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In this paper, we develop non-stationary martingale techniques for dependent data. We shall stress the
non-stationary version of the projective Maxwell–Woodroofe condition, which will be essential for obtain-
ing maximal inequalities and functional central limit theorem for the following examples: nonstationary
ρ-mixing sequences, functions of linear processes with non-stationary innovations, locally stationary pro-
cesses, quenched version of the functional central limit theorem for a stationary sequence, evolutions in
random media such as a process sampled by a shifted Markov chain.
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1. Introduction

Historically, one of the most celebrated limit theorems in non-stationary setting is the functional
central limit theorem for non-stationary sequences of martingale differences. For more general
dependent sequences, one of the basic techniques is to approximate them with martingales by
using projection operators. A remarkable early result obtained by using this technique is due to
Dobrushin [10], who studied non-stationary Markov chains. Later, the technique was also used
for Markov chains, in Sethuraman and Varadhan [25] and in Peligrad [23]. In order to treat more
general dependent structures, McLeish [20,21] introduced the notion of mixingales, which are
martingale-like structures involving conditions imposed to the bounds of the moments of projec-
tions of an individual variable on past sigma fields. This method is very fruitful, but still involves
a large degree of stationarity and complicated additional assumptions. In general, the theory of
non-stationary martingale approximation is much more difficult and it has remained behind the
theory of martingale methods for stationary processes. In the stationary setting, the theory of mar-
tingale approximations was steadily developed. We mention the well-known results, such as the
celebrated results by Gordin [14], Heyde [17], Maxwell and Woodroofe [19] and newer results
by Peligrad and Utev [24], Zhao and Woodroofe [32], Gordin and Peligrad [13], among many
others. Inspired by these ideas and using a direct martingale approach, we derive alternative con-
ditions to the mixingale-type conditions imposed by McLeish. Our projective conditions lead to a
non-stationary version of the weak invariance principle under the so-called Maxwell–Woodroofe
condition, which is known to be very sharp. Surprisingly, also, is the fact that our approach leads
directly to the quenched invariance principle under the Maxwell–Woodroofe condition, which
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was first obtained by Cuny and Merlevède [6] with a completely different proof. In addition, our
approach is also efficient enough to get the functional version of the central limit theorem for
ρ-mixing sequences satisfying the Lindeberg condition established in Utev [28]. For this class,
we completely answer an open problem raised by Ibragimov in 1991. Other applications we
shall consider are functions of linear processes with nonstationary innovations, locally stationary
processes and evolutions in random media, such as a process sampled by a shifted Markov chain.

We begin by treating nonstationary sequences with the near linear behavior of the variance of
the partial sums. Then, we discuss the general nonstationary triangular arrays and give the above
mentioned applications. The proofs are given in Section 5.

2. Results under the normalization
√

n

Let (Xk)k≥1 be a sequence of centered real-valued random variables in L
2(�,A,P) and set

Sn = ∑n
i=1 Xi for n ≥ 1 and S0 = 0. Let (Fi )i≥0 be a non-decreasing sequence of σ -algebras

such that Xi is Fi -measurable for any i ≥ 1. The following notation will be often used: Ek(X) :=
E(X|Fk). In the sequel we denote by D([0,1]) the space of functions defined on [0,1], right
continuous, with finite left hand limits, which is endowed with uniform topology and by [x] the
integer part of x. For any k ≥ 0 let

δ(k) = max
i≥0

∥∥E(Sk+i − Si |Fi )
∥∥

2, (2.1)

and for any k,m ≥ 0 let

θm
k = m−1

m−1∑
i=1

Ek(Sk+i − Sk).

To get the functional form of the central limit theorem under the normalization
√

n, we shall
assume the Lindeberg condition in the form

sup
n≥1

1

n

n∑
j=1

E
(
X2

j

) ≤ C < ∞, and

lim
n→∞

1

n

n∑
k=1

E
{
X2

kI
(|Xk| > ε

√
n
)} = 0, for any ε > 0.

(2.2)

Our first result is in the spirit of Theorem 2.4 in McLeish [21] and gives sufficient conditions
to ensure that the partial sums behave asymptotically like a martingale. As we shall see, next
theorem is a corollary of Theorem 3.1 of the next section which is using a normalization more
general than

√
n.

Theorem 2.1. Assume that the Lindeberg condition (2.2) holds. Suppose in addition that∑
k≥0

2−k/2δ
(
2k

)
< ∞ (2.3)



Functional CLT for martingale-like nonstationary dependent structures 3205

and there exists a constant c2 such that, for any t ∈ [0,1] and any ε > 0,

lim
m→∞ lim sup

n→∞
P

(∣∣∣∣∣1

n

[nt]∑
k=1

(
X2

k + 2Xkθ
m
k

) − tc2

∣∣∣∣∣ > ε

)
= 0. (2.4)

Then {n−1/2 ∑[nt]
k=1 Xk, t ∈ [0,1]} converges in distribution in D([0,1]) to cW where W is a

standard Brownian motion.

Remark 2.1. Note that by the subadditivity property of the sequence (δ(k))k≥0, condition (2.3)
is equivalent to ∑

k≥1

k−3/2δ(k) < ∞. (2.5)

Moreover condition (2.3) holds under the stronger assumption:∑
k≥1

k−1/2 sup
i≥0

∥∥E(Xk+i |Fi )
∥∥

2 < ∞. (2.6)

Comment 2.1. Using the Cramér–Wold device, we infer that Theorem 2.1 can be extended to
the multivariate setting as follows. Assume that (Xk)k≥1 is a sequence of centered R

d -valued
random variables in L

2(�,A,P). Assume that, for any λ ∈ R
d , the sequence of real-valued

random variables (λ · Xk)k≥1 satisfies conditions (2.2), (2.3) and (2.4) with c2 = σ 2(λ). Then
{n−1/2 ∑[nt]

k=1 Xk, t ∈ [0,1]} converges in distribution in D([0,1]) to 	1/2W where W is a stan-
dard Brownian motion on R

d and 	 = (σi,j )
d
i,j=1 is a positive definite symmetric matrix whose

entries can be defined as follows: σi,j = 1
2 {σ 2(ei + ej ) − σ 2(ei) − σ 2(ej )} where (e1, . . . , ed)

is the canonical basis of R
d . Note that the Gaussian approximation for non-stationary multi-

ple time series that are functions of an i.i.d. sequence has been obtained by Wu and Zhou [31],
but the conditions of their paper and ours have different range of applications. Indeed, their re-
sult is restricted to functions of an iid sequence and their dependence condition is stronger than∑

k≥1 supi≥0 ‖E(Xk+i |Fi ) − E(Xk+i |Fi−1)‖2 < ∞. This latter condition is known not to be
comparable with (2.3) (see for instance Durieu [11]).

For stationary sequences, as a corollary to Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let (Xn)n∈Z be an ergodic stationary sequence of centered random variables
with finite second moment, which is adapted to a stationary filtration (Fn)n∈Z. Assume that∑

k≥0

2−k/2
∥∥E0(S2k )

∥∥
2 < ∞. (2.7)

Then, limm→∞ m−1
E(S2

m) = c2 and the conclusion of Theorem 2.1 holds.

Note that condition (2.7) is equivalent to
∑

k≥1 k−3/2‖E0(Sk)‖2 < ∞ and known under the
name of Maxwell–Woodroofe condition. Under this condition, Maxwell and Woodroofe [19]
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obtained a CLT. Later, Peligrad and Utev [24] have shown that this condition is, in some sense,
minimal in order for the sequence (Sn/

√
n)n≥1 to be stochastically bounded and they proved a

maximal inequality and convergence to the Brownian motion. In order to derive this corollary
from Theorem 2.1, we use the fact that δ(k) = ‖E(Sk|F0)‖2 and then condition (2.3) reads as
condition (2.7). In addition, for k ≥ 0, we get, by the ergodic theorem,

lim
n→∞E

∣∣∣∣∣1

n

[nt]∑
k=1

(
X2

k + 2Xkθ
m
k

) − c2t

∣∣∣∣∣ = t
∣∣EX2

0 + 2E
(
X0θ

m
0

) − c2
∣∣.

It remains to take into account that

1

m
E

(
S2

m

) = E
(
X2

0

) + 2

m

m−1∑
i=1

m−i∑
j=1

E(X0Xj) = E
(
X2

0

) + 2E
(
X0θ

m
0

)
,

proving the corollary since it has been shown in Peligrad and Utev [24] that, in the stationary
setting, condition (2.7) implies that limm→∞ m−1

E(S2
m) exists.

3. Results for general triangular arrays

Let {Xi,n,1 ≤ i ≤ n} be a triangular array of square integrable (E(X2
i,n) < ∞), centered

(E(Xi,n) = 0), real-valued random variables adapted to a filtration (Fi,n)i≥0. We write as be-
fore Ej,n(X) = E(X|Fj,n) and set

Sk,n =
k∑

i=1

Xi,n and θm
k,n = m−1

m−1∑
i=1

Ek,n(Sk+i,n − Sk,n).

We shall assume that the triangular array satisfies the following Lindeberg condition:

sup
n≥1

n∑
j=1

E
(
X2

j,n

) ≤ C < ∞, and

lim
n→∞

n∑
k=1

E
{
X2

k,nI
(|Xk,n| > ε

)} = 0, for any ε > 0.

(3.1)

Moreover, for a non-negative integer u and positive integers 
,m, define martingale-type de-
pendence characteristics by

A2(u) = sup
n≥1

n−1∑
k=0

∥∥Ek,n(Sk+u,n − Sk,n)
∥∥2

2 (3.2)
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and

B2(
,m) = sup
n≥1

[n/
]∑
k=0

∥∥S̄k,n(
,m)
∥∥2

2, (3.3)

where

S̄k,n(
,m) = 1

m

m−1∑
u=0

(
E(k−1)
+1,n(S(k+1)
+u,n − Sk
+u,n)

)
.

Our next theorem provides a general functional CLT under the Lindeberg condition for
martingale-like nonstationary triangular arrays.

Theorem 3.1. Assume that the Lindeberg condition (3.1) holds and that

lim
j→∞ 2−j/2A

(
2j

) = 0 and lim inf
j→∞

∑

≥j

B
(
2
,2j

) = 0. (3.4)

Moreover, assume in addition that there exist a sequence of non-decreasing and right-continuous
functions vn(·) : [0,1] → {0,1,2, . . . , n} and a non-negative Lebesgue integrable function σ 2(·)
on [0,1], such that, for any t ∈ (0,1],

lim
m→∞ lim sup

n→∞
P

(∣∣∣∣∣
vn(t)∑
k=1

(
X2

k,n + 2Xk,nθ
m
k,n

) −
∫ t

0
σ 2(u) du

∣∣∣∣∣ > ε

)
= 0. (3.5)

Then {∑vn(t)
k=1 Xk,n, t ∈ [0,1]} converges in distribution in D([0,1]) to {∫ t

0 σ(u)dW(u), t ∈
[0,1]} where W is a standard Brownian motion.

The following proposition is useful for verifying condition (3.5).

Proposition 3.2. Assume that the Lindeberg condition (3.1) holds. Assume in addition that for
any non-negative integer 
,

lim
b→∞ lim sup

n→∞

n∑
k=b+1

∥∥Ek−b,n(Xk,nXk+
,n) −E0,n(Xk,nXk+
,n)
∥∥

1 = 0 (3.6)

and, for any t ∈ [0,1],

lim
m→∞ lim sup

n→∞
P

(∣∣∣∣∣
vn(t)∑
k=1

(
E0,n

(
X2

k,n

) + 2E0,n

(
Xk,nθ

m
k,n

)) −
∫ t

0
σ 2(u) du

∣∣∣∣∣ > ε

)
= 0. (3.7)

Then the convergence (3.5) holds.
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Let us apply the general Theorem 3.1 to the sequences of random variables when the normal-
izing sequence is

√
n. For any non-negative integer u and any positive integers 
 and m, let a(u)

and b(
,m) be the non-negative quantities defined by

a2(u) = sup
n≥1

1

n

n−1∑
k=0

∥∥Ek(Sk+u − Sk)
∥∥2

2, b2(
,m) = sup
n≥1

1

n

n−1∑
k=0

∥∥S̄k(
,m)
∥∥2

2,

where S̄k(
,m) = 1

m

m−1∑
u=0

(
E(k−1)
+1(S(k+1)
+u − Sk
+u)

)
.

The conditions are an average version of condition (2.3). They are particularly useful for the
analysis of quenched limit theorems. By applying Theorem 3.1 to the triangular array Xk,n =
Xk/

√
n; 1 ≤ k ≤ n and vn(t) = [nt], we obtain the following corollary.

Corollary 3.3. The statement of Theorem 2.1 holds when condition (2.3) is replaced by the
following conditions

lim
j→∞ 2−j/2a

(
2j

) = 0 and lim inf
j→∞

∑

≥j

2−
/2b
(
2
,2j

) = 0. (3.8)

By using the definition of (δ(k))k≥1 in (2.1), the subadditivity of this sequence and Propo-
sition 2.5 in Peligrad and Utev [24] we note that condition (2.3) implies that limj→∞ 2−j/2 ×
a(2j ) = 0. Moreover, condition (2.3) easily implies the second part of condition (3.8). By using
this remark, we can see that Theorem 2.1 is a consequence of Corollary 3.3. We elected to present
the results first for sequences of random variables and then for triangular arrays, for stressing
the fact that our results are generalization to nonstationary sequences of the important results
in the stationary setting involving condition (2.7). The results are also related to conditions in
McLeish [20,21]. Our approach uses a suitable martingale approximation whereas McLeish [20,
21] proved first tightness of the partial sum process and then he identified the limit by using a
suitable characterization of the Wiener process given in Theorem 19.4 in Billingsley [2].

4. Applications

4.1. ρ-Mixing triangular arrays and sequences

For a triangular array {Xi,n,1 ≤ i ≤ n} of square integrable (E(X2
i,n) < ∞), centered (E(Xi,n) =

0), real-valued random variables, we denote by σ 2
k,n = Var(

∑k

=1 X
,n) for k ≤ n and σ 2

n = σ 2
n,n.

For 0 ≤ t ≤ 1, let

vn(t) = inf

{
k;1 ≤ k ≤ n : σ 2

k,n

σ 2
n

≥ t

}
and Wn(t) = σ−1

n

vn(t)∑
i=1

Xi,n.
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Define also Sk = Sk,n = ∑k
i=1 Xi,n. In this section, we assume that the triangular array is ρ-

mixing in the sense that

ρ(k) = sup
n≥1

max
1≤j≤n−k

ρ
(
σ(Xi,n,1 ≤ i ≤ j), σ (Xi,n, j + k ≤ i ≤ n)

) → 0, as k → ∞,

where σ(Xt , t ∈ A) is the σ -field generated by the r.v.’s Xt with indices in A and we recall that
the maximal correlation coefficient ρ(U ,V) between two σ -algebras is defined by

ρ(U ,V) = sup
{∣∣corr(X,Y )

∣∣ : X ∈ L
2(U), Y ∈ L

2(V)
}
.

Next, the result gives the functional version of the central limit theorem for ρ-mixing sequences
satisfying the Lindeberg condition established in Theorem 4.1 in Utev [28]. It answers an open
question raised by Ibragimov in 1991.

Theorem 4.1. Suppose that

sup
n≥1

σ−2
n

n∑
j=1

E
(
X2

j,n

) ≤ C < ∞, (4.1)

and

lim
n→∞σ−2

n

n∑
k=1

E
{
X2

k,nI
(|Xk,n| > εσn

)} = 0, for any ε > 0. (4.2)

Assume in addition that ∑
k≥0

ρ
(
2k

)
< ∞. (4.3)

Then {Wn(t), t ∈ (0,1]} converges in distribution in D([0,1]) (equipped with the uniform topol-
ogy) to W where W is a standard Brownian motion.

For the ρ-mixing sequences we also obtain the following corollary.

Corollary 4.2. Let (Xn)n≥1 be a sequence of centered random variables in L
2(P). Let Sn =∑n

k=1 Xk and σ 2
n = Var(Sn). Suppose that conditions (4.1), (4.2) and (4.3) are satisfied. In ad-

dition assume that σ 2
n = nh(n) where h is a slowly varying function at infinity. Then Wn =

{σ−1
n

∑[nt]
k=1 Xk, t ∈ (0,1]} converges in distribution in D([0,1]) to W where W is a standard

Brownian motion.

It should be noted that if Wn converges weakly to a standard Brownian motion, then necessar-
ily σ 2

n = nh(n) where h(n) is a slowly varying function (i.e. a regularly varying function with
exponent 1). This is so since for t ∈ [0,1] fixed we have S[nt]/σn →d N(0, t) and in addition,
taking t = 1 we have S2

n/σ 2
n is uniformly integrable (by the convergence of moments theorem),

implying σ 2[nt]/σ 2
n → t . In the stationary case, let us mention that the functional CLT under (4.3)

has been obtained by Shao [26].
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Comment 4.1. If in Corollary 4.2 above we assume that σ 2
n = nαh(n) where α > 0 and h is

a slowly varying function at infinity, then the proof reveals that, under (4.1), (4.2) and (4.3),
{σ−1

n

∑[nt]
k=1 Xk, t ∈ [0,1]} converges in distribution in D([0,1]) to {G(t), t ∈ [0,1]} where, for

any t ∈ [0,1], G(t) = √
α

∫ t

0 u(α−1)/2 dW(u) with W a standard Brownian motion.

4.2. Functions of linear processes

Let (εi)i∈Z be a sequence of real-valued independent random variables. We shall say that
the sequence (εi)i∈Z satisfies condition (A) if (ε2

i )i∈Z is an uniformly integrable family and
supi∈Z ‖εi‖2 := σε < ∞. Let (ai)i≥0 be a sequence of reals in 
1. For any integer k, let then
Yk = ∑

i≥0 aiεk−i . Let f be a function from R to R in the class L(c), meaning that there exists
a concave non-decreasing function c from R

+ to R
+ with limx→0 c(x) = 0 and such that

∣∣f (x) − f (y)
∣∣ ≤ c

(|x − y|) for any (x, y) ∈R
2.

We shall also assume that

c

(
K

∑
i≥0

|ai |
)

< ∞ for any finite real K > 0 and

∑
k≥1

k−1/2c

(
2σε

∑
i≥k

|ai |
)

< ∞,

(4.4)

and, for any k ≥ 1, define

Xk = f (Yk) −E
(
f (Yk)

)
. (4.5)

Corollary 4.3. Let (εi)i∈Z be a sequence of real-valued independent random variables satisfying
condition (A). Let f be a function from R to R belonging to the class L(c) and let (ai)i≥0 be
a sequence of reals in 
1. Assume that condition (4.4) is satisfied and define (Xk)k≥1 by (4.5).
Let Sn = ∑n

k=1 Xk and σ 2
n = Var(Sn). If σ 2

n = nh(n) where h(n) is a slowly varying function at

infinity such that lim infn→∞ h(n) > 0, then {σ−1
n

∑[nt]
k=1 Xk, t ∈ [0,1]} converges in distribution

in D([0,1]) to W where W is a standard Brownian motion.

Note that, if |ai | ≤ Cρi for some C > 0 and ρ ∈ ]0,1[, condition (4.4) holds as soon as:

∫ 1

0

c(t)

t
√| log t | dt < ∞. (4.6)

Note that this condition is satisfied as soon as c(t) ≤ D| log(t)|−γ for some D > 0 and some
γ > 1/2. In particular, it is satisfied if f is α-Hölder for some α ∈ ]0,1].
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4.3. Application to locally stationary processes

In this section, we are interested by the limiting behavior of the partial sum process {n−1/2 ×∑[nt]
k=1 Xk,n, t ∈ [0,1]} when (Xk,n,1 ≤ k ≤ n) is a locally stationary process as considered by

Vogt [29], so in the sense that Xk,n can be locally approximated by a stationary process X̃k(u) in
some neighborhood of u, that is for those k where |(k/n) − u| is small. More precisely, we shall
assume Assumptions (S0) and (S1) below, which are close to Assumption 2.1 (S1) in Dahlhaus,
Richter and Wu [7]. Assumption (D) is a weak dependence assumption, which cannot be com-
pared to Assumption 2.3 (M1) in Dahlhaus, Richter and Wu [7]. Therefore, even if Corollary 4.4
below is in the spirit of Theorem 2.9 in Dahlhaus, Richter and Wu [7], it has a different range of
applications.

Assumption 4.1. Let (Xk,n,1 ≤ k ≤ n) be a triangular array of stochastic processes such that
E(Xk,n) = 0. For each u ∈ [0,1], let X̃k(u) be a stationary and ergodic process such that the
following conditions hold.

(S0) max1≤j≤n n−1/2|∑j

k=1 Xk,n − ∑j

k=1 X̃k(k/n)| →P 0.
(S1) supu∈[0,1] ‖X̃k(u)‖2 < ∞ and limε→0 sup|u−v|≤ε ‖X̃k(u) − X̃k(v)‖2 = 0.
(D) There exists a stationary non-decreasing filtration (Fk)k≥0 such that, for each u ∈ [0,1],

X̃k(u) is adapted to Fk and the following condition holds:
∑

k≥0 2−k/2δ̃(2k) < ∞, where δ̃(k) =
supu∈[0,1] ‖E(S̃k(u)|F0)‖2 and S̃k(u) = ∑k

i=1 X̃i(u).

As a consequence of Theorem 3.1, we obtain the following corollary.

Corollary 4.4. Assume that Assumption 4.1 holds. Then there exists a Lebesgue integrable func-
tion σ 2(·) on [0,1] such that, for any u ∈ [0,1], limm→∞ m−1

E(S̃m(u))2 = σ 2(u) and the
sequence of processes {n−1/2 ∑[nt]

k=1 Xk,n, t ∈ [0,1]} converges in distribution in D([0,1]) to

{∫ t

0 σ(u)dW(u), t ∈ [0,1]} where W is a standard Brownian motion.

Note that compared to Theorem 2.9 in Dahlhaus, Richter and Wu [7], we do not need to assume
that ‖ supu∈[0,1] |X̃k(u)|‖2 < ∞ nor that X̃k(u) takes the form H(u,ηk) with H a measurable
function and ηk = (εj , j ≤ k) where (εj )j∈Z is a sequence of i.i.d. real-valued random variables.
Moreover, let us consider the following example. For any u ∈ [0,1], let Yk(u) = ∑

i≥0 α(u)iεk−i

and X̃k(u) = f (Yk(u)) −Ef (Yk(u)) with E(ε0) = 0 and ‖ε0‖2 = σε < ∞, α(·) a Lipschitz con-
tinuous function such that supu∈[0,1] |α(u)| = α < 1 and f ∈ L(c) as defined in the beginning

of Section 4.2. Define then Xk,n = X̃k(k/n) + n−3/2un(εk + · · · + εk−n) with un → 0. It fol-
lows that (S0) is satisfied. Moreover, using Lemma 5.1 in Dedecker [8], one infers that (S1) is
satisfied as well as (D) provided that (4.6) holds. Note that Assumption 2.3 (M1) in Dahlhaus,
Richter and Wu [7] requires that

∫ 1
0 t−1c(t) dt < ∞ which is stronger than (4.6). As a counter

part, if f (x) = x and Yk(u) = ∑
i≥0 α(u, i)εk−i with supi≥0 |α(u, i) − α(v, i)| ≤ C|u − v| and

supu∈[0,1] |α(u, i)| ≤ αi with (αi)i≥0 ∈ 
1, then Assumption 2.3 (M1) in Dahlhaus, Richter and
Wu [7] is weaker than (D). Hence, (D) and Assumption 2.3 (M1) in Dahlhaus, Richter and Wu
[7] have different areas of applications.
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4.4. Quenched functional central limit theorems

In this subsection, we start with a stationary sequence and address the question of functional CLT
when the process is not started from its equilibrium, but it is rather started at a point or from a
fixed past trajectory. This process is no longer strictly stationary. This type of result is known
under the name of quenched limit theorem. It is convenient to introduce a stationary process by
using the dynamical systems language. Let (�,A,P) be a probability space, and T : � 	→ � be
a bijective bimeasurable transformation preserving the probability P. An element A is said to be
invariant if T (A) = A. We denote by I the σ -algebra of all invariant sets. The probability P is
ergodic if each element of I has measure 0 or 1.

Let F0 be a σ -algebra of A satisfying F0 ⊆ T −1(F0) and define the nondecreasing filtration
(Fi )i∈Z by Fi = T −i (F0). We assume that there exists a regular version PT |F0 of T given F0,

In this subsection, we assume that P is ergodic and we consider X0 a F0-measurable, square
integrable and centered random variable. Define then the sequence X = (Xi)i∈Z by Xi = X0 ◦T i .
Let Sn = X1 +· · ·+Xn and Wn = {Wn(t), t ∈ [0,1]} where Wn(t) = n−1/2S[nt]. It is well known
that, by a canonical construction, any stationary sequence can be represented in this way via
the translation operator. As we shall see, applying our Corollary 3.3, we derive the following
quenched CLT in its functional form under Maxwell and Woodroofe condition (2.7) which, from
the subadditivity property of the sequence (‖E0(Sn)‖2)n≥0, is equivalent to the convergence:∑

k≥1 k−3/2‖E0(Sk)‖2 < ∞. This result was first obtained by Cuny and Merlevède in 2014 (see
their Theorem 2.7) with a completely different proof.

Corollary 4.5. Assume that (2.7) holds. Then there exists a constant c2 such that
limn→∞ n−1/2

E(S2
n) = c2 and Wn satisfies the following quenched weak invariance principle:

on a set of probability one, for any continuous and bounded function f from (D([0,1),‖ · ‖∞)

to R,

lim
n→∞E0

(
f (Wn)

) =
∫

f (zc)W(dz),

where W is the distribution of a standard Wiener process.

The conclusion of this corollary can also be expressed in the following way. Denote by P
ω(A)

a regular version of conditional probability P(A|F0)(ω). Then for any ω in a set of probability
1, Wn converges in distribution in D([0,1]) to W under Pω.

Since condition (2.7) is verified by a stationary ρ-mixing sequence satisfying (4.3) (see, for
instance, Peligrad and Utev [24]), the quenched functional CLT in Corollary 4.5 holds if (4.3) is
satisfied. Note that for a stationary Gaussian process, its spectral density provides an useful tool
to bound its associated ρ-mixing coefficients (see, for instance, Theorem 27.5 in Bradley [4]).

4.5. Application to a random walk in random time scenery

Consider the partial sums associated with (Xk)k≥0 which is a sequence of random variables,
{ζj }j≥0, called the random time scenery, sampled by the process (Yk)k≥0, defined as

Yk = k + φk, k ≥ 0,
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where {φn}n≥0 is a “renewal”-type Markov chain defined as follows: {φk; k ≥ 0} is a discrete
Markov chain with the state space Z

+ and transition matrix P = (pij ) given by pk,k−1 = 1
for k ≥ 1 and pj = p0,j−1 = P(τ = j), j = 1,2, . . . (that is whenever the chain hits 0 it then
regenerates with the probability pj ). Therefore the sequence (Xk)k≥0 is defined by setting

Xk = ζYk
.

We assume that E[τ ] < ∞ which ensures that {φn}n≥0 has a stationary distribution π = (πi, i ≥
0) given by

πj = π0

∞∑
i=j+1

pi, j = 1,2, . . . ,

where π0 = 1/E(τ ). We also assume that pj > 0 for all j ≥ 0. This last assumption implies the
irreducibility of the Markov chain.

In Corollary 4.6 below, we shall make the following assumption on the random time scenery.

Condition (A1). {ζj }j≥0 is a strictly stationary sequence of centered random variables in L
2(P),

independent of (φk)k≥0 and such that, setting Gi = σ(ζk, k ≤ i),

∑
k≥1

‖E(ζk|G0)‖2√
k

< ∞ and lim
n→∞ sup

j≥i≥n

∥∥E(ζiζj |G0) −E(ζiζj )
∥∥

1 = 0. (4.7)

Applying Theorem 2.1 and Proposition 3.2, we can prove the following result concerning the
asymptotic behavior of {n−1/2S[nt], t ∈ [0,1]} when the chain starts from zero (below Pφ0=0 is
the conditional probability given φ0 = 0).

Corollary 4.6. Assume that E(τ 2) < ∞ and that {ζj }j≥0 satisfies condition (A1). Let S0 = 0 and
Sk = ∑k

i=1 Xi for any k ≥ 1. Then, under Pφ0=0, {n−1/2S[nt], t ∈ [0,1]} converges in distribution
in D[0,1] to a Brownian motion with parameter c2 defined by

c2 = E
(
ζ 2

0

)(
1 + 2

∑
i≥1

iπi

)
+ 2

∑
m≥1

E(ζ0ζm)

m∑
j=1

(
P j

)
0,m−j

. (4.8)

Note that E(τ 2) < ∞ is equivalent to
∑

i≥1 iP(τ > i) < ∞ and therefore to
∑

i≥1 iπi < ∞.
The proof of the above corollary being long and technical, it is postponed to the supplementary

material Merlevède, Peligrad and Utev [22].

5. Proofs

In all the proofs, we shall use the notation an � bn which means that there exists a universal
constant C such that, for all n ≥ 1, an ≤ Cbn.
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5.1. Preparatory material

The next result is a version of the functional central limit theorem for triangular arrays of mar-
tingale differences essentially due to Aldous [1] and Gänssler and Häusler [12] (see also Theo-
rem 3.2 in Helland [16]).

Theorem 5.1 (Aldous–Gänssler–Häusler). Let vn(·) : [0,1] → {0,1,2, . . . , n} be a sequence
of integer valued, non-decreasing and right-continuous functions. Assume (di,n)1≤i≤n is an array
of martingale differences adapted to an array (Fi,n)0≤i≤n of nested sigma fields. Let σ(·) be a
non-negative function on [0,1] such that σ 2(·) is Lebesgue integrable. Suppose that the following
conditions hold:

max
1≤j≤n

|dj,n| is uniformly integrable, (5.1)

and, for all t ∈ [0,1],
vn(t)∑
j=1

d2
j,n →P

∫ t

0
σ 2(u) du as n → ∞. (5.2)

Then {∑vn(t)
j=1 dj,n, t ∈ [0,1]} converges in distribution in D[0,1] to {∫ t

0 σ(u)dW(u), t ∈ [0,1]}
where W is a standard Brownian motion.

5.1.1. A maximal inequality in the non-stationary setting

The following theorem is an extension of Proposition 2.3 in Peligrad and Utev [24] to the non-
stationary case. The proof follows the lines of the proof of Theorem 3 in Wu and Zhao [30], but
in the non-stationary setting, and is then done by induction. The proof is left to the reader but
details can be found in the proof of Theorem 3.2 in Cuny, Dedecker and Merlevède [5].

Theorem 5.2. Let (Xk)k∈Z be a sequence of real-valued random variables in L
2 and adapted to

a filtration (Fk)k∈Z. Let Sn = ∑n
k=1 Xk , S0 = 0 and S∗

n = max1≤k≤n |Sk|. Then, for any n ≥ 1,

∥∥S∗
n

∥∥
2 ≤ 3

(
n∑

j=1

‖Xj‖2
2

)1/2

+ 3
√

2�n(X), (5.3)

where

�n(X) =
r−1∑
j=0

(
2r−j∑
k=1

∥∥E(Sk2j − S(k−1)2j |F(k−2)2j +1)
∥∥2

2

)1/2

,

with r the unique positive integer such that 2r−1 ≤ n < 2r .
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5.2. Proof of Theorem 3.1

Recall that X := {Xk,n : k = 1, . . . , n} is a triangular array of real-valued random variables in L
2

adapted to a filtration (Fk,n)0≤k≤n. Without loss of generality, we assume that Xk,n = 0 for k > n

and Fk,n = Fn,n for k > n. Moreover, by abuse of notation, we will often avoid the index n. In
particular, we shall write Xk = Xk,n and Fk =Fk,n, and we will use the notations

Ej (X) = E(X|Fj ),Pj (x) = Ej (X) −Ej−1(X).

For a positive integer n, define the unique positive integer r such that 2r−1 ≤ n < 2r . For each n

let also Sn = ∑n
k=1 Xk and S0 = 0.

Theorem 3.1 will follow from a martingale approximation and an application of Theorem 5.1,
for the approximating martingale.

5.2.1. Step 1: A general lemma

Let us first introduce some notations. Let m be a fixed positive integer such that m < n. Let us
then define

θm

 = 1

m

m−1∑
i=1

E
(X
+1 + · · · + X
+i ),

Dm

 = 1

m

m−1∑
i=0

P
(S
+i ) = 1

m

m−1∑
i=0

P
(S
+i − S
−1),

(5.4)

and

Ym

 = 1

m
E
(S
+m − S
), Rm

k =
k−1∑

=0

Ym

 . (5.5)

Then, Dm = (Dm
k )nk=1 is a (triangular) array of martingale differences adapted to the filtration

(Fk)0≤k≤n and the following decomposition is valid:

X
 = Dm

 + θm


−1 − θm

 + Ym


−1. (5.6)

Also, for any positive integer m and k, we have

Sk = Mm
k + θm

0 − θm
k + Rm

k . (5.7)

As an intermediate step in proving Theorem 3.1 we shall prove a lemma under a set of assump-
tions which will be verified later. The next assumption (H) aims to guarantee that, in a certain
sense, Sk can be approximated by Mm′

k (for m′ a subsequence of m) and it is then used to verify
the conditions of Theorem 5.1.
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There exists an increasing subsequence of integers (mj )j≥1 with mj → ∞ as j → ∞ such
that

(H) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
j→∞ sup

n≥1

n−1∑

=0

∥∥Y
mj




∥∥2
2 = 0,

lim
j→∞ sup

n≥1
�n

(
Ymj

) = 0,

lim
j→∞ sup

n≥1

n−1∑
k=0

∥∥θ
mj

k

∥∥
2

∥∥Y
mj

k

∥∥
2 = 0,

where

�n

(
Ym

) :=
d∑

r=0

(
2d−r∑
k=1

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥2
2

)1/2

.

We are now in the position to state our general lemma.

Lemma 5.3. Assume that the Lindeberg condition (3.1) holds and that condition (H) is sat-
isfied. Assume in addition that there exist a sequence of non-decreasing and right-continuous
functions vn(·) : [0,1] → {1,2, . . . , n} and a non-negative Lebesgue integrable function σ 2(·) on
[0,1] such that (3.5) holds. Then {∑vn(t)

k=1 Xk, t ∈ [0,1]} converges in distribution in D([0,1]) to

{∫ t

0 σ(u)dW(u), t ∈ [0,1]} where W is a standard Brownian motion.

Proof. To soothe the notations, we will often write m instead of mj . To prove the lemma, let
us first analyze the negligibility in some sense of the variables θm

k and Rm
k . Notice that from the

definition (5.4)

max
0≤k≤n

∣∣θm
k

∣∣2 ≤ m2 max
0≤j≤n

Ej

(
max

1≤k≤n
|Xk|2

)
.

By applying the Doob’s maximal inequality and next truncation, we derive

E

[
max

0≤j≤n
Ej

(
max

1≤k≤n
|Xk|2

)]
≤ 4E

(
En

(
max

1≤k≤n
|Xk|2

))
≤ 4ε2 + 4

n∑
k=1

E
(
X2

kI
(|Xk| > ε

))
.

Combining it with the previous estimate, taking into account the Lindeberg condition (3.1) and
letting n tend to infinity and then ε → 0 we obtain for each m, that

E

(
max

0≤k≤n

∣∣θm
k

∣∣2
)

→ 0 as n → ∞. (5.8)

Note that, proceeding similarly, we also have that, for each m,

E

(
max

1≤k≤n

∣∣Dm
k

∣∣2
)

→ 0 as n → ∞. (5.9)
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Now, by applying Theorem 5.2 to the array (Ym
k )k∈Z, we have

∥∥∥ max
1≤k≤n

∣∣Rm
k

∣∣∥∥∥
2
=

∥∥∥∥∥ max
1≤k≤n

∣∣∣∣∣
k−1∑

=0

Ym



∣∣∣∣∣
∥∥∥∥∥

2

≤ 3

(
n−1∑
k=0

∥∥Ym
k

∥∥2
2

)1/2

+ 3
√

2�n

(
Ym

)
.

Taking m = mj , by assumption (H) the terms in the r.h.s tend to 0, uniformly in n by letting
j → ∞. Hence, we derive the bound

sup
n≥1

∥∥∥ max
1≤k≤n

∣∣Rmj

k

∣∣∥∥∥
2
→ 0 as j → ∞. (5.10)

By the relations (5.8) and (5.10) we have the following martingale approximation

lim sup
n

∥∥∥∥∥ max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi,n −
k∑


=1

D
mj




∣∣∣∣∣
∥∥∥∥∥

2

→ 0 as j → ∞.

This limit clearly implies

lim sup
n

∥∥∥∥∥ sup
t∈[0,1]

∣∣∣∣∣
vn(t)∑
i=1

Xi,n −
vn(t)∑

=1

D
mj




∣∣∣∣∣
∥∥∥∥∥

2

→ 0 as j → ∞, (5.11)

and also for j0 fixed,

sup
n≥1

E
(
S2

n

) ≤ sup
n≥1

n∑

=1

∥∥D
mj0



∥∥
2 + εj0,

where εj0 is a finite positive constant. Now, by definition (5.4),

∥∥D
mj0
k

∥∥
2 ≤ 1

mj0

mj0−1∑
i=0

∥∥Pk(Sk+i − Sk)
∥∥

2 ≤ 1

mj0

mj0−1∑
i=0

∥∥Ek(Sk+i − Sk)
∥∥

2.

Hence, since Xk = Xk,n = 0, k > n,

n∑
k=1

∥∥D
mj0
k

∥∥2
2 ≤ m2

j0

n∑
k=1

‖Xk‖2
2. (5.12)

Therefore, by the first part of (3.1),

sup
n≥1

E
(
S2

n

) ≤ Cj0 < ∞. (5.13)

From (5.8), (5.9), (5.10), (5.11) and (3.5), we can deduce that we can find a sequence of
positive integers 
(n) such that 
(n) → ∞ and setting m′

n = m
(n),

lim
n→∞

∥∥∥ max
0≤k≤n

∣∣θm′
n

k

∣∣∥∥∥
2

= 0, lim
n→∞

∥∥∥ max
1≤k≤n

∣∣Dm′
n

k

∣∣∥∥∥
2
= 0, (5.14)
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lim
n→∞

∥∥∥ max
1≤k≤n

∣∣Rm′
n

k

∣∣∥∥∥
2

= 0, (5.15)

lim
n→∞

∥∥∥∥∥ sup
t∈[0,1]

∣∣∣∣∣
vn(t)∑
i=1

Xi,n −
vn(t)∑

=1

D
m′

n




∣∣∣∣∣
∥∥∥∥∥

2

= 0, (5.16)

and, for any t ∈ [0,1],

lim
n→∞P

(∣∣∣∣∣
vn(t)∑
k=1

(
X2

k + 2Xkθ
m′

n

k

) −
∫ t

0
σ 2(u) du

∣∣∣∣∣ > ε

)
= 0. (5.17)

In addition, by condition (H), on the same subsequence (m′
n) we also have

(
H ′) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

n−1∑

=0

∥∥Y
m′

n




∥∥2
2 = 0,

lim
n→∞�n

(
Ym′

n
) = 0,

lim
n→∞

n−1∑
k=0

∥∥θ
m′

n

k

∥∥
2

∥∥Y
m′

n

k

∥∥
2 = 0.

By (5.16), it suffices to show that {∑vn(t)

=1 D

m′
n


 , t ∈ [0,1]} converges in distribution in D([0,1])
to cW . We shall verify now that the triangular array of martingale differences (D

m′
n


 )1≤
≤n satis-
fies the conditions of Theorem 5.1. The condition (5.1) follows from the second part of (5.14). In
order to verify condition (5.2), we proceed in the following way. We start from the identity (5.6)
written as (m = m′

n)

X
 + θm

 = Dm


 + θm

−1 + Ym


−1.

Therefore

X2

 + 2X
θ

m

 + (

θm



)2 = (
Dm




)2 + (
θm

−1

)2 + (
Ym


−1

)2 + 2θm

−1Y

m

−1 + 2Dm




(
θm

−1 + Ym


−1

)
.

We sum over 
 and get

vn(t)∑

=1

(
X2


 + 2X
θ
m



) + (
θm
vn(t)

)2 =
vn(t)∑

=1

(
Dm




)2 + (
θm

0

)2 +
vn(t)∑

=1

2Dm



(
θm

−1 + Ym


−1

) + R′(vn(t)
)
,

where

R′(vn(t)
) =

vn(t)−1∑

=0

(
Y

m′
n




)2 + 2
vn(t)−1∑

k=0

θ
m′

n

k Y
m′

n

k .
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By the Cauchy–Schwarz inequality and condition (H ′), we have that

E

(
sup

0≤t≤1

∣∣R′(vn(t)
)∣∣) ≤

n−1∑

=0

∥∥Y
m′

n




∥∥2
2 + 2

n−1∑
k=0

∥∥θ
m′

n

k

∥∥
2

∥∥Y
m′

n

k

∥∥
2 → 0 as n → ∞.

Furthermore, by using the first part of (5.14) we also have

E sup
0≤t≤1

∣∣(θm
vn(t)

)2 − (
θm

0

)2∣∣ → 0 as n → ∞.

Now, by gathering the above considerations and by also using (5.17), we shall have

vn(t)∑

=1

(
D

m′
n




)2 →
∫ t

0
σ 2(u) du in probability as n → ∞,

if we prove that
∑vn(t)


=1 2D
m′

n


 (θ
m′

n


−1 + Y
m′

n


−1) → 0 in probability. Because (θ
m′

n


−1 + Y
m′

n


−1) is a
previsible (i.e., F
−1,n-measurable) random variable, the result follows again from (5.14) and
(H ′), by using the following fact, which is Theorem 2.11 in Hall and Heyde [15]:

Fact 5.1. Let (Zi)
n
i=1 be real-valued martingale differences adapted to a non-increasing filtration

(Fi )0≤i≤n and let (Ak)
n
k=1 be real-valued random variables such that Ak is Fk−1-measurable.

Then, there exists a positive constant c such that

E max
1≤k≤n

∣∣∣∣∣
k∑

i=1

AiZi

∣∣∣∣∣ ≤ c
{
E max

1≤k≤n
|Ak|2

}1/2
{

n∑
i=1

E
(
Z2

i

)}1/2

.

Together with the following remark: by (5.16) and (5.13),

lim sup
n

vn(t)∑

=1

∥∥D
m′

n




∥∥2
2 = lim sup

n

∥∥∥∥∥
vn(t)∑

=1

D
m′

n




∥∥∥∥∥
2

2

≤ lim sup
n→∞

sup
t∈[0,1]

∥∥∥∥∥
vn(t)∑
i=1

Xi,n −
vn(t)∑
i=1

D
m′

n




∥∥∥∥∥
2

2

+ lim sup
n→∞

∥∥∥∥∥
vn(t)∑
i=1

Xi,n

∥∥∥∥∥
2

2

≤ Cj0 .

This ends the proof of the lemma. �

5.2.2. Step 2: End of the proof of Theorem 3.1

We are going to prove that Theorem 3.1 follows from an application of Lemma 5.3. With this
aim we start by noticing the following fact: if the second part of (3.4) holds then there exists an
increasing subsequence of integers (m(j))j≥1 with m(j) → ∞ as j → ∞ and such that

lim
j→∞

∑

≥m(j)

2−
/2B
(
2
,2m(j)

) = 0. (5.18)
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Hence, to show that condition (H) of Lemma 5.3 holds, we shall prove that its three assump-
tions are satisfied with mj = 2m(j). So, in what follows mj = 2m(j) where m(j) is an increasing
subsequence of integers tending to infinity and such that (5.18) holds. As before, we will some-
times write m instead of mj .

Verifying first condition in (H). We first notice that, by the definition (3.2) and first part of
condition (3.4)

sup
n≥1

n−1∑
k=0

∥∥Y
mj

k

∥∥2
2 = m−2

j sup
n≥1

n−1∑
k=0

∥∥Ek(Sk+mj
− Sk)

∥∥2
2 = m−2

j A2(mj ) → 0 as j → ∞, (5.19)

which proves the first condition in (H).
Verifying second condition in (H). This needs more considerations. It is convenient to use the

decomposition

d∑
r=0

(
2d−r∑
k=1

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥2
2

)1/2

=
b∑

r=0

(
2d−r∑
k=1

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥2
2

)1/2

+
d∑

r=b+1

(
2d−r∑
k=1

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥2
2

)1/2

,

where b is the unique positive integer such that 2b ≤ m < 2b+1. To estimate the first sum in the
right-hand side, notice that, by the properties of the conditional expectation, we have

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥
2 ≤

2r−1∑

=0

∥∥E(
Ym


+(k−1)2r |F(k−2)2r

)∥∥
2

≤ 1

m

2r−1∑

=0

∥∥E(S
+(k−1)2r+m − S
+(k−1)2r |F(k−2)2r+
)
∥∥

2

≤ 1

m

k2r−1∑

=(k−1)2r

∥∥E(S
+m − S
|F
−2r )
∥∥

2. (5.20)

Therefore, by definition (3.2),

(
2d−r∑
k=1

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥2
2

)1/2

≤ 2r/2

m

(
2d−r∑
k=1

k2r−1∑

=(k−1)2r

∥∥E(S
+m − S
|F
−2r )
∥∥2

2

)1/2
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≤ 2r/2

m

(
2d−1∑

=0

∥∥E(S
+m − S
|F
−2r )
∥∥2

2

)1/2

≤ 2r/2

m
A(m),

giving

b∑
r=0

(
2d−r∑
k=1

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥2
2

)1/2

≤ 2√
2 − 1

A(m)√
m

.

To estimate the second sum, we also apply the properties of the conditional expectation and write
this time ∥∥E(

Rm
k2r − Rm

(k−1)2r |F(k−2)2r

)∥∥
2

≤
∥∥∥∥∥ 1

m

m−1∑
u=0

E(Sk2r+u − S(k−1)2r+u|F(k−2)2r+1)

∥∥∥∥∥
2

:= ∥∥S̄k−1
(
2r ,m

)∥∥
2. (5.21)

Hence, by definition (3.3)

d∑
r=b+1

(
2d−r∑
k=1

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥2
2

)1/2

≤
d∑

r=b+1

B
(
2r ,m

)
.

So, overall,

d∑
r=0

(
2d−r∑
k=1

∥∥E(
Rm

k2r − Rm
(k−1)2r |F(k−2)2r

)∥∥2
2

)1/2

≤ 2√
2 − 1

A(m)√
m

+ √
2

d∑
r=b+1

B
(
2r ,m

)
. (5.22)

This gives

sup
n≥1

�n

(
Ymj

) ≤ 2√
2 − 1

2−m(j)/2A
(
2m(j)

) + √
2

∑
r≥m(j)

B
(
2r ,2m(j)

)

which, together with condition (3.4), prove the second condition in (H).
It is worth to notice that we have proved the following maximal inequality for the array

(Ym
k )k∈Z (the proof follows from an application of inequality (5.3) to the array (Ym

k )k∈Z and
by taking into account the bounds in (5.19) and (5.22)).

Lemma 5.4. There exists a positive constant C such that, for every positive integers n and m

such that m ≤ n,∥∥∥∥∥ max
1≤j≤n

∣∣∣∣∣
j−1∑
k=0

Ym
k

∣∣∣∣∣
∥∥∥∥∥

2

≤ 3

(
1 + 2

√
2√

2 − 1

)
A(m)√

m
+ 6

d∑
r=[log2(m)]

2−r/2B
(
2r ,m

)
,

where d is the unique positive integer such that 2d−1 ≤ n < 2d .
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Verifying third condition in (H). For any positive integer i such that i < mj , we write its
decomposition in basis 2,

i =
[log2(i)]+1∑

k=0

ck(i)2
k where ck(i) ∈ {0,1}.

Denote by iu = ∑u
k=0 ck(i)2k (hence i[log2(i)]+1 = i), for u ≥ 0 and set i−1 = 0. We have

∥∥θm



∥∥
2 ≤ 1

m

m−1∑
i=1

∥∥E
(S
+i − S
)
∥∥

2 ≤ 1

m

m−1∑
i=1

[log2(i)]+1∑
u=0

∥∥E
+iu−1(S
+iu − S
+iu−1)
∥∥

2

= 1

m

m−1∑
i=1

[log2(i)]+1∑
u=0

cu(i)
∥∥E
+iu−1(S
+iu−1+2u − S
+iu−1)

∥∥
2.

Hence, by taking into account definition (3.2),

n−1∑

=0

∥∥θm



∥∥
2

∥∥Ym



∥∥
2

≤ 1

m

m−1∑
i=1

[log2(i)]+1∑
u=0

(
n−1∑

=0

cu(i)
∥∥E
+iu−1(S
+iu−1+2u − S
+iu−1)

∥∥2
2

)1/2(n−1∑

=0

∥∥Ym



∥∥2
2

)1/2

≤ 1

m

m−1∑
i=1

[log2(i)]+1∑
u=0

A
(
2u

)(n−1∑

=0

∥∥Ym



∥∥2
2

)1/2

. (5.23)

So, by the first part of condition (3.4), there exists a constant C such that

n−1∑

=0

∥∥θm



∥∥
2

∥∥Ym



∥∥
2 ≤ C

m

m−1∑
i=1

[log2(i)]+1∑
u=0

2u/2

(
n−1∑

=0

∥∥Ym



∥∥2
2

)1/2

≤ 2C√
2 − 1

√
m

(
n−1∑

=0

∥∥Ym



∥∥2
2

)1/2

.

With m = mj = 2m(j) and taking now into account (5.19), it follows that

n−1∑

=0

∥∥θ
mj




∥∥
2

∥∥Y
mj




∥∥
2 ≤ 2C√

2 − 1

1√
mj

A(mj ) = 2C√
2 − 1

2−m(j)/2A
(
2m(j)

)
,

which converges to zero as j → ∞ by the first part of (3.4). This shows that the third condition
in (H) is satisfied and ends the proof of the theorem.
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5.3. Proof of Proposition 3.2

Once again, to soothe the notation, we will avoid the index n involved in the variables and in the
σ -algebras. In particular, we shall write Xk = Xk,n and Fk =Fk,n, and we will use the notations
Ej (X) = E(X|Fj ) and Pj (x) = Ej (X) − Ej−1(X). Moreover, without loss of generality, we
assume that Xk,n = 0 for k > n.

Clearly it is enough to show that, for any t ∈ [0,1] and any fixed integer 
 ≥ 0,

lim
n→∞

∥∥∥∥∥
vn(t)∑
k=1

(
Ek(XkXk+
) −E0(XkXk+
)

)∥∥∥∥∥
1

= 0. (5.24)

With this aim, note that for any positive fixed integer b (less than vn(t)), by the Cauchy–Schwarz
inequality,

b∑
k=1

∥∥Ek(XkXk+
) −E0(XkXk+
)
∥∥

1 ≤ 2n−1
b∑

k=1

‖Xk‖2‖Xk+
‖2 ≤ 2
b+
∑
k=1

‖Xk‖2
2.

Hence, for any ε > 0,

b∑
k=1

∥∥Ek(XkXk+
) −E0(XkXk+
)
∥∥

1 ≤ 2

{
ε2(b + 
) +

b+
∑
k=1

E
(
X2

k1|Xk |>ε

)}
,

which converges to zero as n → ∞ followed by ε → 0, by taking into account condition (3.1).
Now

vn(t)∑
k=b+1

(
Ek(XkXk+
) −E0(XkXk+
)

) =
vn(t)∑

k=b+1

(
Ek(XkXk+
) −Ek−b(XkXk+
)

)

+
vn(t)∑

k=b+1

(
Ek−b(XkXk+
) −E0(XkXk+
)

)
.

Taking into account condition (3.6), we have

lim
b→∞ lim sup

n→∞

∥∥∥∥∥
vn(t)∑

k=b+1

(
Ek−b(XkXk+
) −E0(XkXk+
)

)∥∥∥∥∥
1

= 0.

We show now that

lim
b→∞ lim sup

n→∞

∥∥∥∥∥
vn(t)∑

k=b+1

(
Ek(XkXk+
) −Ek−b(XkXk+
)

)∥∥∥∥∥
1

= 0. (5.25)

Together with the convergences proved above, this will show that (5.24) is satisfied.
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To prove (5.25), we fix a positive real ε and write∥∥∥∥∥
vn(t)∑

k=b+1

(
Ek(XkXk+
) −Ek−b(XkXk+
)

)∥∥∥∥∥
1

≤
∥∥∥∥∥

vn(t)∑
k=b+1

(
Ek

(
Y ′

k,


) −Ek−b

(
Y ′

k,


))∥∥∥∥∥
1

+
∥∥∥∥∥

vn(t)∑
k=b+1

(
Ek

(
Y ′′

k,


) −Ek−b

(
Y ′′

k,


))∥∥∥∥∥
1

where

Y ′
k,
 = XkXk+
1|XkXk+
|≤ε2 and Y ′′

k,
 = XkXk+
1|XkXk+
|>ε2 .

Note now that the following inequalities are valid: for any reals a and b and any positive real M ,

|ab|1{|ab|>M} ≤ 2−1(∣∣a2 + b2
∣∣1{|a2+b2|>2M}

) ≤ a21{a2>M} + b21{b2>M}.

Hence, ∥∥∥∥∥
vn(t)∑

k=b+1

(
E

(
Y ′′

k,
|Fk

) −E
(
Y ′′

k,
|Fk−b

))∥∥∥∥∥
1

≤ 4
n∑

k=1

E
(
X2

k1|Xk |>ε

)
,

which together with condition (3.1) imply that

lim
n→∞

∥∥∥∥∥
vn(t)∑

k=b+1

(
Ek

(
Y ′′

k,


) −Ek−b

(
Y ′′

k,


))∥∥∥∥∥
1

= 0. (5.26)

On another hand,

vn(t)∑
k=b+1

(
Ek

(
Y ′

k,


) −Ek−b

(
Y ′

k,


)) =
vn(t)∑

k=b+1

b−1∑
j=0

Pk−j

(
Y ′

k,


) =
b−1∑
j=0

vn(t)∑
k=b+1

Pk−j

(
Y ′

k,


)
,

where we recall Pj (·) = E(·|Fj )−E(·|Fj−1). Since (Pk−j (Y
′
k,
))k≥1 is a sequence of martingale

differences,∥∥∥∥∥
vn(t)∑

k=b+1

(
Ek

(
Y ′

k,


)−Ek−b

(
Y ′

k,


))∥∥∥∥∥
1

≤
b−1∑
j=0

∥∥∥∥∥
vn(t)∑

k=b+1

Pk−j

(
Y ′

k,


)∥∥∥∥∥
2

≤
b−1∑
j=0

(
vn(t)∑

k=b+1

∥∥Pk−j

(
Y ′

k,


)∥∥2
2

)1/2

.

By the Cauchy–Schwarz inequality,∥∥Pk−j

(
Y ′

k,


)∥∥2
2 ≤ ∥∥Ek−j

(
Y ′

k,


)∥∥2
2 ≤ ε2‖XkXk+
‖1 ≤ 2−1ε2(‖Xk‖2

2 + ‖Xk+
‖2
2

)
.

Therefore ∥∥∥∥∥
vn(t)∑

k=b+1

(
Ek

(
Y ′

k,


) −Ek−b

(
Y ′

k,


))∥∥∥∥∥
1

≤ bε sup
n≥1

(
n∑

k=b+1

‖Xk‖2
2

)1/2

,
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which converges to zero by taking into account condition (3.1) and by letting ε going to 0. This
last convergence together with (5.26) entail (5.25) and then (5.24). This ends the proof of the
proposition.

5.4. Proof of Theorem 4.1

We apply Theorem 3.1 to the triangular array {σ−1
n Xk,n,1 ≤ k ≤ n}n≥1 and the σ -algebras

Fk,n = σ(Xi,n,1 ≤ i ≤ k) for k ≥ 1 and Fk,n = {∅,�} for k ≤ 0. For convenience, we can
set Xk,n = 0 for k > n. Again, to soothe the notations, we will omit the index n involved in the
variables and in the σ -algebras.

As a matter of fact, we shall first prove that under the conditions of Theorem 4.1, the following
reinforced version of condition (3.4) is satisfied:

lim
m→∞m−1/2A(m) = 0 and lim

m→∞
∑


≥[log2(m)]
B

(
2
,m

) = 0. (5.27)

In order to check the conditions below, we shall apply the following inequality, derived in Theo-
rem 1.1 in Utev [27]. More exactly, under (4.3) there exists a finite positive constant κ such that
for any positive integers a < b,

‖Sb − Sa‖2
2 ≤ κ

b∑
i=a+1

‖Xi‖2
2. (5.28)

The first characteristic A2(m) defined by (3.2) is then estimated as follows. Write first the
following decomposition:

n−1∑
k=0

∥∥Ek(Sk+m − Sk)
∥∥2

2 ≤ 2
n−1∑
k=0

∥∥Ek(Sk+m − Sk+[√m])
∥∥2

2 + 2
n−1∑
k=0

∥∥Ek(Sk+[√m] − Sk)
∥∥2

2. (5.29)

Note now that for any integer k and any positive integers a, b with a < b,

∥∥Ek(Sk+b − Sk+a)
∥∥2

2 = cov
(
Ek(Sk+b − Sk+a), Sk+b − Sk+a

)
≤ ρ(a)

∥∥Ek(Sk+b − Sk+a)
∥∥

2‖Sk+b − Sk+a‖2.

Hence ∥∥Ek(Sk+b − Sk+a)
∥∥

2 ≤ ρ(a)‖Sk+b − Sk+a‖2,

which combined with (5.28) implies, under (4.3), that there exists a finite positive constant κ

such that that

∥∥Ek(Sk+b − Sk+a)
∥∥2

2 ≤ κρ2(a)

k+b∑
i=k+a+1

‖Xi‖2
2. (5.30)
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Therefore, starting from (5.29) and taking into account (5.28) and (5.30), we get, under (4.3) and
(4.1), that

σ−2
n

n−1∑
k=0

∥∥Ek(Sk+m − Sk)
∥∥2

2

≤ 2κσ−2
n

n−1∑
k=0

ρ2([√m]) k+m∑
i=k+[√m]+1

‖Xi‖2
2 + 2κσ−2

n

n−1∑
k=0

k+[√m]∑
i=k+1

‖Xi‖2
2

≤ 2κC
{
mρ2([√m]) + √

m
}
.

Hence

m−1A2(m) ≤ 2κC
{
ρ2([√m]) + m−1/2}, (5.31)

which tends to zero as m → ∞. This proves the first part of assumption (5.27).
Next, observe that by (5.30), under (4.3),

∥∥∥∥∥ 1

m

m−1∑
u=0

E(Sk2r+u − S(k−1)2r+u|F(k−2)2r+1)

∥∥∥∥∥
2

2

≤ κ

m

m−1∑
u=0

ρ2(2r + u − 1
) k2r+u∑

i=(k−1)2r+u+1

‖Xi‖2
2.

Thus, by taking into account (4.1), we derive that

B2(2r ,m
) = sup

n≥1
σ−2

n

[n/2r ]+1∑
k=1

∥∥∥∥∥ 1

m

m−1∑
u=0

E(Sk2r+u − S(k−1)2r+u|F(k−2)2r+1)

∥∥∥∥∥
2

2

≤ C
κ

m

m−1∑
u=0

ρ2(2r + u − 1
) ≤ Cκρ2(2r − 1

)
,

where the last inequality comes from the fact that ρ is non-increasing. Taking into account (4.3),
this shows that the second part of (5.27) is satisfied.

Now, we apply Proposition 3.2 to verify the last condition (3.5). To do it, we need to verify its
assumptions (3.6) and (3.7) by recalling that F0,n = {∅,�} and then E0(·) = E(·).

First, we notice that, by the definition of the ρ-mixing coefficients and the condition (4.1), for
any non-negative integer 
,

σ−2
n

n∑
k=b+1

∥∥Ek−b(XkXk+
) −E(XkXk+
)
∥∥

1

≤ ρ(b)σ−2
n

n∑
k=b+1

∥∥XkXk+
 −E(XkXk+
)
∥∥

2
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≤ ρ(b)σ−2
n

n∑
k=b+1

‖Xk‖2‖Xk+
‖2 ≤ ρ(b)σ−2
n

(
n+
∑
k=1

‖Xk‖2
2

)
≤ ρ(b)C → 0 as b → ∞,

which proves the first assumption (3.6).
To end the proof of the theorem, it remains to prove that (3.7) holds. Note that since we have

proved that condition (5.27) is satisfied, a careful analysis of the proof of Lemma 5.3 reveals that,
setting Dm


 = m−1 ∑m−1
i=0 P
(S
+i ) and θm


 = m−1 ∑m−1
i=1 E
(X
+1 + · · · + X
+i ),

lim
m→∞ lim sup

n→∞
σ−2

n sup
t∈[0,1]

∣∣∣∣∣
vn(t)∑

=1

(
E

(
X2


 + 2X
θ
m



) −E
(
Dm




)2)∣∣∣∣∣ = 0, (5.32)

and

lim
m→∞ lim sup

n→∞
σ−2

n

∥∥∥∥∥ sup
t∈[0,1]

∣∣∣∣∣
vn(t)∑
i=1

Xi,n −
vn(t)∑

=1

Dm



∣∣∣∣∣
∥∥∥∥∥

2

2

= 0. (5.33)

Taking into account (5.32), to prove that (3.7) holds, we then need to show that, for any t ∈ [0,1],

lim
m→∞ lim sup

n→∞

∣∣∣∣∣σ−2
n

vn(t)∑

=1

E
(
Dm




)2 − t

∣∣∣∣∣ = 0. (5.34)

But, since
∑vn(t)


=1 E(Dm

 )2 = ‖∑vn(t)


=1 Dm

 ‖2

2, by taking into account (5.33), the convergence
(5.34) follows if one can prove that, for any t ∈ [0,1],

σ−2
n E

(
S2

vn(t)

) → t, as n → ∞. (5.35)

With this aim, we note that since ‖∑vn(t)
k=1 Xk,n‖2 ≤ ‖∑vn(t)−1

k=1 Xk,n‖2 + ‖Xvn(t),n‖2, by defi-

nition of vn(t), we have
√

t ≤ σ−1
n ‖∑vn(t)

k=1 Xk,n‖2 ≤ √
t + σ−1

n ‖Xvn(t),n‖2. This implies (5.35)

by noticing that the Lindeberg condition (4.2) implies that limn→∞
‖Xvn(t),n‖2

σn
= 0. The proof of

Theorem 4.1 is complete.

5.5. Proof of Corollary 4.2

By taking vn(t) = [nt], we need to ensure that (5.35) holds, which is straightforward since we
assume that σ 2

n = nh(n) where h is a slowly varying function at infinity.

5.6. Proof of Corollary 4.3

Since c is non-decreasing and concave, by Lemma 5.1 in Dedecker [8], we note first that, for any
k ≥ 1,

‖Xk‖2 ≤ 2
∥∥f (Yk) − f (0)

∥∥
2 ≤ 2

∥∥c
(|Yk|

)∥∥
2 ≤ 2c

(‖Yk‖2
)
.
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Therefore by (4.4)

sup
k≥1

‖Xk‖2 ≤ 2c

(
σε

∑
i≥0

|ai |
)

< ∞.

This proves the first part of (2.2). Now, to prove the second part of (2.2), it suffices to show that,
for any ε > 0,

lim
n→∞

1

n

n∑
k=1

E
(∣∣f (Yk) − f (0)

∣∣21{|f (Yk)−f (0)|>ε
√

n)}
) = 0. (5.36)

With this aim, we set C = ∑
i≥0 |ai | and let K be a positive integer. We denote by ε′′

i = εi1|εi |>K .
Using the fact that for positive reals a, b and ε, (a + b)21{a+b>2ε} ≤ 4a21{a>ε} + 4b21{b>ε}, we
infer that, for any ε > 0,

E
(∣∣f (Yk) − f (0)

∣∣21{|f (Yk)−f (0)|>2ε
√

n)}
) ≤ 4

∥∥∥∥c

(∑
i≥0

∣∣aiε
′′
k−i

∣∣)∥∥∥∥
2

2
+ 4c2(KC)1{c(KC)>ε

√
n}.

The last term in the right-hand side converges to zero as n → ∞. Next, since c is non-decreasing
and concave, Lemma 5.1 in Dedecker [8] gives

1

n

n∑
k=1

∥∥∥∥c

(∑
i≥0

∣∣aiε
′′
k−i

∣∣)∥∥∥∥
2

2
≤ 1

n

n∑
k=1

c2
(∑

i≥0

|ai |
∥∥ε′′

k−i

∥∥
2

)
≤ c2

(
sup
k∈Z

∥∥ε′′
k

∥∥
2

∑
i≥0

|ai |
)

.

But, since (ε2
i )i∈Z is an uniformly integrable family, lim supK→∞ supk∈Z ‖ε′′

k‖2 = 0. Together
with the fact that limx→0 c(x) = 0, this proves that

lim
K→∞ lim sup

n→∞
1

n

n∑
k=1

∥∥∥∥c

(∑
i≥0

∣∣aiε
′′
k−i

∣∣)∥∥∥∥
2

2
= 0,

ending the proof of (5.36) and then of (2.2).
Let us consider now the following choice of (Fi )i≥0: F0 = {∅,�} and Fi = σ(X1, . . . ,Xi),

for i ≥ 1. If one can prove that conditions (2.6) and (3.6) are satisfied and also that, for any
t ∈ [0,1],

lim
m→∞ lim sup

n→∞
1

σ 2
n

∣∣∣∣∣
[nt]∑
k=1

{
E

(
X2

k

) + 2E
(
Xkθ

m
k

)} − t

∣∣∣∣∣ = 0, (5.37)

then the corollary follows by applying Theorem 2.1 and by taking into account Proposition 3.2.
To prove that (2.6) holds, we set Eε the expectation with respect to ε := (εi)i∈Z and note that

since Fi ⊂Fε,i where Fε,i = σ(εk, k ≤ i), for any i ≥ 0,∥∥E(Xk+i |Fi )
∥∥

2 ≤ ∥∥E(Xk+i |Fε,i )
∥∥

2. (5.38)
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For any i ≥ 0,∣∣E(Xk+i |Fε,i )
∣∣

=
∣∣∣∣∣Eε

(
f

(
k−1∑

=0

a
ε
′
k+i−
 +

∑

≥k

a
εk+i−


))
−Eε

(
f

(
k−1∑

=0

a
ε
′
k+i−
 +

∑

≥k

a
ε
′
k+i−


))∣∣∣∣∣,
where (ε′

i )i∈Z is an independent copy of (εi)i∈Z. Hence, by Lemma 5.1 in Dedecker [8],

∥∥E(Xk+i |Fi )
∥∥

2 ≤
∥∥∥∥c

(∑

≥k

|a
|
∣∣εk+i−
 − ε′

k+i−


∣∣)∥∥∥∥
2
≤ c

(
2σε

∑

≥k

|a
|
)

,

proving that (2.6) holds under (4.4). We prove now that (3.6) is satisfied. With this aim we recall
that F0 is the trivial σ -field, and we first write that for any non-negative integer k, j , and n,

Ek(Xk+nXj+n) −E(Xk+nXj+n) = Ek

(
f (Yk+n)f (Yj+n)

) −E
(
f (Yk+n)f (Yj+n)

)
−E

(
f (Yk+n)

)
Ek

(
f (Yj+n) −E

(
f (Yj+n)

))
−E

(
f (Yj+n)

)
Ek

(
f (Yk+n) −E

(
f (Yk+n)

))
. (5.39)

Since limx→0 c(x) = 0 and the first part of (4.4) is assumed, by using coupling arguments as
before and Lemma 5.1 in Dedecker [8], we infer that

lim
n→∞ sup

j≥k≥0
‖Ek(f (Yk+n)f (Yj+n) −E

(
f (Yk+n)f (Yj+n)

)‖1 = 0, (5.40)

and

lim
n→∞ sup

j≥k≥0

∥∥E(
f (Yj+n)

)
Ek

(
f (Yk+n) −E

(
f (Yk+n)

))∥∥
1 = 0. (5.41)

Starting from (5.39) and taking into account (5.40) and (5.41), the convergence (3.6) follows
since we have assumed that σ 2

n = nh(n) where h(n) is a slowly varying function at infinity such
that lim infn→∞ h(n) > 0.

We turn now to the proof of (5.37). With this aim, note first that since condition (2.6) is satisfied
and σ 2

n = nh(n) where h(n) is a slowly varying function at infinity such that lim infn→∞ h(n) >

0, condition (5.27) holds. Now as quoted in the proof of Theorem 4.1, if the Lindeberg condition
(3.1) and condition (5.27) are both satisfied, then to prove (5.37) it is enough to show that (5.35)
holds (here with vn(t) = [nt]). This comes obviously from the fact that we assumed that σ 2

n =
nh(n) where h(n) is a slowly varying function at infinity. This ends the proof of the corollary.

5.7. Proof of Corollary 4.4

The fact that, under (D), limm→∞ m−1
E(S̃m(u))2 = σ 2(u) has been proved in Peligrad and

Utev [24]. Note now that, by (S0), it suffices to prove the functional CLT for the process
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{n−1/2 ∑[nt]
k=1 X̃k(k/n), t ∈ [0,1]}. With this aim, we shall apply Theorem 3.1 with Xk,n =

n−1/2X̃k(k/n). Note first that condition (3.4) clearly holds under (D). The first part of the Lin-
deberg condition (3.1) holds since supu∈[0,1] ‖X̃0(u)‖2 < ∞. For the second part we note that,
for any A > 0,

lim
n→∞n−1

n∑
k=1

E
{
X̃2

0(k/n)I
(∣∣X̃2

0(k/n)
∣∣ > A

)} =
∫ 1

0
E

{
X̃2

0(u)I
(∣∣X̃2

0(u)
∣∣ > A

)}
du,

which converges to zero as A → ∞ by the dominated convergence theorem. It remains to prove
that (3.5) is satisfied. Using (S1) and proceeding as in the proof of Theorem 2.7 in Dahlhaus,
Richter and Wu [7], one can easily prove that

1

n

[nt]∑
k=1

{
X̃2

k(k/n) + 2

m

m∑
i=1

X̃k(k/n)Ek

(
k+i∑


=k+1

X̃
(
/n)

)}
→n→∞

∫ t

0

1

m
E

(
S̃m(u)

)2
du.

Now, taking into account assumption (D) and the fact that supu∈[0,1] ‖X̃k(u)‖2 < ∞, Theo-

rem 5.2 entails that 1
m

supu∈[0,1]E(S̃m(u))2 ≤ K . Hence, by the dominated convergence theo-

rem,
∫ t

0
1
m
E(S̃m(u))2 du →m→∞

∫ t

0 σ 2(u) du. This completes the proof of (3.5) and then of the
corollary.

5.8. Proof of Corollary 4.5

For any integrable random variable f from � to R we write K(f ) = PT |F0(f ). Since P is
T -invariant, for any integer k, a regular version PT |Fk

of T given Fk is then obtained via
PT |Fk

(f ) = K(f ◦ T −k) ◦ T k . With these notations, for any positive integer 
, E(f ◦ T 
|F0) =
K
(f ). We denote

M2r

(|f |) = sup
n≥1

1

n

n−1∑
k=0

Kk2r (|f |).
Applying Corollary 3.3, Corollary 4.5 follows if one can prove that, with probability one,

sup
n≥1

n−1
n∑

j=1

E0
(
X2

j

) ≤ C < ∞, (5.42)

lim
n→∞

1

n

n∑
k=1

E0
{
X2

kI
(|Xk| > ε

√
n
)} = 0, for any ε > 0, (5.43)

there exists a constant c2 such that, for any t ∈ [0,1] and any ε > 0,

lim
m→∞ lim sup

n→∞
P0

(∣∣∣∣∣1

n

[nt]∑
k=1

(
X2

k + 2

m
Xk

m−1∑
i=1

Ek(Sk+i − Sk)

)
− tc2

∣∣∣∣∣ > ε

)
= 0, (5.44)
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∑

≥0

2−
/2M1/2
1

(∣∣E0(S2
 )
∣∣2)

< ∞, (5.45)

and

lim inf
j→∞

∑

≥j

2−
/2M1/2
2


(∣∣∣∣∣2−j
2j −1∑
u=0

E−2
+1
(
S2
 ◦ T u

)∣∣∣∣∣
2)

= 0. (5.46)

To prove (5.42) and (5.43), it suffices to apply, for instance, Lemma 7.1 in Dedecker,
Merlevède and Peligrad [9]. To show (5.45) and (5.46), let introduce the weak L

2-spaces:
L

2,w := {f ∈ L
1 : supλ>0 λ2

P{|f | ≥ λ} < ∞}. Recall that, when p > 1, there exists a norm
‖ · ‖2,w on L

2,w that makes L2,w a Banach space and which is equivalent to the “pseudo”-norm
(supλ>0 λ2

P{|f | ≥ λ})1/2. Moreover, by the Dunford–Schwartz (or Hopf) ergodic theorem (see
Krengel [18], Lemma 6.1, page 51, and Corollary 3.8, page 131), there exists C > 0 and such
that for every f ∈ L

2 and any non-negative integer 
,∥∥(
M2


(|f |2))1/2∥∥
2,w

≤ C‖f ‖2. (5.47)

With the help of (5.47), it is then easy to see that (5.45) and (5.46) are satisfied under (2.7).
It remains to prove that (5.44) is satisfied. Since, under (2.7), limm→∞ m−1/2

E(S2
m) = c2, by

the ergodic theorem and the proof of Corollary 2.2,

lim
m→∞ lim

n→∞

∣∣∣∣∣1

n

[nt]∑
k=1

(
X2

k + 2

m
Xk

m−1∑
i=1

Ek(Sk+i − Sk)

)
− tc2

∣∣∣∣∣ = 0, almost surely.

This proves (5.44) by taking into account the properties of the conditional expectation (see, e.g.,
Theorem 34.3, item (v) in Billingsley [3]). The proof of the corollary is complete.
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