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We propose an adaptively weighted group Lasso procedure for simultaneous variable selection and struc-
ture identification for varying coefficient quantile regression models and additive quantile regression models
with ultra-high dimensional covariates. Under a strong sparsity condition, we establish selection consistency
of the proposed Lasso procedure when the weights therein satisfy a set of general conditions. This consis-
tency result, however, is reliant on a suitable choice of the tuning parameter for the Lasso penalty, which
can be hard to make in practice. To alleviate this difficulty, we suggest a BIC-type criterion, which we
call high-dimensional information criterion (HDIC), and show that the proposed Lasso procedure with the
tuning parameter determined by HDIC still achieves selection consistency. Our simulation studies support
strongly our theoretical findings.
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1. Introduction

We propose adaptively weighted group Lasso (AWG-Lasso) procedures for simultaneous vari-
able selection and structure identification for varying coefficient quantile regression models and
additive quantile regression models with ultra-high dimension covariates. Let the number of co-
variates be denoted by p. Throughout this paper, we assume p = O(exp(nι)), where n is the
sample size and ι is a positive constant specified later in Assumption A4 and A4′ of Section 5.
Under a strong sparsity condition, we establish selection consistency of AWG-Lasso when its
weights, determined by some initial estimates, for example, Lasso and group Lasso, obey a set
of general conditions. This consistency result, however, is reliant on a suitable choice for the
tuning parameter for the Lasso penalty, which can be hard to make in practice. To alleviate this
difficulty, we suggest a BIC-type criterion, which we call high-dimensional information criterion
(HDIC), and show that AWG-Lasso with the penalty determined by HDIC (denoted by AWG-
Lasso+HDIC hereafter) still achieves selection consistency. This latter result improves previous
ones in [22] and the BIC results in [37] since the former does not deal with semiparametric mod-
els and the latter concentrates on linear models. See also [5] and [20] for recent developments in
BIC-type model selection criteria. With the selected model, one can conduct final statistical in-
ference by appealing to the results as in [4,28,33]. Moreover, our approach can be implemented
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at several different quantiles, thereby leading to a deeper understanding of the data in hand.
There are some other approaches to quantile estimation from ours. For example, [13] deals with
quantile estimation based on the transnormal model.

High dimensional covariate issues have been important and intractable ones. However, some
useful procedures have been proposed, for example, the SCAD in [9], the Lasso in [30], and
the group Lasso in [35] and [27]. The properties of the Lasso were studied in [39] and [2]. The
adaptive Lasso was proposed by [39] and it has the selection consistency property. The SCAD
cannot deal with too many covariates and needs some screening procedures such as the SIS
procedure in [11]. [15] proposed a quantile based screening procedure. There are some papers on
screening procedures for varying coefficient and additive models, for example, [8,10], and [21].
Forward type selection procedures are considered in for example, [32] and [18]. We name [3,14],
and [31] as general references on high-dimensional issues.

Because parsimonious modelling is crucial for statistical analysis, simultaneous variable selec-
tion and structure identification in semiparametric regression models has been studied by many
authors, see, among others, [6,23,24,34,36], and [17]. Another important reason to attain this
purpose is that in some high-dimensional situations, there may be a lack of priori knowledge
on how to decide which covariates to be included in the parametric part and which covariates
to be included in the nonparametric part. On the other hand, to the best of our knowledge, no
theoretical sound procedure has been proposed to achieve the aforementioned goal in the high-
dimensional quantile regression setups. Note that [23] and [24] proposed using the estimated
derivatives of coefficient functions to identify the structures of additive models. These estimated
derivatives, however, usually have slow convergence rates. Moreover, as shown in Section S3
of the supplementary document [16], the conditions imposed on the B-spline basis functions in
[23] and [24] seem too stringent to be satisfied in practice. Instead of relying on the estimated
derivatives of coefficient functions, we appeal to the orthogonal decomposition method through
introducing an orthonormal spline basis with desirable properties as in [17], which is devoted to
the study of Cox regression models. Our approach not only can be justified theoretically under
a set of reasonable assumptions, but also enables a unified analysis of varying coefficient mod-
els and additive models. The single index model is another important semiparametric quantile
regression model. However. we don’t deal with the model because the theoretical treatment is
completely different from that of the varying coefficient and additive model. We just refer to [38]
and [26] here.

The Lasso for quantile linear regression is considered in [1] and the adaptively weighted Lasso
for quantile linear regression are considered in [7] and [37]. Some authors such as [19] and [29]
deal with group Lasso procedures for additive models and varying coefficient models, respec-
tively. [25] applied a reproducing kernel Hilbert space approach to additive models. [28] deals
with SCAD type variable selection for parametric part. In [28], the authors applied the adap-
tively weighted Lasso iteratively to obtain their SCAD estimate starting from the Lasso estimate.
However, in the quantile regression setup, there doesn’t seem to exist any theoretical or numeri-
cal result for simultaneous variable selection and structure identification based on the adaptively
weighted group Lasso, in particular when its penalty is determined by a data-driven fashion. To
fill this gap, we establish selection consistency of AWG-Lasso and AWG-Lasso+HDIC in Sec-
tion 3, and illustrate the finite sample performance of AWG-Lasso+HDIC through a simulation
study in Section 4. Our simulation study reveals that AWG-Lasso+HDIC performs satisfactorily
in terms of true positive and true negative rates.
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This paper is organized as follows: We describe our procedures in Section 2. We present our
theoretical results in Section 3. The results of numerical studies are given in Section 4. We state
assumptions and prove our main results in Section 5 and describe some important properties
of B-spline bases in the supplementary document, which also contains a real application of the
proposed methods and more technical details.

We end this section with some notation used throughout the paper. A and |A| stand for the
complement and the number of the elements of a set A, respectively. For a vector a, |a| and aT

are the Euclidean norm and the transpose, respectively. For a function g on the unit interval, ‖g‖
and ‖g‖∞ stand for the L2 and sup norms, respectively. We denote the maximum and minimum
eigenvalues of a matrix A by λmax(A) and λmin(A), respectively. Besides, C, C1, C2, . . . , are
generic positive constants and their values may change from line to line. Note that an ∼ bn means
C1 < an/bn < C2 and that a ∨ b and a ∧ b stand for the maximum and the minimum of a and b,

respectively. Convergence in probability is denoted by
p→.

2. Simultaneous variable selection and structure identification

We consider varying coefficient models and additive models in this paper. We can deal with both
models in the same way and we concentrate on varying coefficient models in Sections 2 and 3 to
save space. We present the specific procedure for additive models in the supplement.

Suppose that we have n i.i.d. observations {(Yi,Xi ,Zi)}ni=1, where Xi = (Xi1,Xi2, . . . ,Xip)T

is a p-dimensional covariate vector and Zi is a scalar index covariate. Then we assume a quantile
varying coefficient model holds for these observations. First, we define the τ -th quantile check
function ρτ (u) and its derivative ρ′

τ (u) by

ρτ (u) = u
(
τ − I {u ≤ 0}) and ρ′

τ (u) = τ − I {u ≤ 0}.
Then our varying coefficient model is

Yi =
p∑

j=1

Xijgj (Zi) + εi, (1)

where Zi ∈ [0,1] and E{ρ′
τ (εi)|Xi ,Zi} = 0. Usually we take Xi1 ≡ 1 for varying coefficient

models.
To deal with partially linear varying coefficient models, we decompose gj (z) as gj (z) = gcj +

gvj (z), where

gcj =
∫ 1

0
gj (z) dz and gvj (z) = gj (z) − gcj .

We define the index set, S0 = (S0
c ,S0

v ), for the true model, where

S0
c = {j |gcj �= 0} and S0

v = {
j |gcj (z) �≡ 0

}
.

The index set for a candidate model can be similarly given by S = (Sc,Sv). In the following, we
refer to S0 and S as the true model and the candidate model, respectively whenever confusion
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is unlikely. When some j ’s satisfy both j ∈ S0
c and j /∈ S0

v simultaneously, our true model is a
partially linear varying coefficient model, for example, S0 = ({1,2,3}, {1,2}) with S0

c = {1,2,3}
and S0

v = {1,2}. Moreover, S1 ⊃ S2 means Sc1 ⊃ Sc2 and Sv1 ⊃ Sv2, where Sj = (Scj ,Svj ),
j = 1,2. In addition, S1 ∪ S2 = (Sc1 ∪ Sc2,Sv1 ∪ Sv2).

We use the regression spline method to estimate coefficient functions and the covariates for
regression spline are defined by

W i = Xi ⊗ B(Zi), (2)

where B(z) = (B1(z),B2(z), . . . ,BL(z))T is an orthonormal basis constructed from the equis-
paced B-spline basis B0(z) = (B01(z), . . . ,B0L(z))T on [0,1] and ⊗ is the Kronecker product.
We can represent B(z) as B(z) = A0B0(z) and we calculate the L × L matrix A0 numerically.
As in [17], let B(z) satisfy B1(z) = 1/

√
L, B2(z) = √

12/L(z − 1/2), and∫ 1

0
B(z)

(
B(z)

)T
dz = L−1IL. (3)

We denote the L × L identity matrix by IL. Note that B1(z) is for gcj (the j -th constant compo-
nent) and B−1(z) = (B2(z), . . . ,BL(z))T is for gvj (z) (the j -th non-constant component). More
details are given in Section S3 of the supplement.

To carry out simultaneous variable selection and structure identification, we apply AWG-Lasso
to

Yi = W T
i γ + ε′

i , (4)

where γ = (γ T
1 , . . . ,γ T

p )T . For a given λ > 0, the corresponding objective function is given by

QV (γ ;λ) = 1

n

n∑
i=1

ρτ

(
Yi − W T

i γ
) + λ

p∑
j=1

(
w1j |γ1j | + w−1j |γ −1j |

)
, (5)

where {(w1j ,w−1j )}pj=1 is obtained from some initial estimates such as Lasso and group Lasso,

and (γ1j ,γ
T−1j )

T = γ j , noting that γ1j is for B1(z) and γ −1j is for B−1(z). Minimizing
QV (γ ;λ) w.r.t. γ , one gets

γ̂ λ = argmin
γ∈RpL

QV (γ ;λ).

Denote γ̂ λ by (γ̂ λ
11, γ̂

λT−11, . . . , γ̂
λ
1p, γ̂ λT−1p)T . Then, the model selected by AWG-Lasso is Ŝλ =

(Ŝλ
c , Ŝλ

v ), where Ŝλ
c = {j |γ̂ λ

1j �= 0} and Ŝλ
v = {j |γ̂ λ−1j �= 0}, and this enables us to identify vari-

ables and structures simultaneously.
Theorem 1 in Section 3 establishes the selection consistency of Ŝλ under a set of gen-

eral conditions on {(w1j ,w−1j )}pj=1 and a strong sparsity condition on the regression coef-

ficients that |S0
c | and |S0

v | are bounded. Theorem 1, however, also requires that λ falls into
a suitable interval, which can sometimes be hard to decide in practice. We therefore intro-
duce a BIC-type criterion, HDIC, to choose a λ in a data-driven fashion. Express W i as
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(v11i ,v
T−11i , . . . , v1pi,v

T−1pi)
T , where (v1ji ,v

T−1ji)
T is the regressor vector corresponding to γ j .

For a given model S = (Sc,Sv), define RV (γ S) and γ̃ S by

RV (γ S) = 1

n

n∑
i=1

ρτ

(
Yi − WT

iSγ S
)

and γ̃ S = argmin
γS∈R|Sc |+(L−1)|Sv |

RV (γ S), (6)

where W iS ∈ R|Sc|+(L−1)|Sv | consists of {v1ji |j ∈ Sc} and {v−1ji |j ∈ Sv}. The corresponding
coefficient vector γ S consists of {γ1ji |j ∈ Sc} and {γ −1ji |j ∈ Sv} as well. The elements of
these vectors are suitably arranged. In this paper, we sometimes take two index sets S1 and S2

satisfying S1 ⊂ S2 and compare γ S1
and γ S2

by enlarging γ S1
with 0 elements or something,

for example, (γ T
S1

,0T )T . Then (γ T
S1

,0T )T and γ S2
have the same dimension and the elements

of these vectors are assumed to be conformably rearranged.
The HDIC value for model S is stipulated by

HDIC(S) = logRV (γ̃ S) + (|Sc| + (L − 1)|Sv|
)qn logpn

2n
, (7)

where pn = p∨n and qn → ∞ at a slow rate described in Section 5. We consider a set of models
{Ŝλ} chosen by AWG-Lasso, where λ ∈ � with � being a prescribed set of positive numbers,

and select Ŝ λ̂ among {Ŝλ}, where

λ̂ = argmin
λ∈�,|Ŝλ

c |≤Mc,|Ŝλ
v |≤Mv

HDIC
(
Ŝλ

)
,

with Mc and Mv being known upper bounds for |S0
c | and |S0

v |, respectively. Under some regu-

larity conditions, the consistency of Ŝ λ̂ is established in Corollary 1.
Note that in the case of high-dimensional sparse linear models, it is shown in [18] that (7) with

ρτ (·) replaced by the squared loss (·)2 can be used in conjunction with the orthogonal greedy
algorithm (OGA) to yield selection consistency. The major difference between (7) and the BIC-
type criteria considered in [22] is that we deal with semiparametric models in this paper. It seems

difficult to derive the consistency of Ŝ λ̂ in any high-dimensional regression setups without the
additional penalty term qn in (7).

3. Consistency results

We prove the consistency of AWG-Lasso and AWG-Lasso+HDIC separately in Section 3.1 and
3.2. It is worth pointing out that due to the similarity between (4)–(7) and (S1.2)–(S1.5) in the
supplement, the theoretical treatment is almost the same for the two types of models considered
in this paper. Therefore, this section concentrates only on the varying coefficient model. On the
other hand, our numerical studies are conducted for both types of models, see Section 4.
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3.1. Adaptively weighted group Lasso

The consistency of AWG-Lasso for suitably chosen λ and weights is stated in Theorem 1. The
proof of Theorem 1 is reliant on the methods of [7,37], and [28] subject to non-trivial mod-
ifications. The details are deferred to Section 5. For clarity of presentation, all the technical
assumptions of Theorem 1 are also given in Section 5. Roughly speaking, we assume that the
coefficient functions have second order derivatives and we put L = cLn1/5. More smoothness is
necessary for Theorem 2. If Xij is uniformly bounded, the Hölder continuity of the second order
derivatives with exponent α = 1/2 is sufficient for Theorem 2.

Define dV (S) = |Sc| + (L − 1)|Sv| and let wS0 denote a weight vector consisting of {w1j |j ∈
S0

c } and {w−1j |j ∈ S0
v }. For an index set S , we define γ̂ λ

S by

γ̂ λ
S = argmin

γS∈RdV (S)

QV (γ S ;λ).

Then γ̂ λ
S0 is an oracle estimator on RdV (S0) with the knowledge of S0. Assumption A2 assumes

that the relevant coefficients and the coefficient functions are large enough to be detected.

Theorem 1. Assume that Assumptions A1, A3–A5 and B1–B4 in Section 5 hold. Moreover,
assume

max
j∈S0

c

w1j ∨ max
j∈S0

v

w−1j = Op(1), (8)

and for some sufficiently large 0 < a1, a2 < ∞,

min
j /∈S0

c

w1j ≥ (
a1|wS0 |) ∨ 1 and min

j /∈S0
v

w−1j ≥ (
a2|wS0 |) ∨ 1, (9)

with probability tending to 1. We enlarge γ̂ S0 by adding 0 elements for the S0c part so that
(γ̂ λT

S0 ,0T )T ∈ RpL and define Ŝλ from this (γ̂ λT
S0 ,0T )T . Then for any λ satisfying

a3
(logpn)

1/2

n1/2
≤ λ ≤ (logn)κ

(logpn)
1/2

n1/2
(10)

asymptotically, where a3 is a sufficiently large constant and κ is any positive constant,
(γ̂ λT

S0 ,0T )T (= Ŝλ) is actually an optimal solution to minimizing QV (γ ;λ) w.r.t. γ ∈ RpL with

probability tending to 1. If Assumption A2 also holds, we have for Ŝλ defined here that

lim
n→∞ P

(
Ŝλ = S0) = 1.

The order of L1/2λ from (10) is the standard one in the literature since (logpn)
1/2 is due to

the large number of covariates and (L/n)1/2 is the standard rate for regression spline estimation.
Recall that our normalization factor of the orthonormal basis is 1/L. The upper bound of λ in
Theorem 1 is a technical one since we approximate RV (γ ) by a quadratic function in γ on a
suitable bounded region.
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We will further discuss the convergence rate of the AWG-Lasso estimators and present two
examples of data-driven weights.

First, we discuss the convergence rate of the AWG-Lasso estimators by referring to Propo-
sition 1 in Section 5. We have derived the consistency of Ŝλ in Theorem 1. Then if we apply
Proposition 1 with S = S0, we have from Remark 1 there that

P
(∣∣γ̂ λ

S − γ ∗
S
∣∣ ≥ ηn

) → 0,

where ηn ∼ L{(n−1 logpn)
1/2 + λ|wS0 |}. We state the proposition for the proofs of Theorems 1

and 2 to take care of uniformity with respect to the indices of covariates and we can improve the
rate sightly and replace logpn with logn for this one index set S0. Hence, the convergence rate
of the oracle AWG-Lasso estimators of gcj , j ∈ S0

c , and gvj , j ∈ S0
v , is L1/2{(n−1 logn)1/2 +

λ|w0
S |} in the setup of Remark 1.

Next, we present two examples of data-driven weights here. A simple sufficient condition for
(9) is that with probability tending to 1,

minj /∈S0
c
w1j ∧ minj /∈S0

v
w−1j

1 ∨ maxj∈S0
c
w1j ∨ maxj∈S0

v
w−1j

→ ∞. (11)

Example 1 (Adaptive Lasso type weights). We need an initial estimator denoted by γ =
(γ 11,γ

T−11, . . . , γ 1p,γ T−1p)T from the group Lasso as in [29] and [19]. Note that L−1/2|γ 1j |
and L−1/2|γ −1j | from [29] and [19] are consistent estimates of |gcj | and ‖gvj‖, respectively.
Actually they have the convergence rates smaller than CL1/2λ for some sufficiently large C and
λ in Theorem 1. Hence,

w1j = (
L−1/2|γ 1j |

)−η and w−1j = (
L−1/2|γ −1j |

)−η (12)

satisfy the conditions (8) and (9) for any positive fixed η if we have for some positive C that
minj∈S0

c
|gcj | ∧ minj∈S0

v
‖gvj‖ > C. On the other hand, if minj∈S0

c
|gcj | ∧ minj∈S0

v
‖gvj‖ →

0 slowly as in Assumption A2 in Section 5, we can cope with this situation theoretically
by making a suitable adjustment to the order of λ. Note that λw1j = (ξnλ)(ξ−1

n w1j ) and
λw−1j = (ξnλ)(ξ−1

n w−1j ) for a suitable ξn and that ξnλ, ξ−1
n w1j , and ξ−1

n w−1j have only to
meet the assumptions in Theorem 1. However, we usually have no knowledge of the order of
minj∈S0

c
|gcj | ∧ minj∈S0

v
‖gvj‖ in advance and this kind of adjustment to λ may be practically

difficult. Or then we should try a very wide range of λ.

Example 2 (SCAD-based weights). With the initial estimator γ obtained from the Lasso
penalty estimators such as in [29] and [19], we apply one-step LLA (local linear approxima-
tion) to the SCAD penalty as in [12] to obtain {(w1j ,w−1j )}. More specifically, we set

λw1j |γ1j | = p′
λL1/2

(
L−1/2|γ 1j |

)(
L−1/2|γ1j |

)
and (13)

λw−1j |γ −1j | = p′
λL1/2

(
L−1/2|γ −1j |

)(
L−1/2|γ −1j |

)
, (14)
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where pλ(·) is the SCAD penalty function. Some authors as [28] applied this kind of AGW-Lasso
iteratively to calculate their SCAD estimates.

Because of the properties of the SCAD penalty function, there are positive constants C1, C2,
and C3 such that if with probability tending to 1,

minj∈S0
c
L−1/2|γ 1j | ∧ minj∈S0

v
L−1/2|γ −1j |

λL1/2
> C1 and (15)

maxj /∈S0
c
L−1/2|γ 1j | ∨ maxj /∈S0

v
L−1/2|γ −1j |

λL1/2
< C2, (16)

then we have with probability tending to 1,

w1j = 0
(
j ∈ S0

c

)
and w−1j = 0

(
j ∈ S0

v

)
and

w1j > C3
(
j /∈ S0

c

)
and w−1j > C3

(
j /∈ S0

v

)
.

Thus the weights given in (13) and (14) obey (8) and (9). If necessary, we multiply λ and the
weights by 1/C4 and C4, respectively, where C4 is a sufficiently large constant and this adjust-
ment does not essentially affect the condition (10). If

minj∈S0
c
|gcj | ∧ minj∈S0

v
‖gvj‖

λL1/2
→ ∞,

we will have (15) and (16). Note that these weights don’t meet (11).

3.2. Consistency of AWG-Lasso+HDIC

To state the main result of this subsection, we need to introduce Assumption A1, which assumes
that |S0

c | ≤ Cc and |S0
v | ≤ Cv for some fixed Cc and Cv . Let Mc and Mv be known positive

integers fixed with n such that Cc < Mc and Cv < Mv . Define

Ŝ = argmin
|Sc|≤Mc and |Sv |≤Mv

HDIC(S).

Under certain regularity conditions, the next theorem and corollary show that both Ŝ and Ŝ λ̂ are
consistent estimates of S0. We need to replace Assumptions A2–A5 and B2–B4 with Assump-
tions A2′–A5′ and B2′–B4′ to carry out subtle evaluations of RV (γ S) in the proof since we deal
with high-dimensional semiparametric models. All the technical assumptions of Theorem 2 are
also given in Section 5.

Theorem 2. Assume that Assumptions A1, A2′–A5′, B1, B2′–B4′ and B5 in Section 5 hold.
Then,

lim
n→∞P

(
Ŝ = S0) = 1.
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Corollary 1. We assume the same assumptions as in Theorem 2 and that (8) and (9) hold true.
Then for � satisfying � ⊂ [c−1

n

√
logpn/n, cn

√
logpn/n] and {cn

√
logpn/n} ∈ �, where cn →

∞ and cn/(logn)κ → 0 for some κ > 0, we have

lim
n→∞P

(
Ŝ λ̂ = S0) = 1.

Some comments are in order. While Ŝ can achieve selection consistency without the help of
AWG-Lasso, it seems difficult to obtain Ŝ directly when p is large and Mc and Mv are not very

small. On the other hand, Ŝ λ̂ is applicable in most practical situations. We also note that Theo-
rem 2 extends the result in [22] and can be viewed as a generalization of the BIC result in [37]
to the semiparametric setup, which is of fundamental interest from both theoretical and practi-
cal perspectives. Like [20,37] also confines its attention to linear quantile models. Moreover, it
seems difficult to extend the proof in [20] to situations where the dimension of the true model
tends to infinity. Finally, we mention that there is another version of HDIC,

HDICII(S) = RV (γ̃ S) + (|Sc| + (L − 1)|Sv|
)qn logpn

2n
, (17)

which becomes

HDICII(S) = RV (γ̃ S) + (|Sl | + (L − 2)|Sa|
)qn logpn

2n
(18)

in the case of additive models. It can be shown that HDICII and HDIC share the same asymptotic
properties and their finite sample performance will be compared in the next section.

4. Numerical studies

In this section, we evaluate the performance of AWG-Lasso+HDIC and AWG-Lasso+HDICII
using one varying coefficient model and two additive models in the case of pL > n. We set qn = 1
in these numerical studies since the optimal choice of qn in finite sample remains unsettled and
is worth further investigation. Moreover, {(w1j ,w−1j )} in (5) are assigned according to (13) and
(14), and {(w2j ,w−2j )} in (S1.3) are determined in a similar fashion.

In our simulation study, we consider one varying coefficient model (Example 1) and two addi-
tive models (Examples 2 and 3). In these examples, we set (n,p) = (500,400), L = 6, τ = 0.5,
Mc = Mv = Ml = Ma = 20 and

� = {
c−1
n

√
logp/n + kdn, k = 1, . . . ,50

}
,

where cn = 2 logn and dn = {(cn − c−1
n )

√
logp/n}/50.

Based on a λ ∈ � and the weights described above, we employ the alternating direction method
of multipliers (ADMM) to minimize (5) ((S1.3)) over γ (γ −1), and then choose the λ minimizing
HDIC(Ŝλ) defined in (7) ((S1.5)) over λ ∈ �, and the λ minimizing HDICII (Ŝλ) defined in (17)
((18)) over the same set. We conduct 50 simulations and the performance of AWG-Lasso+HDIC
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Table 1. (Ci ,NCi ,NSi ), i = 1, . . . ,4, STPR, and TNR in Example 1

(n,p) = (500,400)

(C1,NC1,NS1) (C2,NC2,NS2) (C3,NC3,NS3) (C4,NC4,NS4) STPR TNR

AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.963
AWG-Lasso+HDICII (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.963
Rqpen (–, –, –) (–, –, –) (–, –, –) (–, –, –) – –
T-method (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 0.5 1.0

and AWG-Lasso+HDICII in Examples 1–3 is documented in Tables 1–3, respectively. For the
purpose of comparison, we also use the Rqpen package in R (see cv.rq.group.pen) to implement
the group Lasso method in Example 1–3. In addition, the adaptive group Lasso method intro-
duced in [29] for varying coefficient models (referred to as the T-method), and the group Lasso
method introduced in [19] for additive models (referred to as the K-method) are included. Note
that since our goal is to identify structures in addition to selecting variables, these three methods
are conducted based on the orthonormal basis functions proposed in this paper, which enable
one to distinguish between constant and non-constant components for varying coefficient mod-
els (or liner and non-linear components for additive models). On the other hand, we use their
original penalties, not the divided ones like ours. The performance of these three methods is also
presented in Tables 1–3. In the the Rqpen package, the L1 norm is used instead of the L2 norm
inside the penalty functions. See the document for the details. This may be the cause of different
performances from the other methods.

Example 1. We generate the output variables Y1, . . . , Yn using the varying coefficient model,

Yi =
p∑

j=1

Xijgj (Zi) + εi,

where εi , Zi and {Xij }pj=1 are independently generated from N(0,0.52), U(0,1) and U(0,100)

distributions, respectively. Following [17], the coefficient functions gj (z) are set to

g1(z) = g2(z) = 1, g3(z) = 4z, g4(z) = 4z2, gj (z) = 0, 5 ≤ j ≤ p.

Table 2. (Li ,NLi ,NSi ), i = 1, . . . ,4, STPR, and TNR in Example 2

(n,p) = (500,400)

(L1,NL1,NS1) (L2,NL2,NS2) (L3,NL3,NS3) (L4,NL4,NS4) STPR TNR

AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0,0.96, 0.04) (0.0, 1.0, 0.0) 1.0 0.997
AWG-Lasso+HDICII (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 0.98, 0.02) (0.02, 0.98, 0.0) 0.99 0.998
Rqpen (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.674
K-method (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 0.5 1.0
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Table 3. (Li ,NLi ,NSi ), i = 1, . . . ,5, STPR, and TNR in Example 3

(n,p) = (500,400)

(L1,NL1,NS1) (L2,NL2,NS2) (L3,NL3,NS3) (L4,NL4,NS4) (L5,NL5,NS5) STPR TNR

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) 1.0 0.997
AWG-Lasso+HDICII (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) 1.0 0.997
Rqpen (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.48, 0.52, 0.0) (0.40, 0.60, 0.0) (0.42, 0.58, 0.0) 0.66 0.406
K-method (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 0.6 1.0
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Therefore, Xi1 and Xi2 are relevant covariates with constant coefficients, Xi3 and Xi4 are rel-
evant covariates with non-constant coefficients, whereas Xi,5, . . . ,Xi,p , are irrelevant variables.
Since our goal is to identify both relevant variables and the structures of relevant coefficients,
define

Csj = I{gj (·) is identified as a constant function at the sth replication},

NCsj = I{gj (·) is identified as a non-constant function at the sth replication},

NSsj = I{gj (·) is identified as a zero function at the sth replication}.

It is clear that Csj + NCsj + NSsj = 1 for each 1 ≤ j ≤ p. We further define the true negative
rate (TNR) and the strictly true positive rate (STPR),

TNRs =
∑p

j=5 I{NSsj =1}
p − 4

and STPRs =
∑2

j=1 I{Csj =1} + ∑4
j=3 I{NCsj =1}

4
,

noting that STPRs = 1 if at the sth replication, Xi1 and Xi2 are identified as relevant variables
with constant coefficients and Xi3 and Xi4 are identified as relevant variables with non-constant
coefficients. Therefore, STPRs can be viewed as a stringent version of the conventional true
positive rate, which treats constant and non-constant coefficient functions indifferently. Now, the
performance measures of a selection method are specified as follows:

Cj = 1

50

50∑
s=1

Csj , NCj = 1

50

50∑
s=1

NCsj , NSj = 1

50

50∑
s=1

NSsj ,

TNR = 1

50

50∑
s=1

TNRs , STPR = 1

50

50∑
s=1

STPRs .

The performance of AWG-Lasso+HDIC, AWG-Lasso+HDICII, Rqpen, and T-method on (Cj ,
NCj , NSj ), j = 1, . . . ,4, STPR and TNR is demonstrated in Table 1. Table 1 shows that AWG-
Lasso+HDIC and AWG-Lasso+HDICII have high capability in identifying the true variables
and true structures in the sense that C1 = C2 = NC3 = NC4 = STPR = 1 hold for the two meth-
ods. Table 1 also reveals that both methods perform satisfactorily in identifying irrelevant vari-
ables since their TNR values are quite close to 1. Because Rqpen encounters singularity problems
in many replications, its performance measures are set to missing in Table 1. The T-method per-
forms quite well in identifying irrelevant variables and non-constant functions because its TNR,
NC3, and NC4 are equal to 1. The method, however, erroneously treats constant functions as
non-constant ones, leading to a low STPR value of 0.5.

Example 2. We generate Y1, . . . , Yn from the following additive model,

Yi = μ +
p∑

j=1

gj (Xij ) + εi, (19)
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where μ = 0, εi and {Xij }pj=1 follow N(0,0.52) and U(0,1), respectively. Following [17] again,
we set

g1(x) = g2(x) = 21/2(x − 1/2), g3(x) = 2−1/2 cos(2πx) + (x − 1/2),

g4(x) = sin(2πx), gi(x) = 0, 5 ≤ i ≤ p,
(20)

noting that Xi1 and Xi2 are relevant through the linear functions g1(·) and g2(·), whereas Xi3 and
Xi4 are relevant through the nonlinear functions g3(·) and g4(·). Let NSsj and TNRs be defined
as in Example 1, and define

Lsj = I{gj (·) is identified as a linear function at the sth replication},

NLsj = I{gj (·) is identified as a non-linear function at the sth replication},

STPRs =
∑2

j=1 I{Lsj =1} + ∑4
j=3 I{NLsj =1}

4
.

Then, the performance measures of AWG-Lasso+HDIC, AWG-Lasso+HDICII, Rqpen, and K-
method are given by

Lj = 1

50

50∑
s=1

Lsj , NLj = 1

50

50∑
s=1

NLsj , NSj = 1

50

50∑
s=1

NSsj ,

TNR = 1

50

50∑
s=1

TNRs , STPR = 1

50

50∑
s=1

STPRs ,

and summarized in Table 2. Table 2 shows that L1 = L2 = 1 hold for AWG-Lasso+HDIC, AWG-
Lasso+HDICII, and Rqpen, implying that these three methods can easily identify relevant lin-
ear functions. In addition, the NL3 and NL4 of these three methods are equal (or close) to 1,
leading to very high STRP values. While the TNR values of AWG-Lasso+HDIC and AWG-
Lasso+HDICII are still very close to 1, Rqpen has a low TNR value of 0.67, revealing that the
method may suffer from overfitting. On the other hand, the K-method can avoid overfitting and
has the highest possible TNR value of 1. Moreover, its NL3 and NL4 are equal to 1, showing
a good ability to identify non-linear functions. Unfortunately, the method fails to identify linear
functions, resulting a low STPR value of 0.5.

Example 3. Suppose that Y1, . . . , Yn are still generated from model (19), but with (20) replaced
by

g1(x) = 3 sin(2πx)

(2 − sin(2πx))
− 0.4641016, g2(x) = 6x(1 − x) − 1,

g3(x) = 2x − 1, g4(x) = x − 0.5, g5(x) = −x + 0.5,

gi(x) = 0, 6 ≤ i ≤ p,

(21)
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which are suggested in [23]. As observed in (21), Xi1 and Xi2 are relevant through the nonlinear
functions g1(·) and g2(·), and Xi3 ∼ Xi5 are relevant through the linear functions g3(·) ∼ g5(·).
With

TNRs =
∑p

j=6 I{NSsj =1}
p − 5

and STPRs =
∑2

j=1 I{NLsj =1} + ∑5
j=3 I{Lsj =1}

5
,

the performance measures of the methods considered in Example 2 are given by

Lj = 1

50

50∑
s=1

Lsj , NLj = 1

50

50∑
s=1

NLsj , NSj = 1

50

50∑
s=1

NSsj ,

TNR = 1

50

50∑
s=1

TNRs , STPR = 1

50

50∑
s=1

STPRs ,

and summarized in Table 3. Table 3 shows that NL1 = NL2 = L3 = L4 = L5 = STPR = 1 hold
for AWG-Lasso+HDIC and AWG-Lasso+HDICII, suggesting that the two methods can per-
fectly identify the relevant variables as well as the corresponding functional structures. The two
methods are also good at identifying irrelevant variables in terms of TNR values. The perfor-
mance of the K-method in this example resembles that in Example 2. Rqpen still encounters
overfitting as in Example 2. Moreover, it has a limited ability to identify linear functions al-
though it can perfectly identify non-linear ones.

In conclusion, we note that the results of this section, together with those obtained in the pre-
vious sections, demonstrate that AWG-Lasso+HDIC and AWG-Lasso+HDICII have a strong
ability to simultaneously identify the relevant (or irrelevant) variables and their corresponding
structures in the high-dimensional quantile regression setup, a feature rarely reported in the lit-
erature. While the T- and K-methods also perform well in identifying relevant (or irrelevant)
variables, they are not very successful in structure identification. This is mainly because the two
methods don’t penalize constant/linear and non-constant/non-linear terms separately. Rqpen can
encounter numerical difficulties in high-dimensional varying coefficient models as demonstrated
in Example 1. The performance of Rqpen in structure identification is as good as our method
in Example 2, and slightly better than the K-method in Example 3. The method, however, often
suffers from overfitting.

5. Proofs of the main theorems

First we introduce notation and assumptions. Then we prove Theorems 1 and 2. All the technical
proofs are given in the supplement. We denote the conditional probability and expectation on
{(Xi ,Zi)}ni=1 by Pε(·) and Eε(·), respectively.

Assumption A1 is about |S0
c | and |S0

v |.
Assumption A1. There are bounded constants Cc , Cv , Mc , and Mv such that |S0

c | ≤ Cc < Mc

and |S0
v | ≤ Cv < Mv . Besides, we know Mc and Mv in advance.
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This assumption looks restrictive and we may be able to relax this assumption slightly. How-
ever, there are still many assumptions and parameters and we decided not to introduce more
complications to relax Assumption A1. Note that we can easily relax the conditions on Cc only
for Theorem 1 if

∑
j∈S0

c
w2

1j = Op(1).
Assumptions A2 and A2′ are about the relevant non-zero coefficients and coefficient functions.

We need to assume that they are large enough to be detected for our consistency results. Recall
that L is the dimension of the spline basis and referred to in Assumption A3 and that qn appeared
in (7).

Assumption A2. We have in probability

minj∈S0
c
|gcj | ∧ minj∈S0

v
‖gvj‖

L1/2{(n−1 logpn)1/2 + λ|wS0 |} → ∞.

Assumption A2′. We have

minj∈S0
c
|gcj | ∧ minj∈S0

v
‖gvj‖

q
1/2
n (n−1L logpn)1/2

→ ∞.

Next we consider the smoothness of relevant non-zero coefficient functions and spline approx-
imation.

Assumption A3. We take L = cLn1/5 and use linear or smoother splines. Besides, we have for
some positive Cg , ∑

j∈S0
c ∪S0

v

(‖gj‖∞ + ∥∥g′
j

∥∥∞ + ∥∥g′′
j

∥∥∞
) ≤ Cg.

When Assumption A3 holds, there exists γ ∗
j = (γ ∗

1j ,γ
∗T−1j )

T ∈ RL for every j ∈ S0
c ∪S0

v such
that ∑

j∈S0
c ∪S0

v

∥∥gj − γ ∗T
j B

∥∥∞ ≤ C1L
−2, γ ∗

1j = L1/2gcj , and

∑
j∈S0

v

∥∥gvj − γ ∗T−1jB−1
∥∥∞ ≤ C2L

−2,

where C1 and C2 depend only on Cg and the order of the spline basis. Let γ ∗
S0 consist of γ ∗

1j ,

j ∈ S0
c , and γ ∗−1j , j ∈ S0

v . For S including the true S0, γ ∗
S means a vector of coefficients for our

spline basis to approximate gj up to the order of L−2. When j ∈ Sc ∩ S0
c or j ∈ Sv ∩ S0

v , the
corresponding elements are put to 0. The other elements are γ ∗

1j , j ∈ S0
c , and γ ∗−1j , j ∈ S0

v . See
Section S3 in the supplement for more details on the above approximations.
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We define some notation related to spline approximation, δi , δij , ε′
i , and τi , by δij = gj (Zj )−

γ ∗T
j B(Zi),

δi =
∑

j∈S0
c ∪S0

v

Xij

(
gj (Zi) − γ ∗T

j B(Zi)
) =

∑
j∈S0

c ∪S0
v

Xij δij ,

ε′
i = εi + δi, and τi = Pε

(
ε′
i ≤ 0

)
.

(22)

Under Assumptions A3 and A4 below, we have uniformly in i and j ,

|δij | = O
(
L−2) and |δi | ≤ C1XML−2 → 0

for some positive C1, where let XM be a constant satisfying maxi,j |Xij | ≤ XM . We allow XM

to diverge as in Assumptions A4 and A4′. Note that

1

n

n∑
i=1

δ2
i ≤

{
n−1

n∑
i=1

( ∑
j∈S0

c ∪S0
v

X2
ij

)2
}1/2{

n−1
n∑

i=1

( ∑
j∈S0

c ∪S0
v

δ2
ij

)2
}1/2

. (23)

When we examine the properties of our BIC type criteria, we need more smoothness of the
coefficient functions to evaluate the approximation bias. We replace Assumption A3 with As-
sumption A3′ for simplicity of presentation. In fact, the Hölder continuity of g′′

j with exponent

α ≥ 1/2 is sufficient if X4
ML−2α = O(L−1). If XM is bounced, the proof of Theorem 2 will work

for α = 1/2. See Lemma S2.2 in Section S2.2 of the supplement. When we assume Assumption
A3′, we can replace L−2 with L−3 in the above approximations.

Assumption A3′. We take L = cLn1/5 and use quadratic or smoother splines. Besides, we have
for some positive Cg , ∑

j∈S0
c ∪S0

v

(‖gj‖∞ + ∥∥g′
j

∥∥∞ + ∥∥g′′
j

∥∥∞ + ∥∥g
(3)
j

∥∥∞
) ≤ Cg.

Next we state assumptions on XM , p, and qn. When we consider additive models, we can take
XM = 1. Assumptions A4 and A4′ imply that ι in p = O(exp(nι)) is less than 1/5.

Assumption A4. For any positive k,

XM(logpn)
1/2n−1/10(logn)k → 0. (24)

Besides, E{B2
0l (Z1)X

2
1j } = O(L−1) and E{B0l (Z1)|X1j } = O(L−1) uniformly in l and j . Recall

that B0l (z) is the l-th element of the B-spline basis.

Assumption A4′. In Assumption A4, (24) is replaced with

XM(logpn)
1/2q

3/2
n n−1/10(logn)k → 0.
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Next we state assumptions on the conditional distribution of εi on (Xi ,Zi). We denote the
conditional distribution function by Fi(ε) and the conditional density function by fi(ε).

Assumption A5. There exist positive Cf 1, Cf 2, and Cf 3 such that uniformly in i,∣∣Fi(u + δ) − Fi(δ) − ufi(δ)
∣∣ ≤ Cf 1u

2 and fi(δ) ≤ Cf 2 when |δ| + |u| ≤ Cf 3.

Assumption A5′. In addition to Assumption A5, E{|εi |} < ∞ and when |a| → 0, we have uni-
formly in i,

Eε

[
(a − εi − δi)I {0 < εi + δi ≤ a}] = a2

2
fi(−δi) + O

(|a|3) for a > 0,

and

Eε

[
(εi + δi − a)I {a < εi + δi ≤ 0}] = a2

2
fi(−δi) + O

(|a|3) for a < 0.

Actually, when a > 0 and a → 0, we have under some regularity conditions that∫ a−δi

−δi

(a − εi − δi)fi(ε) dε = a2

2
fi(−δi) + O

(
a3).

We introduce some more notation and another kind of assumptions to describe properties of
the adaptively weighted Lasso estimators.

We define two index sets SM and SC+M . These index sets are defined for Theorem 2 and they
are related to Assumption A1.

SM = {
S|S0 ⊂ S, |Sc| ≤ Mc, and |Sv| ≤ Mv

}
and (25)

SC+M = {
S|S0 ⊂ S, |Sc| ≤ Cc + Mc, and |Sv| ≤ Cv + Mv

}
. (26)

We define some random variables related to W iS and describe assumptions on those random
variables. The assumptions on those random variables follow from similar assumptions on their
population versions and standard technical arguments. We omit the assumptions on the popu-
lation versions and standard technical arguments here since they are just standard ones in the
literature.

We define �1(S) by

�1(S) = 1

n

n∑
i=1

|W iS |2 = 1

n

n∑
i=1

L−1
∑
j∈Sc

|Xij |2 + 1

n

n∑
i=1

∣∣B−1(Zi)
∣∣2 ∑

j∈Sv

|Xij |2.

For technical and notational convenience, we redefine �1(S) by �1(S) ∨ 1.

Assumption B1. For some positive CB1, we have �1(S0) ≤ CB1 with probability tending to 1.
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Assumption B1 follows from some mild moment conditions under Assumption A1.
We define �2(S) and �3(S) by

�2(S) = Lλmin(�̂S) and �3(S) = Lλmax(�̂S),

where �̂S = n−1 ∑n
i=1 fi(−δi)W iSW T

iS . The following assumptions are about their eigenval-
ues. Recall that our normalization factor of the basis is L−1.

Assumption B2. For some positive CB2, we have �2(S0) ≥ CB2 with probability tending to 1.

Assumption B2′. For some positive C′
B2, we have �2(S) ≥ C′

B2 uniformly in S ∈ SC+M with
probability tending to 1.

Assumption B3. For some positive CB3, we have with probability tending to 1

�3
(
S0 ∪ ({j}, φ)) ≤ CB3 uniformly in j ∈ S0

c and

�3
(
S0 ∪ (

φ, {j})) ≤ CB3 uniformly in j ∈ S0
v .

Assumption B3′. For some positive C′
B3, we have with probability tending to 1

�3(S) ≤ C′
B3 uniformly in S ∈ SC+M.

We define �4 by �4 = n−1 ∑n
i=1

∑
j∈S0

v
X2

ij .

Assumption B4. For some positive CB4, we have �4 ≤ CB4 with probability tending to 1.

Assumption B4′. In addition to Assumption B4, we have for some positive C′
B4,

n−1
n∑

i=1

( ∑
j∈S0

c ∪S0
v

X2
ij

)2

≤ C′
B4 with probability tending to 1.

Assumption B4′ is used to control (23). Assumptions B4 and B4′ follow from mild moment
conditions under Assumption A1.

We define �5(S) by �5(S) = max1≤i≤n |W iS |2. Notice that there are positive constants C1

and C2 such that

|W iS |2 = L−1
∑
j∈Sc

X2
ij + ∣∣B−1(Zi)

∣∣2 ∑
j∈Sv

X2
ij ≤ C1X

2
M

(
L−1|Sc| + |Sv|

) ≤ C2X
2
M (27)

for any S ∈ SC+M under Assumption A1.
We define �̂S by �̂S = n−1 ∑n

i=1 τi(1 − τi)W iSW T
iS . The last assumption is about its eigen-

values. Recall that τi is defined in (22).
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Assumption B5. There is a positive constant CB5 such that uniformly in S ∈ SC+M ,

1

CB5
≤ Lλmin(�̂S) ≤ Lλmax(�̂S) ≤ CB5 with probability tending to 1.

We state Proposition 1 before we prove Theorem 1. The proposition gives the convergence
rate of the AWG-Lasso estimator. We prove this proposition by following that of Theorem 1 in
[7] in the supplement.

We use the proposition with S = S0 or with S ∈ SC+M and λ = 0. Let wS be a vector con-
sisting of {w1j |j ∈ Sc} and {w−1j |j ∈ Sv}. Then we define |wS | and Kn by

|wS |2 =
∑
j∈Sc

w2
1j +

∑
j∈Sv

w2−1j and Kn(S) =
√

n−1�1(S) logpn + λ|wS |.

Tentatively we assume the weights are constants, not random variables.

Proposition 1. Suppose that S0 ⊂ S and Assumptions A1 and A3–A5 hold. Besides we assume(
�5(S)

�2(S)

)1/2(
�

−1/2
2 (S) ∨ �

1/2
4

)
Kn(S)L → 0 (28)

and we define ηn by ηn = CMLKn(S), where CM satisfies

CM ≥ b1

{
1

�2(S)
∨

(
�4

�2(S)

)1/2}
(29)

for sufficiently large b1 depending on b2 in (30). Then we have for any fixed positive b2 that

Pε

(∣∣γ̂ λ
S − γ ∗

S
∣∣ ≥ ηn

) ≤ exp(−b2 logpn). (30)

Later we use Assumptions B1–B4 to control random variables in (28) and (29) in Proposi-
tion 1. Here some remarks on Proposition 1 are in order.

Remark 1. When wS is a random vector and λ > 0, “→ 0” in (28) should be replaced with

“
p→ 0.” Besides, when for some positive C1, C2, and C3,

P
(
C1 ≤ �2(S),�1(S) ≤ C2,�4 ≤ C3

) → 1,

the RHS of (29) is bounded from above in probability and �1(S) in Kn(S) can be replaced with
a constant. Thus we have P(|γ̂ λ

S − γ ∗
S | ≥ ηn) → 0 under (28) in probability with a fixed CM .

Especially when S = S0,

ηn ∼ L
{(

n−1 logpn

)1/2 + λ|wS0 |}.
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Remark 2. Since �5(S0) ≤ C4X
2
M for some positive C4 under Assumption A1, (28) reduces

to XML{(n−1 logpn)
1/2 + λ|wS0 |} p→ 0 in the setup of Remark 1 with S = S0 and this is not a

restrictive condition.

Remark 3. When λ = 0 and the assumptions in Theorem 2 hold, we have for γ̂ λ
S = γ̃ S that

∣∣γ̂ λ
S − γ ∗

S
∣∣ = ∣∣γ̃ S − γ ∗

S
∣∣ ≤ C5L

(
n−1 logpn

)1/2

uniformly in S ∈ SC+M with probability tending to 1 for some positive C5. We use this result in
the proof of Theorem 2.

We provide the proof of Theorem 1. We define �S(M) by

�S(M) = {
γ S ∈ RdV (S)|∣∣γ S − γ ∗

S
∣∣ ≤ M

}
. (31)

Proof of Theorem 1. First, we prove (γ̂ λ
S0 ,0T )T ∈ RpL is a global minimizer of (5) by checking

the following conditions (32) and (33). These conditions follow from the standard optimization
theory as in [37] and [28]. In addition to (32) as in [37] and [28], we should deal with (33) since
we are employing group penalties. Hereafter in this proof, we omit the superscript λ and write
γ̂ S0 for γ̂ λ

S0

With probability tending to 1, we have∣∣∣∣∣1

n

n∑
i=1

L−1/2Xijρ
′
τ

(
Yi − W T

iS0 γ̂ S0

)∣∣∣∣∣ ≤ λw1j for any j ∈ S0
c and (32)

∣∣∣∣∣1

n

n∑
i=1

B−1(Zi)Xijρ
′
τ

(
Yi − W T

iS0 γ̂ S0

)∣∣∣∣∣ ≤ λw−1j for any j ∈ S0
v . (33)

We verify only (33) since (32) is easier.
Proposition 1, Remark 1, and the conditions of this theorem imply that∣∣γ̂ S0 − γ ∗

S0

∣∣ ≤ C1L{(n−1 logpn

)1/2 + λ|wS0 |) ≤ C2L
(
n−1 logpn

)1/2
(logn)kλ (34)

with probability tending to 1 for some positive C1 and C2. We define Vj (γ S0) by

Vj (γ S0) = n−1
n∑

i=1

B−1(Zi)Xij

{
ρ′

τ

(
Yi − W T

iS0γ S0

) − ρ′
τ

(
Yi − W T

iS0γ
∗
S0

)}

− Eε

[
n−1

n∑
i=1

B−1(Zi)Xij

{
ρ′

τ

(
Yi − W T

iS0γ S0

) − ρ′
τ

(
Yi − WT

iS0γ
∗
S0

)}]
.
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By considering the upper bounds given in (34), we can take a positive constant Cξ for any
small positive ξ such that with probability larger than 1 − ξ ,∣∣∣∣∣1

n

n∑
i=1

B−1(Zi)Xijρ
′
τ

(
Yi − W T

iS0 γ̂ S0

)∣∣∣∣∣
≤

∣∣∣∣∣Eε

[
1

n

n∑
i=1

B−1(Zi)Xij

{
ρ′

τ

(
Yi − W T

iS0γ S0

) − ρ′
τ

(
Yi − W T

iS0γ
∗
S0

)}]
γS0 =γ̂S0

∣∣∣∣∣
+

∣∣∣∣∣1

n

n∑
i=1

B−1(Zi)Xijρ
′
τ

(
Yi − W T

iS0γ
∗
S0

)∣∣∣∣∣
+ max

γS0∈�S0 (Cξ L(n−1 logpn)1/2(logn)kλ )

∣∣Vj (γ S0)
∣∣. (35)

We use the following two lemmas to evaluate (35). These lemmas are to be proved in the
supplement.

Lemma 1. For some positive C1, we have∣∣∣∣∣1

n

n∑
i=1

B−1(Zi)Xijρ
′
τ

(
Yi − W T

iS0γ
∗
S0

)∣∣∣∣∣ ≤ C1
(
n−1 logpn

)1/2

uniformly in j ∈ S0
v with probability tending to 1

Lemma 2. Take any fixed positive C and k and fix them. Then we have

max
γS0 ∈�S0 (CL(n−1 logpn)1/2(logn)k)

∣∣Vj (γ S0)
∣∣ = op(λ)

uniformly in j ∈ S0
v .

Finally, we evaluate

Eε

[
1

n

n∑
i=1

B−1(Zi)Xij

{
ρ′

τ

(
Yi − W T

iS0γ S0

) − ρ′
τ

(
Yi − WT

iS0γ
∗
S0

)}]
γS0=γ̂S0

= 1

n

n∑
i=1

B−1(Zi)Xij

{
Fi(−δi) − Fi

(−δi + W T
iS0

(
γ̂ S0 − γ ∗

S0

))}
. (36)

Setting �̂0 = γ̂ S0 − γ ∗
S0 and recalling Assumption A5, we find that (36) is rewritten as

−1

n

n∑
i=1

B−1(Zi)Xijfi(−δi)W
T
iS0�̂

0 + op

((
n−1 logpn

)1/2)
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= −Dj�̂
0 + op

((
n−1 logpn

)1/2) (37)

uniformly in j ∈ S0
v , where Dj is clearly defined in the above equation.

Assumption B3 implies that for some positive C1,

λmax
(
DT

j Dj

) ≤ C1L
−2 (38)

uniformly in j ∈ S0
v with probability tending to 1. This is because Dj is part of �̂S0∪(φ,{j}).

Thus, (34) and (38) yield that for some positive C2,∣∣Dj�̂
0
∣∣ ≤ C2

{(
n−1 logpn

)1/2 + λ|wS0 |} (39)

uniformly in j ∈ S0
v with probability tending to 1.

By combining (35), Lemmas 1 and 2, (37), and (39), we obtain∣∣∣∣∣1

n

n∑
i=1

B−1(Zi)Xijρ
′
τ

(
Yi − W T

iS0 γ̂ S0

)∣∣∣∣∣ ≤ λw−1j

uniformly in j ∈ S0
v with probability tending to 1. Hence, (33) is established.

As for the latter part of the theorem, Assumption A2 implies that γ ∗
1j , j ∈ S0

c , and γ ∗−1j ,

j ∈ S0
v , are large enough to be detected due to Proposition 1 with S = S0.

Hence, the proof of the theorem is complete. �

Now we state the proof of Theorem 2

Proof of Theorem 2. We give the details of the overfitting case here. We can deal with the
underfitting case by following the standard arguments and we give the proof of the underfitting
case in the supplement.

Let S satisfy S ∈ SM and S �= S0. See (25) for the definition of SM . “Uniformly in S” means
“uniformly in S satisfying S ∈ SM and S �= S0”. We have replaced Assumption A3 with As-
sumption A3′. We use Assumption A3′ only once in the proof (Lemma S2.2) and we use As-
sumption A3 in the other part. Assumption A3′ can be relaxed in some cases. See Lemma S2.2
in Subsection S2.2 of the supplement for more details.

If we have established

RV

(
γ ∗
S0

) = 1

n

n∑
i=1

ρτ (εi) + O
(
XML−2) = 1

n

n∑
i=1

E
{
ρτ (εi)

} + op(1), (40)

RV (γ̃ S0) = RV

(
γ ∗
S0

) + op(1), and uniformly in S, (41)

RV (γ̃ S0) − RV (γ̃ S) = (
dV (S) − dV

(
S0))Op

(
n−1{(logpn) ∨ (qn logpn)

1/2}), (42)

then we have for some positive C1,

0 ≤ logRV (γ̃ S0) − logRV (γ̃ S)
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= − log

{
1 + RV (γ̃ S) − RV (γ̃ S0)

RV (γ̃ S0)

}
≤ 1

C1

{
RV (γ̃ S0) − RV (γ̃ S)

}
(43)

uniformly in S with probability tending to 1. By (42) and (43), we obtain

logRV (γ̃ S0) − logRV (γ̃ S) = (
dV (S) − dV

(
S0))Op

(
n−1{logpn ∨ (qn logpn)

1/2})
<

(
dV (S) − dV

(
S0)) logpn

2n
qn

uniformly in S with probability tending to 1. Hence the proof for the overfitting case is complete.
Thus we have only to prove (40)–(42). We prove only (42) since (40) and (41) are easy to deal

with.
Equations (49), (50), and (53), which will be defined later, are important when we prove (42).

To verify (49), first we will prove in the supplement that

RV (γ S) − RV

(
γ ∗
S
) = −(

γ S − γ ∗
S
)T 1

n

n∑
i=1

W iS
(
τi − I

{
ε′
i ≤ 0

})
+ 1

2

(
γ S − γ ∗

S
)T

�̂S
(
γ S − γ ∗

S
)

+ (
γ S − γ ∗

S
)T 1

n

n∑
i=1

W iS(τi − τ) + Op

(
logpn

n(logn)2

)
(44)

uniformly in γ S ∈ �S(M1L(qnn
−1 logpn)

1/2) and S for any fixed M1.
We use (44) to derive a useful expression of RV (γ̃ S). Put

aS = 1

n

n∑
i=1

W iS
(
τi − I

{
ε′
i ≤ 0

})
, bS = 1

n

n∑
i=1

W iS(τi − τ), and

γ S − γ ∗
S = �̂−1

S aS .

(45)

According to (S2.14) in Lemma S2.2 of Subsection S2.2 of the supplement,

(
γ S − γ ∗

S
)T 1

n

n∑
i=1

W iS(τi − τ) = (
γ S − γ ∗

S
)T

bS = Op

(
(qn logpn)

1/2

n

)
(46)

and this term in (44) is negligible uniformly in γ S ∈ �S(M1L(qnn
−1 logpn)

1/2) and S for any
fixed M1.

By applying Bernstein’s inequality conditionally on {(Xi ,Zi)}ni=1 first and using Assumption
B5, we have

|aS |2 = Op

(
logpn

n

)
(47)
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uniformly in S . Thus we have from Assumption B2′ that uniformly in S ,

γ S − γ ∗
S = Op

(
L

(
n−1 logpn

)1/2)
. (48)

We take some δS ∈ RdV (S). If γ S + δS ∈ �S(M1L(qnn
−1 logpn)

1/2), we have from (44) and
(46) that uniformly in δS and S ,

RV (γ S + δS) − RV

(
γ ∗
S
) = −1

2
aT
S�̂−1

S aS + 1

2
δT
S�̂SδS

+ Op

(
(qn logpn)

1/2

n

)
+ Op

(
logpn

n(logn)2

)
. (49)

Because of the optimality of RV (γ̃ S) and (49), we should have

RV (γ̃ S) − RV

(
γ ∗
S
) = −1

2
aT
S�̂−1

S aS + Op

(
(qn logpn)

1/2

n

)
+ Op

(
logpn

n(logn)2

)
(50)

uniformly in S . The above arguments show that this expression also holds for S0. By combining
(49) and (50) and setting δS = γ̃ S − γ S , we also obtain

|γ̃ S − γ S |2 = Op

(
L(qn logpn)

1/2

n

)
+ Op

(
L logpn

n(logn)2

)
(51)

uniformly in S . Note again that these expressions also hold for S0. This equation is used later in
the underfitting case.

We evaluate the difference between RV (γ̃ S) and RV (γ̃ S0). Now write

�̂S =
(

�̂S0 �̂S12
�̂S21 �̂S22

)
and aS =

(
aS0

aS2

)
(52)

and notice that RV (γ ∗
S) = RV (γ ∗

S0). Thus due to (50), we have only to consider the difference

aT
S�̂−1

S aS − aT
S0�̂

−1
S0 aS0 = aT

S0�̂
−1
S0 �̂S12F̂S2�̂S21�̂

−1
S0 aS0

− 2aT
S0�̂

−1
S0 �̂S12F̂S2aS2 + aT

S2F̂S2aS2, (53)

where F̂S2 = (�̂S22 − �̂S21�̂
−1
S0 �̂S12)

−1, when we evaluate RV (γ̃ S) − RV (γ̃ S0).

We will demonstrate that the RHS of (53) has the stochastic order of (dV (S) − dV (S0)) ×
Op(n−1 logpn) uniformly in S .

From Assumptions B2′ and B3′, we have for some positive C1, C2, and C3,

C1L ≤ λmin(F̂S2) ≤ λmax(F̂S2) ≤ C2L and λmax(�̂S21�̂S12) ≤ C3L
−2 (54)

uniformly in S with probability tending to 1.
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By applying Bernstein’s inequality conditionally on {(Xi ,Zi)}ni=1 first and using Assumption
B5, we have that uniformly in S ,

|aS2|2 = (
dV (S) − dV

(
S0))Op

(
logpn

nL

)
. (55)

Hence, (54) and (55) imply that the third term on the RHS of (53) satisfies

aT
S2F̂S2aS2 = (

dV (S) − dV

(
S0))Op

(
n−1 logpn

)
uniformly in S. (56)

To evaluate the first and second terms on the RHS of (53),(
aT
S0�̂

−1
S0 �̂S12

)
F̂S2

(
�̂S21�̂

−1
S0 aS0

)
and

(
aT
S0�̂

−1
S0 �̂S12

)
F̂S2aS2, (57)

we consider

�̂S21�̂
−1
S0 aS0 = �̂S21�̂

−1
S0

1

n

n∑
i=1

W iS0

(
τi − I

{
ε′
i ≤ 0

})
(58)

to obtain (62) below. And write

�̂S12 = (s1, . . . , sdV (S)−dV (S0))

and note that (54) implies

sT
j sj = Op

(
L−2) and λmax

(
�̂S21�̂

−1
S0 �̂S0�̂

−1
S0 �̂S12

) = Op

(
L−1) (59)

uniformly in j and S with probability tending to 1. Besides, we have for some positive C4 and
C5,

max
j

∣∣sT
j �̂−1

S0 W iS0

∣∣ ≤ C4L|sj ||W iS0 | ≤ C5L|sj |XM = Op(XM) (60)

uniformly in i and S with probability tending to 1.
Hence by applying Bernstein’s inequality conditionally together with (59) and (60), we obtain

1

n

n∑
i=1

sT
j �̂−1

S0 W iS0

(
τi − I

{
ε′
i ≤ 0

}) = Op

({
(nL)−1 logpn

}1/2) (61)

uniformly in j and S . Therefore (61) yields that uniformly in S ,∣∣�̂S21�̂
−1
S0 aS0

∣∣2 = (
dV (S) − dV

(
S0))Op

(
(nL)−1 logpn

)
. (62)

Thus (54), (55), (57), and (62) imply that the first and second terms on the RHS of (53) have
the stochastic order of (dV (S) − dV (S0))Op(n−1 logpn) uniformly in S as in (56). We have
demonstrated that the RHS of (53) has the stochastic order of (dV (S) − dV (S0))Op(n−1 logpn)

uniformly in S .
Hence (42) follows from (50) and this evaluation of (53) and the proof of the overfitting case

is complete. The proof of the underfitting case is given in the supplement. Hence, the proof is
complete. �
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