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We study the monotone single index model where a real response variable Y is linked to a d-dimensional
covariate X through the relationship E[Y |X] = �0(αT

0 X), almost surely. Both the ridge function, �0, and
the index parameter, α0, are unknown and the ridge function is assumed to be monotone. Under some
appropriate conditions, we show that the rate of convergence in the L2-norm for the least squares estimator
of the bundled function �0(αT

0 ·) is n1/3. A similar result is established for the isolated ridge function, and

the index is shown to converge at least at the rate n1/3. Since the least squares estimator of the index is
computationally intensive, we also consider alternative estimators of the index α0 from earlier literature.
Moreover, we show that if the rate of convergence of such an alternative estimator is at least n1/3, then the
corresponding least-squares type estimators (obtained via a “plug-in” approach) of both the bundled and
isolated ridge functions still converge at the rate n1/3.

Keywords: least squares; maximum likelihood; monotone; semi-parametric; shape-constraints;
single-index model

1. Introduction

1.1. The generalized linear model and the single index model

The generalized linear model is widely used in econometrics and biometrics as a standard tool
in parametric regression analysis, see, for example, Dobson and Barnett [9]. It assumes that
the observations are n i.i.d. copies of a random pair (X,Y ) such that Y is real valued, X is
d-dimensional, and

E(Y |X) = �0
(
αT

0 X
)

(1.1)

almost surely with an unknown index α0 ∈ Rd \ {0} and a monotone ridge function �0. In the
generalized linear model, �0 is assumed to be known and the conditional density of Y given X =
x with respect to a given dominating measure (typically either Lebesgue measure or counting
measure) is assumed to be of the form

y �→ h(y,φ) exp

{
y�(μ(x)) − B ◦ �(μ(x))

φ

}
, (1.2)
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where h is the normalizing function, μ(x) is the mean, φ > 0 is a possibly unknown dispersion
parameter, � is a given real valued function with first derivative �′ > 0, and inverse �−1 = B ′. The
generalized linear model includes very popular parametric regression models but nevertheless, it
lacks the flexibility offered by non-parametric approaches.

The single index model extends the generalized linear model in order to gain more flexibility.
It is widely used, for instance, in econometrics, as a compromise between restrictive parametric
assumptions and a fully non-parametric setting that can suffer from the “curse of dimensionality”
in high-dimensional problems, see, for example, Chapter 8 in Li and Racine [21]. It assumes that
the conditional expectation of Y depends only on the linear predictor αT

0 X. Hence, as in the gen-
eralized linear model, we have E(Y |X) = �0(α

T
0 X) almost surely, however, the ridge function

�0 is now unknown. Furthermore, it is no longer assumed that the conditional distribution of Y

given X takes the form (1.2), making the model even more flexible.
Standard methods for estimating α0 and �0 rely on smoothness assumptions on �0, and hence

involve a smoothing parameter which has to be carefully chosen, see, for example, Härdle, Hall
and Ichimura [16], Chiou and Müller [5], Hristache, Juditsky and Spokoiny [17] and references
therein. Note also that α0 and �0 are not identifiable if left unrestricted. To see this, let ‖α0‖
denote the Euclidean norm of α0, and note that �0(α

T
0 x) = �0(β

T
0 x) if β0 = α0/‖α0‖ and

�0(t) = �0(‖α0‖t) for all t . Similarly, �0(α
T
0 x) = �0(β

T
0 x) if β0 = −α0 and �0(t) = �0(−t)

for all t . This issue could be resolved by assuming, for example, that ‖α0‖ = 1 and the first non-
null entry of α0 is positive. Under some additional constraints on �0 and the distribution of X,
the model can be shown to be identifiable, see, for example, Proposition 5.1 below.

1.2. The monotone single index model

In this paper, we assume that the unknown ridge function in the single index model is mono-
tone. This is motivated by the fact that monotonicity appears naturally in various applications,
which is one of the reasons behind the popularity of the generalized linear model. Moreover,
the monotonicity assumption has a great advantage. Estimators based only on smoothness con-
ditions on the ridge function typically depend on a tuning parameter that has to be chosen by the
practitioner. The monotonicity assumption avoids all this by opening the door to non-parametric
estimators which are completely data driven, and do not involve any tuning parameters. To be
precise, we assume (1.1) where α0 ∈ Rd \ {0} is such that ‖α0‖ = 1, and �0 is assumed to be
non-decreasing. Note that the assumption made on the direction of monotonicity of the ridge
function replaces the assumption that the first non-null entry of α0 is positive in the identifia-
bility conditions. This can be seen by defining the function �0(t) = �0(−t) for t ∈ R, which is
non-increasing if and only if �0 is non-decreasing. Throughout this paper, we will refer to this
model as the monotone single index model, a term that has been used previously in the literature.

The monotone single index model, with the additional assumption that Y − E(Y |X) is inde-
pendent of X, has been considered by Foster, Taylor and Nan [11], where an estimator for α0
was proposed based on combining isotonic regression with a smoothing method (which involves
a tuning parameter), and also by Kakade et al. [18], where an algorithm for simultaneously esti-
mating the index and the ridge function is provided under the assumption that the ridge function
is Lipschitz (the Lipschitz constant is a parameter of the algorithm). This fits in the setting of Han
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[15] with (using the notation of that paper) F(x,u) = f (x)+u and D(t) = t with f a monotone
function. Han [15] proves consistency of a non-parametric estimator of the index, which does
not require a tuning parameter. The monotone single index model is also closely related to the
model considered by Chen and Samworth [4], who in contrast to the approach followed here,
assume that the conditional distribution of Y given X takes the form (1.2). Chen and Samworth
[4] also consider additive index models where, with � as in (1.2), �(E(Y |X)) can be written as
a sum of ridge functions of linear predictors, with each ridge function satisfying a certain shape
constraint. The authors show consistency for a slightly modified maximum likelihood estimator
obtained by maximizing the likelihood over the closure of the set of all possible parameters.

Current status regression can also be seen as a special case of the monotone single index
model. In the current status regression setting, the response Y ≥ 0 is subjected to interval censor-
ing and is not completely observed. Instead, independent copies of (X,C,�) are observed, where
X ∈Rd is the predictor, C ≥ 0 is an observed censoring time independent of Y , and � = 1{Y≤C}.
Although not observed, Y is assumed to satisfy the linear regression model Y = αT

0 X + ε,
where α0 ∈ Rd and ε is independent of (C,X) with unknown distribution function F0. Let X̃

denote the random vector in Rd+1 such that X̃T = (C,XT ), α̃0 the vector in Rd+1 such that
α̃T

0 = (1,−αT
0 ) and Ỹ = �. Then, E(Ỹ |X̃) = F0(α̃

T
0 X̃) where F0 is non-decreasing (since it

is a distribution function). Here, the conditional distribution of Ỹ given X̃ is Bernoulli, with
�(μ) = log(μ/(1 − μ)) for μ ∈ (0,1) in (1.2). Note that the particular case where the censoring
time C ≡ 0 has been widely used in econometrics and is usually referred to as the binary choice
model. The maximum likelihood estimator (MLE) of α0 was proved to be consistent by Cosslett
[7], and Murphy, Van der Vaart and Wellner [23] prove that the rate of convergence is O(n1/3) in
the one-dimensional case (that is, when d = 1). The latter also shows that an appropriately penal-
ized MLE is

√
n-consistent, but the considered estimator is difficult to implement. Groeneboom

and Hendrickx [14] consider several alternative
√

n-consistent estimators based on a truncated
likelihood.

1.3. Contents of the paper

In the monotone single index model, we consider the least squares estimator (LSE) which es-
timates both the index and the ridge function without the use of a tuning parameter. We give
a characterization of the LSE of (�0, α0) under the monotonicity constraint using a profile ap-
proach. Furthermore, letting g0(x) = E(Y |X = x) = �0(α

T
0 x), we prove that, under appropriate

conditions, the LSE of g0 converges at an n1/3-rate in the L2-norm. Then, we consider the LSE
of α0 and �0 separately, and also prove their n1/3-consistency. The n1/3-rate of convergence ob-
tained for the index may be due to our strategy of proof, as we derive this rate from the n1/3-rate
of the LSE of g0. Thus, sharper rates could potentially be obtained using alternative methods.
This is however out of the scope of this work.

The least squares estimator of the index α0 is computationally intensive, so we also consider
alternative estimators of the index taken from earlier literature. Among them, the so-called linear
estimator, due to Brillinger [3], is especially appealing since it is very easy to implement and
converges at the

√
n-rate to the true index under appropriate conditions, see Section 3.2. We then

consider “plug-in” estimators of g0: we first estimate the index using the first pn data points
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for some fixed p ∈ (0,1), then plug the obtained estimator α̃n in the least squares criterion and
finally minimize the criterion based on the remaining (1 − p)n data points over the space of
monotone ridge functions. See Section 3.1 for details. Combining these two estimators gives an
estimator of g0, and we show in Section 6 that if the rate of convergence of α̃n is sufficiently fast,
then the corresponding estimators of g0 and �0 converge at the n1/3-rate. This means that the
practitioner can choose his favorite estimator for the index and using the least-squares approach,
obtain n1/3-convergent estimators for the bundled and the ridge functions. This shows flexibility
of the approach.

The paper is organized as follows. In Section 2, we show existence of the LSE of (�0, α0) and
give its characterization. Section 3 is devoted to the description of the plug-in approach based on
alternative estimators for the index, as well as to the description of such alternative estimators.
Our main result is given in Theorem 4.1 in Section 4, where we establish the n1/3-convergence
rate of the LSE of g0. In Section 5, we show under some specified assumptions that the LSE of
α0 and �0 converge separately at the same rate in the Euclidean norm on Rd and the L2-norm
on the set of real valued functions respectively, provided that we restrict integration to a bounded
subset of the domain of �0. Section 6 studies the rate of convergence of the above-mentioned
plug-in estimators. The proof of Theorem 4.1 is given in Section 7. Other proofs are deferred to
the supplemental article (Balabdaoui, Durot and Jankowski [1]).

2. Existence and characterization of the least squares estimator

Assume that we observe an i.i.d. sample (X1, Y1), . . . , (Xn,Yn) from (X,Y ) such that E(Y |X) =
�0(α

T
0 X) almost surely, where both the index α0 and the monotone ridge function �0 are un-

known. To ensure model identifiability (see Section 1.2), α0 is assumed to belong to the d-
dimensional unit sphere Sd−1 and the ridge function �0 is assumed to be non-decreasing on its
domain, which contains the range of the linear predictor αT

0 X. For technical reasons, in what
follows we will extend all functions outside their actual support by taking the extension to be
constant to the left and right of the endpoints of the original support.

The goal is to find the LSE of (�0, α0), the minimizer of the least-squares criterion

hn(�,α) =
n∑

i=1

{
Yi − �

(
αT Xi

)}2

over M×Sd−1, where M is the class of all non-decreasing functions on R. Using a profile least-
squares approach, we first minimize � �→ hn(�,α) over M for a fixed α, and then minimize
over α. All proofs for Section 2 are given in Section 8 of the supplemental article (Balabdaoui,
Durot and Jankowski [1]).

Theorem 2.1. For any α ∈ Rd , the minimum of � �→ hn(�,α) over M is achieved. The mini-
mizer is not unique; it is uniquely defined at the points αT Xi , i = 1, . . . , n.

Next, we search for α̂n that minimizes

ĥn(α) := min
�∈M

hn(�,α) (2.1)
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over α ∈ Sd−1. The following proposition shows that the minimum is attained on SX , the set of
all α ∈ Sd−1 which satisfy αT Xi �= αT Xj for all i �= j such that Xi �= Xj . This will prove very
helpful to provide a characterization of the LSE, see Theorem 2.3 below.

Proposition 2.2. The infimum of ĥn over Sd−1 is achieved on SX and the minimizer is not
unique: the set of minimizers contains an open subset of Sd−1.

Combining Theorem 2.1 and Proposition 2.2, we prove existence and non-uniqueness of the
LSE. Some notation is needed before giving a precise characterization of the LSEs. The charac-
terization uses the fact that (thanks to Proposition 2.2) one can restrict attention to those α ∈ SX

in the minimization process. Let x1, . . . , xm denote the distinct values of X1, . . . ,Xn, where
m ∈N is random. We define

ñk =
n∑

i=1

IXi=xk
and ỹk = 1

ñk

n∑
i=1

YiIXi=xk
(2.2)

for all k = 1, . . . ,m. Let PX be the set of all permutations (i.e., orderings) π on {1, . . . ,m} such
that there exists an α ∈ Sd−1 that linearly induces π in the sense that

αT xπ(1) < · · · < αT xπ(m). (2.3)

Note that for each α ∈ SX , the αT xk’s are all different from each other and therefore, there exists
a unique permutation π on {1, . . . ,m} that is linearly induced by α, that is, that satisfies (2.3).
Then, for each π ∈ PX , we denote by dπ

1 ≤ · · · ≤ dπ
m the left derivatives of the greatest convex

minorant of the cumulative sum diagram defined by the set of points{
(0,0),

(
k∑

j=1

ñπ(j),

k∑
j=1

ñπ(j)ỹπ(j)

)
, k = 1, . . . ,m

}
.

Theorem 2.3. The infimum of (�,α) �→ hn(�,α) over M × Sd−1 is achieved. Moreover, if
(�̂n, α̂n) satisfies the following conditions, then it is a minimizer:

• α̂n ∈ SX linearly induces π̂n that minimizes π �→ h̃n(π) := ∑m
k=1 ñπ(k)(ỹπ(k) − dπ

k )2 over
PX , and

• �̂n is monotone non-decreasing with �̂n(̂α
T
n xπ̂n(k)) = d

π̂n

k .

To compute a LSE, one can implement the following steps: (1) compute ñk and ỹk for all
k = 1, . . . ,m; (2) compute dπ

1 , . . . , dπ
m for all π in the finite set PX using, for example, the pool

adjacent violators algorithm (Barlow et al. [2], PAVA); (3) compute π̂n that minimizes h̃n(π)

over the finite set PX; (4) compute α̂n ∈ SX that linearly induces π̂n; (5) compute �̂n ∈ M such

that �̂n(̂α
T
n xπ̂n(k)) = d

π̂n

k for all k (one can consider for simplicity a piecewise constant function).
The difficulty with the above line of implementation is that it requires that the set of all lin-

early inducible permutations PX be computable (steps (2) and (3)). Also, it requires that given
a linearly inducible permutation, one can compute an index in SX that induces the permutation
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(step (4)). The cardinality of PX is known to be on the order of m2(d−1), see Cover [8], but we
are not aware of an efficient algorithm to implement (2)–(4).

Therefore, instead of using inducible permutationss, one could use an alternative optimization
algorithm; for example, stochastic search was used in Chen and Samworth [4], Table 4, page 740.
When adapted to our setting, the algorithm simplifies as follows: (1) choose the total number N

of stochastic searches to perform and set k = 1; (2) draw a standard Gaussian vector Zk in Rd

and compute αk = Zk/‖Zk‖; (3) compute the ordered distinct values t1 < · · · < tL of αT
k Xi ,

i ∈ {1, . . . , n} and also

nl =
n∑

i=1

IαT
k Xi=tl

and yl = 1

nl

n∑
i=1

YiIαT
k Xi=tl

for all l = 1, . . . ,L; (4) compute d1 ≤ · · · ≤ dL, the left derivatives of the greatest convex mino-
rant of the cumulative sum diagram defined by the set of points{

(0,0),

(
l∑

j=1

nj ,

l∑
j=1

njyj

)
, l = 1, . . . ,L

}

using the PAVA; (5) compute Ak := ∑L
l=1 nl(yl − dl)

2, set k := k + 1, go to (2) if k ≤ N and
to (6) otherwise; (6) compute k̂ that minimizes Ak over k ∈ {1, . . . ,N}. An approximated value
of the LSE (̂αn, �̂n) is then given by (αk̂,�k̂), where using the same notation as in (3) and (4)
where k = k̂, �k̂ is piecewise constant function such that �k̂(tl) = dl for all l = 1, . . . ,L. Note
that in the algorithm, the variables Z1, . . . ,ZN are drawn independently from each other.

For completeness, in the supplemental article (Balabdaoui, Durot and Jankowski [1]), we also
give an algorithm to compute the LSE exactly for the special case when d = 2, see Section 8.4.

3. Alternative estimators

Alternative estimators can be obtained by combining the above least squares approach with an
alternative estimator of the index α0, as detailed in Section 3.1 below. As can be seen from Sec-
tion 3.1, the main difficulty in computing the LSE in the monotone single index model lies in
computing an estimator of the unknown index α0. Hence, we consider below various estima-
tors of α0 from earlier literature on single index models with a non-necessarily monotone ridge
function. For notational convenience, all the considered estimators are denoted by α̃n. Among
the considered estimators, the linear estimator of Section 3.2 is of particular interest since it is
very easy to compute and converges at the

√
n-rate in the monotone single index model, see

Theorem 3.1 below.

3.1. Plug-in estimators

First, randomly split the sample into two independent sub-samples of respective sizes n1 and n2,
where n1 is the integer part of pn for some fixed p ∈ (0,1) and n2 = (1 − p)n. Let α̃n denote
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some appropriate estimator of the true index α0 using the n1 data points in the first sub-sample.
Next, we consider the “plug-in” estimator �̃n := �̂α̃n of �0, where for all α, �̂α is the minimizer
of

� �→
∑
i∈I2

{
Yi − �

(
αT Xi

)}2 (3.1)

over � ∈ M, where {(Xi, Yi), i ∈ I2} are the observations from the second sub-sample. Once
α̃n is given, the estimator �̃n is easy to compute using again the PAVA. Indeed, it follows from
Barlow et al. [2], Theorem 1, that any �̃n ∈ M such that �̃n(Zk) = dk is a minimizer. Here,
Z1 < · · · < Zm denote the ordered distinct values of α̃T

n Xi, i ∈ I2, and d1 ≤ · · · ≤ dm are the left
derivatives of the greatest convex minorant of the cumulative sum diagram defined by the set of
points {

(0,0),

(∑
i∈I2

Iα̃T
n Xi≤Zk

,
∑
i∈I2

YiIα̃T
n Xi≤Zk

)
, k = 1, . . . ,m

}
.

Below, we consider several estimators α̃n that could be used in this plug-in procedure.

3.2. The linear estimator

The linear estimator goes back to Brillinger [3], who also considered a single index model (1.1)
with an unknown, not necessarily monotone ridge function �0. This estimator is exactly what one
would use if the regression model were known to be linear. To be precise, based on observations
(X1, Y1), . . . , (Xn,Yn) where the Yis take real values whereas the Xis take values in Rd , the
linear estimator of α0 is defined as follows: α̃n = α̂n/‖α̂n‖ where here,

α̂n = argmin
α∈Rd

n∑
i=1

(
Yi − αT (Xi − X̄n)

)2 (3.2)

with X̄n = n−1 ∑n
i=1 Xi . The linear estimator can therefore be easily computed using standard

tools from linear regression. Moreover, it typically converges to the true index α0 at the square-
root rate and is asymptotically Gaussian, even if the linearity assumption is not valid. Typical
assumptions required for these results to hold are that the variables �0(α

T
0 X) and αT

0 X are cor-
related, and that the conditional expectation of X given αT

0 X is a linear function of αT
0 X. The

latter condition is met under elliptic symmetry of X (which holds in particular if X is Gaussian,
see Chmielewski [6]), a condition that has been considered for instance by Li and Duan [20]
and Goldstein, Minsker and Wei [13]. It turns out that the condition Cov(�0(α

T
0 X),αT

0 X) �= 0
is met in our setting where �0 is monotone and not constant, whence the linear estimator is√

n-consistent and asymptotically Gaussian. The precise statement is given in the following the-
orem, which is a close variant to earlier results in the literature on linear estimators. Here, the
distribution of X is assumed to be continuous since α0 is not identifiable under a discrete distri-
bution of X. The assumption on boundedness of �0 ensures existence of the above covariance.
For completeness, the proof is provided in Section 9.1 of the supplemental article (Balabdaoui,
Durot and Jankowski [1]).
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Theorem 3.1. Let (X1, Y1), . . . , (Xn,Yn) be an i.i.d. sample from (X,Y ) such that E(Y |X) =
�0(α

T
0 X) almost surely where α0 ∈ Sd−1 and �0 is bounded and non-decreasing such that

there exists a nonempty interval [a, b] in the domain of αT
0 X on which �0 is strictly increasing.

Suppose furthermore that X has a continuous elliptically symmetric distribution with finite mean
μ ∈Rd with a positive definite d ×d covariance matrix �, and E(‖X‖2Y 2) < ∞. Then

√
n(α̃n −

α0) converges weakly to a centered d-dimensional Gaussian distribution.

Note that by definition of α̂n, we necessarily have that α̂n = �̂−1
n n−1 ∑n

i=1 Yi(Xi −X̄n), where
�̂n = n−1 ∑n

i=1(Xi − X̄n)(Xi − X̄n)
T . If the Xi ’s were known to be centered with identity co-

variance matrix, one would merely consider the estimator n−1 ∑n
i=1 YiXi , which is precisely the

estimator considered in Section 1.2 of Plan, Vershynin and Yudovina [25]. Under the assumptions
that (in our notation) X is standard Gaussian and Y is independent of X conditionally on αT

0 X,
and E(‖X‖2Y 2) < ∞ (Plan, Vershynin and Yudovina [25], Proposition 1.1) shows that their es-
timator is equal to λα0 + Op(

√
d/n) in the case ‖α0‖ = 1, with λ = E(YαT

0 X). As explained
in Section 7 of that paper, this result can be generalized to non-standard Gaussian covariates. In
fact, if X has a Gaussian distribution with finite mean μ ∈Rd and covariance matrix � such that
‖μ‖ ≤ K and all eigenvalues of � belong to [K−,K+] for some positive K , K−, K+ that do not
depend on d , then this result can be extended to prove that our α̂n is equal to λ∗α0 + Op(

√
d/n)

uniformly in d , n, with λ∗ defined as in Section 9.1 of the supplemental article (Balabdaoui,
Durot and Jankowski [1]). This implies that the convergence rate of the linear estimator α̃n de-
pends on the dimension like

√
d/n. As mentioned by a referee, this rate is optimal as it is the

rate one would obtain if the ridge function was equal to the identity.

3.3. Additional estimators

In the following we discuss other possible ways of index estimation in the present model. A well-
known estimator in the monotone single index model is the so-called maximum rank correlation
(MRC) estimator; see Han [15]. This estimator is defined as the location of the maximum of
Sn(α) over α ∈ Sd−1 where

Sn(α) =
(

n

2

)−1 ∑
1≤i �=j≤n

[I{Yi>Yj }I{αT Xi>αT Xj } + I{Yi<Yj }I{αT Xi<αT Xj }].

Strong consistency of a variant of the MRC estimator is proved in Han [15] under the assumption
that (a) the noise Y − E(Y |X) is independent of X, (b) for a given h ∈ {1, . . . , d} the component
h of α0 is in absolute value greater than a given η > 0, and (c) the distribution of X behaves
“nicely”. Hence, the variant of the MRC estimator is defined as the location of the maximum of
Sn(α) over the set of all α’s in Sd−1 whose component h is in absolute value greater than η. This
implies in particular that one would need to know both h and η, which is quite unrealistic in our
opinion.

Building upon the Isotron algorithm of Kalai and Sastry [19], Kakade et al. [18] propose an
iterative algorithm in the monotone single index model, called the Slisotron, which finds estima-
tors of the index and monotone ridge function under the additional assumption that the latter is
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Lipschitz. More precisely, in the updates of the isotonic estimator, the Slisotron algorithm looks
for the least squares monotone estimator which is also Lipschitz. Slisotron produces estimators
for both the index and ridge function, and in view of the current discussion we are interested
here in the former. Theorem 2 of Kakade et al. [18] shows that the both true and empirical mean
squared errors are of order n−1/3 logn with large probability for some appropriate iteration of
Slisotron. This indicates that their estimator of the index converges, ignoring the logarithmic fac-
tor, at the n1/6 rate, which is significantly worse than the cubic rate achieved by our least squares
estimator of the index, see Corollary 5.3 below.

Assuming again that the ridge function is Lipschitz, and assuming also that the response vari-
able takes values in [0,1], Ganti et al. [12] provide an estimation method that applies even for
the case of high-dimensional covariates. Their “SILO” method can be viewed as an extension
of the linear estimator (described above in Section 3.2) to the high-dimensional case: similar to
the linear estimator, the SILO estimator of the index does not take into account the ridge func-
tion. Other estimation methods can be found in the compressed sensing literature (some of them
are designed for the case of binary response variables), see e.g. Plan and Vershynin [24], Plan,
Vershynin and Yudovina [25].

There are several other alternatives which return an estimate of the index in the single index
model with a non-necessarily monotone ridge function, and these could also be used here. For ex-
ample, one could use kernel-based methods, discussed for example, in Härdle, Hall and Ichimura
[16], Chiou and Müller [5], Hristache, Juditsky and Spokoiny [17]. Although these methods yield
an estimator which is

√
n-consistent, they do rely on smoothing parameters (the bandwidth) for

their estimator.

4. Convergence of the LSE for the regression function

We consider the same setting as in Section 2, however, we now also assume that X has a contin-
uous distribution. This means that we observe an i.i.d. sample (Xi, Yi), i = 1, . . . , n from a pair
(X,Y ) where, with probability one, all the Xi ’s are different from each other (hence, in the nota-
tion of Section 2, n = m and ñi = 1 for all i = 1, . . . , n). It is assumed that E(Y |X) = �0(α

T
0 X)

almost surely, where both the index α0 and the monotone ridge function �0 are unknown, so the
regression function is defined by

g0(x) = �0
(
αT

0 x
)

(4.1)

for (almost-) all x in the support of X and its least-squares estimator (LSE) is given by

ĝn(x) = �̂n

(̂
αT

n x
)

(4.2)

for (almost-) all x in the support of X, where (�̂n, α̂n) is a LSE of (�0, α0) as studied in Sec-
tion 2. For convenience, we consider below a solution �̂n that is left continuous and piecewise
constant, with jumps only possible at the points α̂T

n Xi , for i = 1, . . . , n. Hence, �̂n is uniquely
defined whereas α̂n is not unique (̂αn denotes an arbitrary minimizer of ĥn, in the notation of
Section 2). In this section, we are interested in the consistency and rate of convergence of ĝn in
the L2-sense.
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We begin with some notation and assumptions. Let X be the support of the random vector of
covariates X. Let P be the joint distribution of (X,Y ), Px the conditional distribution of Y given
X = x, and Q the marginal distribution of X. Theorem 4.1 below will be established under the
following assumptions.

(A1) X is a bounded convex set of Rd ,
(A2) there exists a constant K0 > 0 such that |g0(x)| ≤ K0 for all x ∈X ,
(A3) there exist constants a0 > 0 and M > 0 such that for all integers s ≥ 2 and x ∈X∫

|y|s dPx(y) ≤ a0s!Ms−2, (4.3)

(A4) there exist q > 0 and q > 0 such that with respect to the Lebesgue measure, for all

α ∈ Sd−1, the variable αT X has a density that is bounded from above by q and bounded
from below by q on its support.

Assumption (A1) ensures that for all α ∈ Sd−1, the set {αT x, x ∈ X }, which is the support of
the linear predictor αT X corresponding to α, is convex (i.e. is an interval). Hence, we consider
functions of the form �(αT X) where α ∈ Sd−1 and � is a non-decreasing function on its interval
of support {αT x, x ∈ X }. It turns out that for Theorem 4.1 below, it is sufficient to assume,
instead of Assumption (A1), that the support of X is connected, since the continuous image of
a connected set is connected, and a connected subset of the real line is necessarily an interval.
However, convexity of the support of X is also used in Proposition 5.1 below so to alleviate the
exposition, we consider the same assumption (A1) in Theorem 4.1 than in Proposition 5.1.

Assumption (A3) is clearly satisfied if Y is a bounded random variable. It is also satisfied if
the conditional distribution of Y given X belongs to an exponential family, see Proposition 9.2 in
Appendix 9.8 for more details. The assumption ensures that conditionally on X = x, the response
variable Y is uniformly integrable in x. It also ensures that maxi |Yi | is of maximal order logn,
see (7.11) below, which in turn ensures that ĝn also is of maximal order (in sup-norm) logn, see
(7.2).

Assumption (A4) makes the distribution of αT X, with α ∈ Sd−1, equivalent to the Lebesgue
measure on its support.

The following theorem proves the n1/3-rate of convergence of the bundled estimator ĝn under
the above assumptions, that is, under the assumption of a continuous design distribution Q. The
case of a discrete distribution with finite support will be considered in a separate paper. In this
case, a

√
n-rate of convergence can be proved. We conjecture that in the case when some of the

components of X are continuous, and the other ones are discrete, the rate of convergence is still
n1/3. Another case where the

√
n-rate of convergence emerges (up to a logn-factor) is when the

true ridge function is constant. This case also will be studied elsewhere.

Theorem 4.1. With g0 and ĝn defined by (4.1) and (4.2) respectively, where �̂n is the same
piecewise constant function described above, and under assumptions (A1)–(A4) we have(∫

X

(
ĝn(x) − g0(x)

)2
dQ(x)

)1/2

= Op

(
n−1/3). (4.4)
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Remark 4.2.

• If instead of assuming (A4) we only assume that there exists a q > 0 such that with respect
to the Lebesgue measure and for all α ∈ Sd−1, the variable αT X has a density bounded
above by q , then we obtain a rate of convergence n−1/3(logn)5/3 instead of n−1/3, see
Section 7.1 below for details.

• The convergence rate obtained above depends on the dimension d . A closer look at the
proof reveals that this dependence takes the form of Op(d(1 + √

qR)n−1/3(logn)5/3), see
Theorem 7.3 below. Note that the constant R may hide a dependence on d since in the case
where X is the �∞-unit ball in Rd we have R = √

d .
• Suppose that we relax assumptions (A1) and (A4). That is, instead of assuming (A4), we

only assume here that there exists q > 0 such that with respect to the Lebesgue measure, for
all α ∈ Sd−1, the variable αT X has a density that is bounded from above by q . Moreover,
instead of assuming that X has a bounded support, we assume that X has a sub-Gaussian
distribution. This means that there exists σ 2 > 0 such that for all vectors u ∈ Sd−1, and all
t ∈ R, with T = uT X we have

P
(
T − E(T ) > t

) ≤ exp
(−t2/

(
2σ 2)) and P

(
T − E(T ) < −t

) ≤ exp
(−t2/

(
2σ 2)).

Then, for all ε > 0 there exists A > 0 such that with probability larger than 1 − ε we have∫
X

(
ĝn(x) − g0(x)

)2
dQ(x) ≤ A

√
qd5/4(log(n ∨ d)

)1/4
n−1/3(logn)5/3, (4.5)

see Section 9.2 in the supplemental article (Balabdaoui, Durot and Jankowski [1]) for de-
tails. If d does not depend on n, then this yields a rate of convergence n−1/3(logn)23/12.

5. Convergence of the separated LSE estimators

We now derive from Theorem 4.1 convergence of α̂n to α0 and �̂n to �0. Moreover, we are
interested in the rate of convergence of the two estimators. Convergence can happen only under
uniqueness of the limit so first we prove identifiability of �0 and α0 under appropriate conditions.

5.1. Identifiability of the separated parameters

Let (X,Y ) be a pair of random variables, where X takes values in Rd and Y is an integrable
real valued random variable such that (1.1) holds for some α0 ∈ Sd−1 and �0 ∈ M. Identifiabil-
ity of the parameter (α0,�0) means here that if we can find β in Sd−1, and h in M such that
�0(α

T
0 X) = h(βT X) a.s. then β = α0 and h = �0 on Cα0 = Cβ , where for all α ∈ Sd−1 we set

Cα = {αT x, x ∈ X } with X being the support of X. Although identifiability can be derived from
Lin and Kulasekera [22] when assuming that �0 is non-constant and continuous, for complete-
ness we state below identifiability under a slightly less restrictive assumption, namely left- (or
right-) continuity instead of continuity. A proof can be found in Section 9.3 in the supplemental
article (Balabdaoui, Durot and Jankowski [1]). Since X is convex, it follows that Cα is an interval



LSE in the monotone single index model 3287

for any α. Moreover, recall that monotone functions on an interval can be extended to monotone
functions on R.

Proposition 5.1. Assume that X is convex with at least one interior point. Assume also that
X has a density with respect to Lebesgue measure which is strictly positive on X , and that
(1.1) holds for some α0 ∈ Sd−1 and �0 ∈ M that is not constant on Cα0 , and either left- or
right-continuous on Cα0 with no discontinuity point at the boundaries of Cα0 . Then, (�0, α0) is
uniquely defined.

5.2. Convergence of the separated estimators

We begin by establishing consistency of (̂αn, �̂n) where �̂n denotes the left-continuous LSE of
�0 extended to R and α̂n is a minimizer of ĥn defined in (2.1), see Section 9.4 in the supplemental
article (Balabdaoui, Durot and Jankowski [1]) for a proof.

Theorem 5.2. Assume that assumptions (A1)–(A3) are satisfied and that there exists a q > 0
such that for all α ∈ Sd−1, with respect to the Lebesgue measure, the variable αT X has a density
that is bounded above by q . Assume, moreover, that �0 is non-constant and left-continuous with
no discontinuity points at the boundaries of Cα0 , and that X has at least one interior point.
Assume also that X has a density with respect to Lebesgue measure which is strictly positive
on X .

1. We then have α̂n = α0 + op(1), and for all fixed continuity points t of �0 in the interior of
Cα0 , �n(t) converges in probability to �0(t) as n → ∞.

2. If, moreover, �0 is continuous, then

sup
t∈I

∣∣�̂n(t) − �0(t)
∣∣ = op(1) (5.1)

for all compact intervals I ⊂ R such that K− < �0(t) < K+ for all t ∈ I . Here, K+ and
K− denote the largest and smallest values of �0 on Cα0 .

Next, we establish rates of convergence for α̂n and �̂n. To show that both α̂n and �̂n inherit
the n1/3 rate of convergence from the joint convergence established for the full estimator ĝn( · ) =
�̂n(̂α

T
n ·), some additional assumptions are needed.

(A5) There exists an interior point z0 ∈ Cα0 such that �0 is continuously differentiable in the
neighborhood of z0, with � ′

0(z0) > 0.
(A6) The density of X, q , is continuous on X .

Let c = infCα0 and c = supCα0 . Our main result here is the following. It is proved in Sec-
tion 9.4 in the supplemental article (Balabdaoui, Durot and Jankowski [1]).

Corollary 5.3. Assume that �0 is non-constant and left-continuous with no discontinuity points
at the boundaries of Cα0 , that X has at least one interior point, and that (A1)–(A6) hold. Then,
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‖α̂n − α0‖ = Op(n−1/3). If moreover, �0 has a derivative bounded from above on Cα0 , then

(∫ c−vn

c+vn

(
�̂n(t) − �0(t)

)2
dt

)1/2

= Op

(
n−1/3) (5.2)

for all sequences vn such that n1/3vn → ∞ and c + vn ≤ c − vn.

Remark 5.4. The above result holds under Assumption (A1) on the support of the covariate X.
The result can be made stronger under additional regularity conditions on the support X . For
example, when X is a ball in Rd centered at the origin and of radius r then the above result holds
with vn = 0. Indeed, in this setting the support of the linear predictor αT X, for any α, is [−r, r].
Therefore, in the proof, Cα̂n = [−r, r] and hence vn = 0, c̄ = r and c = −r in inequality (9.16)
of the supplemental article (Balabdaoui, Durot and Jankowski [1]). Notably, Kakade et al. [18]
consider this choice of X with r = 1.

The n1/3-rate obtained in Corollary 5.3 for convergence of the LSE α̂n towards the truth raises
the question whether this convergence actually occurs at a faster rate, for example n1/2. In order
to investigate this question, we have performed simulations for d = 2 and two different monotone
single index models: the first one is a Gaussian model where Y ∼ N ((αT

0 X)3,1), whereas the
second one is a logistic regression model where Y ∼ Bin(10, exp(αT

0 X)(1 + exp(αT
0 X))−1). In

both settings, the two-dimensional covariate X ∼ U [0,1] ×U [0,1] and α0 = (cos(θ0), sin(θ0))
T

with θ0 ∈ {π/4,π/3,π/2}. From each of these monotone single index models we have drawn 100
times n i.i.d. pairs (Xi, Yi) and computed the LSE α̂n for n ∈ {102,103,104,105}. Based on these
100 replications we computed the empirical estimates for the covariance matrix of n1/3(̂αn −α0)

and n1/2(̂αn − α0). The main idea behind is that the correct rate of convergence should yield
estimates that are more or less stable for large n. Our simulation results for the Gaussian and
logistic model are reported in Table 1 and Table 2, respectively. For the settings we have chosen,
the variances σ̂ 2

11 and σ̂ 2
22 as well as the absolute value of the covariance |̂c12| seem to increase

with the sample size n if n1/2 is the stipulated rate of convergence. This picture is completely
reversed for the rate n1/3. This first investigation can only allow us to conclude (for the chosen
models, true monotone link functions and indices) that the convergence of our LSE occurs at a
rate that is faster than n1/3 and slower than n1/2.

Upon request of one referee, we have performed additional simulations with equally spaced
values of n on the logarithmic scale and computed for the same settings as above the average
value of the square of the L2-norm of the estimation error; that ish, ‖α̂n − α0‖2

2. For a given
sample size n we denote by mn this average. For this new set of simulations, we have increased
the number of replications from 100 to 500. The plots of the logmn versus logn, shown in the
supplemental article (Balabdaoui, Durot and Jankowski [1]), are unfortunately less conclusive
than our results in Table 1 and Table 2. The non-linear trend of the plots indicates that the rate
of convergence is not of the form nν for some ν > 0. If one conjectures that this convergence
rate is rather of the form nν(logn)−γ for some γ > 0, then regressing logmn on the “predictors”
logn and log(logn) does not give meaningful outputs neither: in some cases it was found that
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Table 1. Values of the empirical covariances matrices for the case d = 2 of
n1/2(̂αn − α0) and n1/3(̂αn − α0) with entries σ̂ 2

11, σ̂ 2
22, ĉ12 = ĉ21. The

sample size n ∈ {102,103,104,105} and α0 = (cos(θ0), sin(θ0))T with
θ0 ∈ {π/4,π/3,π/2}. The obtained estimates were computed based on 100
replications and the model Y ∼N ((αT

0 X)3,1) and X ∼ U [0,1] × U [0,1]

θ0 Rate n σ̂ 2
11 σ̂ 2

22 ĉ12

π/4 n1/2 100 1.180 1.167 −1.162
1000 2.260 2.247 −2.247

10 000 4.415 4.340 −4.374
100 000 6.663 6.604 −6.633

n1/3 100 0.254 0.251 −0.250
1000 0.226 0.225 −0.225

10 000 0.205 0.201 −0.203
100 000 0.143 0.142 −0.143

π/3 n1/2 100 3.143 1.110 −1.836
1000 5.404 1.700 −3.011

10 000 7.078 2.418 −4.133
100 000 7.565 2.513 −4.360

n1/3 100 0.677 0.239 −0.395
1000 0.540 0.170 −0.301

10000 0.328 0.112 −0.192
100000 0.163 0.054 −0.094

π/2 n1/2 100 6.740 0.132 0.066
1000 11.633 0.051 −0.047

10 000 12.110 0.014 −0.195
100 000 10.904 <1e−03 −0.011

n1/3 100 1.452 0.028 0.014
1000 1.163 0.005 −0.005

10 000 0.562 <1e−03 −0.009
100 000 0.235 <1e−03 <1e−03

the estimator of ν is smaller than −1, which is of course unrealistic. We believe that simulations
for much larger sample sizes are needed to obtain a much better picture.

Proving the exact rate of convergence of α̂n is an interesting question but goes beyond the
scope of this work. We believe that in establishing this exact rate, under suitable assumptions, it
is necessary to overcome the difficulty of non-smoothness of �̂n, the monotone estimator of the
true link function �0 and the fact that α̂n and �̂n are intertwined. Consequently, a useful device
such as Taylor expansion cannot be used. Also, when this �̂n converges at the cubic rate (as it is
the case under our assumptions), it is not immediate how to show that α̂n converges at a faster
rate as both �n and α̂n depend on each other. We intend to investigate these questions in a future
work.
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Table 2. Values of the empirical covariances matrices for the case d = 2 of
n1/2 (̂αn − α0) and n1/3 (̂αn − α0) with entries σ̂ 2

11, σ̂ 2
22, ĉ12 = ĉ21. The

sample size n ∈ {102,103,104,105} and α0 = (cos(θ0), sin(θ0))T with
θ0 ∈ {π/4,π/3,π/2}. The obtained estimates were computed based on 100
replications and the model Y ∼ Bin(10, exp(αT

0 X)/(1 + exp(αT
0 X)) and

X ∼ U [0,1] × U [0,1]

θ0 Rate n σ̂ 2
11 σ̂ 2

22 ĉ12

π/4 n1/2 100 1.291 1.330 −1.300
1000 2.981 2.977 −2.970

10 000 5.718 5.600 −5.654
100 000 7.140 7.180 −7.159

n1/3 100 0.278 0.287 0.280
1000 0.298 0.298 −0.297

10 000 0.265 0.260 −0.262
100 000 0.154 0.155 −0.154

π/3 n1/2 100 3.399 1.083 −1.884
1000 5.250 1.788 −3.047

10 000 9.769 3.307 −5.675
100 000 13.059 4.420 −7.596

n1/3 100 0.732 0.233 −0.406
1000 0.525 0.179 −0.305

10000 0.453 0.153 −0.263
100000 0.281 0.095 −0.164

π/2 n1/2 100 6.689 0.127 −0.045
1000 7.583 0.030 −0.125

10 000 9.220 0.004 −0.015
100 000 13.354 <1e−03 0.008

n1/3 100 1.441 0.027 −0.010
1000 0.758 0.003 −0.012

10 000 0.428 <1e−03 <1e−03
100 000 0.288 <1e−03 <1e−03

6. Convergence of alternative estimators

We now consider convergence of plug-in estimators of Section 3.1: we randomly split the sample
into two independent sub-samples of respective sizes n1 and n2, where n1 is the integer part of
pn for some fixed p ∈ (0,1) and n2 = (1 − p)n, we compute an index estimator α̃n based on
the first sub-sample, and then compute �̃n, the minimizer of (3.1) over � ∈ M, where α = α̃n

and {(Xi, Yi), i ∈ I2} are the observations from the second sub-sample. Note that arguing condi-
tionally on the first sub-sample, α̃n can be considered as non-random when studying the limiting
behavior of �̃n. In the sequel, we set g̃n(x) = �̃n(α̃

T
n x) for all x ∈ Rd . We prove below that, pro-
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vided that α̃n converges at the n1/3-rate (which is the case of the linear estimator of Section 3.2
and some estimators from Section 3.3 under appropriate assumptions), g̃n also converges at the
same rate. The complete proof is given in Section 9.7 of the supplemental article (Balabdaoui,
Durot and Jankowski [1]). Below, we implicitly assume that α0 is identifiable.

Theorem 6.1. Assume (A1)–(A4). Assume, moreover, that �0 is non-constant and Lipschitz
continuous, and that α̃n = α0 + Op(n−1/3).

With g̃n as above we then have(∫
X

(
g̃n(x) − g0(x)

)2
dx

)1/2

= Op

(
n−1/3). (6.1)

Furthermore, if (A1)–(A6) hold, and �0 has a first derivative that is bounded from above on Cα0 ,
then (∫ c−vn

c+vn

(
�̃n(t) − �0(t)

)2
dt

)1/2

= Op

(
n−1/3) (6.2)

for all sequences vn such that n1/3vn → ∞ and c + vn ≤ c − vn.

Remark 6.2. Similarly to Remark 5.4, the result can be made stronger under additional reg-
ularity conditions on the support X . Moreover, similar to Remark 4.2, if instead of assuming
that X has a bounded support we assume that it has a sub-Gaussian distribution, then the rate of
convergence is only inflated by the factor (logn)5/3.

7. Proof of Theorem 4.1

As the proof of Theorem 4.1 is quite long and technical, we first give the main ideas of the proof
of this theorem in Section 7.1 below. Here, we give two preparatory lemmas and an intermediate
rate theorem (Theorem 7.3). The latter compares to Theorem 4.1 but with an additional logn term
in the rate of convergence. The proof of Theorem 7.3 requires entropy results that are described in
Section 7.2 and proved in subsequent subsections. The proof of Theorem 4.1 is finally completed
in Section 7.9.

7.1. The main steps of the proof of Theorem 4.1

By definition of the LSE, ĝn maximizes the criterion

Mng := 1

n

n∑
i=1

{
Yig(Xi) − g(Xi)

2

2

}
(7.1)

over the set of all functions g of the form g(x) = �(αT x), x ∈ X with α ∈ Sd−1 and � ∈ M. It
would have been easier to prove Theorem 4.1 using standard results from empirical process the-
ory if the LSE were known to be bounded in probability by some constant which is independent
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of n. Unfortunately, we do not know whether this holds true. Instead, the following lemma can
be established (see Section 7.3 for a proof).

Lemma 7.1. We have

min
1≤k≤n

Yk ≤ ĝn(x) ≤ max
1≤k≤n

Yk (7.2)

for all x ∈ X . Moreover, under assumptions (A2) and (A3) we have

sup
x∈X

∣∣̂gn(x)
∣∣ ≤ max

1≤k≤n
|Yk| = Op(logn).

Note that under the more restrictive assumption that Y is a bounded random variable (so that
maxk |Yk| is bounded), we obtain that ĝn is also bounded. This is the case for instance, in the
current status model which, as explained in the introduction, is a special case of the model we
consider with Y ∈ {0,1}. For this reason, the arguments developed in Groeneboom and Hen-
drickx [14] in the current status model cannot be directly adapted to our setting.

Now it follows from Lemma 7.1 that, with arbitrarily large probability, ĝn maximizes Mng

over the set of all functions g that are bounded in absolute value by C logn for some appropriately
chosen C > 0, and take the form g(x) = �(αT x), x ∈ X with (α,�) ∈ Sd−1 ×M. Denote by Pn

the empirical distribution corresponding to (X1, Y1), . . . , (Xn,Yn), and let f̂n(x, y) = yĝn(x) −
ĝ2

n(x)/2 for x ∈ X and y ∈R. Since Mng = Pnf with

f (x, y) = yg(x) − g2(x)/2 (7.3)

for all x ∈ X , y ∈ R, this means that, with arbitrarily large probability, f̂n maximizes Pnf over
the set of all functions f of the form (7.3) for some function g that is bounded in absolute
value by C logn and takes the form g(x) = �(αT x), x ∈ X with (α,�) ∈ Sd−1 × M. Hence,
classical arguments for maximizers of the empirical process over a class of functions (where g

can be assumed to be bounded by C logn) can be used to compute the rate of convergence of
the estimator. This requires bounds for the entropy of the class of functions f of the form (7.3)
together with a basic inequality that makes the connection between the mean of Mng − Mng0

and a distance between g and g0. The entropy bounds are given in Section 7.2 below whereas
the basic inequality is given in the following lemma, which is proved in Section 7.4. For each
bounded function g : X → R, we define Qg = ∫

gdQ and Mg = Pf where f is given by (7.3)
and Pf = ∫

f dP, which means that Mg is the expected value of Mng:

Mg =
∫
X×R

{
yg(x) − g2(x)

2

}
dP(x, y). (7.4)

Lemma 7.2. Let g :X → R with Qg2 < ∞. Then, Mg −Mg0 ≤ −D2(g, g0)/2 where

D(g,g0) =
(∫

X

(
g(x) − g0(x)

)2
dQ(x)

)1/2

. (7.5)
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If classical arguments for maximizers over a class of functions are used based on the previous
basic inequality and Lemma 7.1 (which allows to restrict attention to functions g that are bounded
by C logn, for some large C > 0 that does not depend on n), the obtained rate of convergence
would be inflated by a logarithmic factor.

Theorem 7.3. Assume that assumptions (A1)–(A3) are satisfied and that there exists a constant
q > 0 such that for all α ∈ Sd−1, with respect to the Lebesgue measure, the variable αT X has a
density which is bounded by q . Then, D(ĝn, g0) = Op(n−1/3(logn)5/3). More precisely, for all
ε > 0, there exists A > 0 that depends only on ε, a0 and M such that

P
(
D(ĝn, g0) > Ad(1 +√

qR)n−1/3(logn)5/3) ≤ ε.

It may seem superfluous to add Theorem 7.3. However, the obtained unrefined rate of con-
vergence will be used to get rid of the additional logarithmic factor. To explain how this works,
set v = Cn−1/3(logn)2 and K = C logn for some constant C > 0 to be chosen appropriately.
Lemma 7.1 and Theorem 7.3 are used to show that with a probability that can be made arbitrarily
large by choice of C, the LSE ĝn is bounded by K while D(ĝn, g0) is smaller that v. Hence, with
arbitrarily large probability, the LSE maximizes Mng over the set GKv of all functions g of the
form g(x) = �(αT x) with α ∈ Sd−1 and � ∈ M such that |g(x)| ≤ K for all x ∈X and

D(g,g0) ≤ v. (7.6)

Hence, although optimization cannot be restricted to a set of functions that are uniformly
bounded in n, we can work with a class of functions that are bounded in the L2(Q)-norm. The
merit of the latter is that under (A2) and equivalence of Q with the Lebesgue measure, a function
g ∈ GKv can be shown to exceed 2K0 only on a subset of X with Lebesgue measure of maxi-
mal order (v/K0)

2. The fact that considered functions g are bounded by 2K0 except on such a
small region will balance out the large values that g might have on the same region, and this will
prove to be very advantageous in computing the final entropy of the original class of functions.
To estimate this entropy, each function g(.) = �(αT .) will be decomposed as follows:

g = (g − ḡ) + ḡ, (7.7)

where ḡ is the truncated version of g defined by

ḡ(x) =

⎧⎪⎨⎪⎩
g(x) if

∣∣g(x)
∣∣ ≤ 2K0,

2K0 if g(x) > 2K0,

−2K0 if g(x) < −2K0.

(7.8)

The set of all possible ḡ forms now a class of bounded functions on which standard arguments
from empirical processes theory apply. On the other hand, the differences g − ḡ form a set of
functions whose supremum norm increases with n and which, by the discussion above, take
the value zero except on regions of a very small size. Those two classes of functions will be
treated with different arguments. The assumption that αT X has a density bounded from above
will be used to compute entropy bounds for the former class (see Lemma 7.6 and the preceding
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comment) whereas the assumption of a density bounded away from zero will be used to compute
entropy bounds for the latter class (see Lemma 7.7 and the preceding comment). Below are
some entropy results required in the proof of Theorems 7.3 and 4.1. The complete proofs of
the theorems are given in Sections 7.8 and 7.9 whereas the proofs of the lemmas are given in
Sections 7.3 to 7.7.

7.2. Entropy results

We begin with some notation. For any class of functions F equipped with a norm ‖ ·‖, and ε > 0,
we denote by HB(ε,F,‖ · ‖) the corresponding bracketing entropy:

HB

(
ε,F,‖ · ‖) = logNB

(
ε,F,‖ · ‖),

where NB(ε,F,‖ · ‖) = N is the smallest number of pairs of functions (f U
1 , f L

1 ), . . . , (f U
N ,f L

N )

such that all ‖f L
j − f U

j ‖ ≤ ε and for each f ∈ F , there exists a j ∈ {1, . . . ,N} such that f L
j ≤

f ≤ f U
j . Moreover, assuming that X has a bounded support X , we set R = supx∈X ‖x‖ where

‖ · ‖ denotes the Euclidean norm in Rd . We then have∣∣αT x
∣∣ ≤ R for all x ∈X (7.9)

for all α ∈ Sd−1, using the Cauchy–Schwarz inequality. In the rest of the paper, we will use the
following notation

– ‖ · ‖P and ‖ · ‖Q are the L2-norms corresponding to respectively P and Q: ‖f ‖2
P

=∫
X×R

f 2(x, y) dP(x, y) and ‖g‖2
Q

= ∫
X g2(x) dQ(x) for all f : X ×R → R and g : X →

R,
– MK is the class of all nondecreasing functions on R that are bounded in absolute value by

K ,
– GK is the class of functions g(x) = �(αT x), x ∈X where α ∈ Sd−1, � ∈ MK ,
– FK is the class of functions f of the form (7.3), x ∈X , y ∈ R, and g ∈ GK ,
– GKv is the class of functions g ∈ GK satisfying the condition (7.6),
– FKv is the class of functions f of the form (7.3), x ∈X , y ∈R, and g ∈ GKv ,
– GKv is the class of functions g − ḡ, where g ∈ GKv and ḡ is given in (7.8),
– FKv is the class of functions f − f̄ , where f takes the form (7.3) for some g ∈ GKv and

f̄ (x, y) = yḡ(x) − ḡ2(x)/2, x ∈X , y ∈R.

Our starting point is the following result, which follows from Theorem 2.7.5 in van der Vaart
and Wellner [26].

Lemma 7.4. There exists a universal constant A > 0 such that

HB

(
ε,MK,‖ · ‖Q

) ≤ AK

ε

for all ε > 0, K > 0, and all probability measures Q on R, where ‖ · ‖Q is the L2-norm corre-
sponding to Q: ‖�‖2

Q = ∫
�2 dQ for all � : R→R.
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The next result, which follows from Lemma 22 of Feige and Schechtman [10], gives a bound
on the minimal number of subsets with diameter at most ε, say, into which Sd−1 can be divided.
Here, the diameter of some given subset A ⊂ Sd−1, is given by sup(x,y)∈A2 ‖x − y‖.

Lemma 7.5. Fix ε ∈ (0,π/2), and let N(ε,Sd−1) be the number of subsets of equal size with
diameter at most ε into which Sd−1 can be partitioned. Then, there exists a universal constant
A > 0, such that N(ε,Sd−1) ≤ (A/ε)d .

In what follows, we assume that the assumptions (A1)–(A3) are satisfied. The next step is to
use the results above to construct ε-brackets for the classes GK , FK , GKv and FKv . We begin
with the classes GK and FK . In the next lemma, we assume that αT X has a bounded density
on a bounded support for all α. This assumptions is used in the proof to show that with Q the
distribution of αT X with arbitrary α ∈ Sd−1, and � ∈MK , there exists a constant C such that∫

R

(
�(t + u) − �(t − u)

)
dQ(t) ≤ Cu.

Lemma 7.6. Assume that the assumptions (A1)–(A3) are satisfied and that there exists q > 0
such that for all α ∈ Sd−1, with respect to the Lebesgue measure, the variable αT X has a density
that is bounded by q . Let K > ε > 0. There exists a universal constant A1 > 0 such that

HB

(
ε,GK,‖ · ‖Q

) ≤ A1Kd(1 + √
qR)

ε
.

Moreover, if K > 1 then there exists A2 > 0 depending only on a0 such that

HB

(
ε,FK,‖ · ‖P

) ≤ A2K
2d(1 + √

qR)

ε
.

The next lemma will be used to control the differences g(X) − g(X) = h(αT X), g ∈ GKv .
Here, we assume that for all α, the variable αT X has a density that is bounded away from zero
on its support. The assumption is used to show that under (7.6), h = 0 except on a set whose
Lebesgue measure is at most q−1K−2

0 v2, see (7.21) below. Since the distribution of αT X is also
assumed to have a bounded density with respect to the Lebesgue measure, this implies that the
probability that h(αT X) �= 0 is of maximal order v2, for all α, leading to a sharp bound for ḠKv

and then F̄Kv .

Lemma 7.7. Assume that the assumptions (A1)–(A4) are satisfied. Let ε > 0 and v > 0. There
exists a constant A1 > 0 depending only on K0, q , q and R such that

HB

(
ε, ḠKv,‖ · ‖Q

) ≤ A1Kv

ε
+ d log

(
A1K

2

ε2

)
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for all K > ε such that Kv > εK0

√
2Rq . Moreover, there exists A1 > 0 depending only on K0,

q , q , R and a0 such that for all K > 1 ∨ ε such that K2v > εK0

√
2Rq , we have

HB

(
ε, F̄Kv,‖ · ‖P

) ≤ A1K
2v

ε
+ d log

(
A1K

4

ε2

)
.

The next lemma will be needed to give entropy bounds in the Bernstein norm. We recall that
the Bernstein norm of some function f with respect to P is defined by

‖f ‖B,P = (
2P

(
e|f | − 1 − |f |))1/2

.

Although not technically a norm, it is typically referred to as such in the literature (van der Vaart
and Wellner [26], page 324), and we do not stray from this in what follows. With C̃ > 0 a constant
appropriately chosen, Lemma 7.8 below derives from Lemmas 7.6 and 7.7 upper bounds on the
bracketing number of the classes

F̃Kv := {
(f − f0)C̃

−1, f ∈ FKv

}
, (7.10)

where f0(x, y) = yg0(x) − g2
0(x)/2 and

˜̄FKv := {
f C̃−1, f ∈ F̄Kv

}
with respect to the Bernstein norm. This will enable us to use Lemma 3.4.3 of van der Vaart and
Wellner [26] which does not require the class of functions of interest to be bounded.

Lemma 7.8. Assume that the assumptions (A1)–(A3) are satisfied and that there exists q > 0
such that for all α ∈ Sd−1, with respect to the Lebesgue measure, the variable αT X has a density
that is bounded by q . Let ε > 0 and v > 0. Let M be the same constant from the moment condition
(4.3) of Assumption (A3). Let C̃ = 4MK2 such that K ≥ (2K0) ∨ 2. Then, there exist constants
A1 > 0 and A2 > 0 that depend on a0 and M only such that

HB

(
ε, F̃Kv,‖ · ‖B,P

) ≤ A1d(1 + √
qR)

ε
and ‖f̃ ‖B,P ≤ A2v

for all f̃ ∈ F̃Kv . If moreover, the assumption (A4) is fulfilled, then there exist constants A1 > 0
and A2 > 0 depending only on K0, R, a0, M , q̄ and q such that

HB

(
ε, ˜̄FKv,‖ · ‖B,P

) ≤ A1v

ε
+ d log

(
A1

ε2

)
and ‖f̃ ‖B,P ≤ A2v

for all f̃ ∈ ˜̄FKv , provided that K2v > A2ε and K > ε.

Note that the condition ε < 2 guarantees that K > ε since K ≥ 2. Also, we point out that the
constants A1 and A2 may not be the same ones as in Lemma 7.7 but we can always increase their
respective values so that they are suitable for Lemma 7.8.
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7.3. Proof of Lemma 7.1

For a fixed α ∈ Sd−1, let �̂α
n be a minimizer of hn(�,α) over � ∈ M. It follows from Theorem 1

in Barlow et al. [2] that �̃n(Zk) = dk for k = 1, . . . ,m, where Z1 < · · · < Zm are the ordered
distinct values of αT X1, . . . , α

T Xn, and d1 ≤ · · · ≤ dm are the left derivatives of the greatest
convex minorant of the cumulative sum diagram defined by the set of points{

(0,0),

(
n∑

i=1

IαT Xi≤Zk
,

n∑
i=1

YiIαT Xi≤Zk

)
, k = 1, . . . ,m

}
.

Hence, we have

min
1≤k≤m

∑n
i=1 YiIαT Xi≤Zk∑n
i=1 IαT Xi≤Zk

≤ �̂α
n

(
αT Xj

) ≤ max
0≤k≤m−1

∑n
i=1 YiIαT Xi>Zk∑n
i=1 IαT Xi>Zk

,

with Z0 = −∞, for all j = 1, . . . , n. Therefore, min1≤i≤n Yi ≤ �̂α
n (αT Xj ) ≤ max1≤i≤n Yi for

all α ∈ Sd−1 and j = 1, . . . , n. The inequalities in (7.2) follow since by definition, ĝn(x) takes
the form �̂α

n (αT x) for all x, where α is replaced by the LSE α̂n ∈ Sd−1.
Now we prove that under the assumptions (A2) and (A3),

max
1≤i≤n

|Yi | = Op(logn). (7.11)

For an integer s ≥ 2, it follows from convexity of the function z �→ |z|s on R that

E
[∣∣Y − g0(x)

∣∣s |X = x
] ≤ 2s−1(E[|Y |s |X = x

]+ ∣∣g0(x)
∣∣s)

≤ 2s−1(s!a0M
s−2 + Ks

0

) ≤ s!b0
(
M ′)s−2

with b0 = 2(a0 + K2
0 ) and M ′ = 2(M ∨ K0). Now, using Lemma 2.2.11 of van der Vaart and

Wellner [26] with n = 1 and Ỹ = Y − g0(x) and after integrating out with respect to dQ, we
obtain

P
(∣∣Y − g0(X)

∣∣ > t
) ≤ 2 exp

( −t2

2(2b0 + M ′t)

)
for all t > 0. Hence, with t = C logn such that K0 < C log(n)/2 we have that

P
(

max
1≤i≤n

|Yi | > C logn
)

≤
n∑

i=1

P
(∣∣Yi − g0(Xi)

∣∣ > C log(n)/2
)

≤ 2n exp

( −C2 logn

4(4b0(logn)−1 + M ′C)

)
which converges to 0 as n → ∞ provided that C is sufficiently large so that 8M ′C < C2.
Lemma 7.1 follows.
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7.4. Proof of Lemma 7.2

Since E[Y |X = x] = g0(x) we have

Mg −Mg0 =
∫
X

{
g0(x)

(
g(x) − g0(x)

)− g(x)2

2
+ g0(x)2

2

}
dQ(x)

= −1

2

∫
X

(
g(x) − g0(x)

)2
dQ(x),

which proves Lemma 7.2.

7.5. Proof of Lemma 7.6

Let εα = ε2K−2 ∈ (0,1). By Lemma 7.5, Sd−1 can be covered by N neighborhoods with di-
ameter at most εα where N ≤ (Aε−1

α )d with A > 0 a universal constant. Let {α1, . . . , αN }
denote elements of each of these neighborhoods. Now, consider an arbitrary g ∈ GK . Then,
g(x) = �(αT x), x ∈ X , for some � ∈ MK and α ∈ Sd−1. We can find i ∈ {1, . . . ,N} such that
‖α −αi‖ ≤ εα . Then, using the monotonicity of � together with the Cauchy–Schwarz inequality
we can write for all x ∈X that

g(x) = �
(
αT

i x + (α − αi)
T x

) ≤ �
(
αT

i x + εαR
)

and g(x) ≥ �(αT
i x − εαR). Then, Lemma 7.4 implies that with N ′ = exp(AKε−1), at the cost

of increasing A, we can find brackets [�L
j ,�U

j ] covering the class of functions MK such that

∫
R

(
�U

j (t) − �L
j (t)

)2
dQ−

i (t) ≤ ε2 and
∫
R

(
�U

j (t) − �L
j (t)

)2
dQ+

i (t) ≤ ε2

for j = 1, . . . ,N ′, where Q−
i and Q+

i respectively, denote the distribution of αT
i X − εαR and

αT
i X + εαR. Now returning to g, and using that � ∈ MK , we can see that

�L
j

(
αT

i x − εαR
) ≤ g(x) ≤ �U

j

(
αT

i x + εαR
)

(7.12)

for some j = 1, . . . ,N ′ and all x ∈ X . We will show that there exists B > 0 depending only on
q , R such that the new bracket [�L

j (αT
i x − εαR),�U

j (αT
i x + εαR)], x ∈X satisfies

(∫
X

(
�U

j

(
αT

i x + εαR
)− �L

j

(
αT

i x − εαR
))2

dQ(x)

)1/2

≤ Bε. (7.13)
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It follows from the Minkowski inequality that the left-hand side in (7.13) is at most

(∫
X

(
�
(
αT

i x − εαR
)− �L

j

(
αT

i x − εαR
))2

dQ(x)

)1/2

+
(∫

X

(
�U

j

(
αT

i x + εαR
)− �

(
αT

i x + εαR
))2

dQ(x)

)1/2

+
(∫

X

(
�
(
αT

i x + εαR
)− �

(
αT

i x − εαR
))2

dQ(x)

)1/2

. (7.14)

We have∫
X

(
�
(
αT

i x − εαR
)− �L

j

(
αT

i x − εαR
))2

dQ(x) =
∫
R

(
�(t) − �L

j (t)
)2

dQ−
i (t)

≤ ε2

and a similar bound is found for the square of the second integral in (7.14). Hence, the left-hand
side in (7.13) is less than or equal to

2ε +
(∫

R

(
�(t + εαR) − �(t − εαR)

)2
dQi(t)

)1/2

,

where Qi is the distribution of αT
i X. By monotonicity of � and the fact that it is bounded in

absolute value by K , we can write∫
R

(
�(t + εαR) − �(t − εαR)

)2
dQi(t) ≤ 2K

∫
R

(
�(t + εαR) − �(t − εαR)

)
dQi(t)

≤ 2Kq

∫ R

−R

(
�(t + εαR) − �(t − εαR)

)
dt,

with q an upper bound of the density of Qi , that is supported on [−R,R], with respect to the
Lebesgue measure. This is at most

2Kq

(∫ R+εαR

R−εαR

�(t) dt −
∫ −R+εαR

−R−εαR

�(t) dt

)
≤ 8qRε2,

using that εα = ε2/K2. Hence,

(∫
X

(
�
(
αT

i x + εαR
)− �

(
αT

i x − εαR
))2

dQ(x)

)1/2

≤ (8qR)1/2ε. (7.15)
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Combining the inequalities above, we get the claimed inequality in (7.13) with B = 2+(8qR)1/2.
It follows that

HB

(
Bε,GK,‖ · ‖Q

) ≤ logN + logN ′

≤ d log
(
AK2ε−2)+ AKε−1

≤ Kε−1(dA1/2 + A
)

(7.16)

since logx ≤ √
x for all x > 0. The first assertion of Lemma 7.6 follows.

To prove the second assertion, we need to build brackets for the class of functions (x, y) �→
yg(x), x ∈ X , y ∈ R, and then for the class of functions g2, with g ∈ GK . In the follow-
ing, we denote the former class by G1 and the latter by G2 with which we begin. Note that
g2(x) = s(x) = �2(αT x) = h(αT x) for some function h that is either monotone non-decreasing,
monotone non-increasing or U -shaped depending on the sign of � . Hence, the function h can
be always decomposed into the difference of two monotone functions that are bounded by K2. If
K2 > ε (which holds for all ε > 0 and K > ε such that K > 1), we can use similar arguments as
above to conclude that there exists a universal constant B0 > 0 such that

HB

(
ε,G2,‖ · ‖Q

) ≤ B0K
2d(1 + √

qR)

ε
. (7.17)

Using the fact that any element s ∈ G2 satisfies∫
R

∫
X

s2(x) dP(x, y) =
∫
X

s2(x) dQ(x),

it follows that

HB

(
ε,G2,‖ · ‖P

) ≤ B0K
2d(1 + √

qR)

ε
.

Now we turn to G1. With N = NB(ε,GK,‖ · ‖Q), we will denote by {(gL
i , gU

i ), i ∈ {1, . . . ,N}}
a cover of ε-brackets for GK . For all i = 1, . . . ,N , define

kU
i (x, y) =

{
ygU

i (x) if y ≥ 0,

ygL
i (x) if y ≤ 0,

kL
i (x, y) =

{
ygL

i (x) if y ≥ 0,

ygU
i (x) if y ≤ 0.

(7.18)

Now, take g ∈ GK and let i ∈ {1, . . . ,N} such that gL
i ≤ g ≤ gU

i . Then, we have kL
i (x, y) ≤

yg(x) ≤ kU
i (x, y) so that {(kL

i , kU
i ), i ∈ {1, . . . ,N}} form a bracketing cover for G1. We will now

compute its size. We have that∫
R×X

(
kU
i (x, y) − kL

i (x, y)
)2

dP(x, y) =
∫
R×X

y2 × (
gU

i (x) − gL
i (x)

)2
dP(x, y)

≤ 2a0

∫
X

(
gU

i (x) − gL
i (x)

)2
dQ(x)

≤ 2a0ε
2,
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where a0 is taken from (4.3). Hence,

HB

(√
2a0ε,G1,‖ · ‖P

) ≤ HB

(
ε,GK,‖ · ‖Q

)
≤ A1Kd(1 + √

qR)

ε
, (7.19)

using the first assertion of the lemma. But for all ε > 0, we have

HB

(
ε,FK,‖ · ‖P

) ≤ HB

(
ε/2,G1,‖ · ‖P

)+ HB

(
ε,G2,‖ · ‖P

)
(7.20)

and hence we obtain the second assertion of the lemma, which completes the proof.

7.6. Proof of Lemma 7.7

Let g ∈ GKv and � ∈ MK , α ∈ Sd−1 such that g(x) = �(αT x). We shall show below that
|�(t)| ≤ 2K0 except on a region of small size. To do that, we shall use the condition (7.6)
together with the triangle inequality to get∫

X
1{|�(αT x)|>2K0} dQ(x) ≤

∫
X

1{|�(αT x)−�0(α
T
0 x)|>K0} dQ(x)

≤
∫
X

(
�(αT x) − g0(x)

K0

)2

dQ(x) ≤ v2K−2
0 .

With a, b the boundaries of the interval {αT x, x ∈ X } and Qα the distribution of αT X we have∫
X

1{|�(αT x)|>2K0} dQ(x) =
∫ b

a

1{|�(t)|>2K0} dQα(t)

≥ q

∫ b

a

1{|�(t)|>2K0} dt.

Combining the two preceding displays, we conclude that∫ b

a

1{|�(t)|>2K0} dt ≤ D2v
2, (7.21)

where D2 = q−1K−2
0 . By monotonicity of � , this means that |�(t)| ≤ 2K0 for all t in the

interval [a + D2v
2, b − D2v

2]. Now, from (7.8), g(x) − ḡ(x) takes the form of h(αT x) where
h ∈ MK is such that

h(t) =

⎧⎪⎨⎪⎩
0 if

∣∣�(t)
∣∣ ≤ 2K0,

�(t) + 2K0 if �(t) < −2K0,

�(t) − 2K0 if �(t) > 2K0.
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Hence, for t ∈ [a, b] we can have h(t) �= 0 only for t ∈ [a, a + D2v
2] ∪ [b − D2v

2, b]. Consider
{α1, . . . , αN } the grid providing a εα-cover for Sd−1 with εα = ε2/K2 and N ≤ (Aε−1

α )d , see
Lemma 7.5. Similar to the proof of Lemma 7.6, with αi such that ‖α − αi‖ ≤ εα , we then have

h
(
αT

i x − εαR
) ≤ g(x) − ḡ(x) ≤ h

(
αT

i x + εαR
)

(7.22)

for all x ∈X , where h is considered on the interval [ai, bi] where

ai = inf
{
αT

i x − εαR,x ∈ X
}

and bi = sup
{
αT

i x + εαR,x ∈ X
}
.

Note that the support of αT
i X, αT

i X − εαR and αT
i X + εαR are all included in [ai, bi], and we

have |a − ai | ≤ 2εαR and |b − bi | ≤ 2εαR. From what precedes, for t ∈ [ai, bi] we can have
h(t) �= 0 only for t ∈ Ii,1 ∪ Ii,2 where

Ii,1 = [
ai, ai + D2v

2 + 2εαR
]

and Ii,2 = [
bi − D2v

2 − 2εαR,bi

]
have length at most 2D2v

2 under the assumption that Kv > εK0

√
2Rq . Hence, we only need to

construct brackets for the class of monotone functions on [ai, bi] that are bounded by K and con-
stant equal to zero outside Ii,1 ∪Ii,2. This can be done by using Lemma 7.4 with Q denoting the
uniform distribution on Ii,1 ∪Ii,2: it follows from that lemma that with Ni ≤ exp(2A

√
D2Kv/ε),

we can find brackets (hL
j ,hU

j ), j = 1, . . . ,Ni such that every function in the class belongs to

[hL
j ,hU

j ] for some j , and∫
R

(
hL

j (t) − hU
j (t)

)2
dt ≤ 4D2v

2
∫
Ii,1∪Ii,2

(
hL

j (t) − hU
j (t)

)2
dQ(t)

≤ ε2 (7.23)

for all j . Note that we have omitted writing the dependence on i for the functions in the brackets.
Let j ∈ {1, . . . ,Ni} such that hL

j ≤ h ≤ hU
j on [ai, bi]. By (7.22), we have

bL(x) ≡ hL
j

(
αT

i x − εαR
) ≤ g(x) − ḡ(x) ≤ hU

j

(
αT

i x + εαR
) ≡ bU(x)

for all x ∈ X and it remains to compute the size of the obtained brackets. By the Minkowski
inequality, with Qi the distribution of αT

i X we have

∥∥bU − bL
∥∥
Q

=
(∫

R

(
hU

j (t + εαR) − hL
j (t − εαR)

)2
dQi(t)

)1/2

≤
(

q

∫ bi−εαR

ai+εαR

(
hU

j (t + εαR) − hL
j (t − εαR)

)2
dt

)1/2

≤
(

q

∫ bi−εαR

ai+εαR

(
hU

j (t + εαR) − hU
j (t − εαR)

)2
dt

)1/2

+
(

q

∫ bi−εαR

ai+εαR

(
hU

j (t − εαR) − hL
j (t − εαR)

)2
dt

)1/2

.
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Since hL
j and hU

j can be chosen monotone on [ai, bi] and bounded in absolute value by K we
conclude from (7.23) that

∥∥bU − bL
∥∥
Q

≤
(

2Kq

∫ bi−2εαR

ai

(
hU

j (t + 2εαR) − hU
j (t)

)
dt

)1/2

+√
qε

≤ (
8εαRK2q

)1/2 +√
qε.

Since by definition, εα = ε2/K2, this means that we have Cε-brackets where C depends on q

and R only. Hence,

HB

(
Cε, ḠKv,‖ · ‖Q

) ≤ log(Ni) + log(N) ≤ 2A
√

D2Kv

ε
+ d log

AK2

ε2

and the first assertion of the lemma follows.
To prove the second assertion, recall that (f − f̄ )(x, y) = y(g(x)− ḡ(x))− 1

2 (g2(x)− ḡ2(x)).
We need then to build brackets for the functions (x, y) �→ y(g(x) − ḡ(x)), and those for the
functions x �→ g2(x) − ḡ2(x). The construction of the brackets goes along the same line as the
construction of the brackets for the classes G1 and G2 in the proof of Lemma 7.6 above, where
for the latter class, we use the fact that all functions in the class take the form h(αT x) where
h is either monotone or U-shaped, and vanishes when |g(αT x)| ≤ 2K0, which implies that the
function vanishes except on at most two intervals of maximal length 2D2v

2.
Hence, we can find A1 > 0 and A2 > 0 depending on K0, q , q , R and a0 such that

HB

(
ε, F̄Kv,‖ · ‖P

) ≤ A1K
2v

ε
+ d log

A1K
4

ε2

for K > 1 ∨ ε such that K2v > A2ε. This completes the proof of Lemma 7.7.

7.7. Proof of Lemma 7.8

We start by noting that entropy bound on the class F̃Kv is smaller than the entropy bound for the
class F̃K as a consequence of inclusion of the former class in the latter. We will now show that
the upper bound with respect to the Bernstein norm for the class F̃Kv is of the claimed order.
Let N1 = NB(ε,GK,‖ · ‖Q) and N2 = NB(ε,G2,‖ · ‖Q), where G2 is the class of functions
{x �→ g2(x), g ∈ GK }. Consider brackets [gL

j , gU
j ], j = 1, . . . ,N1 covering GK and [sL

i , sU
i ],

i = 1, . . . ,N2 covering G2. Note that gL
i and gU

i can be always taken to be bounded by K ,
because otherwise we can take instead gL

i ∨ (−K) and gU
i ∧ K . The same thing holds for sL

i

and sU
i which can be taken to be bounded by K2. Let f ∈ FKv and C̃ > 0 a fixed constant to be

chosen later. Then, there exists (i, j) ∈ {1, . . . ,N1} × {1, . . . ,N2} such that f L
i,j ≤ f ≤ f U

i,j and

f L
i,j (x, y) =

⎧⎪⎨⎪⎩
ygL

j (x) − 1

2
sU
i (x) if y ≥ 0,

ygU
j (x) − 1

2
sU
i (x) if y < 0,
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f U
i,j (x, y) =

⎧⎪⎨⎪⎩
ygU

j (x) − 1

2
sL
i (x) if y ≥ 0,

ygL
j (x) − 1

2
sL
i (x) if y < 0.

Now note that for a given function h such that hk is P-integrable for all k ≥ 2, we can write
‖h‖2

B,P
= 2

∑∞
k=2(

∫ |h|k dP)/k!. Hence, by convexity of x �→ xk for k ≥ 2, we have

∥∥∥∥f U
i,j − f L

i,j

C̃

∥∥∥∥2

B,P

≤ 2
∞∑

k=2

2k−1

k!C̃k

∫
X×R

{
|y|k∣∣gU

j (x) − gL
j (x)

∣∣k + 1

2k

∣∣sU
i (x) − sL

i (x)
∣∣k}dP(x, y).

Integrating first with respect to y using the assumption (A3) yields that the right-hand side is at
most

2
∞∑

k=2

2k−1

k!C̃k

{
a0M

k−2k! × (2K)k−2
∫
X

∣∣gU
j − gL

j

∣∣2 dQ+ (2K2)(k−2)

2k

∫
X

∣∣sU
j − sL

j

∣∣2 dQ

}

≤ 2
∞∑

k=2

2k−1

k!C̃k

{
a0M

k−2k! × (2K)k−2ε2 + (2K2)(k−2)

2k
ε2
}
.

Hence,

∥∥(f U
i,j − f L

i,j

)
C̃−1

∥∥2
B,P

≤ 2

C̃2

(
2a0

∞∑
k=2

(
4MK

C̃

)k−2

+ 1

4

∞∑
k=2

(
2K2

C̃

)k−2 1

(k − 2)!

)
ε2,

using the fact that k! ≥ 2(k − 2)! for all k ≥ 2. We conclude that

∥∥(f U
i,j − f L

i,j

)
C̃−1

∥∥2
B,P

≤ 2

C̃2
(2a0 ∨ 1/4)

(
1

1 − 4MK/C̃
+ e2K2/C̃

)
ε2.

Since K ≥ 2, the choice C̃ = 4MK2 yields

∥∥(f U
i,j − f L

i,j

)
C̃−1

∥∥2
B,P

≤ 2

C̃2
(2a0 ∨ 1/4)

(
K

K − 1
+ e(2M)−1

)
ε2

≤ B2K−4ε2, (7.24)

where B depends on a0 and M only. Using (7.17) and the first assertion of Lemma 7.6, this
means that there exists a universal constant A2 such that

HB

(
Bε

K2
, F̃Kv,‖ · ‖B,P

)
≤ logN1 + logN2 ≤ A2K

2d(1 + √
qR)

ε
. (7.25)
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This in turn implies that

HB

(
ε, F̃Kv,‖ · ‖B,P

) ≤ A2BK2d(1 + √
qR)

εK2
= A1d(1 + √

qR)

ε

as claimed in the statement of the lemma.
To show the second claim, we will use again the series expansion of the Bernstein norm.

Similar as above, using that g0 is bounded by K0 ≤ K , and that for arbitrary f̃ = (f −f0)C̃
−1 ∈

F̃Kv , the corresponding g ∈ GKv satisfies (7.6), we obtain

‖f̃ ‖2
B,P ≤

∞∑
k=2

2k

k!C̃k

{
a0M

k−2k!(2K)k−2
∫
X

(g − g0)
2 dQ

+ (2K2)(k−2)

2k

∫
X

(
g2 − g2

0

)2
dQ

}

≤
∞∑

k=2

2k

k!C̃k

{
a0M

k−2k!(2K)k−2
∫
X

(g − g0)
2 dQ

+ 2(2K2)k−1

2k

∫
X

(g − g0)
2 dQ

}

≤
(

4a0

C̃2

∞∑
k=2

(
4MK

C̃

)k−2

+ (4K)2

C̃2

∞∑
k=2

(
4K2

C̃

)k−2 1

k!

)
v2

≤
(

a0

2M2K4
+ 1

4M2K2
e1/M

)
v2, (7.26)

using that K ≥ 2. The second claim follows.
Using the same arguments as above in combination with the entropy bound for F̄Kv obtained

in Lemma 7.7 we can show that

HB

(
ε, ˜̄FKv,‖ · ‖B,P

) ≤ A1v

ε
+ d log

(
A1

ε2

)

at the cost of increasing the constant A1. To show the second assertion for the elements of ˜̄FKv ,
we can use again the same arguments as for the class F̃Kv . Indeed, the condition K ≥ 2K0 ∨ 2
implies that max(|g|, |ḡ|) ≤ K since |ḡ| ≤ 2K0. Moreover, with C̃ = 4MK2 we get for any

element f̃ ∈ ˜̄FKv that

‖f̃ ‖2
B,P ≤

(
a0

32M2
+ 1

16M2
e1/M

)∫
X

(
g(x) − ḡ(x)

)2
dQ(x)

≤ 4

(
a0

32M2
+ 1

16M2
e1/M

)
v2, (7.27)
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where in the last line we used the fact that by convexity of x �→ x2,∫
X

(
g(x) − ḡ(x)

)2
dQ(x) ≤ 2

∫
X

(
g(x) − g0(x)

)2
dQ(x) + 2

∫
X

(
ḡ(x) − g0(x)

)2
dQ(x),

≤ 4
∫
X

(
g(x) − g0(x)

)2
dQ(x), (7.28)

as (ḡ − g0)
2 ≤ (g − g0)

2 by definition of ḡ. This completes the proof of Lemma 7.8.

7.8. Proof of Theorem 7.3

In the sequel, we assume that the assumptions of the theorem hold. Below, we give a uniform
bound for the centered process Mn − M, with Mn and M as in (7.1) and (7.4) respectively. In
the sequel, the notation � means “is bounded up to an absolute constant”. Moreover, the capital
E denotes outer expectation in cases when we consider expectation of a random variable which
we have not proved to be measurable.

Proposition 7.9. Let K > 2 ∨ (2K0). Then, for all v ∈ (0,2K], there exists A > 0 that depends
only on a0 and M such that

√
nE

[
sup

g∈GKv

∣∣(Mn −M)g − (Mn −M)g0
∣∣] ≤ Ad(1 +√

qR)φn(v), (7.29)

where φn(v) = v1/2K5/2(1 + K1/2v−3/2n−1/2).

Proof. Define for η > 0 and fixed v ∈ (0,2K]

J (η) =
∫ η

0

√
1 + HB

(
ε, F̃Kv,‖ · ‖B,P

)
dε,

where we recall that ‖ · ‖B,P is the Bernstein norm, and F̃Kv is defined in (7.10) with C̃ =
4MK2. By Lemma 7.8, there exists a constant A2 > 0 depending only on a0 and M such that
‖f̃ ‖B,P ≤ A2v for all f̃ ∈ F̃Kv . It follows from Lemma 3.4.3 of van der Vaart and Wellner [26]
(using the notation of that book) that

E
[‖Gn‖F̃Kv

]
� J (A2v)

(
1 + J (A2v)

A2
2v

2
√

n

)
,

where by Lemma 7.8 and the inequality
√

u + v ≤ √
u + √

v for u,v ≥ 0 we have that

J (η) ≤
∫ η

0

√
1 + A1d(1 + √

qR)

ε
dε ≤ η + 2

(
A1d(1 +√

qR)
)1/2

η1/2
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for all η > 0. Note that v ∈ (0,2K] implies that v ≤ v1/221/2K1/2, and hence

J (A2v) ≤ (
A221/2K1/2 + 2

(
A1d(1 +√

qR)
)1/2

A
1/2
2

)
v1/2 ≤ A3

(
d(1 +√

qR)
)1/2

K1/2v1/2

using that K ≥ 1, where A3 depends only on a0 and M . Hence, by definition of F̃Kv , which has
the same entropy has the class FKv − f0 = {f − f0, f ∈FKv}, we obtain

√
nE

[
sup

g∈GKv

∣∣(Mn −M)(g) − (Mn −M)(g0)
∣∣] = E

[‖Gn‖FKv−f0

]
= 4MK2E

[‖Gn‖F̃Kv−f0

]
� φn(v)

which completes the proof of Proposition 7.9. �

Now we are ready to give the proof of Theorem 7.3.

Proof of Theorem 7.3. In the sequel, we consider K = C logn for some C > 0 that does not
depend on n, and v ∈ (0,2K]. It follows from Proposition 7.9 that for all n sufficiently large, we
have (7.29) where

φn(v) = (logn)5/2√v
(
1 + (logn)1/2v−3/2n−1/2)

and A depends only on a0, M and C. Since with D taken from (7.5), we have D(g,g0) ≤ ‖g‖∞+
‖g0‖∞ ≤ 2K for sufficiently large n and all g ∈ GK , the above inequality holds for all v > 0.
Furthermore, ĝn maximizes Mng over the set of all functions g of the form g(x) = �(αT x),
x ∈X with α ∈ Sd−1 and � a non-decreasing function on R, and it follows from Lemma 7.1 that
with arbitrarily large probablity by choice of C, ĝn maximizes Mng over the restricted set GK .
Hence, we can use Lemma 7.2 and Proposition 7.9 above, together with Theorem 3.2.5 in van der
Vaart and Wellner [26] with α = 1/2 and rn ∼ n1/3(logn)−5/3, to conclude that D(ĝn, g0) =
O∗

p(n−1/3(logn)5/3), which completes the proof of Theorem 7.3. �

7.9. Proof of Theorem 4.1

Assuming that (A1)–(A4) hold, we give a second uniform bound for Mn − M. The bound is
sharper than the one obtained in Proposition 7.9 for the case where all functions g in the consid-
ered class of functions satisfy (7.6) for some v ≤ (logn)2n−1/3. As before, the notation � means
“is bounded up to an absolute constant”.

Proposition 7.10. Let K = C logn for some fixed C > 0, v ∈ (0, (logn)2n−1/3] and φn(v) =
v1/2(1 + v−3/2n−1/2). Then for n large enough we have that

√
nE

[
sup

g∈GKv

∣∣(Mn −M)g − (Mn −M)g0
∣∣] ≤ Aφn(v),

where A depends only on R, a0, M , q , q and K0.
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Proof. Assume n large enough so that K ≥ (2K0) ∨ 2 and use (7.7) to write that the expectation
on the left-hand side of the previous display is bounded above by

√
nE

[
sup

g∈GKv

∣∣(Mn −M)g − (Mn −M)g
∣∣]+ √

nE
[

sup
g∈GKv

∣∣(Mn −M)g − (Mn −M)g0
∣∣].

Hence, in the notation of van der Vaart and Wellner [26]

√
nE

[
sup

g∈GKv

∣∣(Mn −M)g − (Mn −M)g0
∣∣] ≤ E

[‖Gn‖F1

]+ E
[‖Gn‖F2

]
, (7.30)

where F1 = F̄Kv and F2 is the class of functions f̄ − f0 such that f̄ ∈F(2K0)v . To give a bound
for the first term on the right-hand side, consider v′ = (logn)2n−1/6 � √

v. It follows from
Lemma 7.8 that for all ε ∈ (0,A−1

2 v], we have

HB

(
ε, ˜̄FKv′,‖ · ‖B,P

) ≤ A1v
′

ε
+ d log

(
A1

ε2

)
≤ A1(1 + d)

v′

ε
(7.31)

provided that n is sufficiently large, where we used the fact that log(x) ≤ √
x for all x > 0 for

the second inequality. Since the class F̃1 := ˜̄FKv is included in ˜̄FKv′ , its ε-bracketing entropy
can be also bounded above by (7.31) for all ε ∈ (0,A−1

2 v]. Using again the inequality
√

x + y ≤√
x + √

y for all x, y ≥ 0, we can write

J1(A2v) :=
∫ A2v

0

√
1 + HB(ε, F̃1,‖ · ‖B,P) dε

≤ A2v + 2
(
A1(1 + d)v′)1/2

(A2v)1/2 ≤ A3
(
v′v

)1/2

using that v < v′ and K > 1, where A3 > 0 is a constant depending on a0, M and d . Lemma 7.8
implies that ‖f̃ ‖B,P ≤ A2v for all f̃ ∈ F̃1. Invoking Lemma 3.4.3 of van der Vaart and Wellner
[26] allows us to write that

E
[‖Gn‖F̃1

]
� J1(A2v)

(
1 + J1(A2v)

A2
2v

2
√

n

)
≤ A3

(
v′v

)1/2
(

1 + (v′)1/2

v3/2
√

n

)
at the cost of increasing A3. Now, using the definition of F̃1, we have that

E
[‖Gn‖F1

] = 4MK2E
[‖Gn‖F̃1

] ≤ A3v
1/2

(
1 + 1

v3/2
√

n

)
at the cost of increasing A3. This gives a bound for the first term on the right-hand side of (7.30).

To deal with the second term, we apply Lemma 7.8 to the class F̃2 = F̃(2K0)v with K =
2K0. Here, C̃ = 4MK2

0 is independent of n, and J2(A2v) ≤ A3v
1/2 for some A3 > 0 that does

not depend on n, where J2 is defined in the same manner as J1 with F̃1 replaced by F̃2. By
Lemma 3.4.3 of van der Vaart and Wellner [26], we have

E
[‖Gn‖F2

] = 16MK2
0E

[‖Gn‖F̃2

] ≤ A3v
1/2

(
1 + 1

v3/2
√

n

)
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at the cost of increasing A3. Combining the calculations developed for both classes together with
(7.30) gives the claimed form of the entropy bound. �

Proof of Theorem 4.1. Theorem 7.3 implies that with a probability that can be made arbitrarily
large, the LSE ĝn belongs to GKv with K = C logn and v = (logn)2n−1/3 for some C > 0 that
does not depend on n. The result follows now from Theorem 3.2.5 of van der Vaart and Wellner
[26] with α = 1/2 and rn ∼ n1/3. �
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Supplementary Material

Supplement to “Least squares estimation in the monotone single index model” (DOI:
10.3150/18-BEJ1090SUPP; .pdf). We provide additional proofs, we give an algorithm to com-
pute the LSE exactly for the special case when d = 2, we give properties of exponential families,
and we provide additional simulations for Section 5.
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