latter makes more sense in many applications,
but unfortunately their computational properties are less attractive, since, among other things, inclusion
probabilities are harder to compute. In this work, we show that as the size of the ground set grows, k-
DPPs and DPPs become equivalent, in the sense that fixed-order inclusion probabilities converge. As a
by-product, we obtain saddlepoint formulas for inclusion probabilities in k-DPPs. These turn out to be
extremely accurate, and suffer less from numerical difficulties than exact methods do. Our results also
suggest that k-DPPs and DPPs also have equivalent maximum likelihood estimators. Finally, we obtain
results on asymptotic approximations of elementary symmetric polynomials which may be of independent
interest.

Keywords: determinantal point processes; point processes; saddlepoint approximation

Determinantal Point Processes originally arose in quantum physics (Macchi [13]) and random
matrix theory (Soshnikov [16]), but they are such natural objects that they have also been re-
discovered within computer science (Deshpande et al. [7], Deshpande and Rademacher [6]) and
that special cases have appeared in the statistics literature as well (Chen, Dempster and Liu [2]).
Within Machine Learning, their current popularity owes much to Kulesza and Taskar [11], whose
overall approach we will mostly follow here. Like them, we focus on discrete DPPs.

Kulesza and Taskar [11] advocate DPPs as tractable probabilistic models for diverse subsets.
Specifically, we assume that we have a ground set of n items, � = x1 . . . xn, of which we wish
to retain a subset X ⊆ �. Our requirement is that X be diverse, that is, that it should not contain
items that are too much alike, or, put differently, that it be representative of the range of items
found in �. A DPP is essentially a way of picking a random X that has this property with high
probability.

We introduce DPPs formally below, but a salient feature of classical DPPs is that the cardinal
of X is a random variable. Since this is not always suitable, Kulesza and Taskar [10] have in-
troduced a fixed-size variant (so-called k-DPPs), which are nothing more than DPPs conditioned
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on the event that |X | = k. k-DPPs share some features with DPPs but unfortunately lose some
tractability.

In this work, we show that this loss of tractability only matters for very small n. In large
sets, k-DPPs and DPPs converge in a sense we make precise below, but roughly means that the
probability that item xi ends up in set X is almost the same under a k-DPP and a matched DPP.
Moreover, this is true for bi-inclusions (i.e., the event that xi and xj are in X ) or indeed for joint
inclusion probabilities of any fixed order.1

Practically speaking, the ability to compute inclusion probabilities is essential when k-DPPs
are used for importance sampling. For example, in Tremblay, Barthelmé and Amblard [19], k-
DPPs are used to estimate averages: let L = ∑n

i=1 f (xi). If X is sampled from a k-DPP, the
average L can be estimated from the values of f in X . Since not all items have equal probability
of appearing in a k-DPP, we have to reweight by the inverse inclusion probability to form the
unbiased estimate:

L̂(X ) =
n∑

i=1

f (xi)I(i ∈ X )

p(i ∈ X )
(0.1)

Here we therefore need first-order inclusion probabilities. To estimate a pairwise quantity (e.g.,
mean distance), we would need second-order inclusion probabilities, and so on.

Our results lead to stable and accurate approximations for inclusion probabilities, as described
in Section 3, and stable algorithms for sampling k-DPPs with relatively large k. They also clarify
the links between k-DPPs and DPPs, and when the one should look like the other.

The article is structured as follows: in Section 1, we introduce notation and recall results on
DPPs and k-DPPs. Section 2 contains our main theoretical results. The practical algorithms that
follow are described in Section 3. Section 4 contains simulation results.

To prove our main result, we use saddlepoint approximations and a perturbation argument, but
readers who wish to skip the technical details will find an intuitive argument in Section 2.1, where
we explain that DPPs are just exponentially relaxed k-DPPs. Essentially, the strict constraint
|X| = k that appears in k-DPPs is relaxed to a soft constraint in DPPs, and the difference between
the soft and the hard constraint becomes irrelevant in large n.

1. Background

In this section, we introduce notation and some basic results.

1.1. Notation

We deal with finite ground sets, so without loss of generality, we may take � = {1, . . . , n}. Fixed
subsets of � are then equivalent to multi-indices and noted α, with cardinality noted |α|. Random

1To be precise: k-DPPs and DPPs cannot be equivalent in a strong sense, since they do not have the same support (one
generates a fixed size set, the other doesn’t). However, for n and k large enough, the probability that they include a certain
fixed subset converges.
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subsets are noted X or Y . Expectation is noted E(·), and I is the indicator function, so that e.g.,
E(I(i ∈ X )) = p(i ∈ X ). There are two equivalent viewpoints when dealing with finite random
subsets: one is to look at X , a subset, as the random variable. Another is to consider binary
strings of length n, which indicate whether item i is included in X . We note such strings z, and
depending on context one or the other viewpoint is more convenient. Matrices are in bold capitals,
for example, L. The identity matrix is noted I. Individual entries in a matrix are noted using
capitals: Lij is entry (i, j) in matrix L. Sub-matrices are in bold, with indices, for example Lα,β

is the sub-matrix of L with rows indexed by α and columns indexed by β . So-called “Matlab”
notation is used occasionally, so that the submatrix formed by selecting all rows in α is noted
Lα,:, and L:,1:k is the submatrix containing the first k columns. For simplicity, a single index is
used if it is repeated: Lα = Lα,α . Sub-matrices and sub-vectors formed by excluding elements are
noted with a minus sign, for example, the index α−j includes all elements in α except index j .

1.2. Some lemmas

We will need two well-known lemmas in the course of this work. The first one (Cauchy–Binet)
is central to the theory of DPPs, the second is an easy lemma on inclusion probabilities.

The Cauchy–Binet lemma expresses the determinant of a matrix product as a sum of products
of determinants.

Lemma 1.1 (Cauchy–Binet). Let M = AB, with A a n × m matrix, B a m × n matrix. We
assume m ≥ n. Then:

det M =
∑

α,|α|=n

det A:,α det Bα,: (1.1)

where α is a multi-index of length n. The sum is over all multi-indices α, of which there are
(
m
n

)
.

The second lemma is an easy lemma on sums of inclusion probabilities. An inclusion proba-
bility is the probability that a certain item (or items) appear in a random set.

Lemma 1.2 (Sums of inclusion probabilities). Let � designate a base set of items, and X a
random subset of �. Let α designate a fixed subset of items of cardinality m. p(α ⊆ X ) is called
an inclusion probability. We have that:

∑
α,|α|=m p(α ⊆ X ) = E(

(|X |
m

)
), where the expectation is

over the random set X . In particular:

1. if X is a set of fixed size k, the sum equals
(

k
m

)
.

2. if m = 1, the sum equals E(|X |)

Proof. ∑
α,|α|=m

p(α ⊆ X ) =
∑

α,|α|=m

E
(
I(α ⊆ X )

)
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= E

( ∑
α,|α|=m

I(α ⊆X )

)

= E

((|X |
m

))
�

Remark 1.1. For large sets, E
((|X |

m

)) = 1
m!E(|X |(|X |−1) · · · (|X |−m+1)) = 1

m!E(O(|X |m))

As a consequence, the sum of order-m inclusion probabilities for a set of fixed size k is O(km

m! ).
We use this fact to properly normalise the total variation distance, see Section 2.2.

1.3. Elementary symmetric polynomials

The Elementary Symmetric Polynomials (ESPs) of a matrix play an important role in the theory
of k-DPPs, and one of our core problems will be to find asymptotic formulas for them. Let L
denote a positive definite matrix and λ1 . . . λn its eigenvalues. The k-th ESP is a sum of all the
products of k eigenvalues:

ek(λ) =
∑

α,|α|=k

∏
j∈α

λj (1.2)

For example, e2(λ) = ∑
i<j λiλj . Interesting special cases include e1(λ) = ∑

λi = Tr(L), and
en(λ) = ∏

λi = det L. There is a rich theory on ESPs, going back at least to Newton, with in-
teresting modern developments (Mariet and Sra [14], Jozsa and Mitchison [9]). As we explain
below, they occur in k-DPPs as normalisation constants, and ratios of ESPs appear in inclusion
probabilities.

1.4. DPPs

DPPs are defined such as to produce random subsets that are not overly redundant, where the
notion of redundancy is defined with respect to a (positive definite) similarity function.

We have a collection � of items ordered from 1 to n. We associate to each pair of items
a similarity score Lij , such that the matrix L with entries Lij is positive definite. The matrix
L ∈R

n×n is called the L-ensemble of the DPP.2

Definition 1. A Determinantal Point Process is a random subset X of 1 . . . n with probability
mass function given by:

p(X ) = det(LX )

det(I + L)
(1.3)

2We find it more natural to define DPPs via the L-ensemble, since the more common definition via the marginal kernel
does not carry over to fixed-size DPPs.
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The preference for diverse subsets built into DPPs comes from the fact that if a subset X
includes items that are too similar, the matrix LX will have nearly colinear columns, and its
determinant will be close to 0.

An interesting aspect of DPPs is how tractable the marginals are. The inclusion probabilities,
that is, the probability that item i is in X , are given by the so-called “marginal kernel” matrix
K ∈R

n×n, where

K = (I + L)−1L (1.4)

Specifically, for a DPP, p(i ∈ X ) = Kii . More generally, inclusion probabilities are given by
principal minors of the marginal kernel, e.g., if α is a subset of �:

p(α ⊆X ) = det(Kα) (1.5)

A DPP can generate random subsets of any size from 1 to n. The expected cardinality of X
can also be read out from the marginal kernel, specifically:

E
(|X |) = Tr(K) =

∑ λi

1 + λi

(1.6)

where the λi ’s designate the eigenvalues of the L-ensemble L.

1.5. k-DPPs

Definition 2. A k-DPP is a DPP conditioned on the size of the sampled set |X | = k. In other
words, the probability mass function stays the same but now the sample space is the set of subsets
of 1 . . . n of size k, and

p
(
X ||X | = k

) ∝
{

det(LX ) if |X | = k

0 otherwise
(1.7)

Remark 1.2. Contrary to DPPs, k-DPPs are insensitive to the overall scaling of the L-ensemble.
Since

det(βLX ) = βk det(LX ),

the probability density (1.7) is invariant to any rescaling by a factor β > 0.

An important property of k-DPPs, one that unlocks many analytical simplifications, is that k-
DPPs are a mixture distribution. The mixture involves a diagonal k-DPP and a projection k-DPP,
two objects that are simpler than a generic k-DPP.

The mixture property is a consequence of the Cauchy–Binet formula (Lemma 1.1). Let L =
UDU� denote the spectral decomposition of L, with D = diag(λ1 . . . λn) and U the matrix of
eigenvectors. Then

p
(
X ||X | = k

) = 1

Z
det(LX ) = 1

Z

∑
Y,|Y |=k

det
(
UX ,YU�

X ,Y
)

det(DY ) (1.8)
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where Z is an integration constant (to be defined later), Y is a subset of columns of U, and the
sum is over all such subsets of size k. Equation (1.8) shows that the probability mass function
has the form of a mixture distribution, where we first choose a set of eigenvalues (with indices
Y) from a k-DPP with diagonal L-ensemble D and then choose a set of items X from a k-DPP
with L-ensemble U:,YU�

:,Y . The latter is a specific kind of DPP, called a “projection DPP”.
The same mixture interpretation holds for DPPs as well. In the case of DPPs, the rule for

sampling the set Y of eigenvalues is simpler. Each eigenvalue is sampled independently and
included with probability λi

1+λi
. Once we have the eigenvalues, we proceed in exactly the same

way as above: form a projection kernel, and sample the corresponding projection DPP.

1.5.1. Projection DPPs

Definition 3. A projection DPP is a k-DPP whose L-ensemble has the following form:

L = VV� (1.9)

where Vn×k has orthonormal columns (i.e., V�V = I).

Projection DPPs have a set of properties that make them especially tractable. The most salient
is that the marginal kernel equals the L-ensemble, e.g., the inclusion probability of item i equals
Lii , as shown in the following lemma.

Lemma 1.3. In a projection DPP with L-ensemble L, p(α ⊆X ) = det(LX ).

Proof. See appendix. �

This result is proved rigorously in the appendix, but straightforward if one looks at projection
DPPs as DPPs taken to a certain limit. Consider a DPP with the following L-matrix, indexed by
parameter γ > 0:

L(γ ) = RD(γ )R� (1.10)

where D(γ ) is a diagonal matrix with entries on the diagonal equal to γ repeated k times, fol-
lowed by γ −1, repeated n−k times, and R is a n×n orthonormal matrix. Let γ → ∞. Following
the mixture interpretation of DPPs, we see that the probability of picking one of the first k eigen-
values equals γ /(1+γ ), which tends to 1, while the probability of picking one of the latter n− k

tends to 0. This means that with increasing γ we end up always picking the same k eigenvalues,
and hence always sampling the same k-DPP, one with kernel R:,1:kR�:,1:k . The marginal probabili-

ties are given by the corresponding marginal kernel: RDm(γ )R� where Dm(γ ) has first k entries
equal to γ

1+γ
, and the next n − k equal to 1

γ+1 . In the large-γ limit, the marginal kernel thus

equals R:,1:kR�:,1:k as claimed. The limit is however improper, as some entries in the L-matrix
tend to infinity.

To sum up: if the L-ensemble is a projection matrix of rank k, then a k-DPP is also a DPP. We
can even extend this further to all L-ensembles of rank k.
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Result 1. Let L have rank k, with eigendecomposition L = UDU�. Without loss of generality,
we assume that U is of size n × k and D a diagonal matrix of size k × k with non-null diagonal
elements. Then a k-DPP with L-ensemble L is also a projection DPP, with marginal kernel equal
to UU�.

Proof. L has rank k, so in the eigendecomposition U is n× k, and D is a diagonal matrix of size
k × k. If X is a subset of size k, we have

det LX = det UX ,:DU�
:,X

and since the matrices involved are square, we have:

det LX = detD
(
det UX ,:U�

:,X
)

Then p(X ) ∝ (det UX ,:U�
:,X ), which is the probability mass function of a projection DPP and

the result follows. �

This result hints at a close kinship between k-DPPs and DPPs, and convergence results bear
this out.

1.5.2. Inclusion probabilities in k-DPPs

Since a k-DPP is a mixture of projection-DPPs (eq. (1.8)), the first order inclusion probability
for item i can be expressed as

p
(
i ∈ X ||X | = k

) = EY
((

UYU�
Y

)
ii

)
(1.11)

= EY

(
n∑

j=1

U2
ij I(j ∈ Y)

)
(1.12)

=
n∑

j=1

U2
ijP (j ∈ Y) (1.13)

= (
U diag(π)U�)

ii
(1.14)

where πj = p(j ∈ Y), the probability that the j -th eigenvector is included in set Y . Formulas for
higher-orders (joint inclusion probabilities) are in Section A.2.

Computing the inclusion probabilities for a k-DPP thus boils down to computing inclusion
probabilities in a diagonal k-DPP, and combining them with the eigenvectors of L.

1.6. Diagonal DPPs and k-DPPs

In the special case of diagonal DPPs and k-DPPs, the L-ensemble is a diagonal matrix. A diagonal
DPP turns out to be nothing more than a Bernoulli process. If conditioned to be of fixed size k, a
diagonal k-DPP is obtained.
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So far we have kept with the usual viewpoint on DPPs, which sees them as random sets.
Alternatively, a sample from a discrete DPP can be viewed as a binary string z of size n, where
zi = 1 indicates inclusion of the i-th item, and

∑n
i=1 zi = k. In this section, we prefer the latter

viewpoint, because it lightens notation.
In this notation, the inclusion probability of item i equals the marginal probability of zi ,

p(zi = 1), and similarly for joint probabilities p(zi = 1, zj = 1), etc. p(z) = p(z1 . . . zn) is the
likelihood of the draw.

1.6.1. Diagonal DPPs

Consider a DPP with diagonal L-ensemble

L = diag(λ1, . . . , λn)

Following Eq. (1.4), K is diagonal too, with entries Kii = πi = λi

1+λi
. The fact that the marginal

kernel is diagonal implies that p(zi = 1, zj = 1) = det(K{i,j}) = πiπj = p(zi = 1)p(zj = 1),
with similar results for higher-order probabilities. We conclude that (viewed as a binary string)
a diagonal DPP is a product of independent Bernoulli variables, where each zi is drawn with
probability πi .

1.6.2. Diagonal k-DPPs

Viewed as distributions over binary strings, diagonal DPPs are a product measure, meaning that
each zi is sampled independently. Diagonal k-DPPs are not, due to the constraint that

∑
zi = k.

The density of a diagonal k-DPP is given by:

p(z) =
∏n

j=1 λ
zj

j

Z
I

(∑
zi = k

)
(1.15)

The integration constant Z is given by the k’th elementary symmetric polynomial (ESP)

Z = ek(λ) =
∑
α

∏
j∈α

λj (1.16)

where α is a multi-index of size k. At this stage, it may be hard to see what sort of probability
distribution eq. (1.15) defines. Indeed, it is not obvious how to sample from such a distribu-
tion, and the algorithm given in Kulesza and Taskar [11] is not trivial. We return to the issue in
Section 3.3.1.

Inclusion probabilities can be computed through direct summation.

p(zi = 1) =
∑
z−i

p(zi = 1,z−i ) = λi

∑
|α|=k−1,α∩{i}=∅

∏
j∈α λj

ek(λ)
(1.17)

= λiek−1(λ−i )

ek(λ)
(1.18)
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Computing such quantities in practice is again not completely trivial, although Kulesza and
Taskar [11] gives an algorithm. We include a fairly accurate approximation below, and due to
numerical instabilities in the exact algorithm, we advocate using the approximation in most cases
(Section 4).

2. Asymptotic equivalence of k-DPPs and DPPs

Before stating our main results formally, we give an intuitive argument as to why k-DPPs and
DPPs may resemble one another.

2.1. Some intuition

Readers familiar with statistical physics will know of a class of results known as “equivalence of
ensembles” (Touchette [18]). These results justify formally a mathematical subterfuge, whereby a
probability distribution that incorporates a hard constraint (the “micro-canonical ensemble”) can
be replaced with a more tractable variant (the “canonical ensemble”), where the hard constraint
is turned into a soft constraint. Our result is a variant of this particular scenario.

We rewrite the likelihood of a k-DPP as the likelihood of a DPP times a hard constraint:

p(X ) ∝ (det LX )I
(|X | = k

)
Deploy now the usual trick of turning the hard constraint into a soft constraint via an exponential,
defining a new distribution:

q(X ) ∝ (det LX ) exp
(
ν|X |) (2.1)

where ν should be set so that |X | = k on average over q , i.e., Eq(|X |) = k. Before we find such a
value, it helps to recognise that q actually has the form of a DPP: since det(βLX ) = β |X ] det LX ,
we have

q(X ) ∝ det
(
exp(ν)LX

)
(2.2)

and we identify q as a DPP with L-ensemble exp(ν)LX . Using eq. (1.6), we find that:

Eq

(|X |) = exp(ν)Tr
((

exp(ν)L + I
)−1L

)
(2.3)

The appropriate value for ν is determined by the implicit equation that Eq(|X |) = k. In terms of
the eigenvalues, this reads: ∑

i

λie
ν

1 + λieν
= k (2.4)

To sum up, this development suggests that a k-DPP with ensemble L can be approximated by
a (tilted) DPP with L-ensemble exp(ν)L, with ν set so that the matched DPP has k elements on
average. The next section gives a rigorous statement for this approximation.
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2.2. Main result

Under certain conditions, DPPs and k-DPPs are equivalent in a regime where we pick a fixed
ratio of items from a growing set, that is, k

n
= r > 0, fixed as n → ∞. By equivalence, we mean

that they have the same marginals (inclusion probabilities of order 1 and above). The conditions
for equivalence boil down to the number of degrees of freedom of L being high enough, and we
make that condition more precise below. In practice the approximations, we derive give excellent
results in most settings we have tried, except with very small values of n (less than 10, say).

We require assumptions on the L-ensembles: let L1 . . .Ln denote a sequence of positive def-
inite matrices of increasing size n × n. The assumption is that Tr((Ln + I)−2Ln) diverges. The
question of which sequences of matrices verify this condition is left to Section 2.3.

We associate with each Ln a k-DPP Xn, where k = 
rn�, a fixed fraction of the number of
items. Similarly, we have a second sequence of matched DPPs X̃n with L-ensemble exp(νn)Ln,
where νn verifies Eq. (2.4). Let α denote a multi-index of fixed finite size m < k, and πn(α) the
probability that α ⊆Xn, and π̃n(α) the corresponding probability for X̃n. We may interpret π and
π̃ as two measures over α, and an appropriate means of comparing these quantities is via total
variation. Because π and π̃ have total mass that grows with k (see Lemma 1.2), we normalise
the total variation distance with the appropriate factor.

Definition 4. Let π , π̃ designate two inclusion measures of order m ≥ 1, corresponding to in-
clusion probabilities in point processes with n elements. We define their total variation distance
as:

Dm(π, π̃) =
(

k

m

)−1 ∑
α,|α|=m

∣∣π(α) − π̃(α)
∣∣ (2.5)

We have the following result:

Theorem 2.1. Under the assumptions above, joint inclusion probabilities under a k-DPP and
its matched DPP converge:

Dm(πn, π̃n) = O
(
n−1) as n → ∞ (2.6)

Remark 2.1. Note that in our proof we have k = O(n), which is needed because of a central
limit argument implicit in the saddlepoint expansion.

Remark 2.2. A quantity of interest in many calculations are sample averages of the form
A(X ) = 1

m

∑
i∈X fi . Then EX (A) = 1

m

∑
j∈� π(j)fj . An easy corollary is that |EX (A) −

EX̃ (A)| → 0, from well-known properties of the total variation distance (DasGupta [5]).

The overall proof path for Theorem 2.1 is as follows:

1. We reduce the equivalence of k-DPPs and DPPs to the equivalence of diagonal k-DPPs and
DPPs (Section 2.2.1)
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2. Elementary symmetric polynomials (and ratios thereof) hold the key to the next step, and
we show how they can be approximated using a saddlepoint approximation (Section 2.2.2)

3. We insert the asymptotic series for ESPs into the formula for inclusion probabilities, and
derive the O(1) and O(n−1) terms. The O(1) term corresponds to inclusion probabilities
in the matched DPP, from which Theorem 2.1 follows (Section 2.2.3).

2.2.1. Reduction to diagonal DPPs

Recall (Section 1.5) that DPPs and k-DPPs are both mixture distributions, where we first draw a
set of eigenvectors of L, and then draw from a projection DPP formed from these eigenvectors.
That second step is the same in DPPs and k-DPPs, only the first step differs. In DPPs, we draw
from a diagonal DPP, while in k-DPPs we draw from a diagonal k-DPP. Heuristically, because it
is only the first step that differs, we can focus on our asymptotic study on the first step.

Formally if we can establish that the inclusion probabilities in diagonal k-DPPs and DPPs
converge (at any finite order), then the inclusion probabilities in general k-DPPs and DPPs con-
verge as well (up to the same order). We note Y and Ỹ the diagonal DPPs associated with X and
X̃ . The order-m inclusion measures for X and X̃ are noted πm and π̃m, while the corresponding
measures for Y and Ỹ are noted ρm and ρ̃m (the latter correspond to the probability that certain
eigenvectors are included, as per the mixture interpretation of DPPs introduced in Section 1.5.1).

The following lemma states the result.

Lemma 2.1. Dm(πm, π̃m) ≤ Dm(ρm, ρ̃m)

Lemma 2.1 implies that if diagonal k-DPPs converge to matched diagonal DPPs, so do general
k-DPPs. The proof is deferred to the appendix (Section A.2). Armed with this lemma, we now
focus only on the diagonal case.

Our goal is now to compute inclusion probabilities in diagonal k-DPPs. Recall that α denotes
a subset of (1, . . . , n) of fixed size m. We wish to compute p(α ∈ Y), or equivalently, the proba-
bility that p(

∏
j∈α zj = 1). This marginal probability can be computed via direct summation:

p

(∏
j∈α

zj = 1

)
= (

∏
j∈α λi)

∑
β,|β|=k−|α|,β∩α=∅

∏
j∈β λj

ek(λ)
=

(∏
i∈α

λi

)
ek−m(λ−α)

ek(λ)
(2.7)

Thus, inclusion probabilities in diagonal DPPs can be expressed using ratios of ESPs. This
leads us to our next section, where we derive an asymptotic approximation for ESPs. We will
then insert the asymptotic approximation into Eq. (2.7), to get an asymptotic series for inclusion
probabilities.

2.2.2. Saddlepoint approximation for ESPs

ESPs are unwieldy combinatorial objects, but fortunately they lend themselves well to asymptotic
approximation. This section is crucial for the rest and so we keep the details in the main text.
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ESPs have an elegant probabilistic interpretation (already noted in passing in Chen, Dempster
and Liu [2]). An equivalent definition for ESPs views them as the coefficients in a power series:

ek(λ) = [
xk

] n∏
i=1

(1 + λix) (2.8)

We borrow the notation [xk]f (x) from combinatorics to denote the coefficient of xk in the se-
ries f . To uncover the probabilistic interpretation of ESPs, we transform the series into a proba-
bility generating function.

ek(λ) = [
xk

] n∏
i=1

(1 + λi)
(1 + λix)

1 + λi

(2.9)

=
n∏

i=1

(1 + λi)
[
xk

]∏
(1 − pi + xpi) (2.10)

where pi = λi

1+λi
∈ (0,1) is now to be interpreted as the parameter of a Bernoulli variable, Bi .

Let Sn = ∑n
i=1 Bi designate the sum of all such independent Bi ’s. Then:

p(Sn = k) = [
xk

] n∏
i=1

(1 − pi + xpi) = ek(λ)∏n
i=1(1 + λi)

Since Sn is the sum of n independent random variables, it invites a central limit approximation
to the p(Sn = k). First, note that:

μ = E(Sn) =
∑ λi

1 + λi

(2.11)

which tells us that ek , taken as a function of k, is likely to peak near μ. The second moment,

σ 2 = Var(Sn) =
∑ λi

(1 + λi)2
(2.12)

gives a measure of scale for the peak of ek around μ. Since λi

(1+λi)
2 ≤ λi

1+λi
, we have:

σ 2 ≤ μ (2.13)

In studying the convergence of k-DPPs and DPPs, it is σ 2, rather than μ that captures the
appropriate notion of “degrees of freedom”. In our case the Lyapunov central limit theorem
(Billingsley [1]) requires that σ 2 diverge asymptotically, and the condition, we assumed on the
sequence of L-ensembles guarantees exactly that (see Section 2.3 for a discussion).

A much better approximation than the Gaussian CLT is the saddlepoint approximation of
Daniels [4]. Unlike the CLT, it is accurate in the tails and has O(n−1) relative error. It reads:

p(Sn = k) = 1√
2πψ ′′(ν�)

exp
(
ψ

(
ν�

) − kν�
)(

1 + O
(
n−1)) (2.14)
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where ψ(ν) = logE(exp(νSn)) is the cumulant-generating function of Sn, and ν� is the solution
of the saddlepoint equation:

ν� = argmin
ν

ψ(ν) − kν (2.15)

In our case, we have:

ψ(ν) = logE
(
exp(νSn)

)
=

n∑
i=1

logE
(
exp(νBi)

)
=

∑
log

(
1

1 + λi

+ λi

1 + λi

eν

)
=

∑
log

(
1 + λie

ν
) −

∑
log(1 + λi) (2.16)

We will need the derivatives of ψ as well:

ψ ′(ν) =
∑ λie

ν

1 + λieν
(2.17)

ψ ′′(ν) =
∑ λie

ν

(1 + λieν)2
(2.18)

Inserting (2.16) into (2.15), we see that:

∑ λie
ν�

1 + λieν� = k

recovering (2.4).
To summarise: inserting (2.9) into (2.15), we have

Lemma 2.2.

ek(λ) = 1√
2πψ ′′(ν�)

exp

(
n∑

i=1

(
log

(
1 + λie

ν�)) − kν�

)(
1 + O

(
n−1)) (2.19)

Remark 2.3. In large n the exponential term dominates (a large deviation regime, see Touchette
[18]), and we have:

log ek(λ) ≈
n∑

i=1

log
(
1 + λie

ν�) − kν� (2.20)

In random matrix theory it is customary to define the Shannon transform of a matrix L as:
T (s) = log det(I + sL) (Couillet and Debbah [3]). Eq. (2.20) says that for large matrices, the
ESPs of L are directly related to the Legendre transform of T (eν).
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At this stage, we have a tractable approximation to ESPs, and we are now ready to use it to
find an approximation for inclusion probabilities.

2.2.3. Inclusion probabilities, and ratios of ESPs

To study the asymptotics of inclusion probabilities, we insert approximation (2.14) into eq. (2.7),
and compute the O(1) and O(n−1) terms. The calculation is lengthy and can be found in the
appendix (Section A.3). The end result is as follows:

Lemma 2.3. In a diagonal k-DPP Y with L-ensemble diag(λ1, . . . , λn), inclusion probabilities
have the asymptotic form:

pk(α ∈ Y) =
(∏

i∈α

λi exp(ν�)

1 + λi exp(ν�)

)(
1 + 1

n
g
(
ν�

) + O

(
1

n2

))
(2.21)

with

g
(
ν�

) = −ν2
1

2
ψ̄ ′′(ν�

) − 1

2ψ̄ ′′(ν�)

(
ψ̄(3)

(
ν�

)
ν1 − mψ̄ ′′

α

(
ν�

))
The terms appearing in the correction g(ν�) are defined in Appendix A.3.

Notice that the O(1) term corresponds exactly to the inclusion probability in the matched
diagonal DPP, Ỹ . We now have all the elements we need to prove Theorem 2.1. Consider a k-
DPP with m-th order inclusion probability πm. Let π̃m be the m-th order inclusion probability of
the matched DPP. Let the corresponding measure for the generating diagonal k-DPP be ρm(α) =
pk(α ∈ Y), whose approximation ρm = ρ̃m(1 + O(1/n)) is given by eq. (2.21). Starting with
Lemma 2.1 and using the approximation leads to

Dm(πm, π̃m) ≤ Dm(ρm, ρ̃m)

=
(

k

m

)−1 ∑
α,|α|=m

(∏
i∈α

λi exp(ν�)

1 + λi exp(ν�)

)(
1

n
g
(
ν�

) + O

(
1

n2

))

(a)= km

(
k

m

)−1(1

n
g
(
ν�

) + O

(
1

n2

))
(b)= O

(
1

n

)
where equality (a) is due to equation (2.4) which implicitly defines ν�, and equality (b) holds
because

(
k
m

) = O(km). This concludes the proof of the main result. A refinement is described in
Appendix A.4, where we derive a tractable correction to multivariate inclusion probabilities.

A remark on the precise nature of the convergence result is in order. Regardless of how large n

is, a k-DPP will continue to produce sets of fixed size, while a DPP will continue to produce sets
of variable size. This implies that DPPs and k-DPPs cannot be equivalent in the very strong sense
of the respective probability mass functions agreeing on every possible set, since by definition
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they remain different. The result is of the same nature as equivalence of ensembles in statistical
physics: it pertains to two different distributions that agree more and more as n tends to infinity,
but never agree completely. Practically speaking, an interpretation is that for a given n, a k-DPP
and a matched DPP will have very similar moments up to a certain order: certainly, at order
m > k, this cannot be true, since the inclusion measure for the k-DPP is uniformly zero, but that
is not true for the DPP. To get agreement up to higher orders, one has to increase n.

Besides the main result, another consequence of Lemma 2.3 is that in importance sampling
estimators of the form given by eq. (0.1) can be used with approximate rather than exact prob-
abilities. Using the O(n−1) approximation induces order O(n−1) bias, and similarly using the
O(n−2) correction induces order O(n−2) bias. Our recommendation is therefore that one sam-
ples k-DPPs, rather than DPPs, while using the approximate inclusion probabilities in computa-
tions.

2.3. To which sequences of matrices does this apply?

We stated earlier that the result applies to any sequence of matrices whose degrees of freedom
grow as a function of n, with the more precise statement being that Tr((Ln + I)−2Ln) (see eq.
(2.12)) should diverge. With the caveat that the condition is sufficient and not necessary, in what
sort of scenarios can we expect it to hold?

A full discussion of the issue would require significant forays into random matrix theory and
take us beyond the scope of the current work, so we only give a sufficient condition that is rela-
tively easily checked. As mentioned in Section 1.5, in k-DPPs, the L-ensemble can be multiplied
by an arbitrary positive constant without changing the distribution. This means that we are free
to scale each Ln by an arbitrary constant independently for each n, a normalisation that lets us
for instance set λmax to 1 for all n. For x ≤ 1, x

(1+x)2 ≥ 1
4x, which implies that σ 2(n) ≥ 1

4 Tr(Ln),
and a sufficient condition for the theorem to apply is therefore that Tr(Ln) diverges.

To pick a practical scenario, consider “in-fill” asymptotics. We suppose that the original set
of data is made up of n vectors in R

d sampled i.i.d. from a density ρ(x). The L-ensemble
used is the classical squared-exponential (Gaussian) kernel. Let Ln = Mn

λmax(Mn)
, where Mij =

exp(− 1
2τ 2 ‖xi − xj‖2). Tr M = n, and from the Gershgorin circle theorem we have a bound

on λmax that reads λmax ≤ maxi

∑
j Mij . A sufficient condition for convergence is then that

n
maxi

∑
j Mij

diverges, which will not be the case for fixed τ . The reason is that
∑

j Mij =∑
exp(− 1

2τ 2 ‖xi − xj‖2) essentially counts the number of points in a neighbourhood of size
τ around xi , and that quantity is O(n). To make Tr(Ln) diverge, we need to shrink τ with n so
that each point has O(1) neighbours. Similarly, the condition holds under so-called “increasing-
domain” asymptotics, in which τ is fixed but we consider points in a growing window. It is
likely that one could relax these criteria, but in any case we must emphasise that (a) the approxi-
mations work really well in practice, see Section 4 and (b) actual simulations of k-DPPs require
L-ensembles that have effective rank quite a bit larger than k, otherwise the numerical difficulties
are overwhelming even though the process may be well defined.
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2.4. Consequences for inference

DPPs are not only used for sampling, but also as statistical models for certain types of data that
exhibit repulsion. Now in this case as well the modeler has to make a choice, and use either
k-DPPs or DPPs. The former seems to imply that the number of observations (which is the role
played here by k) is known in advance, while the latter does not. Interestingly, the results above
imply that the choice of fixed size or varying size is of no consequence, at least if maximum
likelihood is used for inference, though we suspect that Bayesian inference would be the same
in that regard. To be precise, what we have in mind here is a case in which we observe a set
X of size k, assumed to have been drawn from a k-DPP of matrix L(θ), where θ is a vector
of parameters. For instance, θ may control the amount of repulsion in the point process. The
log-likelihood of a k-DPP is given by:

CkDPP(θ) = log det
(
L(θ)X

) − log ek(λθ ) (2.22)

The corresponding Maximum Likelihood estimator of θ is noted:

θ̂kDPP = argminCkDPP(θ) (2.23)

Similarly, a DPP model would assume X to be drawn from a DPP with L-ensemble eνL(θ),
where eν controls the expected cardinality of the set. The log-likelihood reads in this case:

CDPP(θ , ν) = νk + log det
(
L(θ)X

) − log det
(
I + eνL(θ)

)
(2.24)

Since ν is effectively a nuisance parameter, we may use a profile likelihood:

C�
DPP(θ) = max

ν
CDPP(θ , ν) (2.25)

The ML estimator of θ in this case solves:

θ̂DPP = argmax
θ

C�
DPP(θ)

To find a closed-form for the profile likelihood (eq. (2.25)), we take the derivative of C(θ , ν)

with respect to ν, to find:

∂

∂ν
C(θ , ν) = k − Tr

((
I + eνL

)−1
eνL

)
where we recognise the saddlepoint equation in yet another form.

Equating the above to 0, we obtain:

C�
DPP(θ) = log det

(
L(θ)X

) + ν�(θ)k − log det
(
I + eν�

L(θ)
)

(2.26)

From eq. (2.19) we know that:

log ek(λ) =
n∑

i=1

(
log

(
1+λie

ν�))−kν� − 1

2

(
log

(
n∑

i=1

λi

1 + λieν�

)
+ log(2π)

)
+O

(
n−1) (2.27)
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which tells us that:

C�
DPP(θ) = CkDPP(θ) + O

(
log(n) + n−1) + constant (2.28)

where the term in O(log(n)) comes from the second derivative of ψ in (2.19) and is expected
to be small compared to C. A full formal argument showing convergence of θ̂DPP to θ̂k-DPP is
complicated, and amounts to showing that the O(log(n) + n−1) term is constant in a relevant
region around θ̂k-DPP. Informally, however, what happens is quite clear: the two cost functions
are close (up to a vertical shift), and if they are sufficiently well-behaved (as a function of θ ),
then we expect θ̂DPP ≈ θ̂k-DPP. We verify this conjecture in a numerical example in Section 4.3.

3. Algorithms and numerical results

The results above are interesting theoretically, but can also be used in practice to develop al-
gorithms that compute (approximate) ESPs, sample diagonal k-DPPs, and compute inclusion
probabilities. We find empirically that although approximate, they are much better behaved nu-
merically than their nominally exact counterpart.

3.1. Computing ESPs

The algorithm given in Kulesza and Taskar [11] (alg. 7, p. 60) for computing ESPs of all orders
is fast3 but prone to numerical problems when n is large, which is not completely surprising
given that ESPs can vary over dozens of orders of magnitude. We find that the saddlepoint ap-
proximation given in eq. (2.19) is more practical, especially since it is naturally computed on
a logarithmic scale, a perk exact algorithms do not share. To compute eq. (2.19), one needs to
solve the saddlepoint equation (eq. (2.4)) for ν. Newton’s algorithm can be used (Algorithm 1),
but it needs appropriate initialisation or it may not converge (when it does converge, it does so
very fast). In our implementation, an initial guess for ν is found by linearising the saddlepoint
equation for small ν (small k), and large ν (large k). In small ν, we have:∑

i

λie
ν

1 + λieν
≈ eν

∑
λi

so that for k small, we may approximate ν as:

ν ≈ logk − log
∑

λi (3.1)

In large k we find: ∑
i

λie
ν

1 + λieν
≈ n − e−ν

∑ 1

λi

3Their algorithm runs in O(n2), like ours, although theirs is faster in practice.
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Algorithm 1 Solving the saddlepoint equation
Input: eigenvalues λ, set size k, initial guess ν0, tolerance ε

procedure SOLVE(λ,k,ν0)
ν ← ν0
while |ψ ′(ν) − k| < ε do

ν ← ν − (ψ ′(ν)−k)
ψ ′′(ν)

(eq. (2.17) and (2.18)).
end while

end procedure
Return ν

which solving for ν results in:

ν ≈ log(n − k) − log
∑

λ−1
i (3.2)

We use the first guess for k ≤ n
2 and the second otherwise, with good results. Interestingly, (3.1)

and (3.2) can be used to find the worst-case relative error of the saddlepoint approximation,
which is about 10%, a figure we verify in practice for all but the smallest n. The saddlepoint
approximation is at its worst far out in the tails, that is, for k = 1 and k = n − 1. Recall that
e1(λ) = ∑

λi . We inject (3.1) into (2.19) and linearise to find:

1√
2πψ ′′(ν�)

exp

(
n∑

i=1

(
log

(
1 + λie

ν�)) − kν�

)
≈ 1√

2π
exp(1)

∑
λi (3.3)

so that the relative error is about exp(1)√
2π

≈ 1.08. A similar calculation for k = n − 1 yields the
same figure.

To compute all ESPs, it is useful to begin at k = 1 and then “warm-start” the optimisation
rather than always use the same initial condition. The procedure is outlined in Algorithm 2.

3.2. Computing inclusion probabilities

3.2.1. In diagonal k-DPPs

Computing inclusion probabilities boils down to an application of the asymptotic formula devel-
oped in Section A.3. Depending on the accuracy required, the O(ε) in (2.21) may or may not be

Algorithm 2 Computing all (log-) ESPs using a saddlepoint approximation

Input: eigenvalues λ (vector of length n), Set initial guess to ν = − log
∑

λi .

for k ← 1 . . . (n − 1) do
ν ← solve(λ, k, ν)

log ek ← − 1
2 log(2πψ ′′(ν)) + ∑n

i=1 log(1 + λie
ν) − kν

end for
Return log e1 . . . log en−1
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Algorithm 3 First order inclusion probabilities in diagonal k-DPPs: basic estimate
Input: eigenvalues λ, set size k.

procedure DIAG-BASIC(λ,k)
ν ← solve(λ, k, ν0) (Solve for saddle point)
for i ∈ 1 . . . n do

π̃i ← eνλi

1+eνλi

end for
end procedure

Return π̃1 . . . π̃n

needed. Computing the terms in (2.21) requires solving the saddlepoint equation, and computing
ψ(ν�) and up to three derivatives, which is O(n) work in total. ψ ′ and ψ ′′ are by-products of
the Newton iteration, and only ψ(3) must be computed from scratch. All first order inclusion
probabilities can be computed jointly based on these quantities, in O(n) time. Algorithm 3 com-
putes the uncorrected estimate, and Algorithm 4 the corrected estimate (the latter may be hard to
understand without a thorough look at Section A.3).

3.2.2. In general k-DPPs

Computing (approximate) inclusion probabilities in general k-DPPs is an application of eq.
(A.14): first compute the inclusion probabilities for the eigenfunctions, then apply (A.14). For
first-order inclusion probabilities, and under the O( 1

n
) approximation, this boils down to com-

Algorithm 4 First order inclusion probabilities in diagonal k-DPPs: corrected estimate
Input: eigenvalues λ, set size k.

procedure DIAG-CORRECTED(λ,k)
ν ← solve(λ, k, ν0) (Solve for saddle point)
ψ̄ ′′ ← 1

n

∑ λie
ν

(1+λie
ν)2

ψ̄(3) ← 1
n

∑ λie
ν(1−λie

ν)

(1+λie
ν)3

for i ∈ 1 . . . n do
ψ̄ ′

i ← enuλi

1+enuλi

ψ̄ ′′
i ← λie

ν

(1+λie
ν)2

ν1 ← 1−ψ̄ ′
i

ψ̄ ′′

g ← − ν2
1
2 ψ̄ ′′ − 1

2ψ̄ ′′ (ψ̄
(3)ν1 − mψ̄ ′′

α)

π̃i ← eνλi

1+eνλi
(1 + g

m
)

end for
end procedure

Return π̃1 . . . π̃n
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Algorithm 5 First order inclusion probabilities in general k-DPPs
Input: L-ensemble L, set size k

U ← eigenvectors(L), λ ← eigenvalues(L)

π̃ ← diag-simple(λ, k) or π̃ ← diag-corrected(λ, k)

for i ∈ 1 . . . n do
p̃i ← ∑n

j=1 U2
ij πj

end for
Return p̃1 . . . p̃1

puting

diag
(
eν�(

eν�

L + I
)−1L

)
(3.4)

where ν� solves the saddlepoint equation for the appropriate value of k. ν� depends on the eigen-
values of L, so the most straightforward way of computing (3.4) is via an eigendecomposition of
L, after which one obtains (3.4) from:

(
eν�(

eν�

L + I
)−1L

)
ii

=
n∑

j=1

eν�
λj

1 + eν�
λj

U2
ij (3.5)

where Uij is the j -th eigenvector of L evaluated at index i. In most realistic problems the dom-
inant cost by far is the O(n3) eigendecomposition. If L is sparse, or if matrix-vector products
Lv can be computed using fast algorithms, the cost can be significantly reduced using a variety
of techniques. For example, under sparse L the Cholesky decomposition may still be relatively
cheap, and the Takahashi equations (Rue and Held [15]) can be used to obtain diagonal elements
in (3.4) and solve the saddlepoint equation. Algorithm 5 computes first-order probabilities, and
Algorithm 6 higher order inclusion probabilities. The optional correction used in Algorithm 6 is
explained in Section A.4.

Algorithm 6 High order inclusion probabilities in general k-DPPs
Input: L-ensemble L, subset α, set size k

λ ← eigenvalues(L).
ν ← solve(λ, k, ν0)

p̃α ← det((I + eνL)−1eνL)α
(Optional: compute correction
m ← |α| (size of subset)
π̃ ← diag-simple(λ, k)

v ← em(π̃)

p̃α ← p̃ × (
k
m

)
v−1

Return p̃α
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Algorithm 7 Sampling from a diagonal k-DPP
Input: eigenvalues λ (vector of length n), integer k (set size). Init s = 0, t = 1

while t ≤ n, s < k do
Compute πt , inclusion probability in a diagonal (k − s)-DPP with eigenvalues λt . . . λn,

using eq. (2.21).
Set zt to 1 with probability πt

s ← ∑t
i=1 zi

t ← t + 1
end while

Return z, the inclusion vector.

3.3. Sampling

There already is a large literature on sampling from (k-)DPPs (see, e.g., Li, Jegelka and Sra
[12], Gautier, Bardenet and Valko [8] and references therein). Our goal here is only to show how
our methods can be used to modify the algorithms given in Kulesza and Taskar [11] to improve
numerical stability. To sample a k-DPP, we follow the two-step strategy of Kulesza and Taskar
[11], which derives from the mixture interpretation explained in Section 1.5. We first sample a
set of eigenvectors, picking k of them using a diagonal k-DPP, then sample from the projection
DPP formed from the eigenvectors we selected.

3.3.1. Sampling from a diagonal k-DPP

The first part requires sampling from a diagonal k-DPP. For that task, Kulesza and Taskar [11]
give an algorithm that they justify using a recursive argument, but a more intuitive explanation
can be found. Thinking of the k-DPP as sampling a binary string z = z1 . . . zn, we run through the
elements one by one, sampling according to p(zt |z1 . . . zt−1). It is straightforward to show that
in a diagonal k-DPP, zt |z1 . . . zt−1 has a sufficient statistic: p(zt |z1 . . . zt−1) = p(zt |∑t−1

i=1 zi).
This occurs because zt . . . zn|z1 . . . zt−1 is a diagonal (k − s)-DPP, where s = ∑t−1

i=1 zi . Thus,
p(zt = 1|z1 . . . zt−1) is the inclusion probability for item t in a diagonal (k − s)-DPP, and we can
use our approximations to compute that probability.

We state the basic algorithm in Algorithm 7, but many refinements can be made for speed. In
particular, computing the approximation requires solving the saddlepoint equation, and warm-
starting should be used. Beyond that, given that the cost of sampling from a k-DPP is mostly
dominated by the eigenvalue decomposition and by the step where a projection DPP is sampled,
it is not worth spending too much time optimising the diagonal step.

3.4. Sampling from a projection DPP

Once we have obtained k eigenvectors, we can form the projection kernel U:,YU�
Y,: and use any

algorithm that samples a projection DPP. There are several options in the literature, but one that
is both fast and particularly easy to implement is described in Tremblay, Barthelme and Amblard
[20], and that is the one we use here in our simulations.
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4. Empirical results

We report here the accuracy of our approximations in some tests and simulations. We examine
briefly the quality of the approximation for ESPs, then inclusion probabilities in diagonal k-
DPPs, and finally inclusion probabilities in general k-DPPs.

4.1. Approximation of elementary symmetric polynomials

The approximation to ESPs given in eq. (2.19) is nothing more than a saddlepoint approxima-
tion for sums of Bernoulli variables, so it would be surprising if it did not work as advertised.
Nonetheless it is interesting to see how good the approximation is, and that the figure we give
in Section 3.1 for a maximum error of 10% (for k = 1 and k = n − 1) is verified in practice.
It also serves to illustrate the better numerical behaviour of the approximation compared to the
(nominally exact) summation algorithm.

Figure 1 and 2 show results obtained on two deterministic sequences, λi,n = i and λi,n = e−i

(for three different values of n). The approximation is excellent even with the second sequence,
which does not verify the sufficient condition for convergence (σ 2 = O(n)). The summation
algorithm overflows in the first case and underflows in the second, while the approximation
shows good behaviour.

To go beyond deterministic sequences, we consider a set of n points in R
2, drawn from a unit

Gaussian distribution. The L-matrix is from a squared-exponential kernel, Lij = exp(
−‖xi−xj ‖2

2τ 2 ).
Here we set τ = 1. Figure 3 shows the ratio of approximation to true value ẽk(λ)/ek(λ), where λ

are the eigenvalues of L.

Figure 1. Approximation of (log) ESPs for the sequence λi = i, i = 1, . . . , n. Black dots: numerical results
obtained using the “exact” summation algorithm. Red line: approximation using eq. (2.19). We show results
for n = 5, 100 and 200. Numerical problems are already apparent at n = 200, with the summation algorithm
overflowing at k ≈ 130. The approximation has no such issues in this case.
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Figure 2. Approximation of (log) ESPs for the sequence λi = e−i , i = 1, . . . , n. Same format as Figure 1.

4.2. Approximation of inclusion probabilities

We begin with approximations to inclusion probabilities in diagonal k-DPPs. Figure 4 shows
results for a diagonal k-DPP with diagonal values λi,n = exp(− i

10 ), comparing true inclusion
probabilities to the O(n−1) and O(n−2) approximations given by Lemma 2.3. The approxima-
tions are overall excellent, with even the rougher O(n−1) approximation becoming practically
exact for n ≥ 100. Note that the conditions for convergence assumed in our theorem do not hold
for the sequence in question.

Figure 3. Ratio of approximated ESP to true ESP, for an example with n points at random locations and
a squared-exponential kernel (see text). From the arguments in Section 3.1, we expect a maximum relative
error of about 1.08, shown here as upper and lower dashed lines. The central dashed lines corresponds to
no error.
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Figure 4. Inclusion probabilities for a diagonal k-DPP with diagonal entries exp(− i
10 ), with k = n/5.

Black: true values. Red, continuous: O(n−1) approximation. Red, dashed, O(n−2) approximation (see eq.
(2.21)).

The O(n−1) and O(n−2) rates are asymptotic, and it is interesting to verify that they hold in
practice. Figure 5 does this, in a scenario where the conditions of the theorem hold. For each
n, the diagonal values λ1,n to λn,n are drawn i.i.d. from the uniform distribution on the interval
(1,10). We estimate convergence rates via a regression of log error on logn.

Unsurprisingly given the above, approximating inclusion probabilities in general k-DPPs
works well too. Figure 6 provides an illustration, using again n points drawn i.i.d. from a Gaus-

Figure 5. Convergence of approximations to diagonal probabilities. We verify the O(n−1) and O(n−2)

rates empirically. See text for details.
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Figure 6. Approximation to inclusion probabilities in a full k-DPP. The scenario is the same as in Figure 3,
namely n points drawn i.i.d. and a squared exponential kernel. Each point correspond to the inclusion
probabilities of point xi in a k-DPP. Points have been sorted according to increasing probability of inclusion.

sian, as in Figure 3. Both approximations work extremely well for realistic values of n, and again
we stress that this is a case in which the conditions for large-n convergence do not hold (because
the eigenvalues decrease too fast).

Figure 7. Approximation to high order inclusion probabilities in a full k-DPP. 400 subsets of size m are
drawn at random and their 2nd order inclusion probability estimated using Monte Carlo (see text). We
compare the estimate to the O(n−1) approximation (in red) and the corrected approximation (in blue), see
Appendix A.4.
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Theorem 2.1 implies that we can approximate inclusion probabilities for pairs, not just single-
tons. We show an illustration in Figure 7, where we repeated the above experiment with n = 500,
k = 50 and τ = 0.5. We picked 400 m-uples at random and estimated their true inclusion prob-
ability using Monte Carlo.4 We compare the estimated inclusion probability to the O(n−1) ap-
proximations, and to the corrected probabilities described in Appendix A.4. The O(n−1) approx-
imation shows a slight bias for high probabilities but is overall very good, and most of the bias is
removed by the correction.

4.3. Inference

The goal of this section is to illustrate the claims of Section 2.4, namely that k-DPPs and DPPs
have equivalent ML estimators (when used as statistical models).

We again used the same setup as in the previous section: n points drawn i.i.d. from a 2D
Gaussian, with a subset X of size k drawn from a k-DPP. Contrary to the previous sections,
however, the objective here is to infer something about the L-ensemble given X . We use two
statistical models:

1. That X is drawn from a k-DPP with L-ensemble Lij = exp(−‖xi−xj ‖2

2τ 2 ) (for an unknown
value of τ ).

2. That X is drawn from a DPP with L-ensemble L̃ij = eν exp(−‖xi−xj ‖2

2τ 2 ) (for an unknown
value of τ and ν).

In Figure 8, we show the log-likelihood of the k-DPP model as a function of τ , along with the
profile log-likelihood of the DPP model (C�, see eq. (2.28)). The maximum likelihood estimates
of τ are the argmax of these curves, and as predicted they are extremely close.

5. Discussion

We have shown that k-DPPs are for practical purposes largely equivalent to DPPs, so that one can
sample from a k-DPP, pretend that the realisation actually came from a matched DPP, and expect
no major damage. Corrections to the inclusion probabilities come at little extra cost and increase
the accuracy enough so that the approximations can be used with very small n. The saddlepoint
approximation can be used to compute ESPs as well, and if more accuracy is needed we suggest
including further Edgeworth terms. The remaining hurdle is to develop appropriate algorithms
that estimate the relevant functions of the L-ensemble, to remove the need for an eigenvalue
decomposition. We hope to develop such methods in future work.

4We used an empirical version of eq. (A.11), and 1,500 samples
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Figure 8. Log-likelihoods of a k-DPP and DPP model, for various values of n (100 to 500) and true
parameter τ (0.1 and 1). In blue, the k-DPP likelihood, red, the DPP profile log-likelihood. In all cases,
k = n

10 .

Appendix

A.1. Proof of Lemma 1.3

Here we prove Lemma 1.3, which states that the inclusion kernel of a projection DPP equals the
L-ensemble. We need to compute the probability that α ⊆X , where X is a sample from a k-DPP
with L-ensemble L = UU�, and U is a n × k matrix such that U�U = I. It is important here that
we are sampling sets of size k from an L-ensemble of rank k. As elsewhere we note |α| = m ≤ k.

We need the following well-known result on determinants of bordered matrices:

det

[
A b
b� c

]
= (det A)

(
c − b�A−1b

)
(A.1)

We also make use of the following result, which lets us perform partial sums in determinants.

n∑
i=1

(
Li,i − Li,X L−1

X LX ,i

) = Tr L −
∑

i

Tr
{
L−1
X LX ,iLi,X

}
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= k − Tr

{
L−1
X

∑
i

LX ,iLi,X

}

= k − Tr

{(
UX ,:U�

:,X
)−1 ∑

i

(
UX ,:U�:,i

)(
Ui,:U�

:,X
)}

= k − Tr
{(

UX ,:U�
:,X

)−1(UX ,:U�
:,X

)}
= k − |X | (A.2)

To simplify what follows, we change the setting a bit and look at ordered sets: we sample X
from a DPP, give it a random order (one of k!), and thus obtain a vector x. Instead of computing
p(α ⊆X ), we compute p(x1 = α1, x2 = α2, . . . , xm = αm), for one particular ordering of α. The
two probabilities are related:

p(x1 = α1, x2 = α2, . . . , xm = αm) = p(α ⊆X )
(k − m)!

k!

Further, note that the probability mass function for x is just p(x) = p(X )
k! . Let us now compute

Pα = p(x1 = α1, x2 = α2, . . . , xm = αm).

Pα =
∑

xm+1...xk

p
(
x = [α1, . . . , αk, xm+1, . . . , xk]

)
(A.3)

= 1

k!
∑

xm+1...xm

det L{α,xm+1,...,xk} (A.4)

Note that since the determinant equals 0 if there are repeated elements, it does not matter if we
include repeated elements in the sum. Applying eq. (A.1), we obtain:

Pα = 1

k!
∑
z,xk

det L{α,z}
(
Lxk

− Lxk,{α,z}L−1
{α,z}L{α,z},xk

)
(A.5)

where we have replaced xm+1 . . . xk−1 with a vector z of length k − m − 1. Next, we sum over
xk , applying eq. (A.2):

Pα = 1

k!
∑

z

det L{α,z}
∑
xk

(
Lxk

− Lxk,{α,z}L−1
{α,z}L{α,z},xk

)
(A.6)

= 1

k!
∑

z

det L{α,z}
(
k − (k − 1)

)
(A.7)
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Doing this recursively for xk−1, xk−2, . . . up to xm+1, we obtain:

Pα = 1

k! (det Lα)(k − m)(k − m − 1) · · ·1 (A.8)

= (k − m)!
k! det Lα (A.9)

which in turns implies:

p(α ⊆X ) = det Lα (A.10)

A.2. Reduction to diagonal DPPs

Since k-DPP are mixtures of diagonal k-DPPs we can write

p(α ⊆X |k) = E
[
p(α ⊆X )Y

]
(A.11)

where the outer expectation is over diagonal k-DPPs Y , and

p(α ⊆X )Y = det
(
L(Y)α

)
(A.12)

with L(Y) = UY,:U�
:,Y .

Let Y be a diagonal matrix with yii = 1 if i ∈ Y , and 0 otherwise. Then we may express the
marginal probability of inclusion as:

p(α ⊆X ) = E
[
det

((
UYU�)

α

)]
= E

[
det

((
Uα,:YU�:,α

))]
(A.13)

where the expectation is over Y . The determinant inside the expectation can be computed using
the Cauchy–Binet theorem, giving:

p(α ⊆X ) = E

[ ∑
β/|β|=|α|

det Uαβ det
(
YU�)

βα

]

= E

[ ∑
β/|β|=|α|

det UαβU�
αβ

∏
i∈β

yi

]

=
∑

β/|β|=|α|
p(β ⊆ Y)det UαβU�

αβ (A.14)

In particular, for singletons |α| = 1 we recover the inclusion probability of order 1 given in
Section 1.5.2.

Suppose now we have to measure the total variation distance between an inclusion probability
of a k-DPP (π ) and a DPP approximation of it (π̃ ). Recalling that each is a mixture of diagonal
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DPPs with inclusion measure ρ and ρ̃, we write

Dm(π, π̃) = 1(
k
m

) ∑
α

|π(α) − π̃ (α))|

= 1(
k
m

) ∑
α

∣∣∣∣∑
β

det UαβU�
αβ

(
ρ(β) − ρ̃(β)

)∣∣∣∣
≤ 1(

k
m

) ∑
β

∣∣ρ(β) − ρ̃(β)
∣∣∑

α

det UαβU�
αβ

But
∑

α det UαβU�
αβ = ∑

α det(U�)βαUαβ = det(U�U)ββ = 1. Thus Dm(π, π̃) ≤ Dm(ρ, ρ̃),
proving Lemma 2.1.

A.3. Computing an asymptotic expansion for diagonal inclusion
probabilities

To derive the O(1) and O(n−1) terms in the inclusion probabilities, we take the exact expression
(eq. 2.7) and inject the saddlepoint approximation (eq. (2.19), which yields:

pk

(∏
j∈α

zj = 1

)
=

(∏
i∈α

λi

1 + λi

) √
ψ ′′(ν�)√

ψ ′′(ν�
α) − ψ ′′

α(ν�
α)

× exp
(
ψ

(
ν�
α

) − ψ
(
ν�

) − ψα

(
ν�
α

) + kν� − (k − m)ν�
α

)
(A.15)

where ψα = ∑
i∈α ψi , ψ ′

α = ∑
i∈α ψ ′

i and so on. The relative error in this approximation is of
order O(n−2)5 and we neglect it from now on. To get the O(1) and O(n−1) terms, we use a
perturbation approach, where we treat ε = n−1 as a (scalar) perturbation parameter. The reason
we have to use a perturbation approach is for lack of an analytical expression for the saddlepoint
parameter ν�. To do so, we split eq. (A.15) into three terms:

A =
(∏

i∈α

λi

1 + λi

)

B =
√

ψ ′′(ν�)√
ψ ′′(ν�

α) − ψ ′′
α(ν�

α)

C = exp
(
ψ

(
ν�
α

) − ψ
(
ν�

) − ψα

(
ν�
α

) + kν� − (k − m)ν�
α

)
5The reason the relative error is O(n−2) is that we take a ratio of O(n−1) errors that are actually the same up to a

O(n−1) term. Intuitively, the relative errors in the saddlepoint approximation of ek(λ) and ek−m(λ−α) are almost the
same, and thus most of the error cancels when we take the ratio.
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We shall find series for B and C of the form B = b0 + εb1 + ε2b2 + · · · , C = exp(c0 +
εc1 + ε2c2 + · · · ). We will see that here b0 = 1. These series can in turn be used to obtain
approximations of order ε0 and ε1 to the product ABC, namely:

pk

(∏
j∈α

zj = 1

)
= A(exp(c0)

(
1 + ε(c1 + b1) + O

(
ε2))

We note ψ̄ = 1
n
ψ , ψ̄α = 1

m
ψα , r = k

n
. To obtain our perturbation series, we begin with the

perturbed solution to the saddlepoint equation ν�
α , defined by:

ν�
α = argmin

ν
ψ(ν) − ψα(ν) − (k − m)ν

= argmin
ν

ψ̄(ν) − rν + mε
(
ν − ψ̄α(ν)

)
= argmin

ν
f (ν, ε) (A.16)

Define the ansatz ν�(ε) = argminf (ν, ε) = ν0 + εν1 + ε2ν2 +· · · . From the saddlepoint equa-
tion we obtain:

ψ̄ ′(ν�
) − r + mε

(
1 − ψ̄ ′

α

(
ν�

)) = 0

At order ε0, the equation implies:

ψ̄ ′(ν0) − r = 0 (A.17)

so that ν0 equals the saddlepoint of the unperturbed problem. At order ε1, we obtain:

ψ̄ ′′(ν0)ν1 − m
(
1 − ψ̄ ′

α(ν0)
) = 0 (A.18)

Further orders are not needed for our purposes.
We are now ready to insert these equations back into (A.15). We begin with the exponential

part.

C(ε) = exp
(
n
(
f

(
ν�
α, ε

) − ψ̄
(
ν�

) − rν�
))

(A.19)

= exp
(
n
(
f

(
ν0 + εν1 + ε2ν2 + · · · , ε

) − ψ̄(ν0) − rν0
))

(A.20)

We proceed with a similar perturbation for f (ν�(ε), ε), f = f0 + εf1 + ε2f2 + · · ·

f0 = ψ̄(ν0) − rν0 (A.21)

f1 = ψ̄ ′(ν0)ν1 − rν1 + m
(
ν0 − ψ̄α(ν0)

)
(A.22)

= m
(
ν0 − ψ̄α(ν0)

)
(A.23)
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f2 = ψ̄ ′(ν0)ν2 − rν2 + 1

2
ψ̄ ′′(ν0)ν

2
1 + m

(
ν1 − ψ̄ ′

α(ν0)ν1
)

(A.24)

= −ν2
1

2
ψ̄ ′′(ν0) (A.25)

where we have made use of eq. (A.17) and (A.18). Inserting (A.21) into (A.19), we find

C(ε) = exp
(
f1 + εf2 + O

(
ε2)) (A.26)

We now proceed with the other factor of (A.15), B , involving a ratio of square roots:

B(ε) =
√

ψ ′′(ν�)√
ψ ′′(ν�

α) − ψ ′′
α(ν�

α)
=

√
ψ̄ ′′(ν0)√

ψ̄ ′′(ν�
α) − mεψ̄ ′′

α(ν�
α)

(A.27)

Note that √
a

a − ε
=

√
1

1 − ε
a

=
√(

1 + ε

a
+ O

(
ε2

)) = 1 + ε

2a
+ O

(
ε2) (A.28)

It is immediate from the above that B = 1 + O(ε), and that therefore:

pk

(∏
j∈α

zj = 1

)
=

(∏
i∈α

λi

1 + λi

)
exp

(
f1 + O(ε)

)
=

(∏
i∈α

λi

1 + λi

)
exp

(
m

(
ν0 − ψ̄α(ν0)

) + O(ε)
)

=
(∏

i∈α

λi exp(ν0)

1 + λi exp(ν0)

)(
1 + O

(
1

n

))
(A.29)

For numerical purposes it is interesting to obtain the O(ε) term, which requires the first-order
approximation to B:

B(ε) = 1 − ε
1

2ψ̄ ′′(ν0)

(
ψ̄(3)(ν0)ν1 − mψ̄ ′′

α(ν0)
) + O

(
ε2) (A.30)

This completes the proof of Lemma 2.3.

A.4. An easy-to-compute correction to the O(n−1) approximation

One way to get an improved estimate of inclusion probabilities is to compute the O(n−1) term in
the saddlepoint expansion, and that is what we recommend for first-order inclusion probabilities.
It is harder to use when m > 1, and in this section we describe a correction that is easy to compute
and yields interesting insights into the approximation. From Lemma 1.2, we know what the sum
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of the inclusion measure for a k-DPP over all sets of size m should equal
(

k
m

)
, while for a DPP

with marginal kernel K it equals: ∑
α,|α|=m

det Kα = em(K) (A.31)

the m-th ESP of matrix K. In the matched DPP K equals (I + eνL)−1eνL, and the eigenvalues
of K are ηi = eνλi

1+eνλi
. What eq. (A.31) implies is that for the approximation to be exact at order

m, we need to have em(η) = (
k
m

)
. One shows easily that this is true if and only if η has exactly

k entries that equal 1, and the rest are all zero, which happens to be just the case described in
Result 1.

Lemma A.1. Let η ∈ [0,1]n, with
∑

ηi = k, and let m < k. Then
(

k
m

) ≤ em(η) ≤ (
n
k

)
( k
n
)m

Proof. We seek the extrema of em(η) under the equality constraint
∑

ηi = k and the inequality
constraints 0 ≤ ηi ≤ 1. Maximisation is easy em(η) is a concave function (as a consequence of
Schur concavity, Sra [17]), and we have linear constraints, so that any maximum is unique. The
Lagrangian equals:

L(η, ν,γ ), δ) = em(η) − ν
(∑

ηi − k
)

− γ �η − δ�(η − 1) (A.32)

and the Karush–Kuhn–Tucker conditions imply that for all i:

∂

∂ηi

em(η) = em−1(η−i ) = ν + γi + δi (A.33)

γiηi = 0 (A.34)

δi(ηi − 1) = 0 (A.35)

The solution where ηi = k
n

for all n only has inactive constraints, and is a maximum. Finding
minima requires a bit more work. Let us consider a potential solution η, and split into three con-
secutive parts: the zero values (active constraints under the γ multiplier), the values contained
above zero and below one (inactive constraints), and the values equal to one. The KKT condi-
tions imply that for all j such that the j -th constraint is inactive, em−1(η−j ) = ν, meaning that
removing any 0 < ηj < 1 has the same effect, which implies that all these values are the same.
Consequently, we can reparametrise the solution as

η = [0,0, . . . ,0, a, a, . . . , a,1,1, . . . ,1]

where 0 < a < 1. Since em is invariant to permutations there is no loss of generality. Next, notice
that em([0β]) = em(β) for all m. Further:

em

([β1]) = em+1(β) + em(β) (A.36)
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so that em([0,0, . . . ,0, a, a, . . . , a,1,1, . . . ,1]) is just a weighted sum of elementary symmetric
polynomials of the vector [a, a, . . . , a], so that a needs to be as small as possible under the con-
straints. The minima must therefore all have k values equal to one, and the rest zero. Evaluating
em at the two extrema yields the bound. �

The least favorable case is therefore when L has a flat spectrum (which thankfully should
not happen), but even then asymptotic equivalence holds: one can verify that

(
n
k

)
( k
n
)m � (

k
m

)
.

However, at finite orders, one can improve the approximation by making sure it sums to the right
quantity: i.e., approximate inclusion probabilities via:

π̃corrected(α) =
(

k
m

)
em(η)

det Kα (A.37)

When m = 1 the correction does nothing (the correction factor equals 1), but at higher orders we
have found that it can sometimes reduce relative error by a factor of 10.
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