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Gaussian process (GP) models have become a well-established framework for the adaptive design of costly
experiments, and notably of computer experiments. GP-based sequential designs have been found prac-
tically efficient for various objectives, such as global optimization (estimating the global maximum or
maximizer(s) of a function), reliability analysis (estimating a probability of failure) or the estimation of
level sets and excursion sets. In this paper, we study the consistency of an important class of sequential
designs, known as stepwise uncertainty reduction (SUR) strategies. Our approach relies on the key obser-
vation that the sequence of residual uncertainty measures, in SUR strategies, is generally a supermartingale
with respect to the filtration generated by the observations. This observation enables us to establish generic
consistency results for a broad class of SUR strategies. The consistency of several popular sequential design
strategies is then obtained by means of this general result. Notably, we establish the consistency of two SUR
strategies proposed by Bect, Ginsbourger, Li, Picheny and Vazquez (Stat. Comput. 22 (2012) 773–793) –
to the best of our knowledge, these are the first proofs of consistency for GP-based sequential design al-
gorithms dedicated to the estimation of excursion sets and their measure. We also establish a new, more
general proof of consistency for the expected improvement algorithm for global optimization which, unlike
previous results in the literature, applies to any GP with continuous sample paths.

Keywords: active learning; convergence; sequential design of experiments; stepwise uncertainty reduction;
supermartingale; uncertainty functional

1. Introduction

Sequential design of experiments is an important and lively research field at a crossroads be-
tween applied probability, statistics and optimization, where the goal is to allocate experimental
resources step by step so as to reduce the uncertainty about some quantity, or function, of in-
terest. While the experimental design vocabulary traditionally refers to observations of natural
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phenomena presenting aleatory uncertainties, the design of computer experiments – in which
observations are replaced by numerical simulations – has become a field of research per se [39,
52,53], where Gaussian process models are massively used to define efficient sequential designs
in cases of costly evaluations. The predominance of Gaussian processes in this field is probably
due to their unique combination of modeling flexibility and computational tractability, which
makes it possible to work out sampling criteria accounting for the potential effect of adding new
experiments. The definition, calculation and optimization of sampling criteria tailored to various
application goals have inspired a significant number of research contributions in the last decades
(see, e.g., [3,6,12–14,22,24–26,29,30,48–50,55,56,66]). Yet, available convergence results for
the associated sequential designs are quite heterogeneous in terms of their respective extent and
underlying hypotheses [11,31,55,57,63,65]. Here we develop a probabilistic approach to the anal-
ysis of a large class of strategies. This enables us to establish generic consistency results, whose
broad applicability is subsequently illustrated on four popular sequential design strategies. The
crux is that each of these strategies turns out to involve some uncertainty functional applied to a
sequence of conditional probability distributions, and our main results rely on the key property –
which will be referred to as the supermartingale property – that, for any sequential design, the
sequence of random variables produced by these functionals is a supermartingale with respect to
the filtration generated by the observations.

Among the sampling criteria considered in our examples, probably the most famous one is the
expected improvement (EI), that arose in sequential design for global optimization. Following
the foundations laid by Mockus, Tiesis and Žilinskas [43] and the considerable impact of the
work of Jones, Schonlau and Welch [36], EI and other Bayesian optimization strategies have
spread in a variety of application fields. They are now commonly used in engineering design
[23] and, in the field of machine learning, for automatic configuration algorithms (see [56] and
references therein). Extensions to constrained, multi-objective and/or robust optimization con-
stitute an active field of research (see, e.g., [8,21,22,30,48,68]). In a different context, sequential
design strategies based on Gaussian process models have been used to estimate contour lines,
probabilities of failures, profile optima and excursion sets of expensive to evaluate simulators
(see, notably, [5,6,13,29,49,50,62,67,71]).

More specifically, we consider in this paper sequential design strategies built according to the
stepwise uncertainty reduction (SUR) paradigm (see [6,12,66] and references therein). Our main
focus is the consistency of these algorithms under the assumption that the function of interest is a
sample path of the Gaussian process model that is used to construct the sequential design. Almost
sure consistency has been proved for the EI algorithm in [63], but only under the restrictive as-
sumption that the covariance function satisfies a certain condition – the “No Empty Ball” (NEB)
property – which excludes very regular Gaussian processes.1 Moreover, to the authors’ knowl-
edge, no proof of consistency has yet been established for algorithms dedicated to probability of

1On a related note, Bull [11] proves an upper-bound for the convergence rate of the expected improvement algorithm
under the assumption that the covariance function is Hölder, but his result only holds for functions that belong to the
reproducing kernel Hilbert space (RKHS) of the covariance – a condition which, under appropriate assumptions, is
almost surely not satisfied by sample paths of the Gaussian process according to Driscoll’s theorem [41]. Another result
in the same vein is provided by Yarotsky [70] for the squared exponential covariance in the univariate case, assuming
that the objective function is analytic in a sufficiently large complex domain around its interval of definition.
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excursion and/or excursion set estimation (referred to as excursion case henceforth) such as those
of Bect et al. [6]. The scheme of proof developed in this work allows us to address the excursion
case and also to revisit the consistency of the knowledge gradient algorithm [24–26], as well as
that of the EI algorithm – which can also be seen as a particular case of a SUR strategy [12] –
without requiring the NEB assumption. Before outlining the paper in more detail, let us briefly
introduce the general setting and, in particular, what we mean by SUR strategies. We will focus
directly on the case of Gaussian processes for clarity, but the SUR principle in itself is much more
general, and can be used with other types of models (see, e.g., [14,27,35,38,42,45]). Let ξ be a
real-valued Gaussian process defined on a measurable space X – typically, ξ will be a continuous
Gaussian process on a compact metric space, such as X = [0,1]� – and assume that evaluations
(observations) Zn = ξ(Xn) + εn are to be made, sequentially, in order to estimate some quantity
of interest (e.g., the maximum of ξ , or the volume of its excursion above some given threshold).
We will assume the sequence of observation errors (εn)n∈N∗ to be independent of the Gaussian
process ξ , and composed of independent centered Gaussian variables. The definition of a SUR
strategy starts with the choice of a “measure of residual uncertainty” for the quantity of interest
after n evaluations, which is a functional

Hn =H
(
Pξ

n

)
(1.1)

of the conditional distribution Pξ
n of ξ given Fn, where Fn is the σ -algebra generated by X1,

Z1, . . . , Xn, Zn. Assuming that the Hn’s are Fn-measurable random variables, a SUR sampling
criterion is then defined as

Jn(x) = En,x(Hn+1), (1.2)

where En,x denotes the conditional expectation with respect to Fn with Xn+1 = x (assuming that
Hn+1 is integrable, for any choice of x ∈ X). The value of the sampling criterion Jn(x) at time
n quantifies the expected residual uncertainty at time n + 1 if the next evaluation is made at x.
Finally, a (non-randomized) sequential design is constructed by greedily choosing at each step a
point that provides the smallest expected residual uncertainty – equivalently, the largest expected
uncertainty reduction – that is,

Xn+1 ∈ argmin
x∈X

Jn(x). (1.3)

Such a greedy strategy is sometimes called myopic or one-step look-ahead (as opposed to a
Bayes-optimal strategy, which would consider the reduction of uncertainty achieved at the end
of the sequential design, that is, when the entire experimental budget has been spent). Our goal
is to establish the consistency of these strategies, where consistency means that the residual
uncertainty Hn goes almost surely to zero.

Given a finite measure μ over X and an excursion threshold T ∈ R, a typical choice of
measure of residual uncertainty in the excursion case [6] is the integrated indicator variance
Hn = H(Pξ

n) = ∫
X

pn(1 − pn)dμ (also called integrated Bernoulli variance in what follows)
where pn(x) = Pn(ξ(x) ≥ T ) and Pn denotes the conditional probability with respect to Fn.
Note that pn(x)(1 − pn(x)) = varn(1ξ(x)≥T ), where varn denotes the conditional variance with
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respect to Fn. Recalling the definition of Jn from (1.2), and using the law of total variance, we
obtain that

Jn(x) =
∫
X

En,x

(
varn+1(1ξ(u)≥T )

)
μ(du) ≤

∫
X

varn(1ξ(u)≥T )μ(du) = Hn, (1.4)

which shows that (Hn) is an (Fn)-supermartingale. Another related measure of uncertainty, for
which a semi-analytical formula is provided in [13], is the variance of the excursion volume,
Hn = varn(μ({x ∈ X : ξ(x) ≥ T })). The supermartingale property follows again in this case
from the law of total variance. In the optimization case, on the other hand, it turns out (see,
e.g., [12], Section 3.3) that the EI criterion is underlaid by the measure of residual uncertainty
Hn = En(max ξ −Mn), where Mn is defined as Mn = maxi≤n ξ(Xi) for non-degenerate Gaussian
processes (see Remark 4.10), and En denotes the conditional expectation with respect to Fn.
A similar construction can be obtained for the knowledge gradient, as developed later. It turns out
as shown later in the paper that, for both criteria, the associated measures of residual uncertainty
also possess the aforementioned supermartingale property.

It must be pointed out here that, under very weak assumptions about the Gaussian process
model and the uncertainty functional, consistency can also be achieved more simply using any
dense (“space filling”) deterministic sequence of design points. It has been largely demonstrated,
however, that SUR strategies typically outperform in practice these simple deterministic designs
(see references above). Hence, there remains a gap between theory and practice that is not filled
by our consistency results since, by themselves, they do not provide a very strong theoretical
support for the choice of SUR sequential designs over other types of designs, and in particular
over non-sequential designs.

The main practical interest of our consistency results is rather to answer the natural concern
that SUR strategies, because of their greedy nature, might fail to be consistent in some situations.
Such a concern is justified for instance, by the explicit counterexample, provided by Yarotsky
[69], of a particular function for which the sequence of points generated by the EI strategy fails
to produce a consistent estimate of the optimum of the function. Our results show that such func-
tions are negligible under the distribution of the Gaussian process used to construct the sequential
design. Further study of the convergence rate of SUR sequential designs is nevertheless needed
to provide a full theoretical support for their practical effectiveness, and will be the subject of
future work. Understanding their consistency, in relation with the properties of the uncertainty
functionals that defined them, is an important first step in this direction.

The rest of the paper is structured as follows. Section 2 defines more precisely the statistical
model and design problem considered in the paper, and addresses properties of conditioning
and convergence of Gaussian measures that are instrumental in proving the main results of the
paper. Section 3 discusses uncertainty functionals and their properties, and formulates general
sufficient conditions for the consistency of SUR sequential designs in terms of properties of the
associated uncertainty functionals. Finally, Section 4 presents applications of the general result
to four popular examples of SUR sequential designs, establishing in each case both convergence
to zero for the considered measure of residual uncertainty and convergence of the corresponding
estimator to the quantity of interest, in the almost sure and L1 sense.
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2. Preliminaries: Gaussian processes and sequential design

2.1. Model

Let (ξ(x))x∈X denote a Gaussian process with mean function m and covariance function k, de-
fined on a probability space (�,F,P) and indexed by a metric space X. Assume that ξ can
be observed at sequentially selected (data-dependent) design points X1, X2, . . . , with additive
heteroscedastic Gaussian noise:

Zn = ξ(Xn) + τ(Xn)Un, n = 1,2, . . . , (2.1)

where τ : X → [0,+∞) gives the (known) standard deviation τ(x) of an observation at x ∈ X,
and (Ui)i≥1 denotes a sequence of independent and identically distributed N (0,1) variables,
independent of ξ . Let Fn denote the σ -algebra generated by X1,Z1, . . . ,Xn,Zn.

Definition 2.1. A sequence (Xn)n≥1 will be said to form a (non-randomized) sequential design
if, for all n ≥ 1, Xn is Fn−1-measurable.

Standing assumptions 2.2. We will assume in the rest of the paper that

(i) X is a compact metric space,
(ii) ξ has continuous sample paths,

(iii) τ is continuous.

Remark 2.3. Note that the variance function τ 2 is not assumed to be strictly positive. Indeed,
the special case where τ 2 ≡ 0 is actually an important model to consider given its widespread
use in Bayesian numerical analysis (see, e.g., [20,33,46,51]) and in the design and analysis of
deterministic computer experiments (see, e.g., [4,52,53]).

Remark 2.4. A Gaussian process with continuous sample paths automatically has continuous
mean and covariance functions (see, e.g., Lemma 1 in [34]). Conversely, assuming continuity
of the mean function, let us recall a classical sufficient condition for sample path continuity on
X⊂R

d (see, e.g., [1], Theorem 3.4.1): if there exist C > 0 and η > 0 such that

k(x, x) + k(y, y) − 2k(x, y) ≤ C

| log‖x − y‖|1+η
, ∀x, y ∈X,

then there exists a version of ξ with continuous sample paths. This is a very weak condition,
which is satisfied by all commonly used continuous covariance functions on R

d (e.g., geometri-
cally anisotropic or tensor-product Matérn covariance functions).

Remark 2.5. The setting described in this section arises, notably, when considering from a
Bayesian point of view the following nonparametric interpolation/regression model with het-
eroscedastic Gaussian noise:

Zn = f (Xn) + τ(Xn)Un, n = 1,2, . . . (2.2)
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with a continuous Gaussian process prior on the unknown regression function f . In this case, m

and k are the prior mean and covariance functions of ξ .

2.2. Gaussian random elements and Gaussian measures on C(X)

Let S = C(X) denote the set of all continuous functions on X. Since X is assumed compact, S
becomes a separable Banach space when equipped with the supremum norm ‖·‖∞. We recall
(see, e.g., [2], Theorem 2.9) that any Gaussian process (ξ(x))x∈X with continuous sample paths
on a compact metric space satisfies E(‖ξ‖∞) < ∞.

Any Gaussian process (ξ(x))x∈X with continuous sample paths can be seen as a Gaussian
random element in S. More precisely, the mapping ξ : � → S,ω �→ ξ(ω, ·) is F/S-measurable,
where S denotes the Borel σ -algebra on S, and the probability distribution Pξ of ξ is a Gaussian
measure on S. The reader is referred to Vakhania, Tarieladze and Chobanyan [60] and Ledoux
and Talagrand [40] for background information concerning random elements and measures in
Banach spaces, and to van der Vaart and van Zanten [61] and Bogachev [9] for more information
on the case of Gaussian random elements and measures.

We will denote by M the set of all Gaussian measures on S. Any ν ∈ M is the probability
distribution of some Gaussian process with continuous sample paths, seen as a random element
in S. The mean function mν and covariance function kν of this Gaussian process are continuous
(see Remark 2.4) and fully characterize the measure, which we will denote as GP(mν, kν). We
endow M with the σ -algebra M generated by the evaluation maps πA : ν �→ ν(A), A ∈ S . Using
this σ -algebra, conditional distributions on S – seen as transition kernels from � to S – can be
conveniently identified to random elements in M (see, e.g., [37], pp. 105–106).

Given a Gaussian random element ξ in S, we will denote by P(ξ) the set of all Gaussian
conditional distributions of ξ , that is, the set of all random Gaussian measures ν such that ν =
P(ξ ∈ · | F ′) for some σ -algebra F ′ ⊂ F . Note that we use a bold letter ν to denote a random
element in M (i.e., a random Gaussian measure), and a normal letter ν to denote a point in the
same space (i.e., a Gaussian measure). Not all conditional distributions of the form ν = P(ξ ∈ · |
F ′) are Gaussian, but an important class of such Gaussian conditional distributions is discussed
in the following section and in Proposition 2.9.

2.3. Conditioning on finitely many observations

It is well known that Gaussian processes remain Gaussian under conditioning with respect to
pointwise evaluations, or more generally linear combinations of pointwise evaluations, possi-
bly corrupted by independent additive Gaussian noise (explicit expressions of the conditional
mean and covariance functions are recalled in Appendix A.2). In the language of nonparametric
Bayesian statistics (see Remark 2.5), Gaussian process priors are conjugate with respect to this
sampling model. The following result formalizes this fact in the framework of Gaussian mea-
sures on S, and states that the conjugation property still holds when the observations are made
according to a sequential design.
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Proposition 2.6. For all n ≥ 1, there exists a measurable mapping

(X×R)n ×M →M,

(x1, z1, . . . , xn, zn, ν) �→ Condx1,z1,...,xn,zn(ν),
(2.3)

such that, for any Pξ ∈ M and any sequential design (Xn)n≥1, CondX1,Z1,...,Xn,Zn(P
ξ ) is a con-

ditional distribution of ξ given Fn.

A proof of this result is provided in Appendix A.2. In the rest of the paper, we will denote by
Pξ

n = GP(mn, kn) the conditional distribution CondX1,Z1,...,Xn,Zn(P
ξ ) of ξ given Fn, which can

be seen as a random element in (M,M). The posterior mean mn is also referred to as the kriging
predictor (see, e.g., [16,23,58]). Note that mn (respectively, kn) is an Fn-measurable process2

on X (respectively, X × X), with continuous sample paths. Note also that m0 = m and k0 = k.
Conditionally to Fn, the next observation follows a normal distribution:

Zn+1 | Fn ∼N
(
mn(Xn+1), s

2
n(Xn+1)

)
, (2.4)

where s2
n(x) = kn(x, x) + τ 2(x).

2.4. Convergence in M

We consider in this paper the following notion of convergence on M.

Definition 2.7. Let νn = GP(mn, kn) ∈ M, n ∈ N ∪ {+∞}. We will say that (νn) converges to
ν∞, and write νn → ν∞, if mn → m∞ uniformly on X (i.e., mn → m∞ in S) and kn → k∞
uniformly on X×X.

Remark 2.8. In other words, we consider the topology on M induced by the strong topology on
the Banach space C(X) × C(X×X), where M is identified to a subset of this space through the
injection ν �→ (mν, kν).

Let us now state two important convergence results in this topology, that will be needed in
Section 3. In the first of them, and later in the paper, we denote by F∞ = ∨

n≥1 Fn the σ -algebra
generated by

⋃
n≥1 Fn.

Proposition 2.9. For any Gaussian random element ξ in S, defined on any probability space, and
for any sequential design (Xn)n≥1, the conditional distribution of ξ given F∞ admits a version
Pξ∞ which is an F∞-measurable random element in M, and Pξ

n → Pξ∞ almost surely.

Proposition 2.10. Let ν ∈ M and let (xj , zj ) → (x, z) in X × R. Assume that kν(x, x) +
τ 2(x) > 0. Then Condxj ,zj

(ν) → Condx,z(ν).

2i.e., a measurable process when considered as defined on (�,Fn) instead of (�,F)
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Proof. See Appendix A.3 for proofs of both results. �

3. Stepwise uncertainty reduction

3.1. Uncertainty functionals and uncertainty reduction

As explained in the Introduction, the definition of a SUR strategy starts with the choice of an
uncertainty functional H, which maps the conditional distribution Pξ

n to a measure Hn of residual
uncertainty for the quantity of interest. The minimal value of the uncertainty functional represents
an absence of uncertainty on the quantity of interest: for clarity, and without loss of generality
as long as H is bounded from below and attains its minimum, we will assume in the rest of this
section that minH = 0, thus restricting our attention to non-negative uncertainty functionals.

More formally, let H denote a measurable functional from M to [0,+∞). Since Pξ
n is an

Fn-measurable random element in (M,M), the residual uncertainty Hn = H(Pξ
n) is an Fn-

measurable random variable. A key observation for the convergence results of this paper is that
many uncertainty functionals of interest – examples of which will be given in Section 4 – enjoy
the following property.

Definition 3.1. A measurable functional H on M will be said to have the supermartingale prop-
erty if, for any Gaussian random element ξ in S, defined on any probability space, and for any
sequential design (Xn)n≥1, the sequence (H(Pξ

n))n≥0 is an (Fn)-supermartingale.

The supermartingale property echoes DeGroot’s observation that “reasonable” measures of
uncertainty should be decreasing on average for any possible experiment [17]. To discuss this
connection more precisely in our particular setting, let us consider the following definition.

Definition 3.2. Let M0 denote a set of probability measures on a measurable space (E,E), and
let M0 denote the σ -algebra generated on M0 by the evaluation maps. For any random element
ν in (M0,M0), defined on any probability space, let ν denote the probability measure defined
by ν(A) = E(ν(A)), A ∈ E . We will say that a non-negative measurable functional H on M0
is decreasing on average (DoA) if, for any random element ν in (M0,M0) such that ν ∈ M0,
E(H(ν)) ≤ H(ν).

Note that, if the set M0 is convex, DoA functionals on M0 are concave. The converse statement
is expected to be false, however, since Jensen’s inequality does not hold for all concave function-
als in infinite dimensional settings (see [47], for extensions of Jensen’s inequality under various
assumptions). The set M of all Gaussian measures on S is not convex, but all the uncertainty
functionals presented in Section 4 can in fact be extended to DoA – hence concave – functionals
defined on some larger convex set of probability measures.3

3More precisely, the functionals discussed in Sections 4.1 and 4.2 can be extended to DoA functionals on the set of all
probability measures on S, and those of Sections 4.3 and 4.4 to DoA functionals on the set of all probability measures ν

on S such that E(max ξ − min ξ) < +∞ for ξ ∼ ν.
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Remark 3.3. Let β : S → R
p denote a measurable function, and let νβ denote the image of

ν by β . Then it is easy to see that any functional of the form H(ν) = H′(νβ) is DoA, where
H′ denotes a DoA functional defined on some appropriate subset of the set of all probability
measures on R

p; the reader is referred to [32] for a variety of examples of such functionals.
Section 4.2 provides an example of this construction, with p = 1 and H′ the variance functional.

The supermartingale and DoA properties are easily seen to be connected as follows.

Proposition 3.4. If H is DoA on M, then it has the supermartingale property.

Let us conclude this section with another useful property of functionals. Recall that P(ξ)

denotes the set of all Gaussian conditional distributions of ξ (see Section 2.2).

Definition 3.5. A measurable functional H on M will be said to be P-uniformly integrable
if, for any Gaussian random element ξ in S, defined on any probability space, the family
(H(ν))ν∈P(ξ) is uniformly integrable.

Proposition 3.6. Let H denote a measurable functional on M. If there exists L+ ∈ ⋂
ν∈ML1(S,

S, ν) such that |H(ν)| ≤ ∫
S
L+ dν for all ν ∈ M, then H is P-uniformly integrable.

Proof. Let ξ denote a Gaussian random element in S and let ν = P(ξ ∈ · | F ′) ∈ P(ξ). Then we
have |H(ν)| ≤ E(L+(ξ) | F ′), and the result follows from the uniform integrability of conditional
expectations (see, e.g., [37], Lemma 5.5). �

Remark 3.7. If H is P-uniformly integrable and has the supermartingale property then, for any
sequential design, the sequence (Hn) is a uniformly integrable supermartingale (since {Pξ

n} ⊂
P(ξ)), and thus converges almost surely and in L1.

3.2. SUR sequential designs and associated functionals

The SUR sampling criterion introduced informally as Jn(x) = En,x(Hn+1) in (1.2) can now be
more precisely defined as

Jn(x) = En

(
H

(
Condx,Zn+1(x)

(
Pξ

n

)))
, (3.1)

where Zn+1(x) = ξ(x) + Un+1τ(x). A SUR sequential design is then built by selecting at each
step, possibly after some initial design, the next design point as a minimizer of the SUR sampling
criterion Jn:

Definition 3.8. Let H denote a non-negative measurable functional on M.

(i) We will say that (Xn) is a SUR sequential design associated with the uncertainty func-
tional H if it is a sequential design such that Xn+1 ∈ argminJn for all n ≥ n0, for some
integer n0.
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(ii) Given a sequence ε = (εn) of non-negative real numbers such that εn → 0, we will
say that (Xn) is an ε-quasi-SUR sequential design if it is a sequential design such that
Jn(Xn+1) ≤ infJn + εn for all n ≥ n0, for some integer n0.

Remark 3.9. In practice it is not always easy to guarantee that, for a given uncertainty functional
H, the sampling criteria Jn attain their infimum over X. Moreover, the actual minimization of
Jn is typically carried out by means of a numerical optimization algorithm, which cannot be ex-
pected to provide the exact minimizer. For these reasons, it seems important to study the conver-
gence of quasi-SUR designs, as introduced by Definition 3.8.(ii), instead of the more restrictive
case of (exact) SUR designs. General existence results for SUR and quasi-SUR designs, based
on the measurable selection theorem for random closed sets, are provided in Appendix A.4.

Let us now introduce some useful functionals associated to a given (non-negative) uncertainty
functional H. First, observe that Jn(x) = Jx(P

ξ
n), where the functional Jx : M → [0,+∞] is

defined for all x ∈ X and ν ∈ M by

Jx(ν) =
∫∫

S×R

H
(
Condx,f (x)+uτ(x)(ν)

)
ν(df )φ(u)du (3.2)

=
∫
R

H
(
Condx,mν(x)+vsν(x)(ν)

)
φ(v)dv, (3.3)

with s2
ν (x) = kν(x, x) + τ 2(x) and φ the probability density function of the standard normal

distribution. The mapping (x, ν) �→ Jx(ν) is B(X) ⊗M-measurable (see Proposition A.6), and
it is easy to see that H has the supermartingale property if, and only if,

Jx(ν) ≤H(ν), for all x ∈ X and ν ∈ M. (3.4)

Assuming that H has the supermartingale property, we will then denote by Gx : M → [0,+∞)

the corresponding expected gain functional at x:

Gx(ν) =H(ν) −Jx(ν), (3.5)

and by G :M → [0,+∞) the associated maximal expected gain functional:

G(ν) = sup
x∈X

Gx(ν). (3.6)

Remark 3.10. Following [17], Gx could be called the “information” brought by an evaluation
at x about the quantity of interest. This would be consistent with the usual definition of mutual
information, when H is taken to be the Shannon entropy of some discrete quantity of interest
(see, e.g., [15]). Note that DeGroot renamed it “expected information” in some of his subsequent
work on this topic (see, e.g., [18,19]).

Remark 3.11. Alternatively, SUR sequential designs can be defined by the relation Xn+1 ∈
argmaxGn, where Gn denotes the sampling criterion x �→ Gn(x) := Gx(P

ξ
n) = Hn − Jn(x). In
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the particular cases discussed in Sections 4.3 and 4.4, Gn corresponds to the knowledge gradient
and expected improvement criteria, respectively.

3.3. General convergence results

Denote by ZH and ZG the subsets of M where the functionals H and G vanish, respectively. The
inclusion ZH ⊂ ZG always hold: indeed, 0 ≤ Jx ≤ H for all x by (3.4), thus 0 ≤ Gx ≤ H, and
therefore 0 ≤ G ≤ H. The reverse inclusion plays a capital role in the following result, which
provides sufficient conditions for the almost sure convergence of quasi-SUR sequential designs
associated with uncertainty functionals that enjoy the supermartingale property.

Theorem 3.12. Let H denote a non-negative, measurable functional on M with the supermartin-
gale property. Let (Xn) denote a quasi-SUR sequential design for H. Then G(Pξ

n) → 0 almost
surely. If, moreover,

(i) Hn =H(Pξ
n) →H(Pξ∞) almost surely,

(ii) G(Pξ
n) → G(Pξ∞) almost surely,

(iii) ZH = ZG ,

then Hn → 0 almost surely.

The proof of Theorem 3.12 relies on two main ideas. First, because the sequence (Hn) is a
non-negative supermartingale, the conditional mean of its increments goes to zero almost surely,
which implies by the quasi-SUR assumption that the maximal expected gain goes to zero as well.
Second, using Assumptions (i) and (ii), it is enough to study the limiting distribution Pξ∞: this
is where the reverse inclusion ZG ⊂ ZH is used to conclude that the uncertainty in the limiting
distribution is zero.

Proof. Since Xn+1 is Fn-measurable, we have:

Jn(Xn+1) = En

(
H

(
Condx,Zn+1(x)

(
Pξ

n

)))
|x=Xn+1

= En

(
H

(
CondXn+1,Zn+1

(
Pξ

n

))) = En(Hn+1).

(3.7)

Set �n+1 = Hn − Hn+1 and �n+1 = En(�n+1) = Hn − En(Hn+1). The random variables �n

are non-negative since (Hn) is a supermartingale and, using that (Xn) is an ε-quasi-SUR design,
we have for all n ≥ n0:

�n+1 = Hn − En(Hn+1) = Hn − Jn(Xn+1) ≥ Hn − inf
x∈XJn(x) − εn, (3.8)

i.e., since Jn(x) = Jx(P
ξ
n) and Gx =H−Jx ,

�n+1 ≥ sup
x∈X

Gx

(
Pξ

n

) − εn = G
(
Pξ

n

) − εn. (3.9)
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Moreover, for any n, we have
∑n−1

k=0 �k = H0 − Hn, and therefore

E

(
n−1∑
k=0

�k

)
= E

(
n−1∑
k=0

�k

)
= E(H0 − Hn) ≤ E(H0) < +∞.

It follows that E(
∑∞

k=0 �k) < +∞, and thus �n → 0 almost surely. As a consequence, G(Pξ
n) →

0 almost surely, since 0 ≤ G(Pξ
n) ≤ �n+1 + εn.

Let now Assumptions (i)–(iii) hold. It follows from the first part of the proof that G(Pξ
n) → 0

almost surely. Thus, G(Pξ∞) = 0 almost surely according to Assumption (ii). Then H(Pξ∞) = 0
since ZG ⊂ ZH, and the conclusion follows from Assumption (i). �

Remark 3.13. Note that the conclusions of Theorem 3.12 still hold partially if it is only as-
sumed that the condition Jn(Xn+1) ≤ infJn + εn holds infinitely often, almost surely: in this
case the conclusion of the first part of the theorem is weakened to lim infG(Pξ

n) = 0, but the final
conclusion (Hn → 0 a.s.) remains the same.

Since Pξ
n → Pξ∞ almost surely by Proposition 2.9, Assumptions (i) and (ii) of Theorem 3.12

hold if H and G, respectively, are continuous. Assuming H to be continuous, however, would be
too strong a requirement, that some important examples would fail to satisfy. For instance, the
uncertainty functional

H : ν �→
∫
X

pν(1 − pν)dμ (3.10)

studied in Section 4.1, where pν(u) = ∫
S
1f (u)≥T ν(df ) for some threshold T ∈ R, is clearly

discontinuous at the degenerate measure ν = GP(T 1X,0). The following weaker notion of con-
tinuity will turn out to be suitable for our needs.

Definition 3.14. A measurable functional H on M will be said to be P-continuous if, for any
Gaussian random element ξ in S, defined on any probability space, and any sequence of random
measures νn ∈P(ξ) such that νn

a.s.−→ ν∞ ∈ P(ξ), the convergence H(νn)
a.s.−→ H(ν∞) holds.

Remark 3.15. The uncertainty functional (3.10) provides an explicit example of a functional
which is P-continuous (cf. the proof of Theorem 4.1) but not continuous. The expected im-
provement functional, discussed in Section 4.4, provides an example of a functional which is not
even P-continuous (see Proposition 4.11), but for which consistency can nonetheless be proved
by a direct application of Theorem 3.12.

Checking that G is P-continuous, however, is not easy in practice. The following results pro-
vides sufficient conditions for Assumption 3.12.(ii) that are easier to check.

Theorem 3.16. Let H denote a non-negative, measurable uncertainty functional on M, and let
G denote the associated maximal expected gain functional. Assume that H =H0 +H1, where
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(i) H0(ν) = ∫
S
L0 dν for some L0 ∈ ⋂

ν∈ML1(S,S, ν), and
(ii) H1 is P-uniformly integrable, P-continuous and has the supermartingale property.

Then, for any quasi-SUR sequential design associated with H, G(Pξ∞) = 0 almost surely.

Proof. First, note that H0(P
ξ
n) = En(L0(ξ)). Thus, since L0 ∈ L1(S,S,Pξ ), the sequence

(H0(P
ξ
n)) is a uniformly integrable martingale (see, e.g., Kallenberg [37], Theorem 6.23), which

converges almost surely and in L1 to E∞(L0(ξ)) = H0(P
ξ∞). As a consequence, H(Pξ

n)
a.s.−→

H(Pξ∞) since H1 is P-continuous and Pξ
n

a.s.−→ Pξ∞ by Proposition 2.9.
Let x ∈ X. The functional H0 has the supermartingale property by the preceding argument,

and therefore H =H0 +H1 also has the supermartingale property. Then, it follows from the first
part of Theorem 3.12 that Gx(P

ξ
n)

a.s.−→ 0, and thus

Jx

(
Pξ

n

) =H
(
Pξ

n

) − Gx

(
Pξ

n

) a.s.−→ H
(
Pξ∞

)
. (3.11)

Let Pξ
n,x = Condx,Z(x)(P

ξ
n), with Z(x) = ξ(x) + τ(x)U and U ∼ N (0,1) independent from ξ

and the Un’s, and observe that Jx(P
ξ
n) = En(H(Pξ

n,x)). Consider then the decomposition:

Jx

(
Pξ

n

) = En

(
H

(
Pξ

n,x

) −H
(
Pξ∞,x

)) + En

(
H

(
Pξ∞,x

))
= En

(
H1

(
Pξ

n,x

) −H1
(
Pξ∞,x

)) + En

(
H

(
Pξ∞,x

))
, (3.12)

where the second equality simply follows from the fact that En(H0(P
ξ
n,x)) = En(H0(P

ξ∞,x)) =
En(L0(ξ)) by the law of total expectation. The second conditional expectation in (3.12) is, again,
a uniformly integrable martingale that converges almost surely and in L1:

En

(
H

(
Pξ∞,x

)) a.s.,L1−−−→
n→∞ E∞

(
H

(
Pξ∞,x

))
. (3.13)

Moreover, note that

Pξ
n,x = CondX1,Z1,...,Xn,Zn,x,Z(x)

(
Pξ

0

)
= Condx,Z(x),X1,Z1,...,Xn,Zn

(
Pξ

0

)
is the conditional distribution of ξ at the (n + 1)th step of the modified sequential design (X̃n),
where X̃1 = x and X̃n+1 = Xn for all n ≥ 1, with a modified sequence of “noise variables”
(Ũn) defined by Ũ1 = U and Ũn+1 = Un for all n ≥ 1. Note also that Pξ∞,x corresponds to the
conditional distribution with respect to the σ -algebra generated by X̃1, Z̃1, X̃2, Z̃2 . . . , where the
Z̃n’s have been defined accordingly. As a result,

En

(
H1

(
Pξ

n,x

) −H1
(
Pξ∞,x

)) L1−−−→
n→∞ 0 (3.14)

since H1 is P-continuous and P-uniformly integrable. Combine (3.12), (3.13) and (3.14) to
prove that Jx(P

ξ
n) → E∞(H(Pξ∞,x)) in L1. Then, it follows from a comparison with (3.11) that
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H(Pξ∞) = E∞(H(Pξ∞,x)) almost surely, and therefore

Gx

(
Pξ∞

) =H
(
Pξ∞

) − E∞
(
H

(
Pξ∞,x

)) = 0 almost surely. (3.15)

To conclude, note that by Assertion (a) of Theorem A.8 the sample paths of J∞ : x �→
E∞(H(Pξ∞,x)) are continuous on {x ∈ X : s2∞(x) > 0}. Let {xj } denote a countable dense subset

of X. We have proved that, almost surely, Gxj
(Pξ∞) = 0 for all j . Using the continuity of J∞ on

{s2∞ > 0}, and the fact that Gx = 0 on {s2∞ = 0}, we conclude that, almost surely, Gx(P
ξ∞) = 0 for

all x, and therefore G(Pξ∞) = 0, which concludes the proof. �

3.4. Uncertainty functionals based on a loss function

Let us now consider, more specifically, uncertainty functionals H defined in the form of a risk:

H(ν) = inf
d∈D

∫
S

L(f,d)ν(df ) = inf
d∈DLν(d), (3.16)

where D is a set of “decisions”, L : S × D → [0,+∞] a “loss function” such that L(·, d) is S-
measurable for all d ∈D, and Lν(d) = ∫

S
L(f,d)ν(df ). All the examples that will be discussed

in Section 4 can be written in this particular form.
The following result formalizes an important observation of (DeGroot [17], p. 408) about

such uncertainty functionals – namely, that they always enjoy the DoA property introduced in
Section 3.1 (and thus can be studied using Theorem 3.12).

Proposition 3.17. Let H denote a measurable functional on M. If H is of the form (3.16), then
it is DoA on M, and consequently has the supermartingale property.

Proof. The result follows directly from the fact that H is the infimum of a family of linear
functionals (ν �→ Lν(d), for d ∈ D) that commute with expectations: for any random element ν

in M and any d ∈ D,

E
(
Lν(d)

) = E

(∫
S

L(f,d)ν(df )

)
= Lν(d), (3.17)

where ν is defined as in Definition 3.2. (In other words, the linear functionals ν �→ Lν(d) are
DoA themselves, with an equality in (3.17) instead of the inequality in Definition 3.2.) �

An uncertainty functional of the form (3.16) is clearly M-measurable if the infimum over d

can be restricted to a countable subset of D (since the linear functionals ν �→ Lν(d) are M-
measurable by Lemma A.1). This is true, for instance, if D is separable and d �→ Lν(d) is con-
tinuous for all ν. See Proposition A.4 for an example where L is discontinuous.

Three of the examples of SUR sequential designs from the literature that will be analyzed in
Section 4 are based on regular non-negative loss functions in the following sense.
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Definition 3.18. We will say that a non-negative loss function L : S×D → [0,+∞) is regular
if

(i) D is a separable space,
(ii) for all d ∈D, L(·, d) is S-measurable,

(iii) for all ν ∈M, Lν takes finite values and is continuous on D,

and if the corresponding functionals H and G satisfy:

(iv) H = H0 + H1, where H0(ν) = ∫
S
L0 dν for some L0 ∈ ⋂

ν∈ML1(S,S, ν), and H1 is
P-uniformly integrable and P-continuous,

(v) ZH = ZG .

The following corollary is provided as a convenient summary of the results that hold for un-
certainty functionals based on regular non-negative loss functions.

Corollary 3.19. Let H denote a functional of the form (3.16) for some non-negative loss func-
tion L. If L is regular, then H is a measurable functional that satisfies the assumptions of
Theorems A.8, 3.12 and 3.16. In particular, for any quasi-SUR design associated with H,
Hn =H(Pξ

n) → 0 almost surely.

4. Applications to popular sequential design strategies

This section presents applications of our results to four popular sequential design strategies, two
of them addressing the excursion case (Sections 4.1 and 4.2), and the other two addressing the
optimization case (Sections 4.3 and 4.4). For each example, the convergence results are preceded
by details on the associated loss functions, uncertainty functionals and sampling criteria.

4.1. The integrated Bernoulli variance functional

Assume that X is endowed with a finite measure μ and let T ∈R be a given excursion threshold.
For any measurable function f : X �→ R, let �(f ) = {u ∈ X : f (u) ≥ T } and α(f ) = μ(�(f )).
The quantities of interest are then �(ξ) and α(ξ). Let pn(u) = En(1�(ξ)(u)) = Pn(ξ(u) ≥ T ).
A typical choice of measure of residual uncertainty in this case is the integrated indicator – or
“Bernoulli” – variance [6]:

Hn =
∫
X

pn(1 − pn)dμ, (4.1)

which corresponds to the uncertainty functional

H(ν) =
∫
X

pν(1 − pν)dμ, ν ∈M, (4.2)
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where pν(u) = ∫
S
1f (u)≥T ν(df ). See [13] for more information on the computation of the cor-

responding SUR sampling criterion

Jn(x) = En,x

(∫
X

pn+1(1 − pn+1)dμ

)
.

The functional (4.2) can be seen as the uncertainty functional induced by the loss function

L : S×D→ [0,+∞),

(f, d) �→ ‖1�(f ) − d‖2
L2(X)

,
(4.3)

where D ⊂ L2(X) is the set of “soft classification” functions on X (i.e., measurable functions
defined on X and taking values in [0,1]). Indeed, for all ν ∈ M and ξ ∼ ν,

Lν(d) = E
(
L(ξ, d)

) = ‖pν − d‖2
L2(X)

+
∫

pν(1 − pν)dμ

is minimal for d = pν , and therefore H(ν) = infd∈D Lν(d).
The following theorem establishes the convergence of SUR (or quasi-SUR) designs associated

to this uncertainty functional using the theory developed in Section 3.4 for regular loss functions.

Theorem 4.1. The loss function (4.3) is regular in the sense of Definition 3.18. As a consequence,
all the conclusions of Corollary 3.19 hold, and in particular H(Pξ

n)
a.s.−→ 0 for any quasi-SUR

design associated with H.

Proof. The proof consists in six points, as follows:

(a) D is separable

The space L2(X) is a separable metric space since X is a separable measure space (see, e.g.,
Theorem 4.13 in [10]). Hence, D is also separable.

(b) for all d ∈ D, L(·, d) is S-measurable

Indeed, f �→ ∫
X
(1f (x)≥T − d(x))2μ(dx) is S-measurable by Fubini’s theorem since the inte-

grand is S ⊗B(X)-jointly measurable in (f, x).

(c) for all ν ∈M, Lν takes finite values and is continuous on D

Here Lν is clearly finite since the loss is upper-bounded by μ(X), and its continuity directly
follows from the continuity of the norm.

(d) H = H0 + H1, where H0(ν) = ∫
S
L0 dν for some L0 ∈ ⋂

ν∈ML1(S,S, ν), and H1 is
P-uniformly integrable

Here this holds with L0 = 0 and H1 = H. Indeed, H is trivially P-uniformly integrable since
the loss is upper-bounded.

(e) H1 is P-continuous
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Let ξ ∼ GP(m, k) and let (νn) be a sequence of random measures νn ∈ P(ξ) such that a.s. νn →
ν∞ ∈ P(ξ). For n ∈ N ∪ {∞}, let mn and kn be the (random) mean and covariance functions of
νn. For u ∈X and n ∈N∪ {∞}, let also σ 2(u) = k(u,u), σ 2

n (u) = kn(u,u), and

gn(u) = g

(
�̄

(
T − mn(u)

σn(u)

))
,

where g(p) = p(1 − p) and �̄(t) = P(Z ≥ t) where Z is a standard Gaussian variable, with the
convention that �̄(0/0) = 1. We will prove below that, for all n ∈N∪ {+∞},

H(νn) =
∫
X

gn(u)μ(du)
a.s.=

∫
A

gn(u)μ(du), (4.4)

where A denotes the random subset of X defined by

A(ω) = {
u ∈ X : σ(u) > 0, σ∞(ω,u) = 0,m∞(ω,u) �= T

} ∪ {
u ∈X : σ(u) > 0, σ∞(ω,u) > 0

}
.

The motivation for using (4.4) is that it is easy to prove the convergence of gn(ω,u) for
u ∈ A(ω) and that the set A(ω) does not depend on n, which makes it possible to conclude
using the dominated convergence theorem on the set A(ω) for almost all ω. In more detail:
since νn → ν∞ almost surely, it holds for almost all ω ∈ � that mn(ω, ·) → m∞(ω, ·) and
σn(ω, ·) → σ∞(ω, ·) uniformly on X. Furthermore, for each u ∈ A(ω), either σ∞(ω,u) > 0 or
σ∞(ω,u) = 0,m∞(ω,u) �= T . In both cases, we have that g(�̄([mn(ω,u) − T ]/σn(ω,u))) →
g(�̄([m∞(ω,u)−T ]/σ∞(ω,u))). So, for almost all ω ∈ � we can apply the dominated conver-
gence theorem on A(ω) and thus obtain that

H(νn) =
∫

A

gn(u)μ(du)
a.s.−−−→

n→∞ H(ν∞) =
∫

A

g∞(u)μ(du),

which proves the claim.
Let us now prove (4.4). Observe first that, for any u such that σ(u) = 0, we have σn(u)

a.s.= 0
for all n ∈ N ∪ {∞} since νn ∈ P(ξ). Hence, gn(u)

a.s.= 0 when σ(u) = 0. [This is because of the
convention �̄(0/0) = 1, which yields gn(u) = g(1mn(u)≥T ) = 0 when σn(u) = 0, regardless of
whether mn(u) = T or not.] Thus, setting B(ω) = {u ∈X;σ(u) > 0, σ∞(ω,u) = 0,m∞(ω,u) =
T }, we have for all ω ∈ �

X= {
u ∈X, σ (u) = 0

} ∪ A(ω) ∪ B(ω),

and the three sets of the right-hand side of the previous display are disjoint. Since, as discussed
above, gn(u)

a.s.= 0 for any u such that σ(u) = 0, we obtain

H(νn)
a.s.=

∫
A

gn(u)μ(du) +
∫

B

gn(u)μ(du).

Thus, in order to prove (4.4), it is sufficient to show that∫
B

gn(u)μ(du)
a.s.= 0. (4.5)
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We will now establish (4.5) by proving that, in fact, μ(B) = 0 almost surely. First, since
(ω,u) �→ m∞(ω,u) and (ω,u) �→ σ∞(ω,u) are jointly measurable (by continuity of m∞(ω, ·)
and σ∞(ω, ·) for all ω ∈ �), it follows from the Fubini-Tonelli theorem that

E
(
μ(B)

) =
∫
X

1σ(u)>0E(1σ∞(u)=01m∞(u)=T )μ(du). (4.6)

Then we have, for any u ∈X,

E
(
1σ∞(u)=0

(
ξ(u) − m∞(u)

)2) = E
(
E
[
1σ∞(u)=0

(
ξ(u) − m∞(u)

)2|F ′∞
])

= E
(
1σ∞(u)=0E

[(
ξ(u) − m∞(u)

)2|F ′∞
])

= E
(
1σ∞(u)=0σ

2∞(u)
)

= 0,

where F ′∞ denotes the σ -algebra such that ν∞ = P(ξ ∈ · | F ′∞). Hence, the random variable
1σ∞(u)=0(ξ(u) − m∞(u))2 is almost surely zero, since it is non-negative and has a zero expecta-
tion. Thus, for any u ∈X, the implication

σ∞(u) = 0 =⇒ ξ(u) = m∞(u)

holds almost surely. As a consequence, we have

1σ(u)>01σ∞(u)=01m∞(u)=T = 1σ(u)>01σ∞(u)=01ξ(u)=T

≤ 1σ(u)>01ξ(u)=T

= 0

almost surely, since ξ(u) ∼ N (0, σ (u)2). Hence, the integrand in the right-hand side of (4.6) is
zero, which implies that E(μ(B)) = 0, and therefore μ(B)

a.s.= 0 since μ(B) is a non-negative
random variable. Thus, (4.4) holds and the proof of (e) is complete.

(f) ZH = ZG

Let ν ∈ ZG and let ξ ∼ ν. Let m,k,σ 2 be defined as above. Let U ∼ N (0,1) be independent
of ξ . Since G(ν) = 0, we have from the law of total variance∫

X

var
(
E(1ξ(u)≥T |Zx)

)
μ(du) = 0

for all x ∈X, where Zx = ξ(x) + τ(x)U . Hence, for all x ∈ X, for almost all u ∈X, we have

var

(
�̄

(T − m(u) − k(x,u)(Zx−m(x))

σ 2(x)+τ 2(x)√
σ 2(u) − k(x,u)2

σ 2(x)+τ 2(x)

))
= 0,
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which implies that k(x,u) = 0 (as can be proved without difficulty by separating the cases of nul-
lity and non-nullity of the denominator). Thus, if there exists x∗ for which σ 2(x∗) = k(x∗, x∗) >

0, we obtain a contradiction, since then k(x,u) > 0 in a neighborhood of x∗ by continuity. We
conclude that σ 2(x) = 0 for all x ∈X, and therefore H(ν) = 0. �

In the next proposition, we refine Theorem 4.1 by showing that it entails a consistent estimation
of the excursion set �(ξ).

Proposition 4.2. For any quasi-SUR design associated with H, as n → ∞, almost surely and in
L1, ∫

X

(
1ξ(u)≥T − pn(u)

)2
μ(du) → 0

and ∫
X

(1ξ(u)≥T − 1pn(u)≥1/2)
2μ(du) → 0.

Proof. From steps (e) and (f) in the proof of Theorem 4.1, it follows that∫
X

(
1ξ(u)≥T − pn(u)

)2
μ(du)

a.s.=
∫

A

(
1ξ(u)≥T − pn(u)

)2
μ(du).

Also, for almost all ω ∈ � and all u ∈ A(ω), pn(ω,u) → 1ξ(ω,u)≥T as n → ∞ since σ∞ ≡ 0 a.s.
from the proof of (f) in Theorem 4.1 and the conclusion of this theorem. Hence, the first part of
the proposition follows by applying the dominated convergence theorem twice. The proof of the
second part of the proposition is identical. �

4.2. The variance of excursion volume functional

Following up on the example of Section 4.1, we consider now the alternative measure of residual
uncertainty Hn = varn(α(ξ)) from [6,13]; in other words, we consider the uncertainty functional

H(ν) =
∫
S

(
α(f ) − αν

)2
ν(df ), (4.7)

where αν = ∫
S
α dν. The corresponding sampling criterion is

Jn(x) = En,x

(
varn+1

(
α(ξ)

))
.

This uncertainty functional again derives from a loss function: indeed, L(f,d) = (α(f ) − d)2

with D=R leads to

LPξ
n
(d) = En

[(
α(ξ) − d

)2] = varn
(
α(ξ)

) + (
En

(
α(ξ)

) − d
)2

,
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where LPξ
n

reaches its infimum for d = En(α(ξ)), and therefore Hn = infd∈D LPξ
n
(d). As in the

previous section, consistency is established in the following theorem by proving that the loss
function L is regular.

Theorem 4.3. The loss function L(f,d) = (α(f ) − d)2, where d ∈ D = R, is regular in the
sense of Definition 3.18. As a consequence, all the conclusions of Corollary 3.19 hold, and in

particular H(Pξ
n)

a.s.−→ 0 for any quasi-SUR design associated with H.

Proof. The proof consists of the same six points as the proof of Theorem 4.1. Here (a) and (c)
are obvious. Let us now prove the four remaining points.

(b) Since L(f,d) = (
∫
X

1f (u)≥T μ(du) − d)2, it can be shown similarly as in the proof of
Theorem 4.1 that, for any fixed d ∈D, L(f,d) is an S-measurable function of f .

(d) We use again L0 = 0 for this criterion. The functional H1 = H is trivially P-uniformly
integrable since 0 ≤ H1 ≤ μ(X)2.

(e) Let us now show that H1 = H is P-continuous. Let ξ denote a random element in S, ξ ∼
GP(m, k), and let (νn) be a sequence of random measures νn ∈P(ξ) such that νn → ν∞ ∈P(ξ)

almost surely. For all n ∈ N ∪ {+∞}, let F ′
n denote a σ -algebra such that νn = P(ξ ∈ · | F ′

n).
Then, using Fubini’s theorem, we can rewrite H(νn) as

H(νn) =
∫
X

∫
X

cn(u1, u2)μ(du1)μ(du2),

where cn(u1, u2) = cov(1ξ(u1)≥T ,1ξ(u2)≥T |F ′
n) for n ∈ N∪ {+∞}. Consider the partition

X= {
u ∈ X, σ (u) = 0

} ∪ A(ω) ∪ B(ω), ω ∈ �,

where σ , A and B are defined as in the proof of Theorem 4.1. Recalling from step (e) of this
proof that var(1ξ(u)≥T | F ′

n)
a.s.= 0 when σ(u) = 0, and that μ(B)

a.s.= 0, we obtain that, for all
n ∈ N∪ {+∞},

H(νn)
a.s.=

∫
A

∫
A

cn(u1, u2)μ(du1)μ(du2).

For j = 1,2 and uj ∈ A(ω), we have either σ∞(uj ) > 0 or σ∞(uj ) = 0,m∞(uj ) �= T . Hence,
for almost all ω ∈ �, for u1 ∈ A(ω) and u2 ∈ A(ω), we obtain cn(u1, u2) → c∞(u1, u2) by the
following lemma (proved later).

Lemma 4.4. Let mn = (mn1,mn2)
t → (m1,m2)

t = m as n → ∞. Consider a sequence of co-
variance matrices �n such that

�n =
(

σn1 σn12
σn12 σn2

)
−−−→
n→∞

(
σ1 σ12
σ12 σ2

)
= �.

Assume that for i = 1,2 we have mi �= T or σi > 0. Let Zn ∼ N (mn,�n) and Z ∼ N (m,�).
Then as n → ∞, cov(1{Zn1≥T },1{Zn2≥T }) → cov(1{Z1≥T },1{Z2≥T }).
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Finally, using the dominated convergence theorem on A(ω) × A(ω) for almost all ω ∈ �, we
conclude that H(νn) → H(ν∞) almost surely, which proves that H is P-continuous.

(f) Let ν ∈M and let ξ ∼ ν. Let also Zx = ξ(x)+ τ(x)U , with U ∼N (0,1) independent of ξ ,
so that Jx(ν) = E(var(α(ξ) | Zx)). We first remark that, from (3.5) and the law of total variance,
for any x ∈X,

Gx(ν) = var
(
α(ξ)

) − E
(
var

(
α(ξ)|Zx

)) = var
(
E
(
α(ξ)|Zx

))
. (4.8)

Then we have the following sequence of equivalences:

G(ν) = 0 ⇔ ∀x ∈ X,Gx(ν) = 0

⇔ ∀x ∈ X,var
(
E
(
α(ξ) | Zx

)) = 0

⇔ ∀x ∈ X, α(ξ) − E
(
α(ξ)

) ⊥ L2(Zx). (4.9)

The first equivalence follows directly from the definition of G: G(ν) = supx∈X Gx(ν), since Gx(ν)

is non-negative for all x ∈ X, the second one from (4.8), and the third one from the fact that
E(α(ξ) | Zx) is the orthogonal projection of α(ξ) onto L2(Zx).

Let now ν ∈ ZG . Using Lemma A.10, it follows from (4.9) that α(ξ) − E(α(ξ)) ⊥ L2(ξ(x)),
for all x ∈ X. In particular, α(ξ) − E(α(ξ)) ⊥ 1ξ(x)≥T , for all x ∈X, and thus

var
(
α(ξ)

) =
∫

cov
(
α(ξ),1ξ(x)≥T

)
μ(dx) = 0,

which concludes the proof. �

Proof of Lemma 4.4. By the convergence of moments and Gaussianity, (Zn1,Zn2) converges
in distribution to (Z1,Z2). Furthermore, from the assumptions the cumulative distribution func-
tions of Z1 and Z2 are continuous at T , which implies that, by the Portemanteau theorem,
P(Zni ≥ T ) → P(Zi ≥ T ). In addition, Y := min(Z1,Z2) also has a continuous cumula-
tive distribution function at T and, as E(1{Z1≥T }1{Z2≥T }) = P(Y ≥ T ), we get similarly that
E(1{Zn1≥T }1{Zn2≥T }) → E(1{Z1≥T }1{Z2≥T }), which completes the proof. �

Similarly as before, in the next proposition, we show that Theorem 4.3 yields a consistent
estimation of the excursion volume.

Proposition 4.5. For any quasi-SUR design associated with H, as n → ∞, almost surely and in
L1, En(α(ξ)) → α(ξ).

Proof. Let α = α(ξ). We know from, for example, Theorem 6.23 in [37], that En(α) → E∞(α)

almost surely and in L1. Moreover, it follows from Theorem 4.3 that varn(α) → 0 almost surely,
and therefore E(varn(α)) → 0 by dominated convergence. Hence, E(En[(En(α) − α)2]) → 0,
which shows that En(α) converges in L1, and thus almost surely as well, to E∞(α)

a.s.= α. �
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Remark 4.6. Contrary to the case of the integrated Bernoulli variance functional in Proposi-
tion 4.2, it is not possible to prove that a SUR sequential design associated with the uncertainty
functional (4.7) results in a consistent estimation of the set �(ξ) = {u ∈ X : ξ(u) ≥ T }. Indeed,
for instance, let X= [−1,1], let μ be Lebesgue measure, let T = 0 and let ξ have zero mean func-
tion and covariance function k defined by k(u, v) = uv for u,v ∈ [−1,1]. Then, almost surely,
the set �(ξ) is equal to [−1,0] or to [0,1] (with probabilities 1/2 for both cases). Hence, we
have, with ν the distribution of ξ , H(ν) = 0 because α(ξ) = 1 almost surely. Thus, any sequen-
tial design (Xn)n≥1 is a SUR sequential design associated with (4.7), since we have Jn(x) = 0
for any x ∈X and n ≥ 1. However, the conclusions of Proposition 4.2 clearly do not hold for any
sequential design. For instance, if Xn = 0 for all n ≥ 1, we have pn(u) = 1/2 for all u ∈X.

As a conclusion, for the SUR strategy associated with the uncertainty functional (4.7), and thus
based on μ(�(ξ)), it can only be guaranteed that μ(�(ξ)), but not �(ξ) in general, is estimated
consistently.

4.3. The knowledge gradient functional

Coming to the topic of sequential design for global optimization, we now focus on the knowledge
gradient criterion [25,26,55], which is an extension to the general (noisy) case of the strategy pro-
posed in the 70s by [43] for the noiseless case. We shall consider, here and in the next section, the
case of a maximization problem. The knowledge gradient sampling criterion, to be maximized,
is then defined by

Gn(x) = En,x(maxmn+1) − maxmn, (4.10)

with maxima taken over the whole domain X as in [25,26] for the case of a discrete X, and in
Section 3 of [55] for the case of a “continuous” X; we do not consider the KGCP approximation
introduced in Section 4 of [55].

Remark 4.7. The quantity maxmn in (4.10) does not depend on the sampling point x, and thus
plays no part in the selection of the next observation point. The motivation for writing Gn(x)

in this form is that the sampling criterion thus defined is non-negative, and becomes equal to
zero when σn ≡ 0. The first term in the right-hand side of (4.10) is exactly the sampling criterion
proposed by [43] in the noiseless case.

The following criterion, to be minimized, clearly defines the same strategy as (4.10):

Jn(x) = En(max ξ) − En,x(maxmn+1)

= En,x

(
En+1(max ξ) − maxmn+1

)
,

and clearly appears, under the second form, as the SUR sampling criterion corresponding to the
uncertainty functional

H(ν) =
∫
S

maxf ν(df ) − maxmν. (4.11)
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Moreover, the original sampling criterion (4.10) is easily seen to be the value Gn(x) = Gx(P
ξ
n)

of the associated expected gain functional.
This time again, the uncertainty functional H derives from a loss function, with D = X and

L(f,d) = maxf − f (d), leading to

LPξ
n
(d) = En(max ξ) − mn(d).

The average loss LPξ
n

reaches its infimum for d ∈ argmaxmn, and so Hn = infd∈D LPξ
n
(d). Fol-

lowing the same route as in the last two sections, we have:

Theorem 4.8. The loss function L(f,d) = maxf − f (d), where d ∈ D = X, is regular in the
sense of Definition 3.18. As a consequence, all the conclusions of Corollary 3.19 hold, and in

particular H(Pξ
n)

a.s.−→ 0 for any quasi-SUR design associated with H.

Proof. The proof consists in the same six points as in the proof of Theorem 4.1.
(a) X is a compact metric space, hence separable.
(b) The mapping L(·, d) : f �→ maxf − f (d) is continuous on S, hence S-measurable.
(c) Lν : d �→ ∫

maxf ν(df ) − mν(d) is continuous since mν ∈ S for all ν ∈M.
(d) Let L0(f ) = maxf . Since X is compact, it holds for any Gaussian measure ν ∈ M and

any ξ ∼ ν that E(maxX |ξ |) < ∞ (see Section 2.2), and thus we have L0 ∈ ⋂
ν∈ML1(S,S, ν).

Moreover, it follows from Proposition 3.6 that H1 : ν �→ −maxmν is P-uniformly integrable,
since |H1(ν)| ≤ ∫

L+ dν with L+(f ) := max |f |, and L+ ∈ ⋂
ν∈ML1(S,S, ν).

(e) H1 : ν �→ −maxmν is continuous, hence P-continuous. Indeed, consider a sequence
of measures νn ∈ M converging to a limit ν∞ ∈ M in the sense of Definition 2.7. Then mνn

converges uniformly to mν∞ as n → ∞, and therefore H1(νn) = −maxmνn converges to
H1(ν∞) = −maxmν∞ by continuity of f �→ maxf on S.

(f) Let ν ∈ ZG and let ξ ∼ ν. Let m,k,σ 2 be defined, w.r.t. ξ , as in the proof of Theorem 4.1.
Let Zx = ξ(x) + τ(x)U with U ∼ N (0,1) independent of ξ . Let x∗ ∈ argmaxm. We have, for
all x ∈ X,

0 = Gx(ν) =H(ν) −Jx(ν)

= (
E(max ξ) − maxm

) − E
(

E(max ξ | Zx) − max
u∈X

E
(
ξ(u) | Zx

))
= E

(
max
u∈X

E
(
ξ(u) | Zx

)) − m
(
x∗), (4.12)

by the law of total expectation and the optimality property of x∗. For all x, y ∈X it holds that

m
(
x∗) = E

(
E
(
ξ
(
x∗) | Zx

)) ≤ E
(
max

(
E
(
ξ(y) | Zx

)
,E

(
ξ
(
x∗) | Zx

))) ≤ E
(

max
u∈X

E
(
ξ(u) | Zx

))
,

and therefore, using (4.12),

0 ≤ E
(
max

(
E
(
ξ(y)|Zx

)
,E

(
ξ
(
x∗)|Zx

)) − E
(
ξ
(
x∗)|Zx

)) ≤ Gx(ν) = 0.
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Setting Wx,y := E(ξ(y) | Zx) − E(ξ(x∗) | Zx), we have thus proved that E(max(0,Wx,y)) = 0,
from which it follows that var(Wx,y) = 0 since

Wx,y = m(y) − m
(
x∗) + 1σ 2(x)+τ 2(x)>0

k(x, y) − k(x, x∗)
σ 2(x) + τ 2(x)

(
Zx − m(x)

)
is Gaussian. Observe now that

var(Wx,y) = 1σ 2(x)+τ 2(x)>0
(k(x, y) − k(x, x∗))2

σ 2(x) + τ 2(x)
.

Hence it must be the case that either σ 2(x) + τ 2(x) = 0 or k(x, y) = k(x, x∗). But, if σ 2(x) +
τ 2(x) = 0 then σ(x) = 0 and therefore k(x, y) = k(x, x∗) = 0. Summing up, we have proved
that

k(x, y) = k
(
x, x∗), ∀x, y ∈ X.

As a consequence, for all x, y ∈ X, we have

k(x, x) − k(x, y) = k
(
x, x∗) − k

(
x, x∗) = 0,

and therefore

var
(
ξ(x) − ξ(y)

) = (
k(x, x) − k(x, y)

) + (
k(y, y) − k(x, y)

) = 0.

It follows that, almost surely, the sample paths of ξ − m are constant over X, and so max ξ =
ξ(x∗) − m(x∗) + maxm = ξ(x∗). We have thus proved that H(ν) = E(max ξ) − m(x∗) = 0 for
any ν ∈ ZG , which concludes the proof. �

In the next proposition, we refine Theorem 4.8 by showing that the loss max ξ − ξ(X∗
n) goes

to zero for any sequence of optimal decisions X∗
n ∈ argmaxmn.

Proposition 4.9. Let (X∗
n) be any sequence of Fn-measurable X-valued random variables such

that X∗
n ∈ argmaxmn almost surely for all n. Then, for any quasi-SUR design associated with H,

ξ(X∗
n) → max ξ almost surely and in L1.

Proof. From step (f) in the proof of Theorem 4.8, and the fact that H(P
ξ∞)

a.s.= 0, it follows that
the sample paths of ξ − m∞ are almost surely constant over X. Let X∗ denote an X-valued
random variable such that X∗ ∈ argmax ξ . Then, we have

lim sup
n→∞

(
ξ
(
X∗) − ξ

(
X∗

n

)) = lim sup
n→∞

(
m∞

(
X∗) − m∞

(
X∗

n

)) = lim sup
n→∞

(
mn

(
X∗) − mn

(
X∗

n

)) ≤ 0

almost surely. This implies, since ξ(X∗) − ξ(X∗
n) ≥ 0, that ξ(X∗

n) → ξ(X∗) = max ξ almost
surely. Convergence in the L1 sense is finally obtained by the dominated convergence theorem. �
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4.4. The expected improvement functional

This section addresses the celebrated expected improvement strategy [36,43].4 Assume that exact
(noiseless) evaluations can be made, in other words, that τ(x) = 0 for all x ∈ X: then, we define
the expected improvement criterion, to be maximized, as

Gn(x) = En,x(Mn+1 − Mn), (4.13)

with Mn = maxx∈X:σn(x)=0 ξ(x) and σ 2
n (x) = kn(x, x). Observe that, on the right-hand side of

(4.13), similarly to Remark 4.7 for the knowledge gradient criterion, only Mn+1 actually depends
on the new observation point Xn+1 = x. Note also that we need at least one x ∈ X such that
σn(x) = 0 for Mn to be well defined, which is always true as soon as n ≥ 1 (in practice, (4.13) is
typically used after an initial design of size n0 > 0).

Remark 4.10. Our definition of the EI strategy, and in particular of the current best value Mn,
differs slightly from the usual one [36], which takes Mn = max(ξ(X1), . . . , ξ(Xn)). This minor
variation is necessary if we want to see the EI strategy as stemming from some uncertainty
functional. Remark that, in the case of a non-degenerate Gaussian process (i.e., when σn(x) = 0
if and only if x ∈ {X1, . . . ,Xn}), the two definitions of Mn coincide and the criterion can be
written more familiarly as

Gn(x) = En

(
max

(
0, ξ(x) − Mn

))
. (4.14)

The sampling criteria (4.13) and (4.14) no longer agree in general, since it can happen for degen-
erate Gaussian processes that Mn > max(ξ(X1), . . . , ξ(Xn)). Degeneracy occurs, for example,
in the case of finite-dimensional Gaussian processes (i.e., linear models with a Gaussian prior
on their coefficients), or for processes with pathwise invariance properties [28] (for instance
ξ(x) = −ξ(−x) for all x ∈X, almost surely).

It turns out that the sequential design obtained by iteratively maximizing (4.13) can be inter-
preted as a SUR sequential design. Indeed, we have

En,x(Mn+1 − Mn) = En(max ξ − Mn) − En,x(max ξ − Mn+1),

where the subscript “x” has been dropped from the first expectation since its argument does not
depend on the position Xn+1 of the next evaluation. Thus, using the fact that En,x(max ξ) =
En,x(En+1(max ξ)) by the law of total expectation, we see that maximizing (4.13) is equivalent
to minimizing

Jn(x) = En,x

(
En+1(max ξ) − Mn+1

)
,

4As explained in Section 4.3, the strategy originally proposed by [43] – and earlier work in Russian by J. Mockus

and A. Žilinskas – is more accurately described, in principle, as a special (noiseless) case of what we have called the
“knowledge gradient” strategy. However, for the particular Brownian motion-based Gaussian process prior used in [43],
the maximum of mn always occurs at an observation point, and the criterion of [43] then coincides (see page 21 of the
paper) with what is, currently, commonly referred to as the expected improvement criterion.
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which is precisely the SUR strategy associated with the uncertainty functional defined, for any
ν ∈M such that σν vanishes at at least one x ∈X, by

H(ν) =
∫
S

maxf ν(df ) − max
x∈X:σν(x)=0

mν(x). (4.15)

Indeed, maxx∈X:σν(x)=0 ξ(x)
a.s.= maxx∈X:σν(x)=0 mν(x) for any such ν and any ξ ∼ ν. Moreover,

the expected improvement criterion Gn turns out to be the value Gn(x) = Gx(P
ξ
n) of the associ-

ated expected gain functional. In order to have an uncertainty function H that is well defined on
all of M, set

H(ν) =
∫
S

(maxf − minf )ν(df ) (4.16)

for all ν ∈ M such that σν does not vanish.
The uncertainty functional (4.15)–(4.16) is measurable (see Proposition A.4) and can be asso-

ciated with a certain loss function, as shown in the following result. Contrary to the case of the
three previous criteria, however, this loss function is not regular in general.

Proposition 4.11. The EI uncertainty functional is of the form (3.16), with L the loss function
defined on the decision space D=X× (R∪ {−∞}), for any f ∈ S and d = (x∗, z∗) ∈D, by

L(f,d) =

⎧⎪⎨⎪⎩
maxf − z∗ if f

(
x∗) = z∗ and z∗ > −∞,

maxf − minf if z∗ = −∞,

+∞ otherwise.

(4.17)

Assuming that X ⊂ R
p has a non-empty interior, the loss function (4.17) is not regular, and nei-

ther would be any other loss function that could be associated with the EI uncertainty functional.

Proof. Let us first prove that H is of the form (3.16). Let ν ∈ M, ξ ∼ ν and d = (x∗, z∗) ∈
D. Then the average loss is equal to Lν(d) = E(max ξ − min ξ) if z∗ = −∞ and, using the
convention (+∞) · 0 = 0, to

Lν(d) = E
(
L(ξ, d)

)
= E

((
max ξ − z∗)1ξ(x∗)=z∗

) + (+∞) · P
(
ξ
(
x∗) �= z∗)

=
{

E(max ξ) − mν

(
x∗), if σν

(
x∗) = 0 and mν

(
x∗) = z∗,

+∞ otherwise,
(4.18)

if z∗ > −∞. The last equality follows from the simple observation that the event {ξ(x∗) = z∗} is
almost sure if σν(x

∗) = 0 and mν(x
∗) = z∗, and negligible otherwise.

In the case where there exists at least one x ∈ X such that σν(x) = 0, then it is clear that
E(max ξ) − mν(x) < E(max ξ − min ξ) for any such x, and thus the expected loss is minimal
for d = (x∗, z∗) such that x∗ ∈ argmaxx:σν(x)=0 mν(x) and z∗ = mν(x

∗), which yields (4.15). In
the case where σν does not vanish, on the other hand, then (4.18) is always infinite and thus the
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expected loss in minimal for any d = (x∗,−∞), which yields (4.16). In both cases, we have
proved that H(ν) = mind∈D Lν(d).

We will now prove that there is no regular loss function L such that H(ν) = mind∈D Lν(d).
To do so, we will show that H cannot be decomposed as H = H0 +H1, with H0(ν) = ∫

S
L0 dν

for some L0 ∈ ⋂
ν∈ML1(S,S, ν), and H1 a P-continuous functional.

Assume, for the sake of contradiction, that H = H0 + H1, with H0(ν) = ∫
S
L0 dν for some

L0 ∈ ⋂
ν∈ML1(S,S, ν), and H1 a P-continuous functional. Then, using the same martin-

gale argument as in the proof of Theorem 3.16, we have H(P
ξ
n )

a.s.−→ H(P
ξ∞). Also, again

by a martingale argument, En(max ξ)
a.s.−→ E∞(max ξ), and therefore maxσn(x)=0 mn(x)

a.s.−→
maxσ∞(x)=0 m∞(x).

We will now show that this last convergence does not hold for a certain Gaussian process ξ on
X, which yields a contradiction. For simplicity, we assume in the following that X = [0,1], but
the same argument could be made on any X⊂R

p that has a non-empty interior.
Consider a Gaussian process ξ with mean m(x) = x and covariance k(x, y) = exp(−(x −y)2).

Let (Xn) be a deterministic sequence, dense in [0,1/3]. Then, as follows from the proof of
Proposition 1 in [64], we have σ∞(x) = 0 for all x ∈ [0,1]. Hence, maxσ∞(x)=0 m∞(x) =
maxx∈[0,1] ξ(x). Also, since Xk ∈ [0,1/3] for all k ∈ N, and since ξ is a non-degenerate Gaus-
sian process, we have maxσn(x)=0 mn(x) ≤ maxx∈[0,1/3] mn(x). This upper bound converges to
maxx∈[0,1/3] ξ(x) almost surely, and thus maxx∈[0,1/3] ξ(x) = maxx∈[0,1] ξ(x) almost surely. This
last equality cannot hold, however, because

max
x∈[0,1/3]

ξ(x) ≤ 1

3
+ max

x∈[0,1/3]
(
ξ(x) − x

)
,

max
x∈[2/3,1]

ξ(x) ≥ 2

3
+ max

x∈[2/3,1]
(
ξ(x) − x

)
,

and by symmetry maxx∈[0,1/3](ξ(x) − x) and maxx∈[2/3,1](ξ(x) − x) have the same distribu-
tion. �

Since the EI uncertainty functional does not derive from a regular loss function, consistency
cannot be proved using Corollary 3.19 as in the three previous examples. The following result
will thus be proved by a direct application of the more general Theorem 3.12.

Theorem 4.12. For any quasi-SUR sequential design associated with H, as n → ∞, almost
surely and in L1, Hn → 0, maxmn → max ξ and Mn → max ξ .

Proof. Since the uncertainty functional H derives from a loss function by Proposition 4.11, it is
DoA by Proposition 3.17 and, consequently, has the supermartingale property.

Consider now a quasi-SUR sequential design associated with H. Theorem 3.12 applies and
therefore G(P

ξ
n ) → 0 almost surely. Observe also that, for all n ≥ 1,

Mn+1 = max
σn+1(x)=0

ξ(x) ≥ max
(
ξ(Xn+1), max

σn(x)=0
ξ(x)

)
= max

(
ξ(Xn+1),Mn

)
.
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Hence G(P
ξ
n ) = supx∈X En,x(Mn+1 − Mn) ≥ supx∈X En(max(0, ξ(x) − Mn)), and thus

max
x∈X

γ
(
mn(x) − Mn,σ

2
n (x)

) a.s.−−−→
n→∞ 0, (4.19)

where γ denotes the function defined by γ (a, b) = E(max(0,Za,b)), Za,b ∼ N (a, b). Recall
from Section 3 in Vazquez and Bect [63] that γ is continuous and satisfies

• γ (z, s2) > 0 if s2 > 0,
• γ (z, s2) ≥ z > 0 if z > 0.

Recall also from Proposition 2.9 that, almost surely, mn → m∞ and σn → σ∞ uniformly on X.
Therefore we have

∀x ∈X, γ
(
m∞(x) − M∞, σ 2∞(x)

) = 0, (4.20)

almost surely, where M∞ denotes the almost sure limit of the increasing sequence (Mn), with
M∞ ≤ max ξ < +∞. (To see that (Mn) is increasing, observe that the set of points x ∈ X

such that σn(x) = 0 is growing with n, since (σn(x)) is decreasing for any x.) Considering
the properties of γ , it follows from (4.20) that almost surely, for all x ∈ X, σ∞(x) = 0 and
m∞(x) − M∞ ≤ 0. Therefore, almost surely, we have ξ = m∞ and M∞ ≥ maxm∞. Since
it is clear that Mn ≤ maxmn for all n, we also have M∞ ≤ maxm∞ in the limit, hence
M∞ = maxm∞ = max ξ almost surely.

We have proved so far that maxmn → max ξ and Mn → max ξ almost surely. Moreover,
En(max ξ) is a martingale that converges almost surely and in L1 to E∞(max ξ) = max ξ (see,
e.g., Theorem 6.23 in [37]), and therefore Hn = En(max ξ) − Mn → 0 almost surely.

We conclude the proof by observing that all three convergence results also hold in the L1 sense
by the dominated convergence theorem. �

Finally, we remark that Proposition 4.12 improves the consistency result of [63], since it does
not impose the no-empty-ball property on the covariance function k. Hence, Proposition 4.12 also
holds with very smooth Gaussian processes, such as Gaussian processes with a Gaussian (a.k.a.
squared exponential) covariance function, or with Gaussian processes whose sample paths have
symmetry properties [28].

Appendix A: Technical results and proofs

A.1. Measurability results

Lemma A.1. Let (E,E) denote a measurable space. Let ϕ : S×E → [0,+∞] denote an S ⊗E -
measurable function. Then the function M×E → [0,+∞], (ν, y) �→ ∫

S
ϕ(f, y)ν(df ), is M⊗E -

measurable.

Proof. The result is clear for any ϕ = 1A×B , with A ∈ S and B ∈ E . Indeed,
∫
S
ϕ(f, y)ν(df ) =

πA(ν)1B(y), where πA denotes the evaluation map ν �→ ν(A), and the restriction of πA to M is
M-measurable. It can be extended to any ϕ = 1� , with � ∈ S ⊗ E , using a standard monotone
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class argument, and then to any S ⊗ E -measurable function by linearity and increasing approxi-
mation by simple functions. �

In the following lemma, the Banach space C(X×X) is endowed with its Borel σ -algebra.

Lemma A.2. The mappings m• : M → S, ν �→ mν and k• : M → C(X × X), ν �→ kν are mea-
surable.

Proof. The mapping m• is measurable if, and only if, ν �→ ϕ(mν) is measurable for all ϕ ∈ S
′

(see, e.g., [60], Theorem 2.2). Let ϕ ∈ S′: there exists a unique signed measure μϕ on X such that
ϕ(f ) = ∫

X
f dμϕ . It is then easy to check with Fubini’s theorem that ϕ(mν) = ∫

ϕ(f )ν(df ), and
the conclusion follows from Lemma A.1. The measurability of k• is established in a similar way,
working on X×X instead of X. �

Let � ⊂ S× C(X×X) denote the range of � = (m•, k•), and let T denote the trace on � of
the Borel σ -algebra of S× C(X×X).

Lemma A.3. � is a bi-measurable mapping from (M,M) to (�,T ).

Proof. The measurability of � follows from Lemma A.2. Since M is generated by the eval-
uation maps (see Section 2.2), �−1 is measurable if, and only if, (m, k) �→ [GP(m, k)](A)

is measurable for all A ∈ S . This is easily checked for any finite intersection of the form
A = ⋂

k{f ∈ S | f (xk) ∈ �k}, where (xk) ∈ X
n and (�k) ∈ B(R)n. The result extends to the

ball σ -algebra S0 using a standard monotone class argument, which concludes the proof since
S0 = S (see, e.g., [7]). �

Proposition A.4. The expected improvement functional (4.15)–(4.16) is M-measurable.

Proof. Let {xi} denote a countable dense subset of X and set, for all k > 0,

Hk(ν) =
∫
S

(maxf − minf )ν(df ) − sup
i

(
mν(xi) −

∫
S

minf ν(df )

)
1

σν(xi )≤ 1
k
.

The mappings ν �→ ∫
S

maxf ν(df ), ν �→ ∫
S

minf ν(df ), (ν, x) �→ mν(x) and (ν, x) �→ σ 2
ν (x)

are measurable by Lemma A.1. As a consequence, for any k > 0, the functional Hk is M-
measurable. The result follows from the fact that Hk → H pointwise as k → ∞. �

A.2. The conditioning operator

Let Zn = (Z1, . . . ,Zn) and Xn = (X1, . . . ,Xn). For any (m, k) ∈ �, xn ∈ X
n and z

n
∈ R

n, it
is well known that the conditional mean and covariance functions of (ξ(x))x∈X given Zn = z

n
,

assuming a deterministic design Xn = xn (see Section 2.1), are given by

mn(x;xn, zn
) = m(x) + k(x, xn)K(xn)

†(z
n
− m(xn)

)
, (A.1)
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kn(x, y;xn) = k(x, y) − k(x, xn)K(xn)
†k(xn, y), (A.2)

where K(xn)
† denotes the Moore–Penrose pseudo-inverse of K(xn) = (k(xi, xj ) +

τ(xi)
2δi,j )1≤i,j≤n, and k(xn, ·) and the other notations should be self-explanatory.

Lemma A.5. κ̃n : (xn, zn
, (m, k)) �→ (mn(·;xn, zn

), kn(·;xn)) is a measurable mapping from
X

n ×R
n × � to �, where � is endowed with the σ -algebra T defined in the preceding section.

Proof. First observe that for any xn, kn(·;xn) is the covariance function of ξ − mn(·;xn,Zn),
which is a Gaussian process with continuous sample paths. Thus, (mn(·;xn, zn

), kn(·;xn)) is
indeed an element of �. The result then follows from the continuity of (m,x) �→ m(x), (k, x) �→
k(x, ·), and (k, x, y) �→ k(x, y), and the measurability of K �→ K† [54]. �

Proof of Proposition 2.6. Let κn : Xn ×R
n ×M →M denote the mapping defined by

κn(xn, zn
, ν) = GP

(
mn(·;xn, zn

), kn(·;xn)
)
, (A.3)

where ν = GP(m, k) ∈ M. Observe that, using the notations introduced in the previous section,
κn(xn, zn

, ν) = �−1(κ̃n(xn, zn
,�(ν))): thus, it follows from Lemmas A.3 and A.5 that κn is

measurable. Standard algebraic manipulations then show that

κn+m(xn+m, z
n+m

,ν) = κm

(
xn+1:n+m, z

n+1:n+m
,κn(xn, zn

, ν)
)
,

whence it is easy to prove recursively that Pξ
n := κn(Xn,Zn,Pξ ) satisfies the property

E(UPξ
n(�)) = E(U1ξ∈�) for any sequential design (Xi), any Fn-measurable U of the form

U = ∏n
i=1 ϕi(Zi) and any � ∈ S of the form � = ⋂J

j=1{ξ(x̃j ) ∈ �j }, with x̃j ∈ X, �j ∈ B(R),
1 ≤ j ≤ J . The result extends to any Fn-measurable U and any � ∈ S thanks to a monotone
class argument, which proves that Pξ

n is a conditional distribution of ξ given Fn. Proposition 2.6
is thus established with Condx1,z1,...,xn,zn : ν �→ κn(xn, zn

, ν). �

Proposition A.6. The mapping (x, ν) �→ Jx(ν) is B(X) ⊗M-measurable.

Proof. Observe that Jx(ν) can be rewritten as

Jx(ν) =
∫
R

H
(
κ1

(
x,mν(x) + vsν(x), ν

))
φ(v)dv, (A.4)

where s2
ν = kν(x, x) + τ 2(x) and κ1 is defined as in the proof of Proposition 2.6. Using

Lemma A.3 and the measurability of κ1, the integrand in the right-hand side of (A.4) is eas-
ily seen to be a B(X) ⊗ M ⊗ B(R)-measurable function of (x, ν, v). The result follows from
Fubini’s theorem. �

Remark A.7. As a consequence of Proposition A.6, Jn : x �→ Jx(P
ξ
n) is an Fn-measurable pro-

cess for all n, and thus Jn(X) is a well-defined Fn-measurable random variable for any Fn-
measurable X-valued random variable X.
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A.3. Convergence in M

Proof of Proposition 2.9. Recall from Proposition 2.6 that the conditional distribution of ξ

given Fn is of the form Pξ
n = GP(mn, kn). Moreover, ξ is a Bochner-integrable S-valued random

element: indeed, it is measurable (see, e.g., [60]) and ‖ξ‖∞ is integrable (see, e.g., Theorem 2.9
in [2]). The conditional expectation E(ξ | Fn) of ξ given Fn is thus well defined as an S-valued
random element (since S = C(X) is a separable Banach space; see, e.g., Theorem 5.1.12 in [59])
and is easily seen to coincide with mn. As a consequence, it follows from Theorem 6.1.12 in [59]
that mn converges uniformly, almost surely and in L1(�,F,P), to m∞ := E(ξ | F∞). The limit
m∞ is, by definition of the conditional expectation, an F∞-measurable random element in S.

Let us now prove that the sequence kn converges uniformly to a continuous function k∞.
Since Pξ

n = CondX1,Z1,...,Xn,Zn(P
ξ ) by Proposition 2.6, and since the sequence of conditional

covariance functions depends only on the design points Xi (not on the observed values Zi ), we
can reduce without loss of generality to the case of a deterministic design (Xi = xi ∈ R, for all
i ∈ N) and consider the associated deterministic sequence (kn). Let μ = ∑p

i=1 μiδx̃i
denote any

finitely supported measure on X, and let σ 2
n (μ) = ∑p

i,j=1 μiμjkn(x̃i , x̃j ) denote the conditional

variance of Z = ∑p

i=1 μiξ(x̃i) given Fn. Because Z and the observations are jointly Gaussian,
the sequence (σ 2

n (μ))n≥1 is decreasing and therefore converges to a limit σ 2∞(μ), for all μ. Thus,

kn(x, y) = 1

4

(
σ 2

n (δx + δy) − σ 2
n (δx − δy)

) −−−→
n→∞

1

4

(
σ 2∞(δx + δy) − σ 2∞(δx − δy)

)
,

which proves convergence to a limit k∞(x, y). Moreover, we have for any x, y, x′, y′ ∈ X:∣∣kn(x, y) − kn

(
x′, y′)∣∣ ≤ σn(δx)σn(δy − δy′) + σn(δy′)σn(δx − δx′) (A.5)

≤ σ0(δx)σ0(δy − δy′) + σ0(δy′)σ0(δx − δx′). (A.6)

Letting n go to +∞ in the left-hand side, we conclude that k∞ is continuous. To see that the
convergence kn → k∞ is uniform, consider the sequence of functions X2 → R, (x, y) �→ σ 2

n (δx +
δy). This is a decreasing sequence of continuous functions, which converges pointwise to the
continuous function (x, y) �→ σ 2∞(δx + δy). Since X

2 is compact, the convergence is uniform by
Dini’s first theorem. The same argument applies to (x, y) �→ σ 2

n (δx − δy) and therefore to kn by
polarization.

Finally, let Q denote any conditional distribution of ξ given F∞. We will prove that the F∞-
measurable random measure Q is almost surely a Gaussian measure. Let x ∈ X and let φx denote
the (random) characteristic function of Q ◦ δ−1

x . It follows from Theorem 6.23 in Kallenberg [37]

that, for all u ∈ R, φx(u) = E∞(eiuξ(x))
a.s.= limn→∞ En(e

iuξ(x)). Since

En

(
eiuξ(x)

) = eiumn(x)e− 1
2 kn(x,x)u2 a.s.−−−→

n→∞ eium∞(x)e− 1
2 k∞(x,x)u2

,

we conclude from the continuity of φx and Levy’s theorem that Q ◦ δ−1
x =N (m∞(x), k∞(x, x))

almost surely. The argument extends to any image measure of the form Q ◦ h−1, with h =
(δy1 , . . . , δym). Considering first the case where the yj ’s are taken in a countable dense subset
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of X and then using the continuity of the elements of S, we conclude that there is an almost sure
event �0 ∈ F∞ such that, for ω ∈ �0, (δx)x∈X is a Gaussian process defined on the probability
space (S,S,Q(ω, ·)), and thus Q(ω, ·) is a Gaussian measure for all ω ∈ �0. Finally, letting

Pξ∞(ω, ·) =
{

Q(w, ·) if w ∈ �0,

GP(0,0) otherwise,

we have constructed an F∞-measurable random element in M such that Pξ
n → Pξ∞ a.s. for the

topology introduced in Definition 2.7, thereby concluding the proof. �

Proof of Proposition 2.10. Let ν = GP(m, k) ∈ M and let (xj , zj ) → (x∞, z∞) in X×R. For
any j ∈ N ∪ {+∞}, we have Condxj ,zj

(ν) = GP(m1(·;xj , zj ), k1(·;xj ), where m1 and k1 are
given by (A.1)–(A.2). It is then easy to check that m1(·;xj , zj ) and k1(·;xj ) converge uniformly
to m1(·;x∞, z∞) and k1(·;x∞), respectively, using the facts that k is uniformly continuous over
X × X (since k is continuous and X × X is a compact metric space) and that K �→ K†, where
K† denotes the Moore-Penrose pseudo-inverse of K , is continuous at K = kν(x, x) + τ 2(x) > 0
(the covariance matrix is actually a scalar in this case). �

A.4. Existence of SUR and quasi-SUR sequential designs

This section contains general existence results for ε-quasi-SUR sequential designs. Recall that X
is assumed, throughout the paper, to be a compact metric space (see Standing Assumptions 2.2).

Theorem A.8. Let the assumptions of Theorem 3.16 hold. Then,

(a) for any sequential design, the sample paths of Jn are continuous on {x ∈X : s2
n(x) > 0};

(b) for any sequence ε = (εn) of strictly positive real numbers, there exists an ε-quasi-SUR
sequential design (Xn)n≥1 associated with H.

Proof. We will assume without loss of generality that H0 = 0, since H0 only adds a constant
term (i.e., a term that does not depend on x) to the value of the sampling criterion.

Let us first prove Assertion (a). Since Jn(x) = Jx(P
ξ
n), it is equivalent to prove that the

result holds at n = 0 for any Pξ
0 ∈ M. Assume then that n = 0, fix x ∈ X such that that

s2
0(x) = k(x, x) + τ 2(x) > 0, and let (xj ) denote a sequence in X such xj → x. Recall from

(3.1) that J0(x) = Jx(P
ξ
0) = E(H(Condx,Z1(x)(P

ξ
0))). Set νk = Condxk,Z1(xk)(P

ξ
0) and ν∞ =

Condx,Z1(x)(P
ξ
0). We have νk ∈ P(ξ) for all n ∈ N ∪ {+∞}, and νk → ν∞ by Proposition 2.10.

It follows that H(νk)
a.s.−→ H(ν∞) since H is P-continuous, and thus Jxk

(Pξ
0) = E(H(νk)) →

E(H(ν∞)) = Jx(P
ξ
0) since (H(νk)) is uniformly integrable. Assertion (a) is proved.

Consider now the following compact subsets of X:

Bn,γ (ω) = {
x ∈X | sn(ω, x) ≥ γ −1 > 0

}
, (A.7)

An,γ (ω) = Bn,γ (ω) ∩ {
x ∈ X | Jn(ω,x) ≤ infJn(ω,x) + εn

}
. (A.8)
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Let us prove that, on the event {sn �≡ 0}, the set An,γ (ω) is non-empty for large values of γ .
Assume that sn(ω, ·) �≡ 0, and recall that Jn(ω, ·) ≤ Hn(ω) by (3.4). If Jn(ω, ·) ≡ Hn, then
for any x such that sn(ω, x) > 0 and any γ ≥ sn(ω, x)−1 we have x ∈ An,γ (ω) = Bn,γ (ω). If
infx Jn(ω,x) < Hn, pick a sequence (xk) such that Jn(ω,xk) → infx Jn(ω,x). For some k large
enough, Jn(ω,xk) ≤ infx Jn(ω,x) + εn and Jn(ω,xk) < Hn. As a consequence, sn(ω, xk) > 0
(this follows from (3.3) and the fact that Condx,mν(x)(ν) = ν if s2

ν (x) = 0) and thus xk ∈ An,γ (ω)

for any γ ≥ sn(ω, xk)
−1. In both cases the claim is proved.

Since X is a compact metric space, it is easily proved that ω �→ An,γ (ω) is an Fn-measurable
random closed set, and thus admits (see, e.g., [44], Theorem 2.13) an Fn-measurable selection
X

(γ )

n+1, i.e., an X-valued random variable such that X
(γ )

n+1 ∈ An,γ on the event {An,γ �= ∅}. Let x̃

denote an arbitrary fixed point in X. Setting

Xn+1 =
{

x̃ if sn ≡ 0,

X
(k)
n+1 if An,k �=∅ and An,l =∅,∀l < k,

(A.9)

provides the desired ε-quasi-SUR strategy and thus completes the proof. �

In some situations, it is possible to prove directly the continuity of the sampling criteria Jn on
the whole of X (see Section 4.4 for an example), in which case a stronger existence result can be
formulated as in [63], that does not even require the supermartingale property:

Theorem A.9. Let H denote a measurable uncertainty functional on M, such that, for all ν ∈ M,
x �→ Jx(ν) is finite and continuous on X. Then,

(a) for any sequential design, the sample paths of Jn are continuous on X;
(b) there exists a SUR sequential design (Xn)n≥1 associated with H.

Proof. Assertion (a) follows trivially from the fact that Jn(x) = Jx(P
ξ
n), and a SUR sequential

design is again obtained using the measurable selection theorem for random closed sets. �

A.5. Miscellaneous

Lemma A.10. Let U , V and W be real-valued random variables such that

1. W is independent of (U,V ),
2. V and W are Gaussian.

If U is orthogonal to L2(V + W), then U is orthogonal to L2(V ).

Remark A.11. The reverse implication is also true, but not needed in the paper.

Proof. Assume without loss of generality that U , V and W are centered. Assume further that U

is not orthogonal to L2(V ). Then, there exists a smallest integer k0 such that cov(U,V k0) �= 0.
Indeed, we would have otherwise cov(U,Hk(V )) = 0 for all k, where Hk denotes the kth Hermite
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polynomial, and thus U would be orthogonal to L2(V ) since (Hk(V ))k∈N is an orthonormal basis
of L2(V ). Using that cov(U,V k) = 0 for all k < k0, we have:

cov
(
U, (V + W)k0

) =
k0∑

k=0

(
k0

k

)
E
(
UV k

)
E
(
Wk−k0

) = E
(
UV k0

) �= 0. (A.10)

Therefore U is not orthogonal to L2(V + W), which concludes the proof by contraposition. �
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